
N C - A L G O R I T H M S

F O R G R A P H S W I T H S M A L L T R E E W I D T H

Hans L. Bodlaender
Depar tment of Computer Science, University of Utrecht

P.O.Box 80.012, 3508 TA Utrecht , the Netherlands

A b s t r a c t

In this paper we give a parallel algorithm for recognizing graphs with treewidth < k, for constant
k, and building the corresponding tree-decomposition, that uses O(log n) time and O(n 3k+4) processors
on a CRCW PRAM. Also, we give a parallel algorithm that transforms a given tree-decomposition of
a graph G with treewidth k to another tree-decomposition of G with treewidth < 3k + 2, such that
the tree in this tree-deeomposition is binary and has logarithmic depth. The algorithm uses a linear
number of processors and O(log n) time. Many NP-eomplete graph problems are known to be solvable
in polynomial time, when restricted to graphs with treewidth < k, k constant. From the results in this
paper, it follows that most of these problems are also in NC, when restricted to graphs with treewidth
bounded by a constant.

1 Introduction

The class of graphs with treewidth < k has the property that many graph problems, which are NP-complete
for arbitrary graphs, become solvable in polynomial time, when restricted to this class [4,3,6,9,18,17].
Arnborg, Corneil and Proskurowski gave an O(n k+2) algorithm to recognize graphs with treewidth < k,
and find the corresponding tree-decompositions [2]. Deep results from Robertson and Seymour on graph
minors show that there exist O(n 2) algorithms to recognize graphs with treewidth < k [16]. Recently,
we were able to use this result to show the existence of O(n 2) algorithms that find the corresponding
tree-decompositions. The non-constructive elements in the result of Robertson and Seymour can often,
and also in this case, be avoided with a technique of Fellows and Langston [11].

In this paper we consider the parallel complexity of the problems. To be precise: we show that the
problems are in NC, i.e. they can be solved on a CRCW PRAM, using a polynomial number of processors
and polylogarithmic time. Chandrmsekharan and Sitharama Iyengar [8] considered the related problem of
recognizing k-trees, and showed that this can be done in O(log n) time on a CRCW PRAM with O(n 4)
processors. A related result on graphs with bounded treewidth and bounded degree was obtained by
Engelfriet, Leih and Welzhl [10]. A special case of these problems is considered in [13].

This paper is organized as follows. In section 2 a number of fundamental definitions are given and some
basic graph theoretic results are derived. In section 3 we show that recognizing graphs with treewidth
< k and finding the corresponding tree-decompositions is in NC, for constant k. In section 4 we give a
parallel algorithm that transforms a given tree-decomposition of a graph G with treewidth k to another
tree-decomposition of G with treewidth < 3k + 2, such that the tree in this tree-decomposition is binary
and has logarithmic depth. From this result, it follows that many sequential polynomial time algorithms
for graphs with bounded treewidth can be transformed to NC-algorithms. All problems considered in [3]
and [6] can be dealt with in this way.

2 Definitions and graph-theoretic results

First we give the definition of the treewidth of a graph, introduced by Robertson and Seymour [15]. Some
alternative definitions of the same class of graphs can be found in [1].

Defini t ion.
Let G = (V, E) be a graph. A tree-decomposition of G is a pair ({Xi] i E I}, T = (I, F)) , with {Xi] i E I}
a family of subsets of V and T a tree, with the following properties:

• U X I = V
iEI

• For every edge e = (v, w) • E , there is a subset Xi , i • I with v • Xi and w • Xi

• For all i , j , k • I , if j lies on the pa th in T from i to k, then Xi fl Xk C_ Xj .

The treewidth of a tree-decomposition ({Xi I i • I } , T) is m ~ e x t X ~ l - 1. The treewidth of G,
denoted t reewidth(G) is the minimum treewidth of a tree-decomposition of G, taken over all possible
tree-decompositions of G.

For a set S, clique(S) denotes the graph (S, {(v, w) I v, w • S, v # w}). For graphs G = (V, E) , H =
(W, F) , G t3 I t denotes the (possibly non-disjoint) union (V kJ W, E O F) . For W C V, G[W] denotes the
subgraph of G = (V, E) induced by W : G[W] = (W, {(v, w) I v, w E W and (v, w) • E}) .

Next we give some graph-theoretic results, which will be used in later sections.

L e m m a 2.1
Let ({Xi I i • I } , T = (I , F)) be a tree-decomposition o f G = (V , E) . Suppose W C V forms a clique in
G. Then 3i • I : W C_ Xi .

P r o o f .
Use induction to the clique size IW[. For IWI g 2, the result follows directly from the definition of tree-
decomposition. Suppose the lemma holds up to clique size t - 1, l > 3. Consider a clique W C_ V, with
IWI = l, and suppose the lemma does not hold for W. Choose a vertex w • W, and let W ~ = W - {w}.
Let I ~ C_ I he the set {i • I I W~ C_ Xi}. By induction I ~ ~ 0. Note that w • Xi ~ i ¢ I ~. Now choose a
node i I • I I, and a node i • I with w • Xi. Consider the path in T from i to i I. Let i n be the last node on
this pa th with i jt • I ~, and let i m be the next node on this path. Now, for every w r • W t, there must be a
node Jw,, with { w , w t} C_ Xj, , , . Consider the pa th from i" to j~, . There are two cases. Case 1: This path

does not use im. In this case, the pa th in T from i to jto, uses i ~t. Now w • Xi, w • Xj~, , hence w • Xi,,,
contradiction. Case 2: This pa th uses im. Now w ~ • Xi,, and w ~ • Xj,~,, hence w I • Xi It follows that

for all w ~ • W t : w t • X i , , , hence i m • I ~, which contradicts the assumption tha t i" was the last node on
the pa th from i to i ~, tha t was in I ~. []

Definit ion.
A tree-decomposition ({Xi I i E I } , T = (I , F)) of a graph G = (V ,E) is called full, iff

(i) w , j • I : IX~l = Ixjl , and

(ii) V (i , j) • F : X l g X j and X j ~: Xi .

L e m m a 2.2
Let G = (1/, E) be a graph with t reewidth(G) < k and tvI _> k + 1. Then G has a full tree-decomposition
with treewidth k.

P r o o f .
Start with any tree-decomposition of G with t reewidth _< k, and repeat the following operations, until a
full tree-decomposit ion is obtained:

1. If there are (io, i l) E F with Xi0 C Xil or Xi~ C Xi0, then we make a new tree-decomposition by
merging i0 and il . Take ({ X i I i e I - {iz}}, T ' = (I - {iz}, { (i , j) l (i , j • I - {ix} and (i , j) • F)
or (i = i0 and (i l , j) • F) or (j = il and (ix, i) • F)}. This is again a tree-decomposition of G with
t reewidth < k, but with a smaller index set I .

2. If there is an i0 • I with IX~01 _< k, then either operation 1 can be applied, or there is an adjacent
node il • I with By • Xi l : v • Xi0. Make a new tree-decomposition by adding v to Xi0 : ({X[] i •
I} , T = (I , F)) , with X" o = Xio U {v}, and X" = X i for i ¢ i0. This is again a tree-decomposition
of G with treewidth < k. In this case the size of the index set I does not change, but ~ i E l IX~l is
increased by one.

Operat ion 1 can be applied less than III t imes, operat ion 2 can be applied less t han (k + 1).]II times. So
after applying operat ion 1 and 2 a finite number of t imes, we obta in a tree-decomposit ion of G with tree-
width g k, such tha t nei ther operat ion 1 or operat ion 2 can be applied. This is a a full t ree-decomposit ion
of G with t reewidth k. []

3 A n NC-algor i thm for recognizing graphs wi th small t reewidth

In this section we show tha t recognizing graphs with t reewidth < k, and finding the corresponding tree-
decomposit ion, are in NC, for cons tant k. The algori thm is quite inefficient in the use of processors, as it
uses O(n 3/¢+4) processors. The algori thm uses O(log n) t ime on a C R C W PRAM.

Suppose G = (V, E) is the input-graph.
First a~ (k + 1)-element ver tex sets, which are a separa tor of G, are computed, and numbered

$1, $ 2 , . . . , SI, . . . For each such Si, the connected components of G[V - Si] are numbered Si 1, S ~ , . . . , S]
(Note the difference with the algori thm of Arnborg, Corneil and Proskurowski [2], where k-element vertex
sets were considered, instead of (k + 1)-element sets.)

For each pair of (k + 1)-element separators Si, Sj, i ~ j , let Rij denote the set of vertices v, such tha t
v has a pa th to a vertex in Si - St, which avoids St, and a pa th to a vertex in Sj - Si, which avoids SI.

D e f i n i t i o n

(i) A pair (Si, SJi) is called good, iff G[Si tJ S]]tJ clique(S~) has t reewidth < k.

(ii) A triple (S/, Sj, R / j) is called good, iff G[SI U S t U Rij]t9 clique(S/)U cl ique(St) has t reewidth < k.

The next three lemma's give the essential steps of the algori thm.

L e m m a 8.1
Let IVt > k + 3. Then: t reewidth(G) < k, if and only if there exists a (k + 1)-vertex separator Si, wi th all
(Si, S s) are good.

P r o o f .
(=~) Consider a full t ree-decomposit ion ({Xi I i E I} , T = (1, F)) of G. Take Si = Xr for an arbi t rary
internal node r E I .
(¢ :) For each G[S/U S]]t_J clique(S/) there exists a t ree-decomposit ion with t reewidth _< k. By lemma 2.1,
each of these tree-decomposit ions contains an Xio, with SI C Xio, so Si = XI o. We now can compose a
tree-decomposit ion of G of the tree-decompositions of the G[Si U S]]U clique(Si) graphs, by identifying
the nodes i0 with X/o = Si. []

L e m m a 3.2
Consider S/, Sk, Ri,k with Ri, k • ~.
(Si, Sk, Ri,k) is good, if and only if there exists a (k + 1)-vertex cutset Sj C S/U Sk u Ri,k, such tha t

(i) sj ~ (s~ u R,,t) n (Sk u Rt,k)
(ii) (Si, Sj, RLj) and (Sj, Sk, Rj,k) are good

(iii) [Ri,tl < llRi,kt; [Rj,kt <- XlRi,kl
(iv) For all m wi th S~ n (S/U Sk u Ri,t U RLk) = 0 and S~ C_ Ri,k: (Sj , S ~) is good.

P r o o f .
(=~) Consider a full t ree-decomposit ion ({Xi I i E I} , T = (I , F)) of G ' = G[S t u Sk u Ri,k]U chque(Si)u
clique(St) , with t reewidth k. Note tha t there mus t be io E I with Xi0 = S/ and il E I with X/1 = Sk,
by lemma 2.1. One may suppose tha t i0 and il are leaves in the tree T, else one can remove some nodes
fl'om T and still have a full tree-decomposition of G ' with t reewidth k. For each node i r E I on the
pa th from i0 to il , i ' ~ io, i' # il, we have t ha t Xi, is a k + 1-vertex cutset of G ' (and hence of G).
As Ri,k ~ O,]I 1 > 3, and so there is at least one such node i I. For each such i I E I , let X/, = Sa(i,),
and s(i') = max(iRi,~(i,)hlRka(/,)]). Suppose i2 has minimal s(i2) over all i' on the pa th from i0 to

i l , i ' ~. {i0, i l}. We claim tha t s(i2) < ½1Ri,kl. Note tha t Xi, N Ria(i~) # ¢ ¢~ i ' belongs to the tree in
T - {i2} which also contains Si, and similarly, Xi, n Rl,(i~) ~ 0 ~ i t belongs to the tree in T - {i2} which
also contains Sk. W.l.o.g. suppose s(i2) = IRka(12)l. Let i3 be the next node on the pa th from i2 to il. Now
Rk~(i~) C Rk~(i~) and Rk~(is) ~ RI¢,~(12); and v E Rka(i2) =~ v ¢ Ria(iz). This follows from the definition of
tree-decomposition. It follows t ha t IRi~,(i~)[> s(i2) and IRia(is)l < IRikl - IR~(i~)t = IRiki - ~(i~), hence

~(i~) < ½1R~I.
Now let Sj = Xi~. Proper ty (i) follows from the observations, made before and the definition of tree-

decomposition. Propert ies (ii) and (iv) follow because the corresponding graphs are subgraphs of GIu
clique(Sj) , which clearly has t reewidth < k.
(¢=) Note t ha t if S~ ~ (Si U Sk U Ri,j U Rj,~) ¢ $, then S ~ N Ri,~ G Ri,j u R~. k. Further , note tha t
if a vertex belongs to two or more of the sets Si U Ri,~ U S) ,S j U Rj,k U Sk ,S j U S~ , for any m with
S~ n M (S i u Sk U Rid u Rj,k) = ¢ and S'~ C Ri,k, then it belongs to Sj.

Now make tree-decompositions with t reewidth < k of G[Si U Sj O Ri,j]o clique(Si)U clique(Sj),
G[Sj U S~ O Rj,~]U clique(Sj)U cllque(S/,), and G[Sj U S~"]U clique(Sj) , for all m as before. Each of
these tree-decomposit ions contains an i ' with Xi, = Sj. By identifying all these i ' and so "glueing" the
tree-decompositions together we obta in a new tree-decomposit ion with t reewidth < k. By the two ob-
servations made above, it follows tha t this is indeed a correct tree-decomposit ion of G[SI u S k U Ri,k]U
clique(Si) U clique(S/,). []

L e m m a 3.3
Consider (Si, S j) with IsJl >_ k + 1. (Si, S]) is good, if and only if there exists a (k q- 1)-vertex cutset Sj,
such t ha t

(i) (S . Sj , R~6) is good
1 J (ii) for all m, with S T n (Rid O Si) = O and S~" C_ S~ : (Sj , S ?) is good and iS?I < ~ISi].

1 J (iii)]Ri,j] <_ "~lSi].

P r o o f .
(=~) Consider a full t ree-decomposit ion ({Xi t i e I} , T = {I , F}) of G ' = G[Si u S~]U clique(Si). For each
i' E I and each component T ' = (I ' ,F ') of T - {i '}, let s(T' , i ') = l{v E X~,, n S]]i" E I ' and v ~ Xv}l.
For all i ' E I , define s(i ') to be the max imum of s (T t, i ') over all connected components T ~ of T - {it}.
Let i0 E I be the node, such tha t s(io) is minimal over all i ' E I , and]X~ 0 n S]] is minimal over all i t with
minimal s(i'). From IS]I > k + 1, it easily follows tha t i0 is an internal node of G' , and hence Xi0 is a
(k + 1)-vertex cutset of G t, and hence also of G. Take Sj = Xi0-

- ~ i " Let il be the node t ha t is adjacent to io and in the component T t of We claim tha t s(io) < 1 S J]
T - { i o } with s (T t, i0) = s(io). Consider the component T" of T - { i l } , t ha t contains io. From the definition
of tree-decomposit ion it follows tha t for all v E S] : v E X~,, for some i" in T ~ and v ¢ Xi0 ~ v ¢ Xi,, for
all i" in T " or v E Xi~. So s(T', io) + s(T", i~) <_ IS~I. If there is an v E S], with v E X~0 and v ¢ X ~ , then
the result follows. All components T m of T - {Q}, except T" , are contained in T t, and for each of these

1 j
components we have s (T" , il) < s(T' , io). So s(T", il) >_ s(T', io), and hence 8(i0) = 8(T' , io) >_ ~]Si I-

Also, if s(il) > s(i0), one easily derives t ha t s(io) <_ IIS]]. So suppose s(i l) = s(io) and v E

S~ n X, o ~ v E X,~, i.e.]S~ n X,o] >_ IS~ n X,~[. By definition of i0 : IS] n Xio[= IS] n X,~[. It follows
t ha t S~ N Xi 0 = S~ N Xi~. One can derive t ha t S i n Xi0 = S i n Xi~, and hence Xio = Xi~. So the
tree-decomposit ion was not full. Contradict ion. So the claim s(i0) < ½1S~I follows.

One can now check without difficulty tha t conditions (i) - (iii) are fulfilled, when taking Sj = Xi0.
(¢=) Similar as in l emma 3.2. []

Wi th help of these 3 lemma's , an NC-algori thm, using O (n 3k+4) processors and O(]og n) t ime on a CRCW
P R A M can be derived.

First , determine the set of (k + 1.)-vertex cutsets Si"
Secondly, determine which (Si, Sl) are good for [S~I < k, and which (Si, Sj, Ri,j) are good, for Rid = 9.

This can be done with O(n 2k) processors in O(1) t ime.

Then, in log n phases, one can determine for all (Si, S{) and (Si, Sk, Ri k) whether they are good, with
lemma 3.2 and 3.3; in phase I one considers S~ and R~,k with]S~I, tR~.kl e {2 I-1 -t- 1,.. . ,2~}.

Finally, verifying whether treewidth(G) < k can be done in O(1) time, with lemma 3.1, with O(n k+2)
processors.

We note that one can also find the corresponding tree-decomposition in O(log n) time, with O(n 3k+4)
processors, using the construction method for the tree-decompositions, indicated by the proofs of lemma
3.1 - 3.3.

T h e o r e m 3.4
For each constant k, there exists an algorithm that uses O(log n) time and O(n 3k+4) processors on a CRCW
PRAM that determines whether a given input graph has treewidth < k, and if so, finds a corresponding
tree-decomposition.

The algorithm is quite inefficient in the use of processors. By parallizing the algorithm of Arnborg, Corneil
and Proskurowski [2] one obtains without much difficulty the following result.

T h e o r e m 3.5
For each constant k, there exists an algorithm that uses O(n) time and O(n k+l) processors on a CRCW
PRAM, that determines whether a given input graph has treewidth < k, and if so, finds a corresponding
tree-decomposition.

4 NC-a lgor i thms for N P - c o m p l e t e problems, restricted to graphs
w i t h smal l t reewidth

In this section we give a method to design NC-algorithms, for a large number of graph problems, that are
NP-complete for arbitrary graphs, when restricted to the class of graphs with treewidth < k. Our main
result is the following: given a tree-decomposition of G with constant treewidth, one can find (using an
NC-algorithm) another tree-decomposition of G with larger, but still constant treewidth, such that the
tree T, appearing in this tree-decomposition is a binary tree with logarithmic depth.

For example, consider the sequential algorithms, proposed in [6]. The sequential algorithms are of the
following form: we suppose a tree-decomposition of G is given. For each node i E I we compute a table
TABLE(i). For computing TABLE(i) one needs TABLE(j) for all sons j of i in T. The time to compute
such a table is in several cases O(# sons of j), in other cases it is polynomial in n. A close observation
of the algorithms in [6] learns, that if i has O(1) sons, then either TABLE(i) can be computed in O(1)
time, or TABLE(i) can be computed with an NC-algorithm. We will not give the details here, but refer
the reader to [6]. A large number of problems can be dealt with in this manner.

Each of these problems can be solved in NC, when restricted to graph with treewidth < k. The
following two theorems give the main idea.

T h e o r e m 4.1
Every binary tree T = (V, E) has a tree-decomposition {{Xi I i E I}; T' = (I, F)) with treewidth _< 3,
and the depth of T' is at most 2[log¼(]Yl)], and T' is a binary tree.

Proof .
Our result is based upon the method of parallel tree-contraction of Miller and Reif [14]. We will obtain
a series of(rooted) trees T = To = (Vo, Eo),T1 = (V1, E1),T2 = (V2, E2) Tr = (V,.,E,.), with IVrl = 1.
To each v E V~ we assign a set T(v,i) C V representing the set of "vertices that are contracted to v".
Define ~(v, 0) = {v}.

Each Ti+l is obtained from Ti by applying the following two operations in parallel:

1. RAKE. For each node v E Vi, with at least 1 child of v is a leaf in Ti : remove the children from v
that are a leaf, and take ~(v, i + 1) = U { ~ (w , i)tw = v or w is a child of v, and w is a leaf }.

2. COMPRESS. A sequence of nodes vl , . . . ,Vk is a chain if vj+l is the only child of vj, and vk has
exactly one child and that child is not a leaf. Now, in each maximal chain, identify vi and vj+l for
j odd and 1 _< j < k. Let wi be the new node. We take ~(w, i + 1) --- qo(vj, i) t3 ~(vj+l , i).

Miller and Reif [14] showed tha t after [log~ n] simultaneous applications of R A K E and COMPRESS, T

is reduced to a single vertex. So it follows that r < [log[n].

Each ~0(v, i) represents the set of vertices tha t are contracted to v in i contractions. Note that each ~(v, i)
induces a connected subtree of T and tha t for each i, all ~o(v, i) are disjunct and part i t ion V. Furthermore,
if (v ,w) E E , then either 3x e V /wi th v , w e ~ (x , i) or 3x ,y E Y~ with (x ,y) e Ei and v E ~(x , i) and
w c ~ (y , i) .

Now define fl(v, i) = {w E ~p(v, i) I 3w' E Y with (w, w t) e E and w' ¢ ~(v, i)}. /3(v, i) represents the
vertices that are at the "border" of q0(v, i). The following properties hold:

1. If v E Y~, and the degree of v in Ti is 3, then k0(v,i)I = it3(v,i)] = 1.

2. If v e V/, then]/3(v, i)l is at most the degree of v in Ti.

To make Vo, . . . , V~ disjoint we label all v E 1.'] with i. We now give a "first version" of a tree-
decomposition {{X/ I i e I } , T ' = (I , F) } of T, which "almost" satisfies the constraints. We take I =
U~=oVi. If vertices v~,w ~, or vi, wi, x ~ E Vi are contracted to y/+l, then y~+l is the father of vi, w ~ (and
x/) in T I. If v is unchanged by going from T / t o Ti+l, the v/+1 is the father of v ~ in T I. Further we take
Xw = U{R= I x is a son of W in T'}.

We claim that this is a correct tree-decomposition of T with treewidth < 4, and no node in T t has
more than 3 children.

First , for each edge (v ,w) E E , there must be a~ i, such tha t v E ~ (x l , i) , w E ~o(y~,i) and v , w E
q0(z i+1, i + 1), for some x i, y i zi+l. Now v E fl(x i, i), w e ~(yl, i), so v, w e Xxi+~.

Secondly, for each v E V : on each level i of the tree T ~, there is exactly one w i C Vi with v E ~(w i, i),
and hence at most one w i E Vi with v E fl(w i, i), so also at most one w i E Vi with v E X ~ . Furthermore,
if v E X,o,, and x I+1 is the father o f w i in T I, then either v E Xxi+t, or v does not belong to any X u for y
on a level, higher than i + 1. It follows tha t we have a correct tree-decomposition.

For all w E I , IX~,I < 4 : either two vertices with degree < 2 are contracted, or a vertex with degree
3 is contracted with one or two leaves. Hence, the treewidth of the tree-decomposition is at most 4. As
there are never more than 3 vertices contracted to a single node during a single step, it directly follows
that no node in T ~ has more than 3 children.

We show now that this tree-decomposition can be slightly modified, such tha t T ~ is binary, and the
t reewidth <_ 3.

For a node with 3 children, use the t ransformation in figure 4.1. If [Xw~+~ I = 4, then w I+1 is obtained

==>

Figure 4.1

by contracting two nodes with degree 2, say x i and yl. Suppose 13(x/,i) = {vo, v]};~(yl, i) = {vu,v3}
and (vl,v2) E E. Then transform as in figure 4.2. Note that f l (wi+l, i q- 1) = {v0, v3}. A new correct
tree-decomposition with t reewidth < 3 results with the depth of T r increased by at most a factor 2, and
T / is a binary tree. D

T h e o r e m 4.2
Let G = (V, E) , with IV I = n, and t reewidth(G) < k. Then G has a tree-decomposition ({X/] i E I}, T =
(I , F)) with T a binary tree with depth < 2 [log~ (2n)], and with treewidth of this decomposition < 3k + 2.

Figure 4.2

©

Proof .
Let ({X~ I i E I1},T1 -- (I1,FI)) be a tree-decomposition of G with treewidth < k, and 1/11 < n. By
transforming nodes in T1 as in figure 4.3, one obtains a new tree-decomposition ({Xi I i e I2}, T2 = (/2, F2))
of G with treewidth < k and [/21 _< 2n, and T is a binary tree. Let ({ ~ I i E I3}, T3 = (/3, E3)} be a tree-
decomposition of T2, with T3 a binary tree with depth ~ 2 ~log~ [/2 [] ~ 2 [log~ (2n)], and treewidth of this

tree-decomposition < 3, (cf. theorem 4.1.). Then ({Z~ I i E I3},Ta = (I3, E3)) with Z~ = I.J{Xj I J C l~}
is a tree-decomposition of G, with the required properties. []

More-over, the tree-decompositions, indicated in theorem 4.1 and 4.2 can be found in logarithmic parallel
time. Using the same technique as Miller and Reif [14], one can carry out the construction indicated in
the proof of theorem 4.1 in O(log n) time on a CRCW PRAM using a linear number of processors. Using
similar techniques as in [14], one can also obtain a probabilistic algorithm, that uses O(log n) time and
O(n/ log n) processors. One easily sees tha t the construction, indicated in the proof of theorem 4.2 can
be carried out within the same time. Thus, we have the following result.

T h e o r e m 4.3
Given a graphs G = (V, E) with treewidth(G) _< k = O(1), we can find a tree-decomposition ({Xi [i E
I}, T = (I , F) of G, with treewidth O(1), and T a binary tree with depth O(log n), with an NCl-algorithm.

Hence, the sequential algorithms, proposed in [6] can be transformed to NC-algorithms in the following
way. The TABLE's can be computed level by level: first compute the tables for all i E I with maximum
distance to the root of T, then for all i E I with distance one sma~er, etc. Each step either takes O(1)
time, or can be carried out in NC. After O(log n) such steps, we have found the table for the root of T.
Finding the answer to the query then costs 0(1) time, or is easily seen to be in NC.

In a similar way, the (sequential) polynomial and linear time algorithms of Arnborg, Lagergren and
Seese [3] can be transformed to NC-algorithms, using theorem 4.3 as a first step. We summarize the results
in the following theorem. We use the terminology of Garey and Johnson [12]. When vertices and/or edges
have weights, these are assumed to be given in unary notation.

T h e o r e m 4.4
Each of the following problems is in NC, when restricted to graphs with treewidth < K, for constant K:
vertex cover [GT1], dominating set [GT2], domatic number [GT3], chromatic number [GT4], monochro-
matic triangle [GTh], feedback vertex set [GTT], feedback arc set [GT8], partial feedback edge set [GT9],
minimum mammal matching [GT10], partition into triangles [GTll] , partition into isomorphic subgraphs

=~

t

xi~ xi ~

Figure 4.3.

for fixed H [GT12], partition into Hamiltonian subgraphs [GT13], partition into forests [GT14], parti-
tion into cliques [GT15], partition into perfect matchings [GT16], clique [GT19], independent set [GT20],
induced subgraph with property P (for monadic second order properties P) [GT21], induced connected
subgraph with property P (for monadic second order properties P) [GT22], induced path [GT23], balanced
complete bipartite subgraph [GT24], bipartite subgraph [GT25], degree bounded connected subgraph for
fixed d [GT26], planar subgraph [GT27], transitive subgraph [GT29], uniconnected subgraph [GT30],
minimum k-connected subgraph for fixed k [GT31], cubic subgraph [GT32], minimum equivalent digraph
[GT33], Hamiltonian completion [GT34], Hamiltonian circuit [GT37], directed Hamiltonian circuit [GT38],
Hamiltonian path (and directed Hamiltonian path) [GT39], subgraph isomorphism for fixed H, subgraph
isomorphism for connected H with bounded valence [GT 48], graph contractability for fixed H [GT51],
graph homomorphism for fixed H [GT52], path with forbidden pairs for fixed n [GT54], multiple choice
matching for fixed J [GT55], graph grundy numbering for graphs with bounded valence [GT56], kernel
[GT57], k-closure [GT58], path distinguishers [GT60], degree constrained spanning tree [ND1], maxi-
mum leaf spanning tree [ND2], bounded diameter spanning tree [ND3], k'th best spanning tree for fixed
k [NDg], bounded component spanning forest for fixed k [ND10], multiple choice branching for fixed m
[ND11], Steiner tree in graphs [ND12], max cut [ND16], minimum cut into bounded sets [ND17], rural post-
man [ND27], longest circuit [ND28], longest path [ND29], shortest weight-constrained path [ND30], k'th
shortest path for fixed k [ND31], disjoint connecting paths for fixed k [ND40], maximum length-bounded
disjoint paths for fixed J [ND41], maximum fixed-length disjoint paths for fixed J [ND42], chordal graph
completion for fixed k, chromatix index, spanning tree parity problem, distance d chromatic number for
fixed d and k, thickness _< k for fixed k, membership for each class C of graphs, which is dosed unded
minor taking.

5 R e m a r k s and open p rob lems

One practical disadvantage of the sequential algorithms on graphs with small treewidth [3,4,7,6,18] is that
of the large constants involved in the algorithms. For instance, Arnborg and Proskurowski gave a linear

algorithm for Hamiltonian circuit (among others) [4], but consider their algorithm unfeasible for k > 8.
The NC-algorithms, given in this paper will only add to this problem of the large constant factor. However,
parallelism will help in a very straightforward way to decrease the running time, as the large constant is
in a large extent due to a large number of actions which can be carried out in parallel. So, in many cases,
using a large, but constant number of processors may decrease the running time by a large, but again
constant factor. Thus, the results in this paper seem to be of mainly theoretical interest.

However, the theoretical importance of the results in this paper are stressed by the fact that a large
number of classes of graphs have associated a constant c with them, such that each graph in the class has
treewidth < e. Examples of such classes of graphs are: graphs with bandwidth < k, graphs with cutwidth
< k, the series-parallel graphs, the outerplanar graphs, the k-outerplanar graphs, Halin graphs, chordal
graphs with maximum clique size k, graphs with genus < d and disk dimension < k(d, k constants). For
an overview of several results of this type, see [5]. The class of partial k-trees equals the class of graphs
with treewidth < k.

An interesting open problem is whether there exists a parallel variant of Robertson and Seymours
algorithm [16], tha t finds a branch-decomposition (and hence also a tree-decomposition) of a graph with
constant branchwidth or treewidth, that has again constant, but not necessarily optimal branchwidth
or treewidth. Their Mgorithm uses O(n 2) time. A parallel variant of this algorithm could be used to
determine whether a graph has treewidth < k, and as first step for the algorithms in section 4, using
perhaps a smaller number of processors as the algorithm of section 3.

R e f e r e n c e s

[1] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability
- A survey. BIT, 25:2-23, 1985.

[2] S. Arnborg, D. G. Cornell, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM
J. AIg. Disc. Meth., 8:277-284, 1987.

[3] S. Arnborg, J. Lagergren, and D. Seese. Problems easy for tree-decomposable graphs (extended
abstract). In Proc. 15 th ICALP, pages 38 51, Springer Verlag, Lect. Notes in Comp. Sc. 317, 1988.

[4] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems on graphs embedded
in k-trees. TRITA-NA-8404, Dept. of Num. Anal. and Comp. Sci., Royal Institute of Technology,
Stockholm, Sweden, 1984.

[5] H. L. Bodlaender. Classes of Graphs with Bounded Treewidth. Technical Report RUU-CS-86-22,
Dept. Of Comp. Science, University of Utrecht, Utrecht, 1986.

[6] H. L. Bodlaender. Dynamic programming algorithms on graphs with bounded tree-width. Tech. Rep.,
Lab. for Comp. Science, M.I.T., 1987. Extended abstract in proceedings ICALP 88.

[7] H. L. Bodlaender. Polynomial algorithms for Graph Isomorphism and Chromatic Index on partial
k-trees. In Proc. 1st Scandinavian Workshop on Algorithm Theory, pages 223-232, Springer Verlag
LNCS 318, 1988.

[8] N. Chandrasekharan and S. S. Iyengar. NC Algorithms for Recognizing Chordal Graphs and k-Trees.
Tech. Rep. 86-020, Dept. of Comp. Science, Louisiana State University, 1986.

[9] B. Courcelle. Recognizability and Second-Order Definability for Sets of Finite Graphs. Preprint,
Universite de Bordeaux, 1987.

[10] a. Engelfriet, G. Leih, and E. Welzl. Characterization and complexity of boundary graph languages.
1987. Manuscript.

[11] M. R. Fellows and M. A. Langston. On seach, decision mad the efficiency of polynomial-time algo-
rithms. 1988. Extended abstract.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.tt. Freeman and Company, New York, 1979.

[13] A. M. Gibbons, A. Israeli, and W. Rytter. Parallel o(log n) time edge-coloring of trees and ha]in
graphs. Inform. Proc. Letters, 27:43-52, 1988.

]0

[14] G. Miller and J. Reif. Parallel tree contraction and its application. In Proc. of the 26th Annual IEEE
Symp. on the Foundations of Comp. Science, pages 478-489, 1985.

[15] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width, d. of Algorithms,
7:309-322, 1986.

[16] N. Robertson and P. Seymour. Graph minors. XIII. The disjoint paths problem. 1986. Manuscript.

[t7] P. Scheffier. Linear-time algorithms for NP-complete problems restricted to partial k-trees. Report t~-
MATtI-03/87, Karl-Weierstrass-Institut Fiir Mathematik, Berlin, GDR, 1987.

[18] P. Scheffier and D. Seese. A combinatorial and logical approach to linear-time computability. 1986.
Extended abstract.

