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Abstract

We study Turing machines that are allowed absolutely no space overhead. The
only work space the machines have, beyond the fixed amount of memory implicit in
their finite-state control, is that which they can create by cannibalizing the input bits’
own space. This model more closely reflects the fixed-sized memory of real comput-
ers than does the standard complexity-theoretic model of linear space. Though some
context-sensitive languages cannot be accepted by such machines, we show that a large
subclasses of the context-free languages can even be accepted in polynomial time with
absolutely no space overhead.

Keywords. Space overhead, space reuse, overhead-free computation, context-sensitive
languages, linear space, deterministic linear languages, metalinear languages, hierarchy
theorems.

1 Introduction

While recursion theory studies which problems can be solved in principle on a computer,
complexity theory focuses on which problems can be solved realistically. Since it depends on
context what resources are deemed “realistic,” different resource bounds on various models
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†Work done in part while visiting the University of Rochester, supported by a TU Berlin Erwin-Stephan-

Prize grant.

1



have been studied. For example, deterministic linear space can be seen as a formalization
of the limited memory of computers. Unfortunately, the standard complexity-theoretic
formalizations may be too “rough” in realistic contexts, as most have hidden constants
tucked away inside their definitions. Polynomial-time algorithms with a time bound of n100

and linear-space algorithms that need one megabyte of extra memory per input bit will
typically be unhelpful from a practical point of view.

In this paper we study a model that we believe more realistically captures the fixed-sized
memory of computers. We use (non-)deterministic one-tape Turing machines that may both
read and write their tape. Crucially, we require that the machine may only write on tape
cells that are nonempty at the beginning of the computation, when the tape is initialized
with the input string (with an unwritable left endmarker ` to its immediate left and an
unwritable right endmarker a to its immediate right). The head may neither move left of
the left endmarker nor right of the right endmarker. All (and only) words over the input
alphabet, which is typically {0, 1}, are allowed as input strings. Also crucially, we require
that the machine may only write symbols drawn from the input alphabet.

Thus, in our model of overhead-free computation the input initially completely fills the
machine’s memory and no auxiliary space is available. The machine can create work space
by “cannibalizing” the space occupied by its input. However, the price of doing so is that
the overwritten parts will potentially be lost (unless stored elsewhere via overwriting other
parts of the input or unless stored in the machine’s finite-state control). Note that the
machine is not allowed to cheat by using an enriched tape alphabet. Allowing such cheating
would transform our model into one accepting exactly the (non-)deterministic linear-space
languages. As just a few examples of the large literature on

Although deterministic overhead-free computation is a natural model, its nondetermin-
istic counterpart might appear to be of only theoretical interest. After all, nondeterministic
computations are hardly “realistic” even if they are overhead-free. However, nondetermin-
istic computations are useful in understanding the inherent limitations of overhead-free
computation. An example of such a limitation is the fact that some context-sensitive lan-
guages cannot be accepted by overhead-free machines—not even by nondeterministic ones.

The class of languages accepted by deterministic overhead-free machines will be denoted
DOF, and its nondeterministic counterpart will be denoted NOF. Although these classes
“realistically” limit the space resources, the underlying machines can still potentially run
exponentially long before they decide whether to accept. We will also study which languages
can be accepted efficiently by overhead-free machines, that is, in polynomial time. Let
DOFpoly denote the class of those languages in DOF that are accepted by overhead-free
machines running in polynomial time, and let NOFpoly denote the class of languages in NOF
that are accepted by overhead-free machines running in polynomial time.

Previous work on machines with limited alphabet size mostly concerned the limitations
of such machines. For example, machines somewhat similar to overhead-free machines have
been studied in a note by Feldman and Owings [5], namely linear bounded automata with
bounded alphabet size. The work of Feldman and Owings shows that DOF is a proper subset
of DCSL, the class of all deterministic context-sensitive languages. The work of Seiferas [20]
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shows that NOF is a proper subset of CSL, the class of all context-sensitive languages.
In this paper we are mostly concerned with the power of overhead-free machines. We

show that all deterministic linear languages [17] are contained even in the most restrictive
of our four classes, namely DOFpoly. An even larger class of context-free languages, the
metalinear languages [2,19], is contained in NOFpoly. In both cases we give an explicit
algorithm. As additional indicators of the power of overhead-free computation, we show
that DOFpoly contains non-context-free sets and we show, using a reencoding trick, that
DOF even contains PSPACE-complete sets.

To anyone who might think, “your model, which allows no extra space, is unnatural
compared with the standard, natural notion of linear space,” we would reply that actually
the standard models of the field such as linear space are somewhat unnatural in a way that
jumps off the page to students, but that professors have grown so used to that we rarely
think about the unnaturalness (though we know well why we tolerate it). In the standard
models, given an input the machine magically gets larger and larger amounts of extra space,
and students often point out that they have yet to see machines whose amount of extra
memory grows based on the input. The model is unnatural—yet we study things within it
for all the standard, reasonable reasons that we learned long ago and know, love, and teach.
Our point is not that standard models or classes are bad, but rather that ours is a natural
model.

In addition, we point out that our model has strong roots in the literature. There is
a large body of work, dating back decades and active through the present day, on in situ
and “in place”/“inplace” algorithms (the latter in some places taking on a term-of-art
special meaning with respect to a specific task [1]). Though that work is, loosely speaking,
interested in computing functions (transformations) with almost no overhead rather than,
as we are, computing languages with almost no overhead, that existing body of work does
suggest that allowing essentially no additional space is a natural notion, and that defining
classes to capture the thusly computable sets is also natural. As just as few examples of
the literature on in-place algorithms, we mention [3,4,16,6,15,1].

This paper is organized as follows. In Section 2, we review basic concepts and define
the classes DOF, NOF, DOFpoly, and NOFpoly. In Section 3, we demonstrate the power of
overhead-free computation by giving explicit algorithms for accepting the abovementioned
subclasses of the context-free languages with absolutely no overhead. In Section 4, we
discuss the limitations of overhead-free computation.

2 Definitions and Review of Basic Concepts

In this section we first review basic concepts that will be needed in later sections. We then
define the four models of overhead-freeness studied in this paper.

Given two alphabets Σ and Γ, a substitution is a mapping s : Σ → P(Γ∗) that assigns a
language s(a) to every symbol a ∈ Σ. A substitution is extended to words by s(a1 . . . an) :=
{w1 . . . wn | wi ∈ s(ai)} and to languages by s(L) :=

⋃
w∈L s(w). A homomorphism is a

mapping h : Σ → Γ∗. A homomorphism is isometric if all words in the range of h have the
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same length. A homomorphism is extended to words by h(a1 . . . an) := h(a1) . . . h(an) and
to languages by h(L) := {h(w) | w ∈ L}. The inverse image of a language L is defined by
h−1(L) := {w | h(w) ∈ L}.

Let DLINSPACE :=
⋃

k>0 DSPACE[kn]. Let NLINSPACE :=
⋃

k>0 NSPACE[kn]. DCFL
denotes the class of all deterministic context-free languages [11]. CFL denotes the class
of all context-free languages. CSL denotes the class of all deterministic context-sensitive
languages. It is well-known that CSL = NLINSPACE. The class DCSL (the “deterministic
context-sensitive languages”) is by definition DLINSPACE. Note that it is not hard to see
that DLINSPACE and NLINSPACE contain the languages accepted by deterministic, respec-
tively nondeterministic, one-tape Turing machines that write on only the cells occupied by
the input—but in the model (not ours) in which machines are allowed to write arbitrary
symbols of a possibly large tape alphabet.

We next review different classes of linear languages. These have been studied extensively
in the literature [2] and have applications in probabilistic finite automata theory [18]. They
are defined in terms of the following special types of context-free grammars.

Definition 2.1 ([19]). A grammar is linear if it is a context-free grammar in which the
right-hand sides of all productions contain at most one nonterminal.

Definition 2.2 ([19]). A context-free grammar G = (N,T, S, P ) is said to be a k-linear
grammar if it has the form of a linear grammar plus one additional rule of the form S →
S1S2 . . . Sk, where none of the Si may appear on the right-hand side of any other rule and
S may not appear in any other rule at all.

Definition 2.3 ([17,19]). A linear grammar G = (N,T, S, P ) is deterministic linear if it
has the following two properties. First, all right-hand sides containing nonterminals have
this nonterminal at the second position. Second, for every X ∈ N and a ∈ T there is at
most one production with X on the left-hand side whose right-hand side starts with a.

A language is called linear (k-linear, deterministic linear) if it is generated by a grammar
that is linear (k-linear, deterministic linear). It is called metalinear if it is k-linear for some k.

The above standard definition of deterministic linear grammars is the one given by Nasu
and Honda in 1969 [17]. It is rather restrictive, which will make our proofs more transpar-
ent. The full power of deterministic linear languages can in fact be better appreciated by
looking at the far more flexible-seeming definition—which includes a much broader range
of grammars—given by Ibarra, Jiang, and Ravikumar in 1988 [12]. Crucially, Holzer and
Lange [9] proved that the latter definition in fact yields exactly the same class of langua-
ges as the Nasu–Honda definition except it accepts one additional language: the language
containing exactly the empty string. Since that pathological language is in fact in DOFpoly,
all results of this paper hold under either definition. (Note: Holzer and Lange [9] have
proposed a new, completely different, machine-based definition of what they feel should
be called a “deterministic linear (context-free) language,” but this proposed terminological
change has not caught on, so we follow the standard, traditional terminology.)
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To conclude this section, we now define the four different classes of overhead-free com-
putation. To do this rigorously we must tackle one technical issue: The notion of overhead-
freeness is sensible only if languages “carry around” their underlying alphabet. Normally,
the difference between, say, the language A = {1p | p is prime} taken over the alphabet {1}
and the same language A taken over the alphabet {0, 1} is irrelevant in complexity theory,
since we can enlarge the tape alphabet appropriately. In contrast with this, for our notion
of overhead-freeness it certainly makes a difference whether the input alphabet is unary or
binary, as a unary input alphabet rids us of the possibility of interestingly writing anything
onto the tape, see Theorem 4.1. Thus, from a formal point of view we consider our com-
plexity classes to consist of tuples (L,Σ) consisting of a language L and an alphabet Σ such
that L ⊆ Σ∗.

For the following definition, recall that we called a machine overhead-free if it writes on
only those cells that were initially filled with the input and if it writes symbols drawn only
from the input alphabet.

Definition 2.4. A pair (L,Σ) is in the class DOF if L is accepted by a deterministic
overhead-free machine with input alphabet Σ. A pair (L,Σ) is in DOFpoly if L is accepted
by a deterministic overhead-free, polynomial-time machine with input alphabet Σ. The
counterparts to DOF and DOFpoly defined in terms of nondeterministic machines are denoted
NOF and NOFpoly.

As differing input alphabets are mainly a technical subtlety, we will in the following
speak just of L when the Σ is clear from context.

3 The Power of Overhead-Free Computation

In this section we demonstrate the power of overhead-free computation. We first give an
explicit example of a non-context-free set that nonetheless is in the smallest of our classes,
namely DOFpoly. Then we show that DOF contains a PSPACE-complete set. The final part
of this section is taken up by a sequence of theorems that establish containment in DOFpoly,
or at least NOFpoly, for larger and larger classes.

As an introductory example of overhead-free computation, we show that the language
A := {0n1n0n | n ≥ 1} is in DOFpoly. Since this set is not context-free, DOFpoly contains
non-context-free sets.

Theorem 3.1. There is a set in DOFpoly that is not context-free.

Proof. We show A = {0n1n0n | n ≥ 1} ∈ DOFpoly via a machine M . On input w ∈ {0, 1}∗,
using a left-to-right sweep, M first ensures that the input is of the form 0+1+0+. Then it
moves back to the left end. During the following computation the tape’s content will always
be of the form 0∗1∗0∗1∗. The machine now loops through the following instructions: In the
first 0’s block replace the last 0 by a 1, which enlarges the following 1’s block by one 1. In
this following block replace the last two 1’s by 0’s, which enlarges the following 0’s block
by two 0’s. In this block replace the last three 0’s by 1’s. If you inadvertently hit the right
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endmarker at any point, reject. Return to the left end and check whether the tape solely
consists of 1’s. If so, accept, otherwise repeat.

Clearly, the computation is overhead-free and runs in polynomial time. Furthermore,
the input word will be accepted exactly if it is of the prescribed form.

Our next aim is to show that DOF contains a PSPACE-complete set. To prove this, we
first show that given any language L ∈ DLINSPACE we can find a closely related language
L′ ⊆ {0, 1}∗ that is accepted by an overhead-free machine.

Lemma 3.2. Let L ∈ DLINSPACE with L ⊆ Σ∗. Then there exists an isometric homomor-
phism h : Σ → {0, 1}∗ such that for L′ := h(L) ⊆ {0, 1}∗ we have L′ ∈ DOF. Similarly, if
L ∈ NLINSPACE there exists an isometric homomorphism h such that L′ := h(L) ∈ NOF.

Proof. Let L ∈ DLINSPACE via a machine M that never writes on any cells other than
those that contained the input. As mentioned earlier, every language in DLINSPACE can
be accepted in such a fashion. Let M use the tape alphabet Γ ⊇ Σ, which may be strictly
richer than Σ. Let k :=

⌈
log2 |Γ|

⌉
. Then there exists an injective mapping g : Γ → {0, 1}k,

which codes every symbol in Γ as a binary string of length k. Let h be the restriction of g
to the domain Σ.

We now show h(L) ∈ DOF via a machine M ′. This machine always reads k symbols as a
block. On input w it first ensures that w consists only of blocks that encode symbols from
Σ ⊆ Γ. Then w = g(u1)g(u2) . . . g(um) for some sequence of ui’s in Σ. For convenience,
we will overload g to operate on strings as well as symbols when our meaning is clear
from context. Thus here w = g(u) for the string u = u1u2 . . . um. M ′ now returns to the
beginning of the input and starts a simulation of what M would do on input u. Every
time M reads/writes a single symbol, M ′ reads/writes a block of size k that encodes the
read/written symbol. This way, whenever the machine M would reach a state q with tape
content u′ ∈ Γ∗, the machine M ′ will also reach state q with the tape content g(u′) ∈ {0, 1}∗.
If M would accept, M ′ does.

For the nondeterministic case the simulation works analogously.

Since DLINSPACE and NLINSPACE are clearly closed under inverse isometric homomor-
phisms, we have the following corollary.

Corollary 3.3. The closure of DOF under inverse isometric homomorphisms is exactly
DLINSPACE. Likewise, the closure of NOF under inverse isometric homomorphisms is
exactly NLINSPACE.

Theorem 3.4. The class DOF contains a ≤log
m -complete set for PSPACE.

Proof. Take any ≤log
m -complete problem A ∈ PSPACE. This problem ≤log

m -reduces via stan-
dard padding techniques to a problem B in DLINSPACE. But B can be inverse-isometric-
homomorphism-mapped (and thus certainly ≤log

m -reduced) to a set C ∈ DOF by Corol-
lary 3.3. This set C is ≤log

m -complete for PSPACE.
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The fact that powerful sets can reduce to DOF does not say that those sets are in DOF
themselves. In fact, since DOF is obviously a subset of DLINSPACE, by the Space Hierarchy
Theorem some PSPACE languages are not in DOF. For example there is a language in
DSPACE[n2] that is not in DOF.

The rest of this section is devoted to proving the containment in DOFpoly or NOFpoly of
ever larger subclasses of CFL. We start with the simplest case, the regular languages.

Theorem 3.5. All regular languages are in DOFpoly.

Proof. Regular languages are even in DOFlinear via machines that move their heads steadily
to the right and never write at all.

Our next aim is to prove that all deterministic linear languages (see Section 2 for a
detailed definition) are in DOFpoly. We start with a useful lemma on the effect of a con-
stant amount of additional space at the beginning or end of the input on overhead-free
computation. Roughly put, it has no effect.

Lemma 3.6. Let C ∈ {DOF, NOF, DOFpoly, NOFpoly}, let L be a language over the alpha-
bet Σ, and let u, v ∈ Σ∗. Then {uzv | z ∈ L} ∈ C iff L ∈ C.

Proof. Let L ∈ C via M . To show {uzv | z ∈ L} ∈ C, on input w we first check whether
w = uzv for some word z ∈ Σ∗. If so, we simulate M on input z. During this simulation
we pretend to see a simulated left endmarker whenever we are actually |u| many symbols
from the real left end, and to see a simulated right endmarker whenever we are |v| many
symbols from the real right end. We do so by, between each simulated step, moving up to
|u| extra squares left and up to |v| extra squares right to detect whether we are thusly close
to the real ends.

For the only-if part, let {uzv | z ∈ L} ∈ C via machine M . Then L ∈ C via the machine
M ′ that, essentially, simulates M but when over the “u” or “v” parts (which do not exist
in its own input) uses its finite-state control to keep track of its head location, and that
globally keeps in its finite-state control the content currently on those hypothetical cells.
(By “using its finite-state control to keep track of” we refer to the standard fact that given
a machine with state set F we can build a machine with state set F ′ := F ×{0, 1}k, thus in
effect adding a constant number of usable extra “memory” bits to our finite control.)

Theorem 3.7. All deterministic linear languages belong to DOFpoly.

Proof. Let L be a deterministic linear language generated by a grammar G = (N,T, S, P ).
All deterministic linear tally languages are regular, since in the right-hand side of every
rule we can shift an existing nonterminal symbol to the end without changing the generated
language. Thus we need only consider the case that T contains at least two distinct symbols.
We will refer to two such symbols as 0 and 1.

By Lemma 3.6 it suffices to prove that {1z1 | z ∈ L} ∈ DOFpoly via some machine M .
Let w be an input word. We first check whether w = 1c1 . . . cn1 with ci ∈ T . We must now
check whether z := c1 . . . cn ∈ L, that is, whether there exists a derivation of z in G.
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Since the grammar is deterministic linear, it holds that if a derivation of z is possible at
all, then there exists exactly one possible derivation and it has the form

S = l0X0r0 ⇒G l1X1r1 ⇒G l2X2r2 ⇒G · · · ⇒G ltXtrt ⇒G z,

where the Xi are nonterminals and the li and ri are words over T . Note that each li is a
prefix of z and each ri is a suffix of z. Let λi := |li| and ρi := |ri| be the lengths of li and
ri, respectively.

The computation of M consists of a big loop. In each iteration of the loop the machine
checks one step of the derivation. When the step liXiri ⇒ li+1Xi+1ri+1 of the derivation is
checked, the machine has the symbol Xi stored in its finite-state control. The tape has the
form 0λi1cλi+1 . . . cn−ρi−110ρi , that is, all of li (and ri) will already have been replaced by
0’s, followed (respectively, preceded) by 1’s, which serve as stop markers. The machine’s
goal is to check whether Xi ⇒∗ cλi+1 . . . cn−ρi−1. Note that, indeed, in the zeroth step the
tape has exactly the prescribed form.

The machine M now starts scanning from the left end until it hits a 1. Then it moves
forward one symbol and “has a look” at the symbol cλi+1. By definition there can be
at most one rule with a left-hand side Xi whose right-hand side starts with cλi+1. Let
Xi → cλi+1Xi+1y be this rule. The machine now moves to the end of the input and scans
back from there to the first 1 from the right. Having found this stop marker, it can check
whether cn−ρi−|y| . . . cn−ρi−1 = y. If so, the machine has verified that the derivation step
liXiri ⇒ li+1Xi+1ri+1 was permissible. All that remains to be done is to move the left and
right stop markers inward by an appropriate number of cells.

In the last step, when the machine notices that the nonterminal symbol Xt is replaced by
a word a ∈ T ∗, it verifies that the tape’s content is 0∗1a10∗. If this is the case the machine
accepts, and otherwise it rejects. As the computation is deterministic, overhead-free, and
polynomially time-bounded, we have the claim.

Our final aim for this section is to show that all metalinear languages can be accepted
by nondeterministic overhead-free machines. To prove this, we show the following stronger
theorem first.

Theorem 3.8. Let A ⊆ ∆∗ be a regular language and let s : ∆ → P(Σ∗) be a substitution
such that for all d ∈ ∆ the language s(d) is linear. Then s(A) ∈ NOFpoly.

Proof. By definition we have z ∈ s(A) iff there exists a word y = y1 . . . yk ∈ A and words
z1, . . . , zk ∈ Σ∗ such that z = z1 . . . zk and zi ∈ s(yi) for all i ∈ {1, . . . , k}. Let D be a
deterministic finite automaton that accepts A. In the following we first show s(A) ∈ NOF
via some machine M . Later on we will add some safe-guards to ensure that M runs in
polynomial time. This will prove s(A) ∈ NOFpoly.

We now give a rough sketch of M ’s behavior. On input z it starts a main loop. In this
main loop the machine guesses a word y1 . . . yk ∈ A, that is, for every word in A there is a
nondeterministic path on which this word is guessed. Next, for each symbol yi the machine
guesses a word zi ∈ s(yi) in a sub-loop and compares this word with an appropriate part of
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the input. At the end, if the machine has verified that the input z can be decomposed in
the form z = z1 . . . zk with zi ∈ s(yi) for all i ∈ {1, . . . , k}, it accepts. What remains to be
shown is how the machine avoids producing any overhead.

As in the previous proof, we may assume that there exist two distinct symbols 0, 1 ∈ Σ.
We show {1z | z ∈ L} ∈ NOFpoly. Let w = 1z = 1c1 . . . cn be given as input. For d ∈ ∆, let
Gd = (Nd,Σ, Sd, Pd) denote a linear grammar that generates s(d).

In the main loop the machine nondeterministically guesses a word y ∈ A by guessing
an accepting computation of the automaton D. However, this word y is not written down
anywhere. Rather, the machine stores just the current symbol d := yi and the current state
of the automaton D in its finite-state control (see the related comments in the proof of
Lemma 3.6). When the i’th symbol is guessed, the machine will already have verified that z
starts with z1 . . . zi−1, with zj ∈ s(yj) for j ∈ {1, . . . , i− 1}. At this point the content of the
tape will be 0`1c`+1 . . . cn, where ` = |z1 . . . zi−1|. In other words, the z1 . . . zi−1 will have
been replaced by 0’s followed by a stop marker. We will call this the “land” stop marker as
it marks the end of the “land” 0`1 before the rough “sea” c`+1 . . . cn.

The tricky part is verifying that after the land stop marker comes a zi for which there
exists a derivation

Sd = l0X0r0 ⇒Gd
l1X1r1 ⇒Gd

l2X2r2 ⇒Gd
· · · ⇒Gd

ltXtrt ⇒Gd
zi.

As the word zi typically ends somewhere in the middle of the tape, we cannot employ the
“eat away from the outside” algorithm from the previous proof. Instead, we now “eat away
from the inside.”

Starting from the land stop marker we move right until we nondeterministically guess
that we have reached the point where the last rule Xt → a with a ∈ T ∗ was employed. We
check whether we really find a at that position. If so, we replace a by 10|a|−21 (if |a| < 2
we defer this replacement until we have gathered enough space in the following steps). The
tape’s content will now be

0`1c`+1 . . . c`+|lt|10|a|−21c`+|lt|+|a|+1 . . . cn

and the head will be inside the “island” of 0’s in the middle. Next, the machine nonde-
terministically guesses which rule Xt−1 ⇒Gd

yXty
′ was employed in the last step of the

derivation of zi. It then checks whether it finds y immediately left of the left island stop
marker and y′ immediately right of the right island stop marker. If so, it pushes the left
island stop marker |y| many cells to the left and the right island stop marker |y′| many cells
to the right.

Note that the machine will not notice if it inadvertently pushes the left island stop
marker over the land stop marker—after all, 0 and 1 are perfectly legitimate input symbols.
However, the machine will notice such a mistake later on, when it has eaten away a complete
derivation of zi. At this point, if all went well, the land stop marker must be directly adjacent
to the left island stop marker. The machine must hence check whether the tape left of the
island (whose boundary the machine knows) looks like this: 0∗1. If this is the case, the land
stop marker can be pushed to the right end of the island and the next stage can be entered.
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When the machine has guessed a complete word y ∈ A, it can check whether the land
stop marker has hit the right end. If so, it accepts.

It remains to show how we can ensure that M runs in polynomial time. There are two
places where M might “spend too much time.” First, in a derivation of a word zi rules of the
form X → Y with X, Y ∈ Nd might be applied over and over again, that is, a nonterminal
might repeatedly be replaced by a nonterminal without any terminals being read. Since
every row of more than ‖Nd‖ many such replacements must necessarily contain the same
nonterminal twice, no derivation of a word zi needs such long rows of replacement. Thus,
we keep a counter of how often we applied rules of the form X → Y in a row. We reject if
this counter exceeds the cardinality of Nd. Since this cardinality is fixed, we can store this
counter in our finite control.

The second place where M might loop is a long row of zi’s that are all the empty
word. In this case M constantly switches the stored internal state and the output d of the
automaton D that accepts A, but always guesses that the empty word is derived from Sd.
Similarly to first case, if we make more internal switches in a row than there are states in D,
we must visit the same state twice. Thus we do not really need more empty derivations in
a row than there are states in D. We keep a counter of the number of times in a row the
empty string was substituted for zi. If this counter exceeds the number of states in D, we
reject. This counter can also be kept in our finite control.

Note that there are three points in the above proof where we use nondeterminism. First,
we nondeterministically guess the word y ∈ A. Second, we nondeterministically guess the
“middle” of the zi’s, where their derivations end. Third, we nondeterministically guess the
derivations of the zi’s themselves.

Corollary 3.9. All metalinear languages belong to NOFpoly.

Proof. Every k-linear language L can be written as L = s(A), where A contains just one
word a1 . . . ak consisting of k different symbols, and s is a substitution that assigns a linear
language Li to each ai.

4 Limitations of Overhead-Free Computation

The previous section demonstrated that several interesting languages can be accepted by
overhead-free machines. In this section we discuss what cannot be done using overhead-free
machines.

We begin this section with a theorem that shows that overhead-free machines on unary
alphabets are just as powerless (or powerful, depending on your point of view) as finite
automata. Theorems 4.2 and 4.3 then show that there are (non-)deterministic context-
sensitive language that cannot be accepted by (non-)deterministic overhead-free machines.
Both results are based on diagonalization techniques. In the rest of the section we discuss
whether certain natural sets can be accepted in an overhead-free fashion.
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Theorem 4.1. Let L be a tally set. Then the following are equivalent: (a) L is regular,
(b) L ∈ DOFpoly, (c) L ∈ DOF, (d) L ∈ NOFpoly, and (e) L ∈ NOF.

Proof. If L is regular, then by Theorem 3.5 it is in DOFpoly and hence also in all of the
other three classes. For the other direction, let L ∈ NOF via an overhead-free machine M .
Since the input alphabet is unary, M behaves exactly like a nondeterministic finite two-way
automaton. As is well-known, nondeterministic finite two-way automata accept only regular
sets.

Theorem 4.2. DOF ( DLINSPACE.

Proof. This follows immediately from Corollary 2 of a paper by Feldman and Owings [5].
They show that for every constant m deterministic linear-bounded automata with alphabet
size at most m cannot accept all deterministic context-sensitive languages.

Theorem 4.3. NOF ( NLINSPACE.

Proof. Seiferas [20] has shown that for every m there exists a language in NLINSPACE
that cannot be accepted by any nondeterministic off-line Turing machine, that uses only m
different symbols on its tape. Since any overhead-free machine can be simulated by a linear
space off-line machine that first copies its input to its work tape, we get the claim.

An alternative proof of Theorem 4.3 can be based on combining Corollary 1 of the paper
of Feldman and Owings [5] with the Immerman-Szelepcsényi theorem [13,21]. The corollary
states that for each m there is a language whose complement is context-sensitive and that
cannot be accepted by a nondeterministic linear-bounded automaton whose alphabet size is
bounded by m. This is another example of the often encountered effect that the Immerman-
Szelepcsényi technique can be used to simplify nondeterministic space hierarchy proofs
(see [13,7]).

Theorems 4.2 and 4.3 show that overhead-free computation is less powerful than linear-
space computation in principle. A next step would be to prove that certain simple, natural
context-sensitive languages cannot be accepted in an overhead-free fashion. Our candidate
for a language that is not in NOF is L1 :=

{
ww | w ∈ {0, 1}∗

}
. Our candidate for a language

that is not in DOF is L2 :=
{
uu−1vv−1 | u, v ∈ {0, 1}∗

}
. Since L2 is metalinear, proving

L2 6∈ DOF would be especially satisfying as it would also separate nondeterministic and
deterministic overhead-free computation.

Interestingly, the languages L1 and L2, though we name them candidate non-NOF
(respectively non-DOF) languages, are in “2-head-DOFpoly,” the analog of DOFpoly in which
our overhead-free machine has two heads. For L1 this is very easily seen. For L2 the
algorithm works as follows: In a big loop, head 1 iterates over all symbols of the input,
while head 2 stays at the left endmarker. The body of the main loop consists of two checks,
in which the machine tries to verify whether the subwords before and after head 1 are
palindromes. For the first check, head 2 is moved right and head 1 is moved left until
head 1 hits the left endmarker. Then head 1 is moved to the right endmarker. For the
second check, head 1 is moved left and head 2 is moved right until head 2 hits the right
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endmarker. Then head 2 is moved back to the left endmarker once more. If at any stage of
either check the symbols under the heads differ, the checks will be said to “fail,” but they
are completed nevertheless. If the subwords before and after head 1 are palindromes, the
checks will not “fail” and the machine can accept its input. In any case, the heads will have
resumed their previous at the end of each iteration of the loop.

These observations raise the question of how powerful extra heads make our model.
First, by a classic result of Hartmanis [8], even O(1)-head finite automata taken collectively
yield the power of logarithmic-space Turing computation. Thus, at least in that different
context, additional heads are well-known to be a very powerful resource. However, using
the same argument as in Theorem 4.3, Seiferas’ results [20] can be used to show that for
every m there exists a context-sensitive language that is not in m-head-NOF.

5 Conclusion

In this paper we introduced a new computational model, namely overhead-free computa-
tion, in which Turing machines are allowed to manipulate their input, but may not use
any symbols other than the input alphabet. For the case of a binary input alphabet this
models what a personal computer or, perhaps more interestingly, a smart-card can compute
in its fixed-sized non-control memory, if the input initially fills the whole non-control mem-
ory. Building on this model we defined the four complexity classes DOF, NOF, DOFpoly,
and NOFpoly and studied how these classes relate to standard formal-language/complexity
classes. The most “realistic” of the four classes is DOFpoly, which contains the languages
that can be accepted efficiently (that is, in polynomial time) with absolutely no space over-
head. We showed by means of an explicit overhead-free algorithm that an important class
of languages, namely the class of deterministic linear languages, is a subset of DOFpoly. For
the larger class of metalinear languages we proved containment in NOFpoly.

These results suggest that CFL ⊆ NOF might hold. Our research gave neither proof
nor disproof of this inclusion. We recommend further research to characterize exactly those
context-free grammars that generate languages in NOF. Naturally, the ultimate goal of this
line of research would be to prove CFL ⊆ DOFpoly, which would be a major improvement
of the well-known CFL ⊆ P result due to Cocke, Younger, and Kasami [14,22], or to prove
the lack of that and other inclusions.

It is known (see [10, Section 11.3]) that some context-free languages inherently need
logarithmic space on deterministic off-line Turing machines and that some context-free
languages inherently need linear space on deterministic on-line Turing machines. However,
these results do not imply that these languages are not in NOF, as both in the on-line and
off-line models of [10] the input is read-only. In contrast, in our model the input may be
overwritten, albeit at the cost of losing the overwritten input bits. In fact, the very set used
in the logspace-overhead space lower bound of [10] can be shown to belong to DOFpoly.
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