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Abstract. In steganography secret messages are encoded into unsuspicious covertexts such that an
adversary cannot distinguish the resulting stegotexts from original covertexts. To accomplish their
respective tasks, encoder and adversary need information about the covertext distribution. In previous
analyses, the knowledge about the covertext channel was highly unbalanced: while the adversary had
full knowledge, the encoder could only query a black-box sampling oracle. In such a situation, the only
general steganographic method known is rejection sampling, for which the sampling complexity has
been shown to be exponential in the rate of message bits per covertext document. The other extreme, a
white-box setting, where the encoder knows the covertext distribution perfectly, resp. the distribution
is efficiently computable, is also unrealistic in practice. To resolve these deficiencies and to get a finer-
grained security analysis, we propose a new model, called grey-box steganography. Here, the encoder
starts with at least some partial knowledge about the type of covertext channel. Using the sampling
oracle, he first uses machine learning techniques to learn the covertext distribution and then tries to
actively construct a suitable stegotext – either by modifying a covertext or by creating a new one.
We illustrate our concept with three examples of concept classes: channels that can be described by
monomials, by decision trees and by DNF-formulae, for which the learning complexity ranges from
easily learnable up to (probably) difficult to learn. A generic construction is given showing that besides
the learning complexity, the efficiency of grey-box steganography depends on the complexity of the
membership test, and suitable modification procedures. For the concept classes considered we present
efficient algorithms for changing a covertext into a stegotext.
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1 Introduction

The aim of steganography is to hide secret messages in unsuspicious covertexts in such a way that
the mere existence of a hidden message is concealed. The basic scenario assumes two communicating
parties Alice (sender) and Bob (receiver) as well as an adversary Eve who is often also called a
“warden” due to Simmons’ [20] motivation of the setting as secret communication among prisoners.
Eve wants to find out whether or not Alice and Bob are exchanging hidden messages among their
covertext communication. A “useful” stegosystem should not only be secure (against Eve finding
out about the presence of hidden communication), but also reliable (i.e. with high probability,
encoded messages can be decoded), computationally efficient (i.e. the time, space and oracle query
complexities should be polynomial in the length of the hidden message) and rate efficient (i.e. the
transmission rate should be close to the covertext entropy).

In the past few years significant advances have been achieved in the development of theoretical
foundations of steganography [4, 6, 7, 11, 2, 12, 13, 15, 17]. Using notions from cryptography such as
indistinguishability and adapting them to a steganography scenario, Hopper et al. have shown that
it is possible to construct stegosystems that are provably secure against passive and active attacks
? Supported by DFG research grant RE 675/5-1.



[11, 2]. Their constructions are based on the assumption that Alice and Bob know nothing about
the covertext channel and are only given access to a black-box oracle that samples according to the
channel distribution. By repeatedly sampling from the covertext distribution based on a history of
previously sampled covertexts the schemes try to find samples that already “contain” the message
bits to be embedded, which is why this method is called “rejection sampling”. While Hopper et al.
only embed one bit per covertext document, this rate has been increased by Le and Kurosawa [15]
by means of a coding scheme similar to arithmetic coding that they call “P-Codes”.

However, all black-box stegosystems suffer from several drawbacks. Lysyanskaya and Meyerovich
first pointed out that sampling based on the full history might be too difficult and analysed under
which conditions stegosystems that sample with restricted length histories become insecure [17].
Furthermore, Hundt et al. have shown that the construction of such a history-based sampling oracle,
a core component of all black-box stegosystems, can lead to an intractable problem for practically
relevant covertext channels [13].

Another problem with the scheme in [11] is the restriction that only one bit is embedded per
document, which results in a large number of documents that make up a covertext. In order to
achieve a reasonable transmission rate, that is the average number of hiddentext bits per bit sent,
one either has to choose documents of small size or embed more than one bit per document.
Petrowski et al. [18] propose a stegosystem for digital images using the idea of rejection sampling,
called PSteg. It breaks an image into a large number of small blocks to be used as documents
and takes multiple copies of such an image with a digital camera. However, as already noted by
Lysyanskaya and Meyerovich [17], no security analysis is given, and the scheme is secure only if
the image blocks are independent of each other, which is doubtful if one considers transient or
temperature-dependent CCD noise that varies during the process of photography.

Dedić et al. have analysed a generalisation of the scheme in [11] to an arbitrary number of bits
per document [7] and shown that for a reliable and secure black-box stegosystem the number of
sample documents drawn from the covertext channel grows exponentially in the number of bits
embedded per document. Note that this exponential bound also holds for the construction by Le
and Kurosawa [15] which also uses black-box sampling.

In white-box steganography, on the other hand, it is assumed that the stegoencoder has full
knowledge about the covertext channel. Le and Kurosawa [15] show that the availability of a
cumulative distribution function for the covertext channel enables them to modify their encoding
procedure for black-box sampling and turn it into a white-box stegosystem. While this makes their
construction much more efficient, it seems unlikely that in practice the cumulative distribution is
known.

Our present study is motivated by the shortcomings of black-box and white-box steganography.
We want to overcome the exponential sampling complexity of the black-box approach without
having to assume too much knowledge about the covertext channel. The model that we propose here
will be called grey-box steganography, because the encoder has partial knowledge of the covertext
channel, thus lying in between the black- and white-box scenarios. We will investigate the question
whether efficient and secure grey-box steganography is possible and extract the different properties
required for this purpose.

Equipped with partial knowledge, the encoder still has to gather more information about the
covertext channel in order to select as stegotexts only those documents that appear in the covertext
channel. We will model this situation as an algorithmic learning problem (for an introduction to
learning theory see [1]). A priori, Alice knows that the covertext channel belongs to some concept
class, but she does not know which covertext documents lie in the support of the channel. This is
where algorithmic learning comes into play: Alice considers samples of covertexts and computes a
hypothesis that describes the support of the channel. Based on this hypothesis, she actively tries to
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construct suitable stegotexts that encode her hidden message, instead of passively waiting for the
sampling oracle to give her a covertext with the desired properties (i.e. using rejection sampling).

This construction can be done by modifying a covertext or designing a completely new one.
In both cases, the distribution of stegotexts generated should look like “normal” samples from the
oracle.

We illustrate our concept with three examples of concept classes: channels that can be described
by monomials, by decision trees and by DNF-formulae, for which the learning complexity ranges
from easily learnable up to (probably) difficult to learn. For this purpose, we will concentrate on
learning the support of the channel and assume a uniform distribution on the support. Note that
for white-box steganography and rejection sampling learning the channel distribution is no issue.
A generic construction is given showing that besides the learning complexity, the efficiency of grey-
box steganography depends on the complexity of the membership test, and suitable modification
procedures. For the concept classes monomials, decision trees and DNF-formulae we present efficient
algorithms for changing a covertext into a stegotext.

An additional feature of our construction is that only the sender needs access to the sampling
oracle as in [11, 7] and unlike [15], where both sender and receiver require the sampling oracle
(black-box) or the cumulative distribution function (white-box). In our construction it is also only
the sender that has to learn the concept class, the receiver only decodes.

The paper is organised as follows. Some notation and the basic concepts of steganography are
presented in the next section. The grey-box model will be defined formally in Section 3. Then we
will present the constructions of secure and efficient stegosystems. Finally, in Section 6 we give
some concluding remarks and future research directions.

2 Basic Notation and Definitions

Let Σ be a finite alphabet and σ := log |Σ|. As usual, Σ` denotes the set of strings of length ` over
Σ, and Σ? the set of strings of finite length over Σ. We denote the length of a string u by |u| and
the concatenation of two strings u1 and u2 by u1||u2.

Symbols u ∈ Σ will be called documents and a finite concatenation of documents u1||u2|| . . . ||u`

a communication sequence or covertext. Typically, the document models a piece of data (e.g. a
digital image or fragment of the image) while the communication sequence models the complete
message sent to the receiver in a single communication exchange.

If P is a probability distribution with finite support A denoted by supp(A), we define the min-
entropy H∞(P) of P as the value H∞(P) = minx∈supp(A)− log p(x). This notion provides a measure
of the minimal amount of randomness present in P.

Definition 1 (Channel). A channel C is a function that takes a history H ∈ Σ∗ as input and
produces a probability distribution DH on Σ. A history H = s1s2 . . . sm is legal if each subsequent
symbol is obtainable given the previous ones, i.e., PrDs1s2...si−1

[si] > 0 for all i ≤ m. The min-
entropy of C is the value minHH∞(DH) where the minimum is taken over all legal histories H.

This gives a very general definition of covertext distributions which allows dependencies between
individual documents that are present in typical real-world communications. To get information
about the covertext distribution we use the concept of sampling oracles. EXC(H) denotes an oracle
that generates covertexts according to a channel C with history H.

A steganographic information transmission is thought of as taking a covertext c1 . . . c` ∈ Σ` and
modifying it to a stegotext s1 . . . s` ∈ Σ` such that the sequence additionally encodes an independent
message M . This encoding is done by Alice who then sends the stegotext to the receiver Bob over
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a public channel. Let b denote the message encoding rate, i.e. (on average) a single stegodocument
sj encodes b bits of M . For this purpose we require the channel to be sufficiently random. We will
assume that the covertext channel distribution has a sufficiently large min-entropy h that is larger
than b.

Definition 2 (Stegosystem). In the following, let n = `·b denote the length of the messages to be
embedded into covertexts. A stegosystem S for the message space {0, 1}n is a triple of probabilistic
algorithms [SK,SE,SD] with the following functionality:

– SK is the key generation procedure that on input 1n outputs a key K of length κ, where κ is a
security parameter that may depend on n;

– SE is the encoding algorithm that takes as input a key K ∈ {0, 1}κ, a message M ∈ {0, 1}n
(called hiddentext), a channel history H, and accesses the sampling oracle EXC() of a given
covertext channel C and returns a stegotext S ∈ Σ`;

– SD is the decoding algorithm that takes K, S, and H, and having access to the sampling oracle
EXC() returns a message M ′.

S is called a black-box stegosystem if the algorithms SE,SD have no a priori knowledge about
the distribution of the covertext channel and can obtain information about it only by querying the
sampling oracle.

The application of SK is shared by Alice and Bob beforehand and its result is kept secret from
an adversary. All further actions of Alice are specified by SE, those of Bob by SD.

The time complexities of the algorithms SK,SE,SD are measured with respect to n, κ, and σ,
where an oracle query is charged as one unit step. A stegosystem is computationally efficient if
its time complexities are polynomially bounded. By convention, the running time of an algorithm
includes the so called description size of that algorithm with respect to some standard encoding.

Ideally, one would expect that the decoder always succeeds in extracting the original message
M from the stegotext. Since this may not always be possible, we define the unreliability of a
stegosystem as follows.

Definition 3 (Unreliability). The unreliability of S with respect to the covertext channel C is
given by UnRelC,S := maxM∈{0,1}n,H PrK←SK(1n)[SD(K,SE(K, M,H),H) 6= M ] .

Next, let us measure the security of a stegosystem. How likely is it that an adversary, the warden
W , can discover that the covertext channel is used for transmitting additional information? If we
put no algorithmic restrictions on W (i.e. information-theoretic security) it is necessary that (1) the
stegotext S lies in the support of the covertext channel, otherwise W could test S for membership
in supp(C), and (2) the probability of producing a stegotext S equals the probability of drawing S
according to C. Cachin has proposed the following information-theoretic model of steganographic
security [6].

Definition 4 (Information-theoretic Security). Let C be a covertext channel with distribution
PC and let PS,C be the output distribution of the steganographic embedding function SE having an
access to the channel C. The stegosystem [SK,SE,SD] is called perfectly secure for the channel C
(against passive adversaries) if the relative entropy satisfies D(PC ||PS,C) = 0 .

To simplify the analysis, for the systems given later we will assume that the distribution on the
support is uniform. Thus, we concentrate on the problem how the encoder can learn the support of
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the channel and then uniformly generate stegotexts. The constructions given below can be extended
to a wider class of distributions using statistical learning techniques [14].

For a security analysis in the complexity-theoretic sense, W is assumed to be polynomially time-
bounded. Thus, Alice has to make sure that an adversary cannot detect deviations from the two
conditions above in polynomial time. However, now the adversary may actively perform a chosen
hiddentext attack [11, 7]. Let SE(K, M,H) with access to EXC(H) be denoted by SEC(K, M,H). In
contrast, we define an oracle OC that for given message M ∈ {0, 1}n and channel history H returns
a truly random covertext c1c2 . . . c` of length ` = |SEC(K, M,H)| from the covertext channel C with
the history H, i.e. each ci is drawn according to the probability distribution DH||c1c2...ci−1

.

Definition 5 (Chosen Hiddentext Attack, CHA). A probabilistic algorithm W is a (t, q, λ)-
warden for the stegosystem S = [SK,SE,SD] if

– W runs in (expected) time t and accesses a reference oracle EXC() that he can query for samples
from the covertext channel C with a history H;

– W can make an (expected) number of q queries of total length λ bits on a challenge oracle CH
which is either SEC(K, M,H) or OC(M,H), where M of length n and H can be chosen by W ;

– the task of W is to determine the use of the stegosystem S with the help of the challenge oracle:
W C,CH = 1 means that W decides on “stegotext”, resp. W C,CH = 0 means that W decides on
“covertext”.

We define the advantage of W over random guessing for a given covertext channel C as

Advcha
C,S(W ) :=

∣∣∣PrK←SK(1n)[W
C,SEC(K,·,·) = 1]− Pr[W C,OC(·,·) = 1]

∣∣∣ .

Note that in order to maximize the advantage, W may depend on the channel C. In the most
favourable case, W may possess a complete specification of C, so that he even does not need to
query the reference oracle. The amount of such information about C is part of the description size
of W . This knowledge may put the adversary in a much better situation than the encoder.

Definition 6 (Steganographic Security against CHA). The insecurity of a stegosystem S
with respect to a covertext channel C and complexity bounds t, q, λ is defined by

InSeccha
C,S(t, q, λ) := max

W
{Advcha

C,S(W )} ,

where the maximum is taken over all adversaries W working in time at most t and making at most
q queries of total length λ bits to the challenge oracle CH.

Note that we do not explicitly mention the description size of the adversary, but assume this
to be included in the running time t (W has to read this information at least once).

Below we recall some notions from cryptography required for the specification of the encoding
function SE. Let F : {0, 1}k × {0, 1}l → {0, 1}L be a function. Here {0, 1}k is considered as the
key space of F . For each key K ∈ {0, 1}k we define the subfunction FK : {0, 1}l → {0, 1}L by
FK(x) = F (K, x). Thus, F specifies a family of functions, and is called a family of permutations if
l = L and for each key K the subfunction FK is a permutation on {0, 1}l. For such an F we define
the advantage of a probabilistic distinguisher D having access to a challenging oracle as

PRP-AdvF (D) =
∣∣∣PrK∈R{0,1}k [DFK(·) = 1]− PrP∈RPERM(l)[D

P (·) = 1]
∣∣∣ ,
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where PERM(l) denotes the family of all permutations on {0, 1}l. The insecurity of a pseudorandom
family of permutations F is given by

PRP-InSecF (t, q) = max
D∈D(t,q)

{PRP-AdvF (D)},

where D(t, q) denotes the set of all probabilistic distinguishers running in at most t steps and making
at most q oracle queries. Then F is a (t, q, ε)-pseudorandom family if PRP-InSecF (t, q) ≤ ε. Let the
length l grow polynomially with respect to k. A sequence {Fk}k∈IN of families Fk : {0, 1}k×{0, 1}l →
{0, 1}l is called pseudorandom if for all polynomially bounded distinguishers D, PRP-AdvF (D) is
negligible in k (for more formal definition of pseudorandom permutations see e.g. [5])

3 A Grey-Box Model for Steganography

Previous steganographic models have considered adversaries W that may be computationally re-
stricted, but possess full knowledge of the covertext channel. Dedić et al. [7] consider this “a
meaningful strengthening of the adversary”. We think that such a strengthening is not appropri-
ate to model Alice’s and her counterpart’s basic knowledge about a covertext channel. In fact, in
practice encoders and wardens obtain ideas about typical covertexts by observing samples. They
do not and likely will never possess any short advice that fully describes the channels they are
looking at (for example, in case of multimedia data). Furthermore, there may be different families
of channels (images, texts, audio-signals) and Alice may preselect one specific family from which
the actual channel is then drawn without further influence of anybody. This more realistic setting
makes the encoder stronger and may be a chance to overcome the negative results for the black-box
scenario. In practice, steganography used is not based on rejection-sampling, but in almost all cases
generates stegotexts by slight modifications of given covertexts.

In the grey-box model Alice has some partial knowledge about the covertext channel. Therefore,
we use the notion of concept classes from machine learning and define a channel family F as a set
of covertext channels that share some common characteristics, such as e.g. all pseudo-random
sequences, sequences of digital images in uncompressed form taken in an arbitrary environment,
compressed audio signals from an arbitrary genre of music, or all English literary texts. In the
context of pseudo-random sequences, a single channel Ci contains strings output by a specific
pseudo-random number generator with a fixed seed and the channel family FPRS = {C1, C2, . . .}
contains channels with different seeds.

Note that both counterparts, the encoder and the warden, know the concept class, the family of
channels. For the actual channel C, one member is selected at random, which is not known to the
encoder. Depending on the strength of the warden one wants to model, W may also lack knowledge
about C or he may have additional information about C. Here, we do not investigate this question
further and allow the adversary to have full knowledge. The decoder, on the other hand, is not
involved in the learning process, he does not need any information about the concept class.

As before, the encoding SE may access the sampling oracle EXC(), but now we clearly dif-
ferentiate between accesses to the oracle for learning purposes to construct a hypothesis for the
covertext channel, and accesses to get a covertext that then using the hypothesis can be modified
into a stegotext.

Depending on the concept class, Alice may be able to derive a good hypothesis – an exact or
very close description of the channel – or not. Even if the concept class is not efficiently learnable
it makes sense to consider a situation where a precise description of the channel is given to Alice
for free. Still, in this favourite case it is not clear how Alice can construct stegotexts. She must be
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able to efficiently modify covertexts and test the modifications for membership in the support of
the channel. In addition, these stegotexts should have the same distribution as the covertexts.

Definition 7. The insecurity and unreliability of a stegosystem S with respect to the channel
family F are defined by

InSeccha
F ,S(t, q, λ) := max

C∈F
InSeccha

C,S(t, q, λ) and UnRelF ,S := max
C∈F

UnRelC,S .

4 Efficiently Learnable Covertext Channels

In the rest of the paper we will present examples of stegosystems showing that the issues discussed
above are relevant and the grey-box model makes sense. Let us start with a simple family of channels
that can be described by monomials.

Consider a concept class over the document space Σ = {0, 1}σ consisting of channels of the
type C = C1 × C2 × C3 . . . where each Ci is a uniformly distributed subset of Σ that can be defined
by a monomial. Such a channel family will be denoted by MONOM.

A monomial over {0, 1}σ will be represented by a vector H = (h1, . . . ,hσ) ∈ {0, 1,×}σ and it
defines the subset of all 0-1-vectors, for which the i-th components is 0 if hi = 0, and 1 if hi = 1.
The other components are called free variables. We will denote the subset defined by a monomial
H by H. Let Ci = supp(Ci) = H, then speaking formally Pr[x Ci← Σ : x = c] = 1/|Ci| if c ∈ Ci and
0 otherwise.

Let, for short, σb := bσ/bc and let for a permutation π of {1, 2, . . . , σ}, the subset Iπ(j), with
1 ≤ j ≤ b, be defined as follows: Iπ(j) := {π(σb · (j − 1) + 1), π(σb · (j − 1) + 2), . . . , π(σb · j)}. Now,
we are ready to construct a procedure to modify covertexts in case of monomial channels. For this
purpose, a private key K is used that specifies such a random permutation π uniquely.

To achieve indistinguishability we partition randomly a document c into b substrings of length
σb and apply a parity function to each of these substrings. If the parity of such a substring does
not equal the current message bit one has to embed, one bit corresponding to a free variable in
Alice’s hypothesis H is flipped to change the parity. Below we present the encoding algorithm in
details. To implement efficiently the computation of a permutation π of {1, 2, . . . , σ} one can use
e.g. Knuth’s shuffle algorithm that runs in linear time.

Procedure Monomial-modify(M , c, H, K)

Input: hiddentext M = m1, . . . ,mb ∈ {0, 1}b; covertext document c = a1a2 . . . aσ ∈ {0, 1}σ;
hypothesis monomial H = h1h2 . . .hσ ∈ {0, 1,×}σ; private key K;

initially let a′1a
′
2 . . . a′σ = a1a2 . . . aσ;

let π be the permutation specified by key K;
for j := 1, . . . , b do

let r = min{i : i ∈ Iπ(j) ∧ hi = ×} if the set is nonempty; otherwise let r = 0;
if (mj 6=

⊕
i∈Iπ(j) a′i and r > 0) then

a′r = 1− a′r;
end

end
Output: s = a′1a

′
2 . . . a′σ

The following procedure is used to decode a stegotext document.
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Procedure Document-decode(s, K)
Input: stegotext document s = a1a2 . . . aσ ∈ {0, 1}σ; private key K;
let π be the permutation specified by key K;
for j := 1, . . . , b do

mj :=
⊕

i∈Iπ(j) ai;
end
Output: m1m2 . . . mb

Lemma 1. Let H be a given monomial and let K be an arbitrary private key. Then for every s ∈ H
it holds Pr[Monomial-modify(M, c,H, K) = s] = 1/|H|, where the probability is taken over
random choices of c ∈ H and M ∈ {0, 1}b. Moreover, for every M , every H with t free variables, and
c ∈ H, it holds Pr[Document-decode(Monomial-modify(M, c,H, K), K) 6= M ] ≤ b · e−t/b+1 ,
where the probability is taken over random choices of K.

Proof. Let H = h1h2 . . .hσ ∈ {0, 1,×}σ be a fixed monomial, and let K ∈ {0, 1}κ be an arbitrary
private key. Let Ω be the space of elementary events containing all tuples (M, c, s) such that
Monomial-modify(M, c,H, K) = s. Obviously, the cardinality of Ω is 2b · |H|. This follows from
the fact that Monomial-modify works strictly deterministically for given inputs M, c,H, K. Now,
let s be an arbitrary element in H. There exist 2b tuples (M, c, s) in Ω. To see this fact, for any
M ∈ {0, 1}b let Xs(M) = {c ∈ Σ|(M, c, s) ∈ Ω}. Then one can show that for any M it holds that
|Xs(M)| = 2b and most importantly, all these sets Xs(M) are equal. Thus, the probability that
Monomial-modify with input (M, c,H, K) returns s is 2b

2b·|H| = 1
|H| .

For a reliable encoding, we have to ensure that in each of the b substrings of c there is at least
one literal that is free according to the given monomial, so that we can modify this to adjust the
parity. Therefore to determine the substrings we choose in our algorithm the subsets of indices
Iπ(j) randomly rather than deterministically.

Let the given monomial H has t free variables. The probability that some substring Iπ(j) does
not contain any index of a free variable can be computed as follows. Remember that σb := bσ/bc.

Pr[some Iπ(j) contains no free variable] ≤ b ·
(
σ−t
σb

)(
σ
σb

) = b ·
σb−1∏
i=0

σ − t− i

σ − i
≤ b ·

(
σ − t

σ

)σb

.

The term (1− t
σ )σb can be bounded by e−

tσb
σ ≤ e−

t
σ

(σ
b
−1) ≤ e−

t
b
+1. This completes the proof.

ut

Our first stegosystem S1 = [SK,SE,SD] is based on the following encoding and decoding proce-
dures. Below we use families of permutations F : {0, 1}k × {0, 1}n → {0, 1}n. To get a stegosystem
S1 that is perfectly secure in the information-theoretic setting we assume that k = ` and use func-
tions FK(x) = x ⊕K. For security against chosen hiddentext attack families F of pseudorandom
permutations are applied.
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Procedure Encode(M , K)
Input: hiddentext M = m1m2 . . . mn ∈ {0, 1}n; private key K = K0, K1, . . . ,K2`;
let H be a current history;
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2`, where |ti| = b;
for i := 1, . . . , 2` do

ci := EXC(H);
access EXC(H) and learn a hypothesis Hi of a current document;
si := Monomial-modify(ti, ci, Hi, Ki) and let H := H||si;

end
Output: s1s2 . . . s2`

Procedure Decode(s, K)

Input: stegotext s = s1s2 . . . s2` ∈ {0, 1}2n; private key K = K0, K1, . . . ,K`;
for i := 1, . . . , 2` do

ti := Document-decode(si, Ki);
M := F−1

K0
(t`+1 . . . t2`)⊕ t1 . . . t`;

end
Output: M = m1m2 . . . m`

Theorem 1. Let the min-entropy of every channel C in MONOM be at least h. Let b denote the rate
of the stegoencoding and n the length of the secret message to be embedded. Assume Alice has no a
priori knowledge of C, but both Alice and the warden have access to a sampling oracle EXC().

1. The stegosystem S1 with encoding function FK(x) = x ⊕ K achieves perfect security in the
information theoretic setting, that is D(PC ||PS1,C) = 0 .

2. For S1 with a family F of pseudorandom permutations the insecurity is bounded by

InSeccha
MONOM,S1(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) + ξ(λ, n)

where ξ(λ, n) is a function that is polynomially bounded in λ, but decreases exponentially in n.

In both cases the unreliability is small, that is UnRelMONOM,S1 ≤ 2n · e−h/b+1 + 1/n .

Proof. We show how to design an efficient stegosystem S1 for monomial channels. Alice queries
the oracle and uses a learning algorithm to successively form hypotheses H1,H2,H3 . . . about the
channel. Using the “Wholist” algorithm for the PAC-learning of monomials [10] we get that for
every i, every δ, ε > 0, Alice makes q = σ

ε ln 3
δ queries to EXC() and working in time O(σ · q) can

generate hypotheses Hi such that Hi ⊆ Ci and

Pr
[
|Ci \Hi|
|Ci|

≤ ε

]
≥ 1− δ . (1)

Note that this learning algorithm generates only hypotheses that lie in the support of the covertext
channel. Thus, every element of a hypothesis fulfills the first condition of information-theoretic
security. The challenge for the modification step of the steganographic embedding procedure is the
second condition. Alice has to ensure that the resulting stegotext is not only consistent with the
secret message M and her hypothesis H1 ×H2 ×H3 × . . ., but also follows a distribution that is
either identical to the original covertext distribution or cannot be distinguished by the warden .
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We achieve this by using in the encoding algorithm a direct coding approach that takes the fixed
literals of the monomial into account while encoding the message.

To show that the stegosystem system S1 is perfectly secure in the information theoretic security
setting, we notice first that the “Wholist” algorithm used to learn the sequence of hypotheses
H1,H2,H3 . . . has the following property: for all output hypothesis Hi which do not coincide with
the support of Ci, if xi1 ,xi2 , . . . ,xit denote all free variables of Ci, then the events that the free
variables xij , xij′ do not occur in Hi are equally probable and mutually independent. By applying
Lemma 1 we get that the encoding procedure generates elements in the support of Ci with uniform
distribution, so we get D(PC ||PS1,C) = 0.

Next we look at the insecurity against chosen hiddentext attacks in the computational security
setting. Let F be a family of pseudorandom permutations. Let C be a channel and W be a warden
with maximal advantage, that means InSeccha

C,S1(t, q, λ) = Advcha
C,S1(W ). Denote by CBC[F ] = (E ,D)

the symmetric encryption scheme with the encoding function E and the decoding function D defined
as follows:

Procedure EK(M)
Input: private key K; plaintext

M ∈ {0, 1}n;
T0 ∈R {0, 1}n;
T1 := FK(T0 ⊕M);
Output: T1||T2

Procedure DK(T )
Input: private key K; ciphertext

T ∈ {0, 1}2n;
parse T as T0||T1;
M := F−1

K (T1)⊕ T0;
Output: M

From [5] (see the full version of the paper) we know that the upper bound on the real-or-random
insecurity of the system CBC[F ] is

ES-InSecror
CBC[F ](t, q, µ) ≤ 2 · PRP-InSecF (t, µ/n) +

(
3µ2

2n2
− µ

n

)
· 2−n. (2)

The real-or-random insecurity ES-InSecror
ES(t, q, µ) of an symmetric encoding scheme ES = (EK ,DK)

is defined as maximum advantage ES-Advror
ES(A) over all probabilistic adversaries A running in at

most t steps and making at most q oracle queries of total length µ where the advantage is defined
as

ES-Advror
ES(A) =

∣∣∣PrK [AEK(·) = 1]− PrK [AEK($) = 1]
∣∣∣ .

The (real encryption) oracle EK(·) on input M , returns EK(M). The (random) oracle EK($) on
input M , returns EK(r), where r ∈R {0, 1}|M |.

Now let we construct an adversary A against the symmetric encoding scheme CBC[F ] which
works as follows: A initially chooses K1, . . . ,K2` and then simulates the computations of the warden
W . Any time W queries the challenging oracle about M,H the algorithm A queries its oracle
about M and receiving the answer T̂0T̂1 it simulates the procedure Encode with keys K1, . . . ,K2`,
history H and replacing the string T0T1 with T̂0T̂1. A returns finally the same output as W .
Since the stegosystem S1 uses the encoding scheme CBC[F ] we have that the both probabilities:
PrK0 [A

EK0
(·) = 1] and PrK [W C,SEC(K,·,·) = 1] are equal to each other. Moreover from Lemma 1 we

get that PrK0 [A
EK0

($) = 1] is equal to Pr[W C,OC(·,·) = 1]. Thus we get:

ES-Advror
CBC[F ](A) =

∣∣∣PrK0 [A
EK0

(·) = 1]− PrK0 [A
EK0

($) = 1]
∣∣∣

=
∣∣∣PrK [W C,SEC(K,·,·) = 1]− Pr[W C,OC(·,·) = 1]

∣∣∣
= Advcha

C,S(W ) = InSeccha
MONOM,S1(t, q, λ)

10



and by equation (2) we can conclude that

InSeccha
MONOM,S1(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) +

(
3λ2

2n2
− λ

n

)
· 2−n.

Thus, one can use the following function ξ for the error term:

ξ(λ, n) =
(

3λ2

2n2
− λ

n

)
· 2−n

Next we estimate the reliability. For any i, with 1 ≤ i ≤ n/b, let ti denote the number of free
variables of Ci and let t′i be the number of free variables of the hypothesis monomial Hi. Moreover,
assume that we choose in equality (1) the value ε = 1/4. Then for any δ > 0 the probability that
Alice embeds a message M incorrectly can be bounded as follows:

PrK [SD(K,SE(K, M)) 6= M ] ≤
2n/b∑
i=1

(
b · e−ti/b+1Pr[t′i = ti] + b · e−(ti−1)/b+1Pr[t′i = ti − 1] + . . .

)

≤
2n/b∑
i=1

(
b · e−ti/b+1 + Pr[t′i < ti]

)
≤ 2n · e−h/b+1 + δ · 2n/b .

The theorem follows for δ = b/2n2.
ut

Our analysis actually shows that the expected number of wrongly decoded blocks Mi can be
made quite small. In order to achieve high reliability, the entropy has to be larger by a factor that
grows logarithmically in the length n of the secret message. This can be reduced to order log b by
using error correction codes for the secret messages. Thus we achieve a reasonable transmission
rate. The stegosystem is also computationally efficient – in the second case we have to require in
addition that the pseudorandom permutations can be computed efficiently. The theorem implies
that this stegosystem is secure in the information theoretic and the computational security setting
even if the adversary has complete knowledge of the channel.

A parity-based approach to steganography has previously been suggested by Anderson and
Petitcolas [3]. They argue that the more bits are used for calculating the parity, the less likely can
the stegotext be distinguished from an unmodified covertext. In our case, Alice produces stegotexts
that are always consistent with her hypothesis and thus cannot be distinguished from covertexts by
construction (modulo the error Alice makes when learning). Alice could also use a pseudo-random
function fK with key K instead of the parity, in which case she would eventually have to try
changing different free variables before obtaining the desired value to be embedded, thus increasing
the time complexity of her embedding algorithm.

Monomial concept classes may look too simple to describe covertexts in practice. However,
in this setting we do not have to restrict the variables, in learning theory also called attributes,
to properties of the physical medium. If one can efficiently implement a modification of a simple
attribute, these attributes may also represent semantic properties of a document. For example,
pictures may be classified according to their content – whether they were taken in summer or
winter, contain objects like lakes, mountains, etc. Thus, in a simple way we can achieve a secure
system that one may call semantic steganography.
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Recall the properties that were needed to achieve efficient and secure steganography for the
concept class of monomials: monomials are efficiently learnable from positive examples, for each
monomial H with enough entropy there is an efficient embedding function for the hiddentext on
the support of H, and one can efficiently compute a uniformly selected stegotext (in this case the
procedure Monomial-modify). This generic construction can be applied to other concept classes
fulfilling these properties.

For the concept class of monomials one actually does not need the modification procedure
Monomial-modify to generate a stegotext from a given covertext. In this case, the hypothesis space
even allows a direct generation of stegotexts by selecting for all, but one free variable in each group
values at random.

5 Channels that are not Easily Learnable

We extend the previous results by considering two generalisations of monomials: decision trees and
DNF-formulae. Although there exists no efficient PAC learning algorithm for general decision trees
this hypothesis class is nevertheless practically relevant, because approximate learning algorithms
exist, such as ID3 [21] or C4.5 [22]. Moreover, trees on σ Boolean variables of size polynomial in σ
are learnable in time σO(log σ) [9]. For learning from positive examples only see [8, 16].

Also for the general class of DNF formulae neither an efficient algorithm for PAC-learning nor
a practical approximation is known. Thus, this is an example of a concept class which seems hard
to learn. The best known learning algorithm for DNF on σ Boolean variables of polynomial size
needs time σ(O(log σ))2 [9]. We will show that under additional assumptions secure steganography
can also be based on such concept classes.

5.1 Decision Trees as Concept Class

A decision tree is another form of hypothesis representation that is more powerful in terms of
expressiveness than monomials. Although for clearness of presentation we restrict the following
discussion to binary trees, the results can be generalised to arbitrary trees by means of coding.

Starting from the root, the nodes of the tree contain the (fixed) literals, with negated and
unnegated values connecting to the children of the nodes. To evaluate such a decision tree for a
given string c, the path is followed from the root to a leaf, with the leaf containing the output
decision value. One can think of each possible path from root to leaf as a separate monomial H,
whose free variables are those that do not appear on this path. For example, the decision tree
depicted in Fig. 1 describes the following monomials: x1x2, x1x3 and x1x3, so the string ‘101’
belongs to the concept learned, whereas the string ‘010’ does not. An important property of such
monomials is that their supports are all disjoint, since for two different paths at least one (fixed)
literal has to differ.

As in the previous section, we assume Σ = {0, 1}σ. Now the concept class, denoted by DT,
consists of channels C = C1×C2×C3 . . . where each Ci is a uniformly distributed subset of Σ that can
be represented by a polynomial size decision tree. Assume we have an appropriate learning algorithm
for decision trees that learns the concept class decision tree fulfilling a similar monotonicity property
as the “Wholist” algorithm.

The stegosystem S2 = [SK,SE,SD] is based on the following encoding procedure and the de-
coding procedure Decode from the previous section.
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Fig. 1. Example of a (binary) decision tree with three variables

Procedure Encode-DT(M , K)
Input: hiddentext M = m1m2 . . . mn ∈ {0, 1}n; private key K = K0, K1, . . . ,K2`;
let H be a current history;
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2`, where |ti| = b;
for i := 1, . . . , 2` do

ci := EXC(H);
access EXC(H) and learn a hypothesis Ti for the channel;
determine the monomial Hi for ci according to Ti;
si := Monomial-modify(ti, ci, Hi, Ki) and let H := H||si;

end
Output: s1s2 . . . s2`

Theorem 2. Let h be a lower bound for the min-entropy of any channel C in DT and µ be an upper
bound of the size of these trees.

1. The stegosystem S2 with encoding function FK(x) = x ⊕ K achieves perfect security in the
information theoretic setting.

2. For S2 with a family F of pseudorandom permutations the insecurity is bounded by

InSeccha
DT,S2(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) + ξ(λ, n)

In both cases the stegosystem has unreliability UnRelDT,S2 ≤ n ·
( µ

2h

) log e
b + 1/n . Assuming the

learning algorithm is efficient, the procedure Encode-DT is efficient as well.

Proof. Given a document ci by the oracle, Encode-DT finds the monomial for ci by following
the path through the decision tree Ti. This monomial H together with the message M and the
covertext c is then used as input to the previously defined procedure Monomial-modify.

Let us assume that the hypothesis Ti describes a subset of the channel support and that, as
in Theorem 1, the event that a free variable of Ci does not occur in Ti is equally probable and
mutually independent among all free variables of Ci. The proof of security for the stegosystem S2

follows directly from the security proof for monomials given in Theorem 1 for the stegosystem
S1, because the monomials derived from the decision tree do not overlap, so they are uniquely
determined by the covertext sample and, as in the stegosystem S1, we use Monomial-modify to
embed the hiddentext.
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For an estimation of the unreliability we have to compute the average min-entropy of the
monomials Hi derived from Ti. Assume Ti has t leaves and the min-entropy of Hi is hi. Then we
get

UnRelDT,S2 ≤ b ·
t∑

i=1

2hi

2h

(
b− 1

b

)hi

+ δ (3)

≤ b ·
t∑

i=1

2hi

2h
e−

1
b
·hi + δ = b ·

t∑
i=1

2hi

2h
·
(
2−hi

) log e
b + δ

≤ b ·

(
t∑

i=1

2hi

2h
· 2−hi

) log e
b

+ δ = b ·
(

t

2h

) log e
b

+ δ , (4)

where (4) is due to Jensen’s inequality and thus only holds if log e
b < 1. If b = 1 the first term in (3)

vanishes and then UnRelDT,S2 ≤ δ.
ut

5.2 DNF Channels

Finally we consider the concept class represented by DNF Boolean formulae. In this case different
monomials of a formula may overlap, which makes the modification more difficult – a simple modi-
fication will destroy uniformity. Our solution picks one monomial Hj that is satisfied by the current
document ci and calls the procedure Monomial-modify with inputs M ′

i , ci and Hj as above. For
DNFs the selection of the ‘correct’ monomial Hj is subtle. Similar to the previous constructions,
we use the following generic encoding scheme:

Procedure Encode-DNF(M , K)
Input: hiddentext M = m1m2 . . . mn ∈ {0, 1}n; private key K = K0, K1, . . . ,K2`;
let H be a current history;
choose T0 ∈R {0, 1}n and let T1 := FK0(T0 ⊕M);
parse T0T1 into t1t2 . . . t2`, where |ti| = b;
for i := 1, . . . , 2` do

ci := EXC(H);
access EXC(H) and learn a DNF hypothesis Hi for documents;
si := DNF-modify(ti, Hi, Ki) and let H := H||si;

end
Output: s1s2 . . . s2`

Our embedding strategy consists of sampling and modifying as in the construction of the
stegosystems S1 and S2. For each sampled covertext c the terms of the DNF that are satisfied
by c are determined and among them one is chosen for use in the actual embedding step. We
then call Monomial-modify with M (the hiddentext), c and h. To make sure that the output
distribution is uniform again, we have to reject the stegotext s with a certain probability, because
s could lie in the intersection of the supports of multiple terms, so it may also be reached through
an embedding process that selects a different term h′ and therefore would have a higher probability
than stegotexts that lie in the supports of fewer terms.

More formally, let H = h1 ∨ . . . ∨ hl, with hi ∈ {0, 1,×}σ be a DNF-formula. We use the
same notation |H|, |hi|, τ(s), αi, etc. as above. Additionally, we define the maximum number of
overlapping term supports by

τmax = max{τ(s) : s ∈ H} .
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Note that τmax ≤ l. We now give our construction of the procedure DNF-modify:

Procedure DNF-modify(M , H)

Input: hiddentext M = m1 . . . mb ∈ {0, 1}b; hypothesis DNF-formula H = h1 ∨ . . .∨hl, with
hi ∈ {0, 1,×}σ;

repeat
repeat

c := EXC ;
choose randomly, with uniform probability, index j in {i : c ∈ hi};
let q := τ(c)/τmax;
choose randomly, with p.d. {q, 1− q}, value reject sample in {0, 1};

until reject sample = 0 ;
s := Monomial-modify(M , c, hj);
let p := 1/τ(s);
choose randomly, with p.d. {1− p, p}, value accept in {0, 1};

until accept = 1 ;
Output: s

We will start by analysing a single iteration of the repeat-loop and state the following Lemma:

Lemma 2. Let s be the random variable over H = h1 ∨ . . . ∨ hl determined by a single iteration
of the main repeat-loop of the procedure DNF-modify. Then for every s̃ ∈ H

Pr[s = s̃ and accept = 1] =
1∑l

d=1 |hd|
.

Proof. Let s̃ be an arbitrary element of H. Moreover, let j be the random variable over {1, 2, . . . , l}
and let s be the random variable over H determined by a single iteration of the main repeat-loop
of the procedure DNF-modify. Assume, i1, i2, . . . , iτ(s̃) denote indices of all monomials such that
s̃ ∈ hik . Then

Pr[s = s̃ and accept = 1] =
τ(s̃)∑
k=1

Pr[s = s̃ | j = ik] · Pr[accept = 1 | j = ik] · Pr[j = ik] .

Obviously, Pr[accept = 1|j = ik] = 1
τ(s̃) . To see that

Pr[j = ik] =
|hik |∑l
d=1 |hd|

and Pr[s = s̃ | j = ik] =
1
|hik |

we analyse the internal repeat-loop for choosing c and j values. We claim that when performing
this repeat-loop we choose pairs (c̃, ik), such that c̃ ∈ hik , with the uniform probability distribution.
Let c′ and j′ denote random variables on H, resp. {1, 2, . . . , l}, determined by a single iteration of
the internal repeat-loop. Assume c̃ ∈ H and ik ∈ {1, 2, . . . , l} be arbitrary values such that c̃ ∈ hik .
Then, during a single iteration of the internal repeat-loop we get

Pr[c′ = c̃ ∧ j′ = ik ∧ reject sample = 0] =
1
|H|
· 1
τ(c̃)

· τ(c̃)
τmax

=
1

τmax · |H|
.

Hence, when the internal repeat-loop for choosing c and j is done, then for all c̃ and ik, such that
c̃ ∈ hik :

Pr[c = c̃ ∧ j = ik] =
1∑l

d=1 |hd|
.
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Thus, we can conclude that

Pr[j = ik] =
∑

c̃∈hik

Pr[c = c̃ ∧ j = ik] =
|hik |∑l
d=1 |hd|

and
Pr[c = c̃ | j = ik] =

Pr[c = c̃ ∧ j = ik]
Pr[j = ik]

=
1
|hik |

.

Now, by Lemma 1, we get

Pr[s = s̃ | j = ik] =
1
|hik |

.

ut
Now that we know that a single iteration of the repeat-loop of DNF-modify outputs a stegotext

that is uniformly chosen from the support of our hypothesis H, we can analyse the full procedure
as follows.

Lemma 3. Let H = h1 ∨ . . . ∨ hl be a DNF formula and let τmax = max{τ(s) : s ∈ H}. Then
using the procedure DNF-modify we generate elements of H with uniform probability distribution.

Moreover the expected number of iterations of the main repeat-loop of the procedure is µ =
Pl

d=1 |hd|
|H|

and the expected value of the total number of samplings of EXC() is µ′ = τmax.

Proof. The property that the procedure DNF-modify samples elements from H with uniform dis-
tribution follows immediately from Lemma 2: for every iteration of the repeat-loop the probability
distribution of sampling after this iteration step is uniform. The probability that the procedure
terminates when a single iteration is done is

q = Pr[accept = 1] =
|H|∑l

d=1 |hd|
.

Thus, the expected value of the number of iterations for the procedure DNF-modify is

µ =
1− q

q
+ 1 =

∑l
d=1 |hd|
|H|

.

It now remains to show that µ′ = τmax. The probability that the internal repeat-loop terminates is

Pr[reject sample = 1] =
∑l

d=1 |hd|
τmax · |H|

.

Moreover, the probability that a single iteration of the main repeat-loop terminates is

q = Pr[reject sample = 0 ∧ accept = 1] = Pr[accept = 1 | reject sample = 0]·Pr[reject sample = 0] .

Since Pr[accept = 1 | reject sample = 0] = |H|Pl
d=1 |hd|

we get q = 1/τmax. Thus, the expected value

of the number of samplings of EXC() is

µ′ =
1− q

q
+ 1 = τmax .

ut
Having shown that the procedure DNF-modify preserves the uniform distribution when em-

bedding a single block of hiddentext, for the full embedding procedure Encode-DNF one can
prove.
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Theorem 3. Let FDNF be a channel family consisting of channels of the type C = C1 × C2 × C3 . . .
where each Ci is a subset that can be represented as a DNF formula. In addition, let every Ci have
a uniform probability distribution with min-entropy at least h. Assume Alice has a priori knowledge
of C given as a sequence of DNF formulae and both, Alice and W , have access to a black-box
sampling oracle EXC().

The stegosystem S3 uses for encoding the procedure Encode-DNF with subprocedure DNF-
modify and for decoding the previously described procedure Decode.

1. S3 with encoding function FK(x) = x⊕K achieves perfect security.
2. For S3 with a family F of pseudorandom permutations the insecurity is bounded by

InSeccha
DNF,S3(t, q, λ) ≤ 2 · PRP-InSecF (t, λ/n) + ξ(λ, n)

Furthermore, the stegosystem S3 achieves unreliability UnRelDNF,S3 ≤ n ·
(

t

2
Pl

d=1
hd

) log e
b

+ 1/n .

If hypothesis for FDNF can be generated efficiently the stegosystem is efficient as well.

Proof. For the proof of security note that the procedure Encode-DNF is essentially the same as
Encode, except that it calls DNF-modify instead of Monomial-modify. Lemma 3 states that
DNF-modify outputs the uniform probability distribution. Hence the proof of both security in
the information theoretic setting as well as in the complexity theoretic setting follows similarly to
the proof of Theorem 1.

The unreliability follows from the proof of Theorem 2, with the difference that the probability
of selecting a specific term for DNFs is 2hi

2
Pl

d=1
hd

, so we get

UnRelDNF,S3 ≤ b ·
t∑

i=1

2hi

2
Pl

d=1 hd

(
b− 1

b

)hi

+ 1/n ≤ b ·
(

t

2
Pl

d=1 hd

) log e
b

+ 1/n .

Note that since 2
Pl

d=1 hd ≥ 2h, we get that UnRelDNF,S3 ≤ UnRelDT,S2 , with equality in the case that
all terms of the DNF are disjunct.

ut

6 Conclusions and Future Work

This paper introduces a new approach to modeling and analysing steganography. It differs from
previous models, such as [11], [7] or [15], that treat the covertext channel as a completely unknown
black-box – which leads to a sampling complexity exponential in the number of bits per covertext
document – or assume a priori full knowledge about the covertext distribution, as in one construction
in [15] – which seems unrealistic. We overcome this situation by allowing the encoder to modify
covertexts, as it is done in almost all practical stegosystems. Our grey-box model is more realistic
in the sense that the encoder is assumed to have some partial knowledge about the channel.

In addition, a finer-grained distinction between the different ingredients for securely encoding
information into covertexts provides more insight and helps in constructing stegosystems. This
way one can show that for efficiently learnable covertexts secure and efficient steganography is
possible. We have presented such constructions for channels for which PAC-learning algorithms
exist (monomials) and channels for which approximate learning algorithms are known (decision
trees). Even for channels that are hard to learn in the PAC-sense, assuming that by some other
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means the encoder can get hypotheses about the channel, one can design efficient stegosystems if
the modification problem has efficient solutions as we have shown for DNFs.

Steganographic techniques like LSB-flipping for digital images can easily be expressed by this
approach. It can be viewed as a variant of Monomial-modify, with all but the last bits of each
pixel being fixed and the least significant bit being a free variable. The support of the covertext
channel for a given image I thus consists of all images that only differ in their least significant bits.
However, digital images taken by modern cameras do not tend to generate truly random values
there. Thus, representing the hypothesis as a monomial may be inappropriate for camera channels
and the monomial stegosystem insecure. On the other hand, monomials seem very useful to design
semantic stegosystems. This example indicates the capability of the grey-box model to analyse the
security of encoding techniques that are used in practice. An important future task will be the
implementation of grey-box steganography with practically relevant covertext channels.

Another interesting concept class are k-CNF-formulae. For fixed k, this class is easily seen to
be efficiently learnable from positive examples – in contrast to the DNF-case. However, now the
modification problem, converting a covertext into an appropriate stegotext seems to be difficult.
We leave this as an open problem.

In the grey-box setting there may still be a huge advantage for the adversary if he has complete
knowledge of the covertext channel. As a next step one should investigate more carefully the case
that the knowledge of the adversary is limited similar to the situation of the stegoencoder.
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