
Graph Drawing in TikZ
Till Tantau

Graph Drawing Conference 2012

The Problem: Integrating Graph Drawings Into Documents

148 M. Chimani et al.

h

f1 f2

f3

f4f5

f6
p

1

6

2 3
4

5

(a) The insertion path p cross a hypernode h.

h´

f1 f2

f3

f4f5

f6

h

p

1 6 5

42 3

(b) A realization of p.

Fig. 2. Splitting a hypernode by introducing an additional arc can reduce the crossings

small downward pieces of arcs, due to port constraints, are restricted to the
direct neighborhood of the corresponding node.

Note that, after the full upward-planarization approach is completed, we can
merge multiple such dummy nodes that correspond to the same hyperarc, when
they lie in a common face.

Inserting reversed arcs, i.e., a ∈ Rev. To ensure confluency in the hyperarcs, we
have to take special care for the arcs that where reversed in the preprocessing
step to remove cycles. After the drawing is computed, we will have to reset their
original direction. To avoid notational complexity, we will add such arcs only
after all other arcs of the hyperarc are already inserted.

Assume the arc a = (x, y) originally connected a source vertex to the hypern-
ode of the star-based underlying graph, but got reversed and hence connects the
hypernode to a target vertex. Nonetheless we have to ensure that it connects to
the aforementioned subtree Ts, instead of Tt. Let S be the set of original sources
in Ts before inserting a. Then a confluency-feasible upward insertion path for
a can be found by selecting the minimal insertion path from any node in S to
y. Thereby it may cross over A◦

φ \ Tt and next to crossing dummies of A◦
φ \ Tt

at no cost. The analogous holds, if a originally connected a target vertex to the
star-based hypernode.

Putting it together. So overall, after first computing a special feasible upward
subgraph, our upward-planarization approach inserts one hyperarc after another.
Each hyperarc is inserted by incrementally inserting the arcs of the star-based
underlying graph, reusing the already established tree-based sub-drawing of the
hyperarc as far as possible. By specially considering original arc directions, we
thereby guarantee that all hyperarcs are drawn as confluent trees. The final
result of the planarization is an upward-planar representation (planar, upward-
feasible sT -graph) R of G, and hence of H , together with an embedding Γ of
R. Within R, hyperarcs of H are represented as confluent trees, and crossings
are represented as dummy nodes.

Crossing Minimization and Layouts of Directed Hypergraphs 149

1 20

6 8 975

3 4

h2

h4

h3

h1

c2

c1

(a)

1 20

6 8 975

3 4

h2

h4

h3

h1

c2

c1c’1 c’’1

c’2 c’’2

(b)

Fig. 3. Steps towards a final layout: (a) the subgraph between consecutive layers of
an UPR R, (b) fine-layering of the subgraph with included dummy nodes to split long
arcs

3 Layout

Using the embedding Γ of the upward-planar planarization (UPR) R computed
in the previous step, our layout procedure works in three steps:

1. A layering L of R is computed.
2. An initial orthogonal drawing of R is computed.
3. Optional step: Orthogonal compaction is applied to remove unnecessary bend

points and improve layout quality.

We finally obtain an upward drawing of R, which induces a drawing of H in a
straight-forward way. The number of hyperarc crossings in this drawing equals
the number of crossing dummies in R, thus it is minimal with respect to the
computed embedding. Our initial method for orthogonal upward drawing may
produce an unnecessarily high number of bend points, but it reveals that such
a drawing can be computed efficiently. We discuss the individual steps in more
detail.

Layering. We compute a layering of R in two phases using the layering algorithm
by Chimani et al. [8], which also induces a node ordering for each layer. In the
first phase we compute a layering L′ of the nodes of H , and in the second
phase a layering L′′ of the subgraph between each two consecutive layers of L′.
Notice that the nodes of L′′ are either crossing dummies or hypernodes. For each
crossing dummy c of L′′, we split c by adding new dummy nodes c′ and c′′ such
that c′ is the immediate left and c′′ is the immediate right neighbor of c. These
two nodes will be bend points in the later drawing and ensure the orthogonality
of the arcs incident to c. We redirect the left incoming and the right outgoing arc
of c such that c′ is its new target and c′′ is its new source node, respectively. We
then merge L′ and L′′ into a complete layering L of R and create dummy nodes
to split long edges that span multiple layers. An example is shown in Fig. 3.

Till Tantau GD 2012 2 / 17

The Problem: Integrating Graph Drawings Into Documents

GraphViz yields

INTEGRAL

exp dx

.

2pi +

x r

TEX yields∫

exp

·

2π +

x r

dx

What we actually want:∫
exp

·

2π +

x r

dx

Till Tantau GD 2012 2 / 17

The Problem: Integrating Graph Drawings Into Documents

GraphViz yields

INTEGRAL

exp dx

.

2pi +

x r

TEX yields∫

exp

·

2π +

x r

dx

What we actually want:∫
exp

·

2π +

x r

dx

Till Tantau GD 2012 2 / 17

A Solution: Graph Drawing in TikZ

Take an existing document description language (TEX)
with an embedded graphics description language (TikZ).

Add options and syntactic extensions for specifying graphs easily.

Run graph drawing algorithms as part of the document processing.

Advantages

+ Styling of nodes and edges matches main document.

+ Graph drawing algorithms know size of nodes and labels precisely.

+ No external programs needed.

+ Algorithm designers can concentrate on algorithmic aspects.

Till Tantau GD 2012 3 / 17

Talk Outline

How Do I Use It?

How Does It Work?

How Do I Implementing An Algorithm?

Till Tantau GD 2012 4 / 17

TikZ in a Nutshell: The Idea

\usepackage{tikz}
...
A circle like \tikz {
\fill[red] (0,0) circle[radius=.5ex];

} is round.

A circle like is
round.

TikZ is a package of TEX-macros for specifying graphics.

The macros transform highlevel descriptions of graphics into
lowlevel PDF-, PostScript-, or SVG-primitives during a TEX run.

Till Tantau GD 2012 5 / 17

TikZ in a Nutshell: Nodes and Edges

\tikz {
\node (a) at (0,2) [rounded rectangle] {Hello};
\node (b) at (2,2) [tape] {World};
\node (c) at (4,2) [circle, dashed] {$ c^2 $};
\node (d) at (4,0) [diamond] {$ \delta $};
\draw (a) edge[->] (b) (b) edge[->] (c)

(b) edge[->] (d) (d) edge[->] (a);
}

Hello World c2

δ

Till Tantau GD 2012 6 / 17

Using the Graph Drawing System = Adding an Option

\usetikzlibrary{graphdrawing.layered}
...
\tikz [layered layout] {
\node (a) at (0,1) [rounded rectangle] {Hello};
\node (b) at (2,1) [tape] {World};
\node (c) at (4,1) [circle, dashed] {$ c^2 $};
\node (d) at (4,0) [diamond] {$ \delta $};
\draw (a) edge[->] (b) (b) edge[->] (c)

(b) edge[->] (d) (d) edge[->] (a);
}

Hello

World

c2 δ

Till Tantau GD 2012 7 / 17

Using the Graph Drawing System = Adding an Option

\usetikzlibrary{graphdrawing.force}
...
\tikz [spring layout, node distance=1.25cm] {
\node (a) at (0,1) [rounded rectangle] {Hello};
\node (b) at (2,1) [tape] {World};
\node (c) at (4,1) [circle, dashed] {$ c^2 $};
\node (d) at (4,0) [diamond] {$ \delta $};
\draw (a) edge[->] (b) (b) edge[->] (c)

(b) edge[->] (d) (d) edge[->] (a);
}

Hello

World

c2

δ

Till Tantau GD 2012 7 / 17

A Concise Syntax for Graphs

A concise syntax for graphs is important
when humans specify graphs ‘‘by hand.’’

The chosen syntaxmixes the philosophies of DOT and TikZ.

\tikz \graph [layered layout] {
Hello -> World -> "c^2";
World -> "δ" -> Hello;

};

Hello

World

c2 δ

Till Tantau GD 2012 8 / 17

Key Features of TikZ’s Syntax for Graphs

Node options follow nodes in square brackets.

Edge options follow edges in square brackets.

Additonal edge kinds.

Natural specification of trees.

\tikz \graph [layered layout] {
Hello [rounded rectangle]

-> World [tape]
-> "c^2" [circle, dashed];

World -> "δ"[diamond]
-> Hello;

};

Hello

World

c2 δ

Till Tantau GD 2012 9 / 17

Key Features of TikZ’s Syntax for Graphs

Node options follow nodes in square brackets.

Edge options follow edges in square brackets.

Additonal edge kinds.

Natural specification of trees.

\tikz \graph [layered layout] {
Hello [rounded rectangle]

-> World [tape]
-> "c^2" [circle, dashed];

World
->[dashed, blue] "δ"[diamond]
->[bend right, "foo"’] Hello;

};

foo

Hello

World

c2 δ

Till Tantau GD 2012 9 / 17

Key Features of TikZ’s Syntax for Graphs

Node options follow nodes in square brackets.

Edge options follow edges in square brackets.

Additonal edge kinds.

Natural specification of trees.

\tikz \graph [tree layout] {
a -> b -- c <- d <-> e;

};

a

b c d e

Till Tantau GD 2012 9 / 17

Key Features of TikZ’s Syntax for Graphs

Node options follow nodes in square brackets.

Edge options follow edges in square brackets.

Additonal edge kinds.

Natural specification of trees.

\tikz \graph [binary tree layout] {
root -> {
left -> {
1,
2

},
right -> {
3 -> { , 4 }

}
}

};

root

left

1 2

right

3

4

Till Tantau GD 2012 9 / 17

Talk Outline

How Do I Use It?

How Does It Work?

How Do I Implementing An Algorithm?

Till Tantau GD 2012 10 / 17

LuaTEX in a Nutshell

TEX is great, . . .

but implementing advanced algorithms is next to impossible.

Lua is a small, simple, elegant language, . . .

. . . that has been integrated into modern versions of TEX:

$\sum_{n=1}^{100} n =
\directlua{
local sum = 0
for i=1,100 do
sum = sum + i

end
tex.print(sum)

}$

∑100
n=1 n = 5050

Till Tantau GD 2012 11 / 17

How a Graph is Drawn

TikZ Layer

\graph[tree layout]{

a -> b -> c

};

node positioning callback

edge positioning callback

Lua Layer

beginGraphDrawingScope(...)

addNode(...)

addEdge(...)

runGraphDrawingAlgorithm()

load algorithm and run it

endGraphDrawingScope()

Till Tantau GD 2012 12 / 17

Talk Outline

How Do I Use It?

How Does It Work?

How Do I Implementing An Algorithm?

Till Tantau GD 2012 13 / 17

‘‘Graph Drawing’’ can be seen as. . .

starting with a graph, . . .

. . . applying a series of transformations to it. . .

. . . and ending with a drawn graph.

Graph drawing in TikZ follows this philosophy:

Algorithms declarewhat kind of graphs they expect

and also the properties of the graphs they produce.

Till Tantau GD 2012 14 / 17

Implementing a New Graph Drawing Algorithm

-- File VerySimpleDemo.lua
local VerySimpleDemo = pgf.gd.new_algorithm_class {
works_only_on_connected_graphs = true,

}

function VerySimpleDemo:run()
local graph = self.ugraph -- The graph model
local radius = graph.options[’/graph drawing/radius’]
local alpha = (2*math.pi) / #graph.vertices

-- Iterate over all vertices:
for i,vertex in ipairs(graph.vertices) do
vertex.pos.x = math.cos(i*alpha) * radius
vertex.pos.y = math.sin(i*alpha) * radius

end
end

return VerySimpleDemo -- This return is a quirk of Lua

Till Tantau GD 2012 15 / 17

Using the Graph Drawing Algorithm

\tikz \graph [layout=VerySimpleDemo, radius=1cm] {
a -- b -- c -- a;
d -- e;
f -- g -- h -- d -- f;
e -- g;

};

a

b

c
d

e
f

g

h

Till Tantau GD 2012 16 / 17

Using the Graph Drawing Algorithm

\tikz \graph [layout=VerySimpleDemo, radius=1cm] {
a --[orient=right] b -- c -- a;
d -- e;
f -- g -- h -- d -- f;
e -- g;

};

a b

c d

e
f

g

h

Till Tantau GD 2012 16 / 17

Using the Graph Drawing Algorithm

\tikz \graph [layout=VerySimpleDemo, radius=1cm]
a --[orient=right] b -- c -- a;
d -- e;
f -- g -- h -- d --[stub,red] f;
e --[stub, red] g;

};

a b

c d

e
f

g

h

Till Tantau GD 2012 16 / 17

Using the Graph Drawing Algorithm

\tikz \graph [layout=VerySimpleDemo, radius=1cm,
nodes={circle, fill=..., ...},
edges={circle connection bar, ...}] {

a --[orient=right] b -- c -- a;
d -- e;
f -- g -- h -- d -- f;
e -- g;

};

a b

c d

e
f

g

h

Till Tantau GD 2012 16 / 17

Conclusion

Graph drawing in TikZ is aimed at

userswho want to draw graphs with up to≈ 100 nodes
inside TEX documents and

researcherswho want to implement new algorithms.

Already implemented algorithms:

Reingold–Tilford tree drawing.

Layered Sugiyama method.

Multi-level force-based algorithms.

Available as part of (the development version of) TikZ.

Till Tantau GD 2012 17 / 17

	How Do I Use It?
	How Does It Work?
	How Do I Implementing An Algorithm?

