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A b s t r a c t  

In this paper we give a parallel algorithm for recognizing graphs with treewidth < k, for constant 
k, and building the corresponding tree-decomposition, that uses O(log n) time and O(n 3k+4) processors 
on a CRCW PRAM. Also, we give a parallel algorithm that transforms a given tree-decomposition of 
a graph G with treewidth k to another tree-decomposition of G with treewidth < 3k + 2, such that 
the tree in this tree-deeomposition is binary and has logarithmic depth. The algorithm uses a linear 
number of processors and O(log n) time. Many NP-eomplete graph problems are known to be solvable 
in polynomial time, when restricted to graphs with treewidth < k, k constant. From the results in this 
paper, it follows that most of these problems are also in NC, when restricted to graphs with treewidth 
bounded by a constant. 

1 Introduction 

The class of graphs with treewidth < k has the property that  many graph problems, which are NP-complete 
for arbitrary graphs, become solvable in polynomial time, when restricted to this class [4,3,6,9,18,17]. 
Arnborg, Corneil and Proskurowski gave an O(n k+2) algorithm to recognize graphs with treewidth < k, 
and find the corresponding tree-decompositions [2]. Deep results from Robertson and Seymour on graph 
minors show that there exist O(n 2) algorithms to recognize graphs with treewidth < k [16]. Recently, 
we were able to use this result to show the existence of O(n 2) algorithms that find the corresponding 
tree-decompositions. The non-constructive elements in the result of Robertson and Seymour can often, 
and also in this case, be avoided with a technique of Fellows and Langston [11]. 

In this paper we consider the parallel complexity of the problems. To be precise: we show that the 
problems are in NC, i.e. they can be solved on a CRCW PRAM, using a polynomial number of processors 
and polylogarithmic time. Chandrmsekharan and Sitharama Iyengar [8] considered the related problem of 
recognizing k-trees, and showed that this can be done in O(log n) time on a CRCW PRAM with O(n 4) 
processors. A related result on graphs with bounded treewidth and bounded degree was obtained by 
Engelfriet, Leih and Welzhl [10]. A special case of these problems is considered in [13]. 

This paper is organized as follows. In section 2 a number of fundamental definitions are given and some 
basic graph theoretic results are derived. In section 3 we show that recognizing graphs with treewidth 
< k and finding the corresponding tree-decompositions is in NC, for constant k. In section 4 we give a 
parallel algorithm that transforms a given tree-decomposition of a graph G with treewidth k to another 
tree-decomposition of G with treewidth < 3k + 2, such that the tree in this tree-decomposition is binary 
and has logarithmic depth. From this result, it follows that many sequential polynomial time algorithms 
for graphs with bounded treewidth can be transformed to NC-algorithms. All problems considered in [3] 
and [6] can be dealt with in this way. 

2 Definitions and graph-theoretic results 

First we give the definition of the treewidth of a graph, introduced by Robertson and Seymour [15]. Some 
alternative definitions of the same class of graphs can be found in [1]. 

Defini t ion.  
Let G = (V, E) be a graph. A tree-decomposition of G is a pair ({Xi ] i E I}, T = (I, F)) ,  with {Xi ] i E I} 
a family of subsets of V and T a tree, with the following properties: 



• U X I = V  
iEI 

• For every edge e = (v, w) • E ,  there is a subset Xi ,  i • I with v • Xi and w • Xi 

• For all i , j ,  k • I ,  if j lies on the  pa th  in T from i to k, then Xi fl Xk C_ Xj .  

The treewidth of a tree-decomposition ({Xi I i • I } , T )  is m ~ e x t X ~ l  - 1. The treewidth of G, 
denoted t reewidth(G) is the minimum treewidth of a tree-decomposition of G, taken over all possible 
tree-decompositions of G. 

For a set S,  clique(S) denotes the  graph (S, {(v, w) I v, w • S, v # w}). For graphs G = (V, E) ,  H = 
(W,  F) ,  G t3 I t  denotes the (possibly non-disjoint) union (V kJ W, E O F) .  For W C V, G[W] denotes the 
subgraph of G = (V, E)  induced by W : G[W] = (W,  {(v, w) I v, w E W and (v, w) • E}) .  

Next we give some graph-theoretic results, which will be  used in later sections. 

L e m m a  2.1 
Let ({Xi I i • I } , T  = ( I , F ) )  be a tree-decomposition o f G  = ( V , E ) .  Suppose W C V forms a clique in 
G. Then  3i • I : W C_ Xi .  

P r o o f .  
Use induction to the  clique size IW[. For IWI g 2, the  result follows directly from the  definition of tree- 
decomposition. Suppose the lemma holds up to clique size t - 1, l > 3. Consider a clique W C_ V, with 
IWI = l, and suppose the lemma does not hold for W.  Choose a vertex w • W,  and let W ~ = W - {w}. 
Let I ~ C_ I he the set {i • I I W~ C_ Xi}. By induction I ~ ~ 0. Note that  w • Xi ~ i ¢ I ~. Now choose a 
node i I • I I, and a node i • I with w • Xi. Consider the  path in T from i to i I. Let i n be the last node on 
this pa th  with i jt • I ~, and let i m be the  next node on this path.  Now, for every w r • W t, there must  be a 
node Jw,, with { w , w  t} C_ Xj, , , .  Consider the pa th  from i" to j~, .  There  are two cases. Case 1: This path 

does not use im. In this case, the pa th  in T from i to jto, uses i ~t. Now w • Xi,  w • Xj~, ,  hence w • Xi,,, 
contradiction. Case 2: This pa th  uses im. Now w ~ • Xi,, and w ~ • Xj,~,, hence w I • Xi .... It follows that  

for all w ~ • W t : w t • X i , , ,  hence i m • I ~, which contradicts the assumption tha t  i" was the last node on 
the pa th  from i to i ~, tha t  was in I ~. [] 

Definit ion.  
A tree-decomposition ({Xi I i E I } , T  = ( I , F ) )  of a graph G = (V ,E)  is called full, iff 

(i) w , j  • I :  IX~l = Ixjl ,  and 

(ii) V ( i , j )  • F :  X l  g X j  and X j  ~: Xi .  

L e m m a  2.2 
Let G = (1/, E )  be a graph with t reewidth(G) < k and tvI _> k + 1. Then G has a full tree-decomposition 
with treewidth k. 

P r o o f .  
Start  with any tree-decomposition of G with t reewidth _< k, and repeat the  following operations, until a 
full tree-decomposit ion is obtained: 

1. If there are (io, i l )  E F with Xi0 C Xil or Xi~ C Xi0, then we make a new tree-decomposition by 
merging i0 and il .  Take ( { X i  I i e I -  {iz}}, T '  = ( I -  {iz},  { ( i , j )  l ( i , j  • I -  {ix} and ( i , j )  • F)  
or (i = i0 and ( i l , j )  • F )  or ( j  = il and (ix, i) • F)}.  This is again a tree-decomposition of G with 
t reewidth < k, but  with a smaller index set I .  

2. If  there is an i0 • I with IX~01 _< k, then either operation 1 can be applied, or there is an adjacent 
node il • I with By • Xi l  : v • Xi0. Make a new tree-decomposition by adding v to Xi0 : ({X[ ] i • 
I} ,  T = (I ,  F) ) ,  with X" o = Xio U {v}, and X" = X i  for i ¢ i0. This is again a tree-decomposition 
of G with treewidth < k. In this case the size of the index set I does not change, but ~ i E l  IX~l is 
increased by one. 



Operat ion 1 can be applied less than  III t imes, operat ion 2 can be applied less t han  ( k +  1).]II times. So 
after applying operat ion 1 and 2 a finite number  of t imes, we obta in  a tree-decomposit ion of G with tree- 
width  g k, such tha t  nei ther  operat ion 1 or operat ion 2 can be applied. This is a a full t ree-decomposit ion 
of G with t reewidth  k. [] 

3 A n  NC-algor i thm for recognizing graphs wi th  small  t reewidth  

In this section we show tha t  recognizing graphs with t reewidth  < k, and finding the  corresponding tree- 
decomposit ion,  are in NC, for cons tant  k. The  algori thm is quite inefficient in the  use of processors, as it 
uses O(n  3/¢+4) processors. The  algori thm uses O(log n)  t ime on a C R C W  PRAM.  

Suppose G = (V, E)  is the input-graph.  
First  a~ (k + 1)-element ver tex sets, which are a separa tor  of G, are computed,  and numbered  

$1, $ 2 , . . . ,  SI, . . .  For each such Si, the connected components  of G[V - Si] are numbered  Si 1, S ~ , . . . ,  S]  . . . .  
(Note the  difference with the  algori thm of Arnborg,  Corneil and Proskurowski [2], where k-element vertex 
sets were considered, instead of (k + 1)-element sets.) 

For each pair  of (k + 1)-element separators  Si, Sj, i ~ j ,  let Rij  denote the  set of vertices v, such tha t  
v has a pa th  to a vertex in Si - St, which avoids St, and a pa th  to a vertex in Sj - Si, which avoids SI. 

D e f i n i t i o n  

(i) A pair (Si, SJi) is called good, iff G[Si tJ S]]tJ clique(S~) has t reewidth  < k. 

(ii) A triple (S/, Sj, R / j )  is called good, iff G[SI U S t U Rij]t9 clique(S/)U cl ique(St)  has  t reewidth  < k. 

The  next  three lemma's  give the essential steps of the  algori thm. 

L e m m a  8.1 
Let IVt > k + 3. Then:  t reewidth(G)  < k, if and only if there  exists a (k + 1)-vertex separator  Si, wi th  all 
( Si, S s) are good. 

P r o o f .  
(=~) Consider a full t ree-decomposit ion ({Xi I i E I} ,  T = (1, F ) )  of G. Take Si = Xr for an  arbi t rary  
internal  node r E I .  
(¢ : )  For each G[S/U S]]t_J clique(S/) there exists a t ree-decomposit ion with t reewidth  _< k. By lemma 2.1, 
each of these tree-decomposit ions contains an Xio, with SI C Xio, so Si = XI o. We now can compose a 
tree-decomposit ion of G of the  tree-decompositions of the  G[Si U S]]U clique(Si) graphs,  by  identifying 
the  nodes i0 with  X/o = Si. [] 

L e m m a  3.2  
Consider S/, Sk, Ri,k with Ri, k • ~. 
(Si, Sk, Ri,k) is good, if and only if there exists a (k + 1)-vertex cutset  Sj C S/U Sk u Ri,k, such tha t  

(i) sj ~ (s~ u R,,t) n (Sk u Rt,k) 
(ii) (Si, Sj, RLj ) and (Sj, Sk, Rj,k) are good 

(iii) [Ri,tl < llRi,kt;  [Rj,kt <- XlRi,kl 
(iv) For all m wi th  S~ n (S/U Sk u Ri,t U RLk ) = 0 and S~ C_ Ri,k: (Sj ,  S ~ )  is good. 

P r o o f .  
(=~) Consider a full t ree-decomposit ion ({Xi I i E I} ,  T = ( I ,  F ) )  of G '  = G[S t u Sk u Ri,k]U chque(Si)u  
clique(St)  , with t reewidth  k. Note tha t  there  mus t  be io E I with  Xi0 = S/ and  il  E I with  X/1 = Sk, 
by lemma 2.1. One may suppose tha t  i0 and il  are leaves in the  tree T, else one can remove some nodes 
fl'om T and still have a full tree-decomposition of G '  with  t reewidth k. For each node i r E I on the 
pa th  from i0 to il , i '  ~ io, i' # il, we have t ha t  Xi, is a k + 1-vertex cutset  of G '  (and hence of G).  
As Ri,k ~ O,]I 1 > 3, and so there is at  least one such node i I. For each such i I E I ,  let X/, = Sa(i,), 
and s(i') = max(iRi,~(i,)hlRka(/,)] ). Suppose i2 has minimal  s(i2) over all i' on the  pa th  from i0 to 



i l , i '  ~. {i0, i l}.  We claim tha t  s(i2) < ½1Ri,kl. Note tha t  Xi, N Ria(i~) # ¢ ¢~ i '  belongs to the tree in 
T - {i2} which also contains Si, and similarly, Xi, n Rl,(i~) ~ 0 ~ i t belongs to the  tree in T - {i2} which 
also contains Sk. W.l.o.g. suppose s(i2) = IRka(12)l. Let i3 be the next  node on the  pa th  from i2 to il.  Now 
Rk~(i~) C Rk~(i~) and Rk~(is) ~ RI¢,~(12); and v E Rka(i2) =~ v ¢ Ria(iz). This follows from the  definition of 
tree-decomposition. It  follows t ha t  IRi~,(i~)[ > s(i2) and IRia(is)l < IRikl - IR~(i~)t = IRiki - ~(i~), hence 

~(i~) < ½1R~I. 
Now let Sj = Xi~. Proper ty  (i) follows from the  observations,  made before and the  definition of tree- 

decomposition. Propert ies  (ii) and (iv) follow because the  corresponding graphs are subgraphs of GIu  
clique(Sj) ,  which clearly has t reewidth  < k. 
(¢=) Note t ha t  if S~ ~ (Si U Sk U Ri,j U Rj,~) ¢ $, then  S ~  N Ri,~ G Ri,j u R~. k. Further ,  note tha t  
if a vertex belongs to two or more of the  sets Si U Ri,~ U S) ,S j  U Rj,k U Sk ,S j  U S~ ,  for any m with 
S~ n M ( S i u  Sk U Rid u Rj,k ) = ¢ and S'~ C Ri,k, then it belongs to Sj. 

Now make tree-decompositions with t reewidth < k of G[Si U Sj O Ri,j]o clique(Si)U clique(Sj), 
G[Sj U S~ O Rj,~]U clique(Sj)U cllque(S/,), and G[Sj U S~"]U clique(Sj) ,  for all m as before. Each of 
these tree-decomposit ions contains an i '  with Xi, = Sj. By identifying all these i '  and so "glueing" the  
tree-decompositions together  we obta in  a new tree-decomposit ion with t reewidth  < k. By the  two ob- 
servations made above, it follows tha t  this is indeed a correct tree-decomposit ion of G[SI u S k U Ri,k]U 
clique(Si) U clique(S/,). [] 

L e m m a  3.3  
Consider (Si, S j )  with IsJl >_ k + 1. (Si, S]) is good, if and only if there exists a (k q- 1)-vertex cutset Sj, 
such t ha t  

(i) ( S .  Sj ,  R~6) is good 
1 J (ii) for all m,  with S T n (Rid  O Si) = O and S~" C_ S~ : (Sj ,  S ? )  is good and iS?I < ~ISi ]. 

1 J (iii) ]Ri,j] <_ "~lSi ]. 

P r o o f .  
(=~) Consider a full t ree-decomposit ion ({Xi t i e I} ,  T = {I ,  F} )  of G '  = G[Si u S~]U clique(Si). For each 
i' E I and  each component  T '  = ( I ' ,F ' )  of T - {i '}, let s(T' , i ' )  = l{v E X~,, n S]]i" E I '  and v ~ Xv}l.  
For all i '  E I ,  define s( i  ') to be the  max imum of s (T  t, i ')  over all connected components  T ~ of T - {it}. 
Let i0 E I be the  node, such tha t  s(io) is minimal over all i '  E I ,  and ]X~ 0 n S]] is minimal  over all i t with 
minimal  s(i'). From IS]I > k + 1, it easily follows tha t  i0 is an internal  node of G' ,  and hence Xi0 is a 
(k + 1)-vertex cutset  of G t, and  hence also of G. Take Sj = Xi0- 

- ~ i "  Let il be the  node t ha t  is adjacent  to io and in the  component  T t of We claim tha t  s(io) < 1 S J] 
T - { i o }  with s (T  t, i0) = s(io). Consider the component  T"  of T - { i l } ,  t ha t  contains io. From the definition 
of tree-decomposit ion it follows tha t  for all v E S]  : v E X~,, for some i" in T ~ and v ¢ Xi0 ~ v ¢ Xi,, for 
all i"  in T "  or v E Xi~. So s(T',  io) + s(T", i~) <_ IS~I. If there is an v E S],  with v E X~0 and v ¢ X ~ ,  then 
the  result  follows. All components  T m of T - {Q}, except T" ,  are contained in T t, and for each of these 

1 j 
components  we have s (T" ,  il) < s(T' ,  io). So s(T",  il) >_ s(T',  io), and hence 8(i0) = 8(T' ,  io) >_ ~]Si I- 

Also, if s(il)  > s(i0), one easily derives t ha t  s(io) <_ IIS]].  So suppose s(i l)  = s(io) and v E 

S~ n X,  o ~ v E X,~, i.e. ]S~ n X,o] >_ IS~ n X,~[. By definition of i0 :  IS] n Xio[ = IS] n X,~[. It follows 
t ha t  S~ N Xi 0 = S~ N Xi~. One can derive t ha t  S i n  Xi0 = S i n  Xi~, and hence Xio = Xi~. So the  
tree-decomposit ion was not  full. Contradict ion.  So the  claim s(i0) < ½1S~I follows. 

One can now check without  difficulty tha t  conditions (i) - (iii) are fulfilled, when taking Sj = Xi0. 
(¢=) Similar as in l emma 3.2. [] 

Wi th  help of these 3 lemma's ,  an  NC-algori thm, using O ( n  3k+4) processors and  O(]og n)  t ime on a CRCW 
P R A M  can be derived. 

First ,  determine the  set of (k + 1.)-vertex cutsets Si" 
Secondly, determine which (Si, Sl )  are good for [S~I < k, and which (Si, Sj, Ri,j) are good, for Rid = 9. 

This  can be done with O(n 2k) processors in O(1) t ime. 



Then, in log n phases, one can determine for all (Si, S{) and (Si, Sk, Ri k) whether they are good, with 
lemma 3.2 and 3.3; in phase I one considers S~ and R~,k with ]S~I, tR~.kl e {2 I-1 -t- 1,.. . ,2~}. 

Finally, verifying whether treewidth(G) < k can be done in O(1) time, with lemma 3.1, with O(n k+2) 
processors. 

We note that one can also find the corresponding tree-decomposition in O(log n) time, with O(n 3k+4) 
processors, using the construction method for the tree-decompositions, indicated by the proofs of lemma 
3.1 - 3.3. 

T h e o r e m  3.4 
For each constant k, there exists an algorithm that uses O(log n) time and O(n 3k+4) processors on a CRCW 
PRAM that determines whether a given input graph has treewidth < k, and if so, finds a corresponding 
tree-decomposition. 

The algorithm is quite inefficient in the use of processors. By parallizing the algorithm of Arnborg, Corneil 
and Proskurowski [2] one obtains without much difficulty the following result. 

T h e o r e m  3.5 
For each constant k, there exists an algorithm that uses O(n) time and O(n k+l) processors on a CRCW 
PRAM, that determines whether a given input graph has treewidth < k, and if so, finds a corresponding 
tree-decomposition. 

4 NC-a lgor i thms  for N P - c o m p l e t e  problems,  restricted to graphs 
w i t h  smal l  t reewidth  

In this section we give a method to design NC-algorithms, for a large number of graph problems, that are 
NP-complete for arbitrary graphs, when restricted to the class of graphs with treewidth < k. Our main 
result is the following: given a tree-decomposition of G with constant treewidth, one can find (using an 
NC-algorithm) another tree-decomposition of G with larger, but still constant treewidth, such that the 
tree T, appearing in this tree-decomposition is a binary tree with logarithmic depth. 

For example, consider the sequential algorithms, proposed in [6]. The sequential algorithms are of the 
following form: we suppose a tree-decomposition of G is given. For each node i E I we compute a table 
TABLE(i). For computing TABLE(i) one needs TABLE(j) for all sons j of i in T. The time to compute 
such a table is in several cases O(#  sons of j ), in other cases it is polynomial in n. A close observation 
of the algorithms in [6] learns, that if i has O(1) sons, then either TABLE(i) can be computed in O(1) 
time, or TABLE(i) can be computed with an NC-algorithm. We will not give the details here, but refer 
the reader to [6]. A large number of problems can be dealt with in this manner. 

Each of these problems can be solved in NC, when restricted to graph with treewidth < k. The 
following two theorems give the main idea. 

T h e o r e m  4.1 
Every binary tree T = (V, E) has a tree-decomposition {{Xi I i E I}; T' = (I, F ) )  with treewidth _< 3, 
and the depth of T' is at most 2[log¼(]Yl)], and T' is a binary tree. 

Proof .  
Our result is based upon the method of parallel tree-contraction of Miller and Reif [14]. We will obtain 
a series of(rooted) trees T = To = (Vo, Eo),T1 = (V1, E1),T2 = (V2, E2) . . . . .  Tr = (V,.,E,.), with IVrl = 1. 
To each v E V~ we assign a set T(v,i) C V representing the set of "vertices that are contracted to v". 
Define ~(v, 0) = {v}. 

Each Ti+l is obtained from Ti by applying the following two operations in parallel: 

1. RAKE. For each node v E Vi, with at least 1 child of v is a leaf in Ti : remove the children from v 
that are a leaf, and take ~(v, i + 1) = U { ~ ( w ,  i)tw = v or w is a child of v, and w is a leaf }. 

2. COMPRESS. A sequence of nodes vl , . . . ,Vk is a chain if vj+l is the only child of vj, and vk has 
exactly one child and that child is not a leaf. Now, in each maximal chain, identify vi and vj+l for 
j odd and 1 _< j < k. Let wi be the new node. We take ~(w, i + 1) --- qo(vj, i) t3 ~(vj+l ,  i). 



Miller and Reif [14] showed tha t  after [log~ n] simultaneous applications of R A K E  and COMPRESS,  T 

is reduced to a single vertex. So it follows that  r < [log[ n]. 

Each ~0(v, i) represents the set of vertices tha t  are contracted to v in i contractions. Note that  each ~(v, i) 
induces a connected subtree of T and tha t  for each i, all ~o(v, i) are disjunct and part i t ion V. Furthermore, 
if (v ,w)  E E ,  then either 3x e V /wi th  v , w  e ~ (x , i )  or 3x ,y  E Y~ with (x ,y )  e Ei and v E ~(x , i )  and 
w c ~ ( y , i ) .  

Now define fl(v, i) = {w E ~p(v, i) I 3w' E Y with (w, w t) e E and w' ¢ ~(v,  i)}. /3(v, i) represents the 
vertices that  are at the "border" of q0(v, i). The  following properties hold: 

1. If v E Y~, and the degree of v in Ti is 3, then k0(v,i)I = it3(v,i)] = 1. 

2. If v e V/, then ]/3(v, i)l is at most the degree of v in Ti. 

To make Vo, . . . ,  V~ disjoint we label all v E 1.'] with i. We now give a "first version" of a tree- 
decomposition {{X/ I i e I } , T '  = ( I , F ) }  of T, which "almost" satisfies the constraints.  We take I = 
U~=oVi. If vertices v~,w ~, or vi, wi, x ~ E Vi are contracted to y/+l, then y~+l is the father of vi, w ~ (and 
x/) in T I. If v is unchanged by going from T / t o  Ti+l, the v/+1 is the father of v ~ in T I. Further we take 
Xw = U{R= I x is a son of W in T'}. 

We claim that  this is a correct tree-decomposition of T with treewidth < 4, and no node in T t has 
more than  3 children. 

First ,  for each edge (v ,w)  E E ,  there must  be a~ i, such tha t  v E ~ ( x l , i ) , w  E ~o(y~,i) and v , w  E 
q0(z i+1, i + 1), for some x i, y i  zi+l. Now v E fl(x i, i), w e ~(yl, i), so v, w e Xxi+~. 

Secondly, for each v E V : on each level i of the tree T ~, there is exactly one w i C Vi with v E ~(w i, i), 
and hence at most one w i E Vi with v E fl(w i, i), so also at most one w i E Vi with v E X ~ .  Furthermore, 
if v E X,o,, and x I+1 is the father o f w  i in T I, then either v E Xxi+t, or v does not belong to any X u for y 
on a level, higher than  i + 1. It follows tha t  we have a correct tree-decomposition. 

For all w E I ,  IX~,I < 4 : either two vertices with degree < 2 are contracted,  or a vertex with degree 
3 is contracted with one or two leaves. Hence, the treewidth of the tree-decomposition is at most 4. As 
there are never more than 3 vertices contracted to a single node during a single step, it directly follows 
that  no node in T ~ has more than 3 children. 

We show now that  this tree-decomposition can be slightly modified, such tha t  T ~ is binary, and the 
t reewidth <_ 3. 

For a node with 3 children, use the  t ransformation in figure 4.1. If [Xw~+~ I = 4, then w I+1 is obtained 

==> 

Figure 4.1 

by contracting two nodes with degree 2, say x i and yl. Suppose 13(x/,i) = {vo, v]};~(yl,  i) = {vu,v3} 
and (vl,v2) E E.  Then transform as in figure 4.2. Note that  f l (wi+l, i  q- 1) = {v0, v3}. A new correct 
tree-decomposition with t reewidth < 3 results with the depth of T r increased by at most  a factor 2, and 
T / is a binary tree. D 

T h e o r e m  4.2 
Let G = (V, E) ,  with IV I = n, and t reewidth(G) < k. Then G has a tree-decomposition ({X/ ] i E I},  T = 
(I ,  F ) )  with T a binary tree with depth < 2 [log~ (2n)],  and with treewidth of this decomposition < 3k + 2. 



Figure 4.2 
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Proof .  
Let ({X~ I i E I1},T1 -- (I1,FI)) be a tree-decomposition of G with treewidth < k, and 1/11 < n. By 
transforming nodes in T1 as in figure 4.3, one obtains a new tree-decomposition ({Xi  I i e I2}, T2 = (/2, F2)) 
of G with treewidth < k and [/21 _< 2n, and T is a binary tree. Let ( { ~  I i E I3}, T3 = (/3, E3)} be a tree- 
decomposition of T2, with T3 a binary tree with depth ~ 2 ~log~ [/2 [] ~ 2 [log~ (2n)], and treewidth of this 

tree-decomposition < 3, (cf. theorem 4.1.). Then ({Z~ I i E I3},Ta = (I3, E3)) with Z~ = I.J{Xj I J C l~} 
is a tree-decomposition of G, with the required properties. [] 

More-over, the tree-decompositions, indicated in theorem 4.1 and 4.2 can be found in logarithmic parallel 
time. Using the same technique as Miller and Reif [14], one can carry out the construction indicated in 
the proof of theorem 4.1 in O(log n) time on a CRCW PRAM using a linear number of processors. Using 
similar techniques as in [14], one can also obtain a probabilistic algorithm, that  uses O(log n) time and 
O(n/ log  n) processors. One easily sees tha t  the construction, indicated in the proof of theorem 4.2 can 
be carried out within the same time. Thus, we have the following result. 

T h e o r e m  4.3 
Given a graphs G = (V, E)  with treewidth(G) _< k = O(1), we can find a tree-decomposition ({Xi  [ i E 
I},  T = (I ,  F )  of G, with treewidth O(1), and T a binary tree with depth O(log n), with an NCl-algorithm. 

Hence, the sequential algorithms, proposed in [6] can be transformed to NC-algorithms in the following 
way. The TABLE's can be computed level by level: first compute the tables for all i E I with maximum 
distance to the root of T, then for all i E I with distance one sma~er, etc. Each step either takes O(1) 
time, or can be carried out in NC. After O(log n) such steps, we have found the table for the root of T. 
Finding the answer to the query then costs 0(1)  time, or is easily seen to be in NC. 

In a similar way, the (sequential) polynomial and linear time algorithms of Arnborg, Lagergren and 
Seese [3] can be transformed to NC-algorithms, using theorem 4.3 as a first step. We summarize the results 
in the following theorem. We use the terminology of Garey and Johnson [12]. When vertices and/or  edges 
have weights, these are assumed to be given in unary notation. 

T h e o r e m  4.4 
Each of the following problems is in NC, when restricted to graphs with treewidth < K,  for constant K: 
vertex cover [GT1], dominating set [GT2], domatic number [GT3], chromatic number [GT4], monochro- 
matic triangle [GTh], feedback vertex set [GTT], feedback arc set [GT8], partial feedback edge set [GT9], 
minimum mammal matching [GT10], partition into triangles [GTll] ,  partition into isomorphic subgraphs 
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for fixed H [GT12], partition into Hamiltonian subgraphs [GT13], partition into forests [GT14], parti- 
tion into cliques [GT15], partition into perfect matchings [GT16], clique [GT19], independent set [GT20], 
induced subgraph with property P (for monadic second order properties P) [GT21], induced connected 
subgraph with property P (for monadic second order properties P) [GT22], induced path [GT23], balanced 
complete bipartite subgraph [GT24], bipartite subgraph [GT25], degree bounded connected subgraph for 
fixed d [GT26], planar subgraph [GT27], transitive subgraph [GT29], uniconnected subgraph [GT30], 
minimum k-connected subgraph for fixed k [GT31], cubic subgraph [GT32], minimum equivalent digraph 
[GT33], Hamiltonian completion [GT34], Hamiltonian circuit [GT37], directed Hamiltonian circuit [GT38], 
Hamiltonian path (and directed Hamiltonian path) [GT39], subgraph isomorphism for fixed H, subgraph 
isomorphism for connected H with bounded valence [GT 48], graph contractability for fixed H [GT51], 
graph homomorphism for fixed H [GT52], path with forbidden pairs for fixed n [GT54], multiple choice 
matching for fixed J [GT55], graph grundy numbering for graphs with bounded valence [GT56], kernel 
[GT57], k-closure [GT58], path distinguishers [GT60], degree constrained spanning tree [ND1], maxi- 
mum leaf spanning tree [ND2], bounded diameter spanning tree [ND3], k'th best spanning tree for fixed 
k [NDg], bounded component spanning forest for fixed k [ND10], multiple choice branching for fixed m 
[ND11], Steiner tree in graphs [ND12], max cut [ND16], minimum cut into bounded sets [ND17], rural post- 
man [ND27], longest circuit [ND28], longest path [ND29], shortest weight-constrained path [ND30], k'th 
shortest path for fixed k [ND31], disjoint connecting paths for fixed k [ND40], maximum length-bounded 
disjoint paths for fixed J [ND41], maximum fixed-length disjoint paths for fixed J [ND42], chordal graph 
completion for fixed k, chromatix index, spanning tree parity problem, distance d chromatic number for 
fixed d and k, thickness _< k for fixed k, membership for each class C of graphs, which is dosed unded 
minor taking. 

5 R e m a r k s  and open  p rob lems  

One practical disadvantage of the sequential algorithms on graphs with small treewidth [3,4,7,6,18] is that 
of the large constants involved in the algorithms. For instance, Arnborg and Proskurowski gave a linear 



algorithm for Hamiltonian circuit (among others) [4], but consider their algorithm unfeasible for k > 8. 
The NC-algorithms, given in this paper will only add to this problem of the large constant factor. However, 
parallelism will help in a very straightforward way to decrease the running time, as the large constant is 
in a large extent due to a large number of actions which can be carried out in parallel. So, in many cases, 
using a large, but constant number of processors may decrease the running time by a large, but again 
constant factor. Thus, the results in this paper seem to be of mainly theoretical interest. 

However, the theoretical importance of the results in this paper are stressed by the fact that  a large 
number of classes of graphs have associated a constant c with them, such that  each graph in the class has 
treewidth < e. Examples of such classes of graphs are: graphs with bandwidth < k, graphs with cutwidth 
< k, the series-parallel graphs, the outerplanar graphs, the k-outerplanar graphs, Halin graphs, chordal 
graphs with maximum clique size k, graphs with genus < d and disk dimension < k(d, k constants). For 
an overview of several results of this type, see [5]. The class of partial k-trees equals the class of graphs 
with treewidth < k. 

An interesting open problem is whether there exists a parallel variant of Robertson and Seymours 
algorithm [16], tha t  finds a branch-decomposition (and hence also a tree-decomposition) of a graph with 
constant branchwidth or treewidth, that  has again constant, but not necessarily optimal branchwidth 
or treewidth. Their Mgorithm uses O(n 2) time. A parallel variant of this algorithm could be used to 
determine whether a graph has treewidth < k, and as first step for the algorithms in section 4, using 
perhaps a smaller number of processors as the algorithm of section 3. 
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