
Reflections in Opal – Meta Information in a
Functional Programming Language

Klaus Didrich, Wolfgang Grieskamp, Florian Schintke, Till Tantau, and
Baltasar Trancón-y-Widemann

Technische Universität Berlin
{kd,wg,schintke,tantau,bt}@cs.tu-berlin.de

Abstract. We report on an extension of the Opal system that allows the
use of reflections. Using reflections, a programmer can query information
like the type of an object at runtime. The type can in turn be queried
for properties like the constructor and deconstructor functions, and the
resulting reflected functions can be evaluated. These facilities can be used
for generic meta-programming. We describe the reflection interface of
Opal and its applications, and sketch the implementation. For an existing
language implementation like Opal’s the extension by a reflection facility
is challenging: in a statically typed language the management of runtime
type information seems to be an alien objective. However, it turns out
that runtime type information can be incorporated in an elegant way by
a source-level transformation and an appropriate set of library modules.
We show how this transformation can be done without changing the
Opal core system and causing runtime overhead only where reflections
are actually used.

1 Introduction

Modern functional languages support a powerful, efficient, and safe program-
ming paradigm based on parametric polymorphism and higher-orderness in con-
junction with static type discipline. However, the advantages of static typing –
safety and efficient execution – are paid for by less flexibility regarding generic
meta programming. High-level environments for languages that allow meta pro-
gramming like LISP or Smalltalk are therefore traditionally based exclusively on
dynamic typing.

The integration of dynamic types into a static, parametric-polymorphic type
discipline has been investigated in [3,9,2] and is nowadays well understood. How-
ever, dynamic types are only one prerequisite for generic meta programming. To
utilise dynamically typed objects, it is necessary to reflect information about
objects and types. Information of interest includes full instantiation information
for reflected values in polymorphic contexts, and the free type definition of given
types. The reflection of a free type definition consists of reflected knowledge
about its constructor, discriminator and deconstructor functions. This knowl-
edge can be used to process the free type’s elements generically.

As rule of thumb, reflections make available as much compile time informa-
tion as possible to the program. Code based on this additional information may
be executed at runtime or, using partial evaluation, at compile time. Reflections
in this sense became well known as part of the core technology of Java [12].

In this paper we report on a pragmatic extension of the Opal language and
compilation system that allows the use of reflections. The extension is in fact
quite moderate. We add one further keyword which is defined by a purely syn-
tactic transformation into regular Opal. A set of library structures implements
the reflection mechanism by connecting the running Opal program to compiler
generated resources. The library is in turn based on a hand-coded module of
the Opal runtime system, that allows dynamic linking and execution of reflected
functions.

This paper is organised as follows. We first discuss the design from the ap-
plication view of reflections as provided by our extension. We then discuss the
semantic foundation of reflections as used in Opal. The semantic foundation
is given by a syntactic transformation, and therefore in fact also prepares the
implementation which is discussed last.

Background. Opal [4,10,1] is a strongly typed, higher-order, strict and pure func-
tional language. It can be classified alongside ML, Haskell, and other modern
functional programming languages. However, the language also has a distinc-
tively algebraic flavour in the tradition of languages such as CIP-L, OBJ and
others. Instead of ML-style polymorphism the language provides parameterised
modules, called structures, which are comparable to Ada’s generics or to C++
templates. As in C++ instantiation of parameterised structures is automatically
inferred as far as possible from context information.1 Opal has a comprehensive
implementation, including a compiler which produces very fast code [8], and a
large library of reusable software components.

We will use Opal in this paper on a level that should be intelligible to readers
familiar with standard concepts of functional languages but who have no specific
knowledge of the Opal language. Explanations of unusual Opal constructs will
be given as we proceed. In the conclusion we will justify that the introduced
Opal concepts can also be expressed in functional languages with type classes
such as Haskell.

2 Reflection Interface and Applications

This section describes how reflections are used in Opal. The core interface pro-
vides dynamic types with full instantiation information. The inspection interface
is used to create reflections of free type definitions. Finally, the lookup interface
is used to convert symbolic information into reflections. As a running exam-
ple, a generic printer is constructed incrementally using each of the interfaces.
1 Since structures may not only be parameterised by types but also by constant values,

complete inference of instantiations is not possible.

Fig. 1 Core Interface: Types

SIGNATURE Reflection

TYPE name == name (identifier : string,

kind : kind,

struct : struct)

TYPE kind == sortKind

valueKind (type : type)

TYPE sort == sort (name : name)

TYPE type == basic (sort : sort)

product (factors : seq[type])

function (domain : type,

codomain : type)

TYPE struct == struct (identifier : string,

instance : seq[name])

SORT value

FUN type : value -> type

The most developed form of the generic printer will be able to convert an ar-
bitrary value into a human readable string without any special preparation by
the programmer. Specifically, even for recursive user-defined types no conversion
functions need to be provided as is necessary in most languages including C++.

2.1 Core Interface

The basic interface to the reflection mechanism is provided by two Opal struc-
tures (modules). Reflection declares the types and ReflectionBuild the func-
tions which make up the core functionality.

Representing Reflections. As the reflection system should make available
compile time information at runtime, it must define several types which model
the compile time information. These types are used to talk in the programming
language Opal about the programming language Opal.

In Figure 1, the data model of the core reflection system is presented as a
collection of free type definitions.2 The meaning of the definitions in Figure 1
are in detail:

name: A name determines a named object in an Opal program, and is described
by its identifier, kind and origin structure. Note that Opal employs full over-
loading, such that all of these components are required in order to identify
a name uniquely.

2 The keyword SIGNATURE marks the export interface of an Opal structure. For each
variant of a free type, marked by the keyword TYPE, a constructor function, a dis-
criminator function and deconstructor (partial selector) functions are automatically
introduced. An example discriminator function is FUN sortKind? : kind -> bool,
an example deconstructor is FUN factors: type -> seq[type].

Opal employs the following syntax for names:

identifier’origin structure[instantiation parameters] : kind

The origin structure, the list of instantiation parameters and the kind are
optional if they can be derived uniquely from context. The kind can be
SORT or a functionality. Example Opal names are int : SORT and +’Int :
int ** int -> int.

kind: A name represents either a sort or a value of a specific type. These
two possibilities are distinguished by the name’s kind. For example, the
name int’Int : SORT in literal Opal syntax, is reflected by the name
name("int", sortKind, IntStruct) meaning that int is a sort declared
in some structure Int. Here, IntStruct is in turn a reflection of the structure
Int as discussed below.

sort: A sort is uniquely identified by its name.
type: An Opal type, which can be either basic, a Cartesian product or a function

space, is reflected by type. If IntName is the above name for the integer sort,
then the name of the function + declared in the structure Int is in all glory
detail:3

name("+", valueKind(function(product(basic(sort(IntName)) ::

basic(sort(IntName)) :: <>),

basic(sort(IntName)))),

IntStruct)

struct: An Opal structure is determined by its identifier and an instantia-
tion list. An instantiation list is a sequence of names. It is empty if the
structure has no parameters. For example, the structure Int is represented
by struct("Int", <>) which we labeled IntStruct earlier. The structure
Seq[int] is represented by struct("Seq", IntName :: <>)

value: A value is a reflection of a value. It stores the type of the reflected value
as well as the value itself. However, the value is stored in an opaque way and
cannot be observed directly. To achieve opaqueness, value is not defined as
free type using TYPE, but as sort using SORT.

Constructing Reflections. The central functionality of the core reflection
system is the translation between runtime values and reflections. This is accom-
plished by the functions declared in the structure shown in Figure 2 which is
parameterised over the sort alpha. A parameterised Opal structure is a section
of declarations that are uniformly polymorphic over the parameters listed in the
formal parameter list.

The reflect function takes an arbitrary value and converts it into a re-
flection. Thus if 5 has type int, then type(reflect(5)) delivers an object of
type type describing the type int. The function reflects? tests whether a
3 <> denotes the empty sequence in Opal and :: denotes the cons function which can

be written in infix.

Fig. 2 Core Interface: Functions

SIGNATURE ReflectionBuild[alpha]

SORT alpha

ASSUME Dynamic[alpha]

FUN reflect : alpha -> value

FUN reflects? : value -> bool

FUN content : value -> alpha

value is of a certain type. The type is given by the instance of the generic pa-
rameter, such that we have for example reflects?[int](reflect(5)) = true
and reflects?[bool](reflect(5)) = false. Finally, content is a partial
function that extracts the representation from a reflected value. We have
content[int](reflect(5)) = 5, whereas content[bool](reflect(5)) is un-
defined.

Note that in difference to dynamic types as described in [9,2], the type of a
reflected value always contains the full instantiation information. Consider the
definition of a typeof function:

IMPLEMENTATION TypeOf[alpha]

ASSUME Dynamic[alpha]

FUN typeOf : alpha -> type

DEF typeOf(x) == type(reflect(x))

A call typeof(5) yields the reflected type int, and a call typeof(true) the
reflected type of Booleans. Other approaches to the combination of parametric
polymorphism and dynamic types insist on returning the (constant) type scheme
alpha.

The ASSUME Dynamic[alpha] declaration in the signature of Reflection-
Build does all the magic which enables the above functionality. Before we take
a closer look at it, we give an example that illustrates the usage of the core
interface.

Example: Virtual Methods. An interesting application of functions which
behave differently for different types are virtual methods in object-orientated
programming. The code executed upon their invocation depends on the actual
type of an object at runtime. In object-orientated programming languages, the
mapping process from types to code during method invocation is performed
automatically and is normally hidden from the programmer. Using reflections, a
method invocation protocol can be implemented in Opal that mimics the built-in
behaviour of virtual methods in object-orientated programming languages.

The following example shows how a generic printing function might be im-
plemented using virtual methods. The function :: is used to add a function to a
method, thus adding a new behaviour to the method – its implementation will
be described later on.

IMPLEMENTATION Print [alpha]

ASSUME Dynamic[alpha]

IMPORT Method ONLY :: -- uninstantiated import (instances

-- will be automatically derived)

FUN default : alpha -> string

DEF default (a) == "some value"

FUN printBool : bool -> string

FUN printInt : int -> string

FUN print : alpha -> string

DEF print == printBool :: printInt :: default

The constructed method print can be invoked by calling print(true) to print
a Boolean value or by print(5) to print the number five. Note that the above
implementation is type safe. It is guaranteed that a function like printBool is
never applied to anything but a Boolean value.

The implementation of the method constructor :: is surprisingly simple. It
takes a function and a method and returns a new method, that calls the new
function whenever its input has the type expected by the new function and calls
the old method otherwise:

IMPLEMENTATION Method [alpha, special, result]

ASSUME Dynamic[alpha] Dynamic[special]

FUN :: : (special -> result) ** (alpha -> result) -> (alpha -> result)

DEF (func :: method)(a) ==

IF reflects?[special](r) THEN func(content[special](r))

ELSE method(a) FI

WHERE r == reflect(a)

Above, the a of type alpha represents the parameter of the method. If the
reflection r of a also reflects an object of type special, then we can safely
convert a to type special and call func. Otherwise the old method is tried.

It is remarkable that in this example reflection types appear only on the
level of library programming – here in the structure Method. In the structure
Print, we only have to mention the assumption that its parameter has to be
“dynamic”.4 This abstraction from the use of core reflection becomes possible
because even for polymorphic parameters full type information is available.

What does the assumption ASSUME Dynamic[alpha] mean? Pragmatically,
it just indicates that runtime type information (RTTI) somehow needs to be
made available for instances of the parameter alpha. Every instantiation of a
structure, where Dynamic assumptions are made on a parameter, must satisfy
this assumption by providing RTTI for the parameter. If a structure is instan-
tiated with a basic type, this is easy to achieve since for types such as int the
compiler can literally construct the runtime type information. If a structure is
4 In fact even this assumption is not necessary, since it can be derived from the import

of the structure Method – it is just for documentation purposes.

Fig. 3 Inspection Interface

SIGNATURE ReflectionInspect

TYPE variant == variant (constructorName : name,

constructor : value -> value,

discriminator : value -> bool,

deconstructor : value -> value)

FUN freeType? : sort -> bool

FUN variants : sort -> seq[variant]

FUN applicable? : value ** value -> bool

FUN apply : value ** value -> value

FUN tuple : seq[value] -> value

FUN untuple : value -> seq[value]

instantiated with a formal parameter of another structure, then the assumption
can be resolved if there is a similar assumption in the instantiating structure.
This is, for example, the case for the formal parameter alpha in Print which is
(implicitly) passed to Method.

The ASSUME Dynamic[alpha] concept is the one and only extension we need
to add to the Opal language (but a generalisation of this construct is part of the
forthcoming Opal-2 language [5]). The construct is similar to conditional poly-
morphism provided by Haskell’s type classes [7], and Dynamic can be modeled
in Haskell as a builtin type class whose instances are automatically generated
by the compiler. This will be discussed in the conclusion.

2.2 Inspection Interface

The core reflection interface presented in the previous section provides dynamic
types. But the reflection mechanism goes further. In addition to types it permits
the reflection of properties of objects, the construction and deconstruction of
tuples and the application of reflected functions to reflected values.

Inspecting Reflections. The structure ReflectionInspect shown in Figure 3
introduces types and functions for inspecting free type definitions. Given a sort s,
the function freeType? tests whether its argument has an associated free type
definition. The partial function variants delivers the variants for sorts that are
free types. A variant is described by a quadruple of the variant’s constructor
function’s name and a set of functions working on reflections. The constructor
function in a variant of the sort s takes an appropriately typed argument and
constructs a new value of type s. The Boolean discriminator in a variant
function tests whether its argument is constructed from this variant. Finally, the
deconstructor function in a variant decomposes a value into its components;
it is undefined if the passed value is not constructed by this variant.

The tuple and untuple functions construct and deconstruct reflected tu-
ple values, including the empty tuple. Using applicable?(f,x) one can test

whether the reflected value f is a function that can be applied to the argu-
ment x. The expression apply(f,x) yields the result of this application and is
undefined if f is not applicable to x due to typing conditions.

Note that due to syntactic restrictions of Opal’s parameterisation, it is not
possible to call functions directly in the style content[A->B](r)(x). In Opal,
structures may be only be instantiated by names, not by types.5 Similarly, tuples
cannot be reflected directly using reflect[A ** B](x). However, even if this
restriction were not present the tuple, untuple, and apply functions would still
be essential, since they allow writing code generic over the number of parameters
of a reflected function value.

Example: Generic Printing. As an example of the application of the inspec-
tion interface, the printing function introduced in the previous section is ex-
tended. A more powerful default printing method takes over if no type-specific
function is found in the method. We redefine the function default from struc-
ture Print as follows:6

DEF default(x) ==

LET

r == reflect(x)

t == type(r)

IN IF basic?(t) ANDIF freeType?(sort(t))

THEN print(constructorName(vari)) ++

format(print * untuple(deconstructor(vari)(r)))

WHERE vari == find(\\ v . discriminator(v)(r),

variants(sort(t)))

ELSE "some value of type: " ++ print(t)

FI

Above, we construct a reflected value r from x and test whether its type has a
free type definition. If so, we search for a variant whose discriminator is true for
the given value (there must exist exactly one). We then recursively apply print
to the name of the variant and all elements of the deconstructed component
sequence. The auxiliary function format takes a sequence of strings and writes
them alongside each other, delimited by commas and enclosed by parentheses.

There remains a problem with the above implementation. The print method
for deconstructed components of a value is called for reflections, and these re-
flections will be printed instead of their contents. Though it is in principle legal
to reflect reflections, this is not the expected behaviour here. Rather, one would
expect a method like print to work on the encapsulated value if a reflection
is passed. The problem is fixed by modifying the method build function :: as
follows:
5 This Opal deficiency stems from its origin in algebraic specification theory and is

removed in the forthcoming Opal-2.
6 In Opal, \\ v . denotes the lambda operator λv., the star * denotes the mapping

operator and ++ denotes string concatenation.

Fig. 4 Lookup Interface

SIGNATURE ReflectionLookup

IMPORT Com COMPLETELY -- com’Com is Opal’s IO Monad

FUN extern : string -> com[set[name]]

FUN intern : string -> set[name]

FUN bind : name -> value

DEF (func :: method)(a) ==

IF reflects?[special](r) THEN func(content[special](r))

ELSE method(a) FI

WHERE r == IF reflects?[value](reflect(a))

THEN content[value](reflect(a))

ELSE reflect(a) FI

If the parameter a is a reflection of a value it is taken as is, otherwise a new
reflection is constructed. The same modification has to be applied to the default
method.

2.3 Lookup Interface

An important functionality of a fully-fledged reflection system is the ability to
lookup reflected values from symbolic, textual representations. This allows the
dynamic binding of code to a running program. For example, a device driver or a
component plug-in might be loaded at runtime. A compiler could be integrated
this way as well: Runtime generated code could be compiled and then bound to
the running program in a safe way using symbolic lookup.

Lookup Functions. The structure ReflectionLookup shown in Figure 4 de-
clares the basic commands for symbolic lookup. The command extern takes the
symbolic representation of a (partial) name in Opal syntax and computes the set
of all names that match the symbolic representation in a code repository. This
command is monadic since it depends on side-effects. The code repository can be
changed dynamically by the environment or by the program itself – for example,
by downloading a code component from the Internet. The code repository will
be discussed in more detail in Section 4. The function intern behaves similarly,
but it can lookup only names that have been statically linked with the program.
Therefore it can be a pure function.

For instance, extern("int’Int") searches for the name of the sort int in the
structure Int. As it is possible that several names match a symbolic representa-
tion due to overloading, extern and intern return sets of names. For example,
extern("-’Int") returns both the name of the unary minus as well as the
name of the difference function defined in the structure Int. To narrow down a
search, one can specify a functionality like in extern("-’Int : int -> int").
The rules for name resolution are similar to those in the Opal language. The
resolution of types is performed in the context of the structure associated

with the main identifier searched for: thus int -> int above is promoted to
int’Int -> int’Int. The main identifier must always be supplied with a struc-
ture name, such that extern("asString: foo’Foo -> string") is not valid.

For parameterised structures the instantiation has to be specified. Thus
intern("seq’Seq[int’Int]") is valid, whereas intern("seq’Seq") is not.
The given instantiation parameters must fit the formal ones of a structure ac-
cording to the rules of the Opal language. If there are any Dynamic assumptions
on the parameters of a structure they are satisfied automatically, which is pos-
sible since only basic instances of parameterised structures are dealt with.

Once a name representing a value has been constructed, i.e. a name hav-
ing valueKind, it can be bound. Applying the function bind yields the desired
reflected value which can be further processed by the inspection functions.

Example: Customised Printing. We extend the default method for
printing values by adding symbolic lookup of customised formatting func-
tions. The lookup is based on naming conventions: every function originat-
ing from the structure of the sort of the printed value which is declared as
format : sort -> string is considered as a candidate. We get the following
code:7

DEF default(x) ==

LET r == reflect(x) IN

IF basic?(type(r)) THEN

LET sym == "format’" ++ print(struct(name(sort(type(r)))))

++ " : " ++ print(sort(type(r)))

++ " -> string"

cands == intern(sym)

IN

IF empty?(cands)

THEN oldDefault(r)

ELSE content[string](apply(bind(arb(cands)), r))

FI

ELSE oldDefault(r) FI

This example just illustrates the capabilities of symbolic lookup – we do not pro-
pose that printing should actually be defined this way, since it is methodological
questionable to do such lookups based on pure naming conventions. Instead a
further extension of the reflection mechanism, discussed in the conclusion, might
be used which allows the reflection of assumption and theories.

Example: Plugins. As an example for the usage of the lookup command
extern, consider the implementation of a dynamically loadable plugin with an
interface described by the type plugin. Loading the plugin is then achieved as
follows:8
7 empty? checks whether a set is empty and arb returns an arbitrary element if it is

not.
8 & denotes the continuation operator of the com monad.

TYPE plugin == plugin(init: com[void], oper: input -> com[output])

FUN loadPlugin : string -> com[plugin]

DEF loadPlugin(ident) ==

extern("init’" ++ ident) & (\\ inits .

extern("call’" ++ ident) & (\\ calls .

LET

init == bind(arb(inits))

call == bind(arb(calls))

IN yield(plugin(content[com[void]](init)),

\\in. content[com[output]](apply(call, reflect(in))))

))

The extern function retrieves the structure named ident from the code repos-
itory. Currently, the code repository is just a collection of directories containing
appropriate object files and intermediate compilation results. A more sophisti-
cated access to the code repository still needs to be defined.

3 Semantic Foundation

We take a short look on the foundation of reflections in Opal. The algebraic
foundation relies on the more general concept of theories that are planned to be
incorporated into the forthcoming language version Opal-2. Theories in Opal-2
have a close relationship to type classes in Haskell, as we will also discuss. Op-
erationally, reflections are based on a syntactic transformation.

3.1 Algebraic Foundation

In a setting such as Opal’s which is based on concepts of algebraic specifica-
tion (see for example [13]), declarations of the kind ASSUME Dynamic[T] can be
understood as a non-conservative enrichment by a special kind of specification
module. Following the naming convention used in OBJ for a similar construct [6]
these modules are called theories as they do not represent executable program
structures but assertions about them. In case of the theory Dynamic, it contains
the assertion that a constant reflectSort exist:

THEORY Dynamic[alpha]

SORT alpha

FUN reflectSort : sort’Reflection

In stating ASSUME Dynamic[T] in the context of a structure, we add to its name
scope the constant reflectSort’Dynamic[T]. Though the type T is not part
of the type of reflectSort, it is part of its name. Thus we have different
constants reflectSort’Dynamic[int] (reflectSort[int] as an abbreviation),
reflectSort[bool] and so on. The instances of reflectSort are exactly the
basic information required to implement reflections, as we will see later.

The constant reflectSort introduced by ASSUME has no implementation, but
it is ensured to exist. Hence ASSUME is, in contrast to IMPORT, not a conservative

enrichment since it constrains the models of T. In the process of instantiating a
parameterised structure, any assumptions it makes on its parameters are also in-
stantiated and propagate to the instantiation context. This way the assumptions
accumulate upwards the import hierarchy of parameterised structures.

Assumptions are finally satisfied by providing definitions for the constants
and functions. For example, in Opal-2 we state:

ASSUME Dynamic[int]

...

DEF reflectSort[int] == sort(name("int", sortKind, struct("Int", <>)))

For the restricted usage of theories and assumptions for adding reflections to
Opal, the above definition can in fact be generated automatically by the compiler
as soon as the type T is instantiated with a basic type in ASSUME Dynamic[T].
Since in every program all instantiations are eventually basic, we can always
satisfy all Dynamic assumptions.

The general concept of assumptions and theories is nothing new – it is de-
rived from Haskell’s type classes, transferred to a setting of parameterised enti-
ties. This raises the question whether a similar approach for modeling dynamic
type information is applicable in Haskell. We will discuss this question in the
conclusion.

3.2 Syntactic Transformation

Though we have ensured that the assumptions on the existence of certain func-
tions and constants are satisfied, it is not yet clear how they are communicated
to their application points. This is achieved by adding them to the parameter
list of structures, as in the example below:

SIGNATURE S[a, n, b] SIGNATURE S[a, n, b, reflectSort_a]

SORT a b SORT a b

FUN n: nat ==> FUN n: nat

ASSUME Dynamic[a] FUN reflectSort_a : sort’Reflection

As demonstrated in the next section, this transformation is sufficient for imple-
menting the core reflection interface.

4 Implementation

This section discusses how the reflection interfaces introduced in the previous
sections are implemented in the current Opal system. First, we discuss the imple-
mentation of the construction of value reflections. It is founded on the syntactic
transformation introduced in the previous section. Second, we briefly discuss
how reflections of free types and function lookup and binding are implemented.

4.1 Construction of Value Reflections

We now demonstrate how the core types depicted in Figure 1 can be implemented
in conjunction with the syntactic transformation introduced in the previous sec-
tion. We concentrate on the only difficult implementation, the type value. It is
implemented as a pair consisting of a field actual storing some reflected object
and a type tag field. The type tag is used to save the real type of the stored
object. The field actual itself has type SOME’RUNTIME which is part of Opal’s
low-level runtime library and allows unsafe casting:

IMPLEMENTATION Reflection

DATA value == pair (actual : SOME, type : type)

One way to construct such a value is to use the functions declared in the core
reflection interface, see Figure 2. The functions declared in this interface can
be implemented as follows, using the non-typesafe runtime system primitives
asSOME and fromSOME in a typesafe way:

IMPLEMENTATION ReflectionBuild[alpha]

SORT alpha

ASSUME Dynamic[alpha]

DEF reflect(x) == pair(asSOME(x),basic(reflectSort[alpha]))

DEF reflects?(refl) ==

IF basic?(type(refl)) THEN sort(type(refl)) = reflectSort[alpha]

ELSE false FI

DEF content(refl) ==

IF reflects?(refl) THEN fromSOME[alpha] (actual(refl)) FI

Recall from the previous section that the theory Dynamic declares a constant
reflectSort. Furthermore, the compiler will automatically syntactically trans-
form the above code into the following plain Opal structure:

IMPLEMENTATION ReflectionBuild[alpha, reflectSort_alpha]

SORT alpha

FUN reflectSort_alpha : sort

DEF reflect(x) == pair(asSOME(x),basic(reflectSort_alpha))

...

4.2 Free Type and Function Reflection

The implementation of both the inspection interface, shown in Figure 3, as well as
the lookup interface, shown in Figure 4, use a code repository. For every structure
the repository stores a file describing the structure’s signature alongside an object
file. The repository is searched for functions or sort variants first by structure
and then by name. Once a structure has been requested by the reflection system,
information about it is cached internally.

Once a name has been retrieved it can be bound using the function bind,
yielding a value. The binding process in turn utilises the existing Opal runtime
system which provides non-typesafe service functions for the dynamic linking
of object files. Just like the core reflection interface, the implementation of the
lookup interface effectively hides all unsafe casts and direct function calls from
the user.

5 Conclusion

We have shown how generic meta programming can be integrated into an existing
compilation system for a functional language. Reflections allow the programmer
to query information about functions and types and to use that information in
algorithms. The exemplary applications – virtual methods, generic printing and
dynamically loadable plugins – give an impression of the possibilities generic
meta programming offers.

A syntactic transformation provides a plain operational model of reflections.
It has been implemented with only moderate extensions of the Opal compiler
implementation. Indeed, the syntactic transformation and the code repository
are all that is needed to provide the user with the full power of the reflection
mechanism while the compiler backend does not see reflections at all.

In the current homogeneous approach of the Opal system, where several
instances of a parameterised structure share the same code, reflections incur a
runtime overhead. However, if an heterogeneous approach is taken, reflections
come for free. Moreover, if this approach is combined with partial evaluation,
reflection based algorithms allow for optimisations that would not be possible
otherwise.

Future Research. Reflections as currently implemented in the Opal compiler pro-
vide new opportunities for generic programming. We have implemented several
further libraries that could not be presented in this paper (for example generic
implementations of relations and catamorphism), but the application potential
still needs future research.

The forthcoming Opal-2 includes algebraic laws, theories and assumptions. In
the Opal-2 implementation these should be subject to reflection as well as struc-
tures, functions and sorts. This allows new possibilities for the implementation of
parameterised functions, because algebraic properties (other than the free type
properties) can be exploited in the implementation of functions. Consider the
reduce function on sequences which uses a tail-recursive implementation if the
operator is associative. The following implementation works for both associative
and non-associative functions:

FUN reduce: (alpha ** beta -> beta) -> beta ** seq[alpha] -> beta

DEF reduce(+) ==

IF lookupAssumption("Associative", +) THEN reduceFast(+)

ELSE reduceStd(+) FI

DEF reduceFast(+)(e, s) ==

IF s empty? THEN e

IF rt(s) empty? THEN ft(s) + e

ELSE reduceFast(+)(e, ft(s) + ft(rt(s)) :: rt(rt(s))) FI

DEF reduceStd(+)(e, s) ==

IF s empty? THEN e

ELSE ft(s) + reduceStd(+)(e, rt(s)) FI

Such kinds of implementation become feasible only if partial evaluation is in-
volved. A combination of unfolding and specialised simplification rules for re-
flection primitives for type and assumption information available at compile
time, should result in the desired efficiency.

Related Work. In a functional setting, an alternative approach to dynamic types
is described by Leroy and Abadi et al. [9,2]. Our approach differs in that it
supports full instantiation information for parameters of polymorphic functions.
In contrast, in the work of [9,2] a polymorphic function can only reflect the
formal types, not the actual types of its parameters. As a consequence, in [9,2]
no runtime type information needs to be passed as parameters to functions.

We regard it as a severe restriction of these systems that reflections of the
instantiation types of polymorphic parameters cannot be obtained: for example,
such reflections are needed to implement the “virtual method” construct. Most
importantly, they allow to hide the use of reflections inside libraries.

In our model it is the syntactic transformation that adds the missing run-
time type information as parameters to structures utilising reflections. A similar
approach has been taken by Pil [11] who extended the Clean compiler, such that
full instantiation information is available for all functions that are marked by
a special type context. This type context corresponds to the ASSUME Dynamic
assumption and, indeed, the Clean compiler also performs a syntactic transfor-
mation of functions with type context similar to the transformation described
above.

While the low-level integration of reflections into the Clean compiler core
allowed the definition of a nice pattern-matching syntax for working with reflec-
tions, a distinct advantage of the more general approach using theories is that
dynamic assumptions can be inferred automatically for structures and hence
also for functions. Users can utilise libraries that employ reflections internally
without having to bother about reflections at all, as long as the library declares
ASSUME Dynamic somewhere. We believe that library programming is the actual
realm of reflective programming.

It seems to have been known for some time in the Haskell community that
dynamic types can be implemented in a similar way as described in this pa-
per using type classes. However, a technical problem is that the following class
definition is illegal:

class Dynamic a where

reflectType :: Type

The member reflectType does not depend on a which is a required context
condition in Haskell. One way to solve this problem is to add a dummy argu-
ment, yielding reflectType :: a -> Type. This technique has been used in
the library of the Hugs-98 distribution for dynamics. Unfortunately it leads to
“hacky” code, as for example in the following definition of a derived instance:

instance Dynamic a => Dynamic [a] where

reflectType x = mkListType (reflectType (bottom x))

where

bottom :: [a] -> a

bottom = bottom

The problem here is the way Haskell treats overloading. While Haskell exclusively
uses type classes to resolve ambiguities, Opal (and C++) use ad-hoc overloading.
In ad-hoc overloading ambiguous partial names are promoted to complete names
by inferring missing parts from context. While this solves the above problem,
Opal’s overloading mechanism could still benefit from an extension by Haskell’s
type classes: Type classes can be used to implicitly associate “internal” knowl-
edge about data types with the specialised implementations of libraries that are
parameterised over these types. We regard dynamic types and reflections as a
typical application of this usage.

References

1. The Opal Home Page. http://uebb.cs.tu-berlin.de/~opal.
2. M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic Typing in Polymorphic

Languages. Journal of Functional Programming, 5(1):111–130, Jan 1996.
3. Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic

Typing in a Statically-Typed Language. In 16th ACM Symposium on Principles
of Programming Languages, pages 213–227, 1989.

4. Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and Peter Pep-
per. OPAL: Design and Implementation of an Algebraic Programming Language.
In Jürg Gutknecht, editor, Programming Languages and System Architectures, In-
ternational Conference, Zurich, Switzerland, March 1994, volume 782 of Lecture
Notes in Computer Science, pages 228–244. Springer, 1994.

5. Klaus Didrich, Wolfgang Grieskamp, Christian Maeder, and Peter Pepper. Pro-
gramming in the Large: the Algebraic-Functional Language Opal 2α. In Pro-
ceedings of the 9th International Workshop on Implementation of Functional Lan-
guages, St Andrews, Scotland, September 1997 (IFL’97), Selected Papers, volume
1467 of Lecture Notes in Computer Science, pages 323 – 338. Springer, 1998.

6. Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and Jose Meseguer.
Principles of OBJ2. In 12th ACM Symposium on Principles of Programming Lan-
guages, 1985.

7. Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip Wadler.
Type Classes in Haskell. In ESOP, Jan 1994.

8. P. H. Hartel, M. Feeley, M. Alt, L. Augustsson, P. Baumann, M. Beemster, E. Chail-
loux, C. H. Flood, W. Grieskamp, J. H. G. van Groningen, K. Hammond, B. Haus-
man, M. Y. Ivory, R. E. Jones, J. Kamperman, P. Lee, X. Leroy, R. D. Lins,

http://uebb.cs.tu-berlin.de/~opal

S. Loosemore, N. Röjemo, M. Serrano, J.-P. Talpin, J. Thackray, S. Thomas,
P. Walters, P. Weis, and P. Wentworth. Benchmarking implementations of func-
tional languages with “pseudoknot”, a Float-Intensive benchmark. Journal of
Functional Programming, 6(4), 1996.

9. Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of Functional Pro-
gramming, 3(4):431–463, 1993.

10. Peter Pepper. Funktionale Programmierung in Opal, ML, Haskell und Gofer.
Springer-Lehrbuch, 1998. ISBN 3-540-64541-1.

11. Marco Pil. Dynamic types and type dependent functions. In K. Hammond,
T. Davie, and C. Clack, editors, Proceedings of the 10th International Workshop on
Implementation of Functional Languages, London, UK, September 1998, (IFL’98),
volume 1595 of Lecture Notes on Computer Science, pages 169–185. Springer, 1999.

12. Sun Microsystems Inc. JavaTM Core Reflection, API and Specification, 1997. Part
of the JDK documentation.

13. Martin Wirsing. Handbook of Theoretical Computer Science, chapter Algebraic
Specification (13), pages 675–788. North-Holland, 1990. edited by J. van Leeuven.

	Introduction
	Reflection Interface and Applications
	Core Interface
	Inspection Interface
	Lookup Interface

	Semantic Foundation
	Algebraic Foundation
	Syntactic Transformation

	Implementation
	Construction of Value Reflections
	Free Type and Function Reflection

	Conclusion

