

Natural Complete Problems for Parametrized Space Classes

Christoph Stockhusen Till Tantau

Institute of Theoretical Computer Science Universität zu Lübeck

Theory Workshop, Hannover, May 2013

IM FOCUS DAS LEBEN

Talk Outline

Introduction: Parametrized Space

Limited Nondeterminism

- The Concept
- The Classes
- Natural Complete Problems

Limited Time and Space

- The Concept
- The Classes
- Natural Complete Problems

Parametrized Complexity in a Nutshell.

The Vertex Cover Problem

Given a graph with *n* vertices, can we choose *k* of them so that all edges are "covered"?

Example (A Graph with a Vertex Cover of Size 3)

- The vertex cover problem is NP-complete and can easily be solved in time 2^n and n^k .
- It can also be solved in time $2^k n$.
- This is called *fixed parameter tractable* since for *each fixed k* we get a linear time algorithm.

Parametrized Complexity in a Nutshell.

The Vertex Cover Problem

Given a graph with *n* vertices, can we choose *k* of them so that all edges are "covered"?

Example (A Graph with a Vertex Cover of Size 3)

- The vertex cover problem is NP-complete and can easily be solved in time 2^n and n^k .
- It can also be solved in time $2^k n$.
- This is called *fixed parameter tractable* since for *each fixed k* we get a linear time algorithm.

Parametrized Space Complexity in a Nutshell.

How much *space* is needed to solve the vertex cover problem?

Example (A Graph with a Vertex Cover of Size 3)

- The problem can easily be solved in space $O(k \log n)$.
- It can also be solved in space $O(k^2 + \log n)$.
- This is the *logspace analogue* of fixed parameter tractability.

Basic Classes

Basic Classes

Talk Outline

Introduction: Parametrized Space

Limited Nondeterminism

- The Concept
- The Classes
- Natural Complete Problems

Limited Time and Space

- The Concept
- The Classes
- Natural Complete Problems

Limited Nondeterminism: The Concept

■ Nondeterminism = determinism + magical bits.

Limited Nondeterminism: The Concept

- Nondeterminism = determinism + magical bits.
- Limited nondeterminism = determinism + few magical bits.

Limited Nondeterminism: The Concept

- Nondeterminism = determinism + magical bits.
- Limited nondeterminism = determinism + few magical bits.

Parametrized Classes of Bounded Nondeterminism.

Definition

From a parametrized class para-C we derive the classes

- 1. para βC by giving the para-C-machine 1-way access to $O(f(k) \log n)$ nondeterministic bits,
- 2. para ΣC by giving the para-C-machine 2-way access to $O(f(k) \log n)$ nondeterministic bits.

Parametrized Classes of Bounded Nondeterminism.

Parametrized Classes of Bounded Nondeterminism.

Known Complete Problems Under Para-L-Reductions.

Known Complete Problems Under Para-L-Reductions.

The Generability Problem.

The Problems GEN and AGEN

Input A table describing a function $\circ: U \times U \rightarrow U$ and a set $G \subseteq U$. Question Is U the smallest superset of G that is closed under \circ ? For AGEN, \circ must be associative (a semi-group).

Example

Does
$$G = \{0, 3\}$$
 generate $U = \{0, 1, 2, 3\}$ for $\begin{bmatrix} \circ & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & ? \\ 2 & 0 & 2 & 0 & 2 \\ 3 & 0 & 3 & 2 & 1 \end{bmatrix}$

The Generability Problem.

The Problems *p*-GEN and *p*-AGEN

Input A table describing a function $\circ: U \times U \rightarrow U$ and a number k. Question Is there a G of size k such that U is the smallest superset of G that is closed under \circ ?

For *p*-AGEN, \circ must be associative (a semi-group).

The Complexity of the Generability Problems.

Fact GEN is P-complete.

Fact

p-GEN *is* para Σ P-complete (= *is* W[P]-complete).

Fact

AGEN is NL-complete.

The Complexity of the Generability Problems.

Fact GEN is P-complete.

Fact p-GEN is para Σ P-complete (= is W[P]-complete).

Fact AGEN *is* NL-complete.

Theorem *p*-AGEN *is* paraΣNL-*complete*.

The Complexity of the Generability Problems.

Fact GEN is P-complete.

Fact p-GEN is para Σ P-complete (= is W[P]-complete).

Fact AGEN is NL-complete.

Theorem p-AGEN *is* para Σ NL-*complete*.

Proof. Highly technical reduction from "something technical."

Known Complete Problems Under Para-L-Reductions.

Talk Outline

Introduction: Parametrized Space

Limited Nondeterminism

- The Concept
- The Classes
- Natural Complete Problems

Limited Time and Space

- The Concept
- The Classes
- Natural Complete Problems

Limiting Time and Space Simultaneously: The Concept

Classical Complexity Theory

We limit *either* time *or* space, but not both because of the well-known inclusion chain

$\mathsf{L}\subseteq\mathsf{N}\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\mathsf{PSPACE}=\mathsf{N}\mathsf{PSPACE}.$

Parametrized Complexity Theory

- Inside the X-classes and the para-classes, analogous inclusions hold.
- However, new classes arise when we "mix" time X-classes and space para-classes or vice versa.

Limiting Time and Space Simultaneously: The Classes

Definition

Let *t* be a time bound and *s* a space bound that may depend on a parameter.

- 1. The class D[*t*, *s*] contains all parametrized problems decidable by a DTM working in *time t* and *space s*.
- 2. The class N[t, s] is the nondeterministic version of it.

Examples

- $D[f \text{ poly}, \infty] = \text{para-P} = \text{FPT}.$
- $\blacksquare \mathsf{D}[\infty, f \log] = \mathsf{XL}.$
- D[f poly, f log] is "FPT time, but using only XL space".

Simultaneous Time-Space Classes.

The Key Problem

The Longest Common Substring Problem *p*size-LCS

Input An alphabet Σ , a set S of strings from Σ^* , and a length I. Parameter |S|

Question Is there a string *s* of length *l* that is a common substring of all elements of *S*?

Example

A longest common substring of badbab

abbacd, badbab, **is** aba. cbacba LCS is Complete for A Time--Space Class.

Theorem

*p*_{size}-LCS *is complete for* N[*f* poly, *f* log].

LCS is Complete for A Time--Space Class.

Theorem

 p_{size} -LCS is complete for N[f poly, f log].

Proof.

Inclusion While guessing *s*, we only need *k* log *n* bits to keep track of the positions.

Hardness Technical chain of reductions via a parametrized version of cellular automata.

Complete Problems for Simultaneous Time-Space Classes.

Summary

- Limited nondeterminism allows us to define natural analogues of W[P] for parameterized space.
- The associative generability problem is complete for the NL-analogue of W[P].
- The longest common subsequence problem parametrized by the number of strings is complete for "nondeterministic simultaneous FPT time and XL space."