Succinct	Diameter	Problem
000000		

Succinct Radius Problem

King Languages

On the Complexity of Kings

Edith Hemaspaandra¹ Lane A. Hemaspaandra¹ Till Tantau² Osamu Watanabe³

¹University of Rochester, USA ²Universität zu Lübeck, Germany ³Tokyo Insititute of Technology, Japan

Fundamentals of Computation Theory, 2007

Succinct	Diameter	Problem

Succinct Radius Problem

King Languages

The Succinct Diameter Problem

- 2 The Succinct Radius Problem
- 8 King Languages

Succinct	Diameter	Problem
•00000		

Succinct Radius Problem

King Languages

Summary

Two Examples of Graphs and Their Diameters

Definition

The diameter of a graph is the maximum distance of any two vertices in the graph.

The diameter is 7.

The diameter is 3.

Succinct Radius Problem

King Languages

Summary

Really Large Graphs ...

Copyright by Intel Corporation

Succinct Radius Problem

King Languages

Summary

... Can Have Short Representation

```
library IEEE;
use IEEE.std_logic_1164.all;
use work.std arith.all;
entity COUNT is
 port( CLK, ENA : in std_logic;
             : buffer std_logic_vector(31 downto 0);
        0
        CARRY : out std logic);
end COUNT:
architecture A of COUNT is
begin
   P1: process ( CLK )
   begin
      if ( CLK' event and CLK = '1' ) then
         if ( ENA = '1' ) then
            0 <= 0 + 1;
         end if:
      end if:
   end process;
   CARRY <= '1' when 0 = "1111" else '0';
end A:
```


Succinct Radius Problem

King Languages

Summary

Galperin–Wigderson Model of Succinctly Represented Graphs

Graph with 2ⁿ vertices ... and its representing circuit

Succinct Radius Problem

King Languages

Summary

Galperin-Wigderson Model of Succinctly Represented Graphs

Graph with 2ⁿ vertices ... and its representing circuit

Succinct Radius Problem

King Languages

Summary

Definition of the Succinct *k*-Diameter Problem.

Definition (Succinct k-Diameter Problem) For k ≥ 2 the problem succinct-k-diameter is: Input A circuit C with 2n inputs and 1 output. Question Does the 2ⁿ-vertex graph G represented by C have diameter at most k?

Succinct Radius Problem

King Languages

Summary

The Succinct k-Diameter Problem is Complete for the Second Level of the Polynomial Hierarchy.

Theorem

Let $k \ge 2$. Then succinct-k-diameter is complete for coNP^{NP}.

Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary
00000	000	00000	
The Proof Ideas.			
Reduction of $L \in coNP^{m}$	to succinct-2-diamet	ier.	

- By the Stockmeyer characterization there is a simple predicate R with x ∈ L ⇔ ∀y∃z: R(x, y, z)
- **2** From k, we can reach all y in 2 steps iff $\forall y \exists z : R(x, y, z)$.
- From $v \neq k$, we can reach all vertices in 2 steps.

= R(x, y, z) holds

Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary
00000	000	00000	
The Proof Ideas.			
Reduction of $L \in coNP^{nr}$	o succinct-2-diamete	er.	

- By the Stockmeyer characterization there is a simple predicate R with x ∈ L ⇔ ∀y∃z: R(x, y, z)
- **2** From k, we can reach all y in 2 steps iff $\forall y \exists z : R(x, y, z)$.
- From $v \neq k$, we can reach all vertices in 2 steps.

all missing arrows point upward

= Diameter 2 tournament

$$\int = R(\mathbf{x}, \mathbf{y}, \mathbf{z}) \text{ holds}$$

= Diameter 2 tournament

Succinct Diameter Problem	Succinct Radius Problem •୦୦	King Languages 00000	Summary
Two Examples of Gra	nhs Pevisited and 1	Their Padius	

- A ball of radius k is the set of vertices that are reachable in k steps from the center of the ball.
- The radius of a graph is the smallest size of a ball that covers the whole graph.

The radius is **3**.

The radius is 2.

Succinct Radius Problem

King Languages

Summary

The Succinct k-Radius Problem is Complete for the Third Level of the Polynomial Hierarchy.

Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary
The Proof Ideas. Reduction of $l \in NP^{NP^{NP}}$ to	succinct-2-radius.		

- O By the Stockmeyer characterization there is a simple predicate R with w ∈ L ⇔ ∃x∀y∃z: R(w,x,y,z)
- **2** From x_i , we reach all its y in 2 steps iff $\forall y \exists z : R(w, x_i, y, z)$.
- From x_i, we reach all other vertices in 2 steps.

Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary
The Proof Ideas. Reduction of $L \in NP^{NP^{NP}}$ to	succinct-2-radius.		

- O By the Stockmeyer characterization there is a simple predicate R with w ∈ L ⇔ ∃x∀y∃z: R(w,x,y,z)
- **2** From x_i , we reach all its y in 2 steps iff $\forall y \exists z : R(w, x_i, y, z)$.
- From x_i, we reach all other vertices in 2 steps.

Succinct Diameter Problem	Succinct Radius Problem	King Languages ●0000	Summary
Two Examples of Gra	phs, Re-Revisited		

A *k*-king of a graph is a vertex from which all vertices can be reached in at most *k* steps.

The 2-kings.

The 2-kings.

Trivia On Kings			
000000	000	0000	
Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary

- Landau has studied lions and noted that a pride of lions forms a tournament and always has a 2-(lion)-king.
- A graph has radius k iff there exists a k-king.
- A graph has diameter k iff all vertices are k-kings.

Succinct Diameter Problem	Succinct Radius Problem	King Languages ○○●○○	Summary
We Tie Our Hands.			

A uniform tournament family consists of one tournament per word length. Each T_i is succinctly specified by a circuit C_i from a P-uniform circuit family $(C_i)_{i \in \mathbb{N}}$.

 $= T_3$, specified by C_3

- $= T_2$, specified by C_2
- = T_1 , specified by C_1 = T_0 , specified by C_0

Definition of King			
		00000	
Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary

The set of k-kings in the tournaments of a uniform tournament family forms a k-king language.

(Remark: They are closely related to P-selective sets.)

$$L = \{\epsilon, 0, 00, 000, \dots\}$$
 is a 2-king language

Theorem $L \in coNP^{NP}$ holds iff L is equivalent to a king language.

Succinct Diameter Problem	Succinct Radius Problem	King Languages	Summary
000000	000	00000	
Summary			

Let $k \ge 2$.

- succinct-k-diameter is complete for coNP^{NP}.
- succinct k-radius is complete for NP^{NP^{NP}}.
- $L \in \text{coNP}^{\text{NP}}$ iff L is equivalent to a k-king language.