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Abstract We report on an extension of the Opal system that allows the use
of reflections. Using reflections, a programmer can query information like the
type of an object at runtime. The type can in turn be queried for properties like
the constructor and deconstructor functions, and the resulting reflected functions
can be evaluated. These facilities can be used for generic meta-programming. We
describe the reflection interface of Opal and its applications, and sketch the im-
plementation. For an existing language implementation like Opal’s the extension
by a reflection facility is challenging: in a statically typed language the man-
agement of runtime type information seems to be an alien objective. However,
it turns out that runtime type information can be incorporated in an elegant
way by a source-level transformation and an appropriate set of library modules.
We show how this transformation can be done without changing the Opal core
system and causing runtime overhead only where reflections are actually used.
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1. Introduction

Modern functional languages support a powerful, efficient, and safe programming para-
digm based on parametric polymorphism and higher-orderness in conjunction with static
type discipline. However, the advantages of static typing – safety and efficient execu-
tion – are paid for by less flexibility regarding generic meta programming. High-level
environments for languages that allow meta programming like LISP or Smalltalk are
therefore traditionally based exclusively on dynamic typing.

The integration of dynamic types into a static, parametric-polymorphic type disci-
pline has been investigated in [3,9,2] and is nowadays well understood. However, dynamic
types are only one prerequisite for generic meta programming. To utilise dynamically
typed objects, it is necessary to reflect information about objects and types. Information
of interest includes full instantiation information for reflected values in polymorphic con-
texts, and the free type definition of given types. The reflection of a free type definition
consists of reflected knowledge about its constructor, discriminator and deconstructor
functions. This knowledge can be used to process the free type’s elements generically.

As rule of thumb, reflections make available as much compile time information as
possible to the program. Code based on this additional information may be executed at
runtime or, using partial evaluation, at compile time. Reflections in this sense became
well known as part of the core technology of Java [12].

In this paper we report on a pragmatic extension of the Opal language and compi-
lation system that allows the use of reflections. The extension is in fact quite moderate.
We add one further keyword which is defined by a purely syntactic transformation into
regular Opal. A set of library structures implements the reflection mechanism by con-
necting the running Opal program to compiler generated resources. The library is in
turn based on a hand-coded module of the Opal runtime system, that allows dynamic
linking and execution of reflected functions.

This paper is organised as follows. We first discuss the design from the applica-
tion view of reflections as provided by our extension. We then discuss the semantic
foundation of reflections as used in Opal. The semantic foundation is given by a syn-
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tactic transformation, and therefore in fact also prepares the implementation which is
discussed last.

Background. Opal [4,10,1] is a strongly typed, higher-order, strict and pure functional
language. It can be classified alongside ML, Haskell, and other modern functional pro-
gramming languages. However, the language also has a distinctively algebraic flavour
in the tradition of languages such as CIP-L, OBJ and others. Instead of ML-style poly-
morphism the language provides parameterised modules, called structures, which are
comparable to Ada’s generics or to C++ templates. As in C++ instantiation of parame-
terised structures is automatically inferred as far as possible from context information.1

Opal has a comprehensive implementation, including a compiler which produces very
fast code [8], and a large library of reusable software components.

We will use Opal in this paper on a level that should be intelligible to readers familiar
with standard concepts of functional languages but who have no specific knowledge of
the Opal language. Explanations of unusual Opal constructs will be given as we proceed.
In the conclusion we will justify that the introduced Opal concepts can also be expressed
in functional languages with type classes such as Haskell.

1 Since structures may not only be parameterised by types but also by constant values, com-
plete inference of instantiations is not possible.
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2. Reflection Interface and Applications

This section describes how reflections are used in Opal. The core interface provides
dynamic types with full instantiation information. The inspection interface is used to
create reflections of free type definitions. Finally, the lookup interface is used to con-
vert symbolic information into reflections. As a running example, a generic printer is
constructed incrementally using each of the interfaces. The most developed form of
the generic printer will be able to convert an arbitrary value into a human readable
string without any special preparation by the programmer. Specifically, even for recur-
sive user-defined types no conversion functions need to be provided as is necessary in
most languages including C++.

2.1. Core Interface

The basic interface to the reflection mechanism is provided by two Opal structures
(modules). Reflection declares the types and ReflectionBuild the functions which
make up the core functionality.

Representing Reflections. As the reflection system should make available compile
time information at runtime, it must define several types which model the compile time
information. These types are used to talk in the programming language Opal about the
programming language Opal.

In Figure 1, the data model of the core reflection system is presented as a collection
of free type definitions.2 The meaning of the definitions in Figure 1 are in detail:
2 The keyword SIGNATURE marks the export interface of an Opal structure. For each vari-

ant of a free type, marked by the keyword TYPE, a constructor function, a discriminator
function and deconstructor (partial selector) functions are automatically introduced. An ex-
ample discriminator function is FUN sortKind? : kind -> bool, an example deconstructor
is FUN factors: type -> seq[type].
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Figure 1 Core Interface: Types

SIGNATURE Reflection

TYPE name == name (identifier : string,

kind : kind,

struct : struct)

TYPE kind == sortKind

valueKind (type : type)

TYPE sort == sort (name : name)

TYPE type == basic (sort : sort)

product (factors : seq[type])

function (domain : type,

codomain : type)

TYPE struct == struct (identifier : string,

instance : seq[name])

SORT value

FUN type : value -> type
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name: A name determines a named object in an Opal program, and is described by its
identifier, kind and origin structure. Note that Opal employs full overloading, such
that all of these components are required in order to identify a name uniquely.
Opal employs the following syntax for names:

identifier’origin structure[instantiation parameters] : kind

The origin structure, the list of instantiation parameters and the kind are optional if
they can be derived uniquely from context. The kind can be SORT or a functionality.
Example Opal names are int : SORT and +’Int : int ** int -> int.

kind: A name represents either a sort or a value of a specific type. These two possibilities
are distinguished by the name’s kind. For example, the name int’Int : SORT in
literal Opal syntax, is reflected by the name name("int", sortKind, IntStruct)
meaning that int is a sort declared in some structure Int. Here, IntStruct is in
turn a reflection of the structure Int as discussed below.

sort: A sort is uniquely identified by its name.
type: An Opal type, which can be either basic, a Cartesian product or a function space,

is reflected by type. If IntName is the above name for the integer sort, then the name
of the function + declared in the structure Int is in all glory detail:3

name("+", valueKind(function(product(basic(sort(IntName)) ::

basic(sort(IntName)) :: <>),

basic(sort(IntName)))),

IntStruct)

3 <> denotes the empty sequence in Opal and :: denotes the cons function which can be
written in infix.
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Figure 2 Core Interface: Functions

SIGNATURE ReflectionBuild[alpha]

SORT alpha

ASSUME Dynamic[alpha]

FUN reflect : alpha -> value

FUN reflects? : value -> bool

FUN content : value -> alpha

struct: An Opal structure is determined by its identifier and an instantiation list. An
instantiation list is a sequence of names. It is empty if the structure has no parame-
ters. For example, the structure Int is represented by struct("Int", <>) which we
labeled IntStruct earlier. The structure Seq[int] is represented by struct("Seq",
IntName :: <>)

value: A value is a reflection of a value. It stores the type of the reflected value as
well as the value itself. However, the value is stored in an opaque way and cannot
be observed directly. To achieve opaqueness, value is not defined as free type using
TYPE, but as sort using SORT.

Constructing Reflections. The central functionality of the core reflection system
is the translation between runtime values and reflections. This is accomplished by the
functions declared in the structure shown in Figure 2 which is parameterised over the sort
alpha. A parameterised Opal structure is a section of declarations that are uniformly
polymorphic over the parameters listed in the formal parameter list.

The reflect function takes an arbitrary value and converts it into a reflection.
Thus if 5 has type int, then type(reflect(5)) delivers an object of type type de-
scribing the type int. The function reflects? tests whether a value is of a certain
type. The type is given by the instance of the generic parameter, such that we have for
example reflects?[int](reflect(5)) = true and reflects?[bool](reflect(5)) =
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false. Finally, content is a partial function that extracts the representation from
a reflected value. We have content[int](reflect(5)) = 5, whereas content[bool]
(reflect(5)) is undefined.

Note that in difference to dynamic types as described in [9,2], the type of a reflected
value always contains the full instantiation information. Consider the definition of a
typeof function:

IMPLEMENTATION TypeOf[alpha]

ASSUME Dynamic[alpha]

FUN typeOf : alpha -> type

DEF typeOf(x) == type(reflect(x))

A call typeof(5) yields the reflected type int, and a call typeof(true) the reflected
type of Booleans. Other approaches to the combination of parametric polymorphism
and dynamic types insist on returning the (constant) type scheme alpha.

The ASSUME Dynamic[alpha] declaration in the signature of ReflectionBuild does
all the magic which enables the above functionality. Before we take a closer look at it,
we give an example that illustrates the usage of the core interface.

Example: Virtual Methods. An interesting application of functions which behave
differently for different types are virtual methods in object-orientated programming. The
code executed upon their invocation depends on the actual type of an object at runtime.
In object-orientated programming languages, the mapping process from types to code
during method invocation is performed automatically and is normally hidden from the
programmer. Using reflections, a method invocation protocol can be implemented in
Opal that mimics the built-in behaviour of virtual methods in object-orientated pro-
gramming languages.

The following example shows how a generic printing function might be implemented
using virtual methods. The function :: is used to add a function to a method, thus
adding a new behaviour to the method – its implementation will be described later on.
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IMPLEMENTATION Print [alpha]

ASSUME Dynamic[alpha]

IMPORT Method ONLY :: -- uninstantiated import (instances

-- will be automatically derived)

FUN default : alpha -> string

DEF default (a) == "some value"

FUN printBool : bool -> string

FUN printInt : int -> string

FUN print : alpha -> string

DEF print == printBool :: printInt :: default

The constructed method print can be invoked by calling print(true) to print a
Boolean value or by print(5) to print the number five. Note that the above imple-
mentation is type safe. It is guaranteed that a function like printBool is never applied
to anything but a Boolean value.

The implementation of the method constructor :: is surprisingly simple. It takes a
function and a method and returns a new method, that calls the new function whenever
its input has the type expected by the new function and calls the old method otherwise:

IMPLEMENTATION Method [alpha, special, result]

ASSUME Dynamic[alpha] Dynamic[special]

FUN :: : (special -> result) ** (alpha -> result) -> (alpha -> result)

DEF (func :: method)(a) ==

IF reflects?[special](r) THEN func(content[special](r))

ELSE method(a) FI

WHERE r == reflect(a)

Above, the a of type alpha represents the parameter of the method. If the reflection r of
a also reflects an object of type special, then we can safely convert a to type special
and call func. Otherwise the old method is tried.
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It is remarkable that in this example reflection types appear only on the level of
library programming – here in the structure Method. In the structure Print, we only
have to mention the assumption that its parameter has to be “dynamic”.4 This ab-
straction from the use of core reflection becomes possible because even for polymorphic
parameters full type information is available.

What does the assumption ASSUME Dynamic[alpha] mean? Pragmatically, it just
indicates that runtime type information (RTTI) somehow needs to be made available
for instances of the parameter alpha. Every instantiation of a structure, where Dynamic
assumptions are made on a parameter, must satisfy this assumption by providing RTTI

for the parameter. If a structure is instantiated with a basic type, this is easy to achieve
since for types such as int the compiler can literally construct the runtime type in-
formation. If a structure is instantiated with a formal parameter of another structure,
then the assumption can be resolved if there is a similar assumption in the instantiating
structure. This is, for example, the case for the formal parameter alpha in Print which
is (implicitly) passed to Method.

The ASSUME Dynamic[alpha] concept is the one and only extension we need to add
to the Opal language (but a generalisation of this construct is part of the forthcoming
Opal-2 language [5]). The construct is similar to conditional polymorphism provided by
Haskell’s type classes [7], and Dynamic can be modeled in Haskell as a builtin type class
whose instances are automatically generated by the compiler. This will be discussed in
the conclusion.

2.2. Inspection Interface

The core reflection interface presented in the previous section provides dynamic types.
But the reflection mechanism goes further. In addition to types it permits the reflec-
tion of properties of objects, the construction and deconstruction of tuples and the
application of reflected functions to reflected values.
4 In fact even this assumption is not necessary, since it can be derived from the import of the

structure Method – it is just for documentation purposes.
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Figure 3 Inspection Interface

SIGNATURE ReflectionInspect

TYPE variant == variant (constructorName : name,

constructor : value -> value,

discriminator : value -> bool,

deconstructor : value -> value)

FUN freeType? : sort -> bool

FUN variants : sort -> seq[variant]

FUN applicable? : value ** value -> bool

FUN apply : value ** value -> value

FUN tuple : seq[value] -> value

FUN untuple : value -> seq[value]

Inspecting Reflections. The structure ReflectionInspect shown in Figure 3 in-
troduces types and functions for inspecting free type definitions. Given a sort s, the
function freeType? tests whether its argument has an associated free type definition.
The partial function variants delivers the variants for sorts that are free types. A vari-
ant is described by a quadruple of the variant’s constructor function’s name and a set
of functions working on reflections. The constructor function in a variant of the sort
s takes an appropriately typed argument and constructs a new value of type s. The
Boolean discriminator in a variant function tests whether its argument is constructed
from this variant. Finally, the deconstructor function in a variant decomposes a value
into its components; it is undefined if the passed value is not constructed by this variant.

The tuple and untuple functions construct and deconstruct reflected tuple values,
including the empty tuple. Using applicable?(f,x) one can test whether the reflected
value f is a function that can be applied to the argument x. The expression apply(f,x)
yields the result of this application and is undefined if f is not applicable to x due to
typing conditions.
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Note that due to syntactic restrictions of Opal’s parameterisation, it is not possible
to call functions directly in the style content[A->B](r)(x). In Opal, structures may
be only be instantiated by names, not by types.5 Similarly, tuples cannot be reflected
directly using reflect[A ** B](x). However, even if this restriction were not present
the tuple, untuple, and apply functions would still be essential, since they allow writing
code generic over the number of parameters of a reflected function value.

Example: Generic Printing. As an example of the application of the inspection
interface, the printing function introduced in the previous section is extended. A more
powerful default printing method takes over if no type-specific function is found in the
method. We redefine the function default from structure Print as follows:6

DEF default(x) ==

LET

r == reflect(x)

t == type(r)

IN IF basic?(t) ANDIF freeType?(sort(t))

THEN print(constructorName(vari)) ++

format(print * untuple(deconstructor(vari)(r)))

WHERE vari == find(\\ v . discriminator(v)(r),

variants(sort(t)))

ELSE "some value of type: " ++ print(t)

FI

Above, we construct a reflected value r from x and test whether its type has a free type
definition. If so, we search for a variant whose discriminator is true for the given value

5 This Opal deficiency stems from its origin in algebraic specification theory and is removed
in the forthcoming Opal-2.

6 In Opal, \\ v . denotes the lambda operator λv., the star * denotes the mapping operator
and ++ denotes string concatenation.
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(there must exist exactly one). We then recursively apply print to the name of the vari-
ant and all elements of the deconstructed component sequence. The auxiliary function
format takes a sequence of strings and writes them alongside each other, delimited by
commas and enclosed by parentheses.

There remains a problem with the above implementation. The print method for
deconstructed components of a value is called for reflections, and these reflections will
be printed instead of their contents. Though it is in principle legal to reflect reflections,
this is not the expected behaviour here. Rather, one would expect a method like print
to work on the encapsulated value if a reflection is passed. The problem is fixed by
modifying the method build function :: as follows:

DEF (func :: method)(a) ==

IF reflects?[special](r) THEN func(content[special](r))

ELSE method(a) FI

WHERE r == IF reflects?[value](reflect(a))

THEN content[value](reflect(a))

ELSE reflect(a) FI

If the parameter a is a reflection of a value it is taken as is, otherwise a new reflection
is constructed. The same modification has to be applied to the default method.

2.3. Lookup Interface

An important functionality of a fully-fledged reflection system is the ability to lookup
reflected values from symbolic, textual representations. This allows the dynamic binding
of code to a running program. For example, a device driver or a component plug-in
might be loaded at runtime. A compiler could be integrated this way as well: Runtime
generated code could be compiled and then bound to the running program in a safe way
using symbolic lookup.
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Figure 4 Lookup Interface

SIGNATURE ReflectionLookup

IMPORT Com COMPLETELY -- com’Com is Opal’s IO Monad

FUN extern : string -> com[set[name]]

FUN intern : string -> set[name]

FUN bind : name -> value

Lookup Functions. The structure ReflectionLookup shown in Figure 4 declares
the basic commands for symbolic lookup. The command extern takes the symbolic
representation of a (partial) name in Opal syntax and computes the set of all names
that match the symbolic representation in a code repository. This command is monadic
since it depends on side-effects. The code repository can be changed dynamically by the
environment or by the program itself – for example, by downloading a code component
from the Internet. The code repository will be discussed in more detail in Section 4.
The function intern behaves similarly, but it can lookup only names that have been
statically linked with the program. Therefore it can be a pure function.

For instance, extern("int’Int") searches for the name of the sort int in the struc-
ture Int. As it is possible that several names match a symbolic representation due to
overloading, extern and intern return sets of names. For example, extern("-’Int")
returns both the name of the unary minus as well as the name of the difference function
defined in the structure Int. To narrow down a search, one can specify a functionality
like in extern("-’Int : int -> int"). The rules for name resolution are similar to
those in the Opal language. The resolution of types is performed in the context of the
structure associated with the main identifier searched for: thus int -> int above is
promoted to int’Int -> int’Int. The main identifier must always be supplied with
a structure name, such that extern("asString: foo’Foo -> string") is not valid.

For parameterised structures the instantiation has to be specified. Thus intern
("seq’Seq[int’Int]") is valid, whereas intern("seq’Seq") is not. The given instan-
tiation parameters must fit the formal ones of a structure according to the rules of the
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Opal language. If there are any Dynamic assumptions on the parameters of a structure
they are satisfied automatically, which is possible since only basic instances of parame-
terised structures are dealt with.

Once a name representing a value has been constructed, i.e. a name having value-
Kind, it can be bound. Applying the function bind yields the desired reflected value
which can be further processed by the inspection functions.

Example: Customised Printing. We extend the default method for printing values
by adding symbolic lookup of customised formatting functions. The lookup is based
on naming conventions: every function originating from the structure of the sort of
the printed value which is declared as format : sort -> string is considered as a
candidate. We get the following code:7

DEF default(x) ==

LET r == reflect(x) IN

IF basic?(type(r)) THEN

LET sym == "format’" ++ print(struct(name(sort(type(r)))))

++ " : " ++ print(sort(type(r)))

++ " -> string"

cands == intern(sym)

IN

IF empty?(cands)

THEN oldDefault(r)

ELSE content[string](apply(bind(arb(cands)), r))

FI

ELSE oldDefault(r) FI

This example just illustrates the capabilities of symbolic lookup – we do not propose
that printing should actually be defined this way, since it is methodological questionable
to do such lookups based on pure naming conventions. Instead a further extension of
7 empty? checks whether a set is empty and arb returns an arbitrary element if it is not.
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the reflection mechanism, discussed in the conclusion, might be used which allows the
reflection of assumption and theories.

Example: Plugins. As an example for the usage of the lookup command extern,
consider the implementation of a dynamically loadable plugin with an interface described
by the type plugin. Loading the plugin is then achieved as follows:8

TYPE plugin == plugin(init: com[void], oper: input -> com[output])

FUN loadPlugin : string -> com[plugin]

DEF loadPlugin(ident) ==

extern("init’" ++ ident) & (\\ inits .

extern("call’" ++ ident) & (\\ calls .

LET

init == bind(arb(inits))

call == bind(arb(calls))

IN yield(plugin(content[com[void]](init)),

\\in. content[com[output]](apply(call, reflect(in))))

))

The extern function retrieves the structure named ident from the code repository.
Currently, the code repository is just a collection of directories containing appropriate
object files and intermediate compilation results. A more sophisticated access to the
code repository still needs to be defined.

8 & denotes the continuation operator of the com monad.
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3. Semantic Foundation

We take a short look on the foundation of reflections in Opal. The algebraic foundation
relies on the more general concept of theories that are planned to be incorporated into
the forthcoming language version Opal-2. Theories in Opal-2 have a close relationship
to type classes in Haskell, as we will also discuss. Operationally, reflections are based
on a syntactic transformation.

3.1. Algebraic Foundation

In a setting such as Opal’s which is based on concepts of algebraic specification (see for
example [13]), declarations of the kind ASSUME Dynamic[T] can be understood as a non-
conservative enrichment by a special kind of specification module. Following the naming
convention used in OBJ for a similar construct [6] these modules are called theories as
they do not represent executable program structures but assertions about them. In case
of the theory Dynamic, it contains the assertion that a constant reflectSort exist:

THEORY Dynamic[alpha]

SORT alpha

FUN reflectSort : sort’Reflection

In stating ASSUME Dynamic[T] in the context of a structure, we add to its name scope
the constant reflectSort’Dynamic[T]. Though the type T is not part of the type of
reflectSort, it is part of its name. Thus we have different constants reflectSort’
Dynamic[int] (reflectSort[int] as an abbreviation), reflectSort[bool] and so on.
The instances of reflectSort are exactly the basic information required to implement
reflections, as we will see later.

The constant reflectSort introduced by ASSUME has no implementation, but it is
ensured to exist. Hence ASSUME is, in contrast to IMPORT, not a conservative enrichment
since it constrains the models of T. In the process of instantiating a parameterised struc-
ture, any assumptions it makes on its parameters are also instantiated and propagate
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to the instantiation context. This way the assumptions accumulate upwards the import
hierarchy of parameterised structures.

Assumptions are finally satisfied by providing definitions for the constants and func-
tions. For example, in Opal-2 we state:

ASSUME Dynamic[int]

...

DEF reflectSort[int] == sort(name("int", sortKind, struct("Int", <>)))

For the restricted usage of theories and assumptions for adding reflections to Opal, the
above definition can in fact be generated automatically by the compiler as soon as the
type T is instantiated with a basic type in ASSUME Dynamic[T]. Since in every program
all instantiations are eventually basic, we can always satisfy all Dynamic assumptions.

The general concept of assumptions and theories is nothing new – it is derived from
Haskell’s type classes, transferred to a setting of parameterised entities. This raises
the question whether a similar approach for modeling dynamic type information is
applicable in Haskell. We will discuss this question in the conclusion.

3.2. Syntactic Transformation

Though we have ensured that the assumptions on the existence of certain functions and
constants are satisfied, it is not yet clear how they are communicated to their application
points. This is achieved by adding them to the parameter list of structures, as in the
example below:

SIGNATURE S[a, n, b] SIGNATURE S[a, n, b, reflectSort_a]

SORT a b SORT a b

FUN n: nat ==> FUN n: nat

ASSUME Dynamic[a] FUN reflectSort_a : sort’Reflection

As demonstrated in the next section, this transformation is sufficient for implementing
the core reflection interface.
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4. Implementation

This section discusses how the reflection interfaces introduced in the previous sections
are implemented in the current Opal system. First, we discuss the implementation of
the construction of value reflections. It is founded on the syntactic transformation in-
troduced in the previous section. Second, we briefly discuss how reflections of free types
and function lookup and binding are implemented.

4.1. Construction of Value Reflections

We now demonstrate how the core types depicted in Figure 1 can be implemented in
conjunction with the syntactic transformation introduced in the previous section. We
concentrate on the only difficult implementation, the type value. It is implemented as a
pair consisting of a field actual storing some reflected object and a type tag field. The
type tag is used to save the real type of the stored object. The field actual itself has
type SOME’RUNTIME which is part of Opal’s low-level runtime library and allows unsafe
casting:

IMPLEMENTATION Reflection

DATA value == pair (actual : SOME, type : type)

One way to construct such a value is to use the functions declared in the core reflection
interface, see Figure 2. The functions declared in this interface can be implemented as
follows, using the non-typesafe runtime system primitives asSOME and fromSOME in a
typesafe way:
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IMPLEMENTATION ReflectionBuild[alpha]

SORT alpha

ASSUME Dynamic[alpha]

DEF reflect(x) == pair(asSOME(x),basic(reflectSort[alpha]))

DEF reflects?(refl) ==

IF basic?(type(refl)) THEN sort(type(refl)) = reflectSort[alpha]

ELSE false FI

DEF content(refl) ==

IF reflects?(refl) THEN fromSOME[alpha] (actual(refl)) FI

Recall from the previous section that the theory Dynamic declares a constant reflect-
Sort. Furthermore, the compiler will automatically syntactically transform the above
code into the following plain Opal structure:

IMPLEMENTATION ReflectionBuild[alpha, reflectSort_alpha]

SORT alpha

FUN reflectSort_alpha : sort

DEF reflect(x) == pair(asSOME(x),basic(reflectSort_alpha))

...

4.2. Free Type and Function Reflection

The implementation of both the inspection interface, shown in Figure 3, as well as
the lookup interface, shown in Figure 4, use a code repository. For every structure the
repository stores a file describing the structure’s signature alongside an object file. The
repository is searched for functions or sort variants first by structure and then by name.
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Once a structure has been requested by the reflection system, information about it is
cached internally.

Once a name has been retrieved it can be bound using the function bind, yielding
a value. The binding process in turn utilises the existing Opal runtime system which
provides non-typesafe service functions for the dynamic linking of object files. Just like
the core reflection interface, the implementation of the lookup interface effectively hides
all unsafe casts and direct function calls from the user.
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5. Conclusion

We have shown how generic meta programming can be integrated into an existing
compilation system for a functional language. Reflections allow the programmer to query
information about functions and types and to use that information in algorithms. The
exemplary applications – virtual methods, generic printing and dynamically loadable
plugins – give an impression of the possibilities generic meta programming offers.

A syntactic transformation provides a plain operational model of reflections. It has
been implemented with only moderate extensions of the Opal compiler implementation.
Indeed, the syntactic transformation and the code repository are all that is needed to
provide the user with the full power of the reflection mechanism while the compiler
backend does not see reflections at all.

In the current homogeneous approach of the Opal system, where several instances
of a parameterised structure share the same code, reflections incur a runtime overhead.
However, if an heterogeneous approach is taken, reflections come for free. Moreover, if
this approach is combined with partial evaluation, reflection based algorithms allow for
optimisations that would not be possible otherwise.

Future Research. Reflections as currently implemented in the Opal compiler provide new
opportunities for generic programming. We have implemented several further libraries
that could not be presented in this paper (for example generic implementations of
relations and catamorphism), but the application potential still needs future research.

The forthcoming Opal-2 includes algebraic laws, theories and assumptions. In the
Opal-2 implementation these should be subject to reflection as well as structures, func-
tions and sorts. This allows new possibilities for the implementation of parameterised
functions, because algebraic properties (other than the free type properties) can be ex-
ploited in the implementation of functions. Consider the reduce function on sequences
which uses a tail-recursive implementation if the operator is associative. The following
implementation works for both associative and non-associative functions:
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FUN reduce: (alpha ** beta -> beta) -> beta ** seq[alpha] -> beta

DEF reduce(+) ==

IF lookupAssumption("Associative", +) THEN reduceFast(+)

ELSE reduceStd(+) FI

DEF reduceFast(+)(e, s) ==

IF s empty? THEN e

IF rt(s) empty? THEN ft(s) + e

ELSE reduceFast(+)(e, ft(s) + ft(rt(s)) :: rt(rt(s))) FI

DEF reduceStd(+)(e, s) ==

IF s empty? THEN e

ELSE ft(s) + reduceStd(+)(e, rt(s)) FI

Such kinds of implementation become feasible only if partial evaluation is involved. A
combination of unfolding and specialised simplification rules for reflection primitives for
type and assumption information available at compile time, should result in the desired
efficiency.

Related Work. In a functional setting, an alternative approach to dynamic types is
described by Leroy and Abadi et al. [9,2]. Our approach differs in that it supports full
instantiation information for parameters of polymorphic functions. In contrast, in the
work of [9,2] a polymorphic function can only reflect the formal types, not the actual
types of its parameters. As a consequence, in [9,2] no runtime type information needs
to be passed as parameters to functions.

We regard it as a severe restriction of these systems that reflections of the instantia-
tion types of polymorphic parameters cannot be obtained: for example, such reflections
are needed to implement the “virtual method” construct. Most importantly, they allow
to hide the use of reflections inside libraries.

In our model it is the syntactic transformation that adds the missing runtime type
information as parameters to structures utilising reflections. A similar approach has
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been taken by Pil [11] who extended the Clean compiler, such that full instantiation
information is available for all functions that are marked by a special type context.
This type context corresponds to the ASSUME Dynamic assumption and, indeed, the
Clean compiler also performs a syntactic transformation of functions with type context
similar to the transformation described above.

While the low-level integration of reflections into the Clean compiler core allowed
the definition of a nice pattern-matching syntax for working with reflections, a distinct
advantage of the more general approach using theories is that dynamic assumptions can
be inferred automatically for structures and hence also for functions. Users can utilise
libraries that employ reflections internally without having to bother about reflections at
all, as long as the library declares ASSUME Dynamic somewhere. We believe that library
programming is the actual realm of reflective programming.

It seems to have been known for some time in the Haskell community that dynamic
types can be implemented in a similar way as described in this paper using type classes.
However, a technical problem is that the following class definition is illegal:
class Dynamic a where

reflectType :: Type

The member reflectType does not depend on a which is a required context condi-
tion in Haskell. One way to solve this problem is to add a dummy argument, yielding
reflectType :: a -> Type. This technique has been used in the library of the Hugs-98
distribution for dynamics. Unfortunately it leads to “hacky” code, as for example in the
following definition of a derived instance:

instance Dynamic a => Dynamic [a] where

reflectType x = mkListType (reflectType (bottom x))

where

bottom :: [a] -> a

bottom = bottom

The problem here is the way Haskell treats overloading. While Haskell exclusively uses
type classes to resolve ambiguities, Opal (and C++) use ad-hoc overloading. In ad-hoc
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overloading ambiguous partial names are promoted to complete names by inferring
missing parts from context. While this solves the above problem, Opal’s overloading
mechanism could still benefit from an extension by Haskell’s type classes: Type classes
can be used to implicitly associate “internal” knowledge about data types with the
specialised implementations of libraries that are parameterised over these types. We
regard dynamic types and reflections as a typical application of this usage.
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