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Abstract

We study Turing machines that are allowed absolutely no space overhead. The only work

space the machines have, beyond the fixed amount of memory implicit in their finite-state con-

trol, is that which they can create by cannibalizing the input bits’ own space. This model more

closely reflects the fixed-sized memory of real computers than does the standard complexity-

theoretic model of linear space.

Though some context-sensitive languages cannot be accepted by such machines, we show

that all context-free languages can be accepted nondeterministically in polynomial time with

absolutely no space overhead, and that all deterministic context-free languages can be accepted

deterministically in polynomial time with absolutely no space overhead.
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1 Introduction

Perhaps the most central goal of complexity theory is to gain an understanding of which problems
can be solved realistically using a computer. Since what resources are deemed “realistic” depends on
context, different resource bounds on various models have been studied. For example, deterministic
linear space is a possible formalization of the limited memory of computers. Unfortunately, the
standard complexity-theoretic formalizations may be too “rough” in realistic contexts, since most
have hidden constants tucked away in their definitions. Polynomial-time algorithms with a time
bound of n100 and linear-space algorithms that need one gigabyte of extra memory per input bit
will typically be unhelpful from a practical point of view.

In this paper we study a model that we believe more realistically captures the fixed-sized memory
of computers. We use deterministic and nondeterministic one-tape Turing machines that may both
read and write their tape. Crucially, we require that the machine may write only on tape cells
that are nonempty at the beginning of the computation, when the tape is initialized with the input
string (with an unwritable left endmarker ` to the input’s immediate left and an unwritable right
endmarker a to the input’s immediate right). The head may move neither left of the left endmarker
nor right of the right endmarker. All (and only) words over the input alphabet, which is typically
{0, 1}, are allowed as input strings. Also, crucially, we require that the machine may write only
symbols drawn from the input alphabet.

In our model of overhead-free computation no auxiliary space is available, but the machine can
attempt to create work space by “cannibalizing” the space occupied by its input. However, the
price of doing so is that the overwritten parts will potentially be lost, unless stored elsewhere via
overwriting other parts of the input or unless stored in the machine’s finite-state control. The
machine is not allowed to cheat by using an enriched tape alphabet. Allowing such cheating would
transform our model into one accepting exactly the linear-space languages.

The restrictions we impose on overhead-free machines have quite dramatic consequences on the
design of (overhead-free) algorithms. For example, they rob us of the ability to place arbitrary
“marker symbols” on the tape. To appreciate how sorely one can miss marker symbols, we invite
the reader to try to find an overhead-free algorithm for accepting (even nondeterministically) the
set of bit strings that are palindromes. An even more challenging (and as yet unsolved) task is to
find an overhead-free algorithm for the innocent-looking language {ww | w ∈ {0, 1}∗}.

We will use notational shortcuts for the four language classes this paper introduces. The class
of languages accepted by deterministic overhead-free machines will be denoted DOF, and its nonde-
terministic counterpart will be denoted NOF. Although these classes “realistically” limit the space
resources, the underlying machines can still potentially run exponentially long before they decide
whether to accept. We will also study which languages can be accepted time efficiently by overhead-
free machines, that is, in polynomial time. Let DOFpoly denote the class of those languages in DOF

that are accepted by deterministic overhead-free machines running in polynomial time, and define
NOFpoly analogously.
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Although deterministic overhead-free computation is a natural model, its nondeterministic coun-
terpart might appear to be of only theoretical interest. After all, nondeterministic computations
are hardly “realistic” even if they are overhead-free. However, nondeterministic computations are
useful in understanding the inherent limitations of overhead-free computation. An example of such
a limitation is the fact that some context-sensitive languages cannot be accepted by overhead-free
machines—not even by nondeterministic ones.

Previous work on machines with limited alphabet size mostly concerned the limitations of such
machines. For example, machines—called linear bounded automata with bounded alphabet size—
somewhat similar to overhead-free machines have been studied in a note by Feldman and Ow-
ings [FO73]. The work of Feldman and Owings implies that DOF is a proper subset of DCSL, the
class of all deterministic context-sensitive languages. The work of Seiferas [Sei77] implies that NOF

is a proper subset of CSL, the class of all context-sensitive languages.
In this paper we are mostly concerned with the power of overhead-free machines. We show

that overhead-free machines can simulate certain types of restart automata [JMPV95,Ott03]. As
a corollary we obtain the claim that all deterministic context-free languages are contained even in
the most restrictive of our four classes, namely DOFpoly. We present an algorithm that establishes
that all context-free languages are contained in NOFpoly. As additional indicators of the power of
overhead-free computation, we point out that DOFpoly contains non-context-free sets and that DOF

even contains PSPACE-complete sets.
We show that our model is equivalent to other natural models. First, overhead-free machines

are exactly as powerful as two-stack machines that may push only input-alphabet symbols and
that may never push more symbols than they have popped. This observation allows us to give
simple algorithms for accepting numerous languages in an overhead-free way. Second, overhead-free
machines are exactly as powerful as editing Turing machines if we enforce appropriate restrictions
on the tape size and content. This characterization of overhead-free computation is crucial for our
proof that all context-free languages are in NOFpoly.

Related Work. A functional variant of overhead-free computation has strong roots in the lit-
erature. There is a large body of work, dating back decades and active through the present day,
on in situ or “in-place” algorithms. That work is, loosely speaking, interested not in accepting
languages but rather in implementing, with almost no overhead, transformations. As just as few
examples of the extensive literature on in-place algorithms, we mention [Dij82,DvG82,Fis92,KP99,
GKP00,ALS03].

This paper’s focus is on a restricted type of one-tape linear-space Turing machine. Those in-
terested in the theory of one-tape linear-time Turing machines may find Tadaki, Yamakami, and
Lin [TYL03,TYL04], and the references therein, a useful literature starting point. The interesting
independent work of Csuhaj-Varju, Ibarra, and Vaszil ([CVIV], see also [Iba]) relates the nature of
the workspace to the richness of the input seen so far. Their work is in the quite different context
of membrane computing, which studies “biomolecular computing devices working in a distributed
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and parallel manner inspired by the functioning of the living cell . . . [and based on] a hierarchi-
cally embedded structure of membranes” [CVIV]. Informally put, they study membrane models
in which the (separate from the input) workspace may at each moment in the computation use
just the multiset of “objects” that have already entered the system. They show that, depending on
whether membrane rules are applied sequentially or with “maximum parallelness,” the power of such
membrane systems ranges from being a strict subset of the languages accepted by one-way logspace
Turing machines to being exactly the set of all context-sensitive languages. To help understand
these membrane systems, they introduce a new model of nondeterministic Turing machine—called
1-way S(n)-space-bounded machines—in which, at every moment in the (accepting) computation,
the number of nonblank characters on the (separate) worktape(s) is limited not by S(input size) but
rather is bounded by S(current position of the one-way input tape head) [CVIV]. Their model dif-
fers from our model in multiple ways: They allow their machines to use an arbitrary, richer alphabet
on the worktape; they have separate input and work tapes; and their input is read in a one-way
fashion.

Organization. This paper is organized as follows. In Section 2 we review the basic concepts and
define the classes DOF, NOF, DOFpoly, and NOFpoly. In Section 3 we demonstrate the power of
overhead-free computation. In Section 4 we discuss the limitations of overhead-free computation.

2 Definitions and Review of Basic Concepts

In this section we first review some basic concepts that will be needed in later sections. We then
define the four models of overhead-freeness studied in this paper.

For each finite set A, ‖A‖ denotes the cardinality of A. For any integer n, |n| denotes the absolute
value of n. For any string x ∈ Σ∗, |x| denotes the length of x. Given two alphabets Σ and Γ, a
homomorphism is a mapping h : Σ → Γ∗. A homomorphism is isometric if all words in the range of h

have the same length. A homomorphism is extended to words by h(a1 · · · an) := h(a1) · · ·h(an) and
to languages by h(L) := {h(w) | w ∈ L}. Its inverse application is the set h−1(L) := {w | h(w) ∈ L}.
For a machine M let L(M) denote the language accepted by M .

Let DLINSPACE denote
⋃

k>0 DSPACE[kn] and let NLINSPACE denote
⋃

k>0 NSPACE[kn]. DCFL

denotes the class of all deterministic context-free languages (see [HU79]). CFL denotes the class of
all context-free languages. CSL denotes the class of all context-sensitive languages. It is well known
that CSL = NLINSPACE. The class DCSL (the “deterministic context-sensitive languages”) is by
definition DLINSPACE. It is not hard to see that DLINSPACE (NLINSPACE) contains the languages
accepted by deterministic (nondeterministic) one-tape Turing machines that write on only the cells
occupied by the input—but in the model (not ours) in which machines are allowed to write arbitrary
symbols of a possibly large tape alphabet.

We introduce four complexity classes to capture overhead-free computation. For a rigorous
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definition we must tackle one technical issue: The notion of overhead-freeness is sensible only if
languages “carry around” their underlying alphabet. Normally, the difference between, say, the
language A = {1p | p is prime} taken over the input alphabet {1} and the same language A taken
over the input alphabet {0, 1} is irrelevant in complexity theory, since we can enlarge (in the model—
not ours—where the input tape is separate from the work tape) the work tape’s alphabet in both
cases. In contrast, for overhead-freeness it makes a difference whether the input alphabet is unary or
binary, since a unary input alphabet robs us of the possibility of interestingly writing anything onto
the tape—see Theorem 4.1. Thus, from a formal point of view we consider our complexity classes
to contain tuples (L,Σ) consisting of a language L and an alphabet Σ such that L ⊆ Σ∗.

For the following definition, recall that we called a machine overhead-free if it writes on only
those cells that were initially filled with the input and if it writes only symbols drawn from the input
alphabet.

Definition 2.1 A pair (L,Σ) is in the class DOF if L is accepted by a deterministic overhead-free
machine with input alphabet Σ. A pair (L,Σ) is in DOFpoly if L is accepted by a determinis-
tic overhead-free, polynomial-time machine with input alphabet Σ. The counterparts to DOF and
DOFpoly defined in terms of nondeterministic machines are denoted NOF and NOFpoly.

Since differing input alphabets are mainly a technical subtlety, in the following we will speak just
of L when the alphabet Σ is clear from context.

3 The Power of Overhead-Free Computation

In this section we explore the power of overhead-free computation. We start with an explicit example
of a non-context-free set that is nonetheless in the smallest of our classes, namely DOFpoly. We then
show how overhead-free computation can be characterized by other computational models, namely
overhead-free two-stack automata, restarting automata, and editing Turing machines. Building on
these characterizations, we relate context-free language classes to overhead-free computation. At
the end of the section we show that DOFpoly contains a P-complete set, that NOFpoly contains an
NP-complete set, and that DOF and NOF both contain PSPACE-complete sets.

3.1 A First Example

As an introductory example, we show that the language A := {0n1n0n | n ≥ 1} is in DOFpoly. Since
this set is not context-free, DOFpoly contains non-context-free sets.

Theorem 3.1 There is a set in DOFpoly that is not context-free.

Proof. We show A = {0n1n0n | n ≥ 1} ∈ DOFpoly via a machine M . On input w ∈ {0, 1}∗, using
a left-to-right sweep, M first ensures that the input is of the form 0+1+0+. During the following
computation the tape’s content will always be of the form 0∗1∗0∗1∗. The machine now loops through
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the following instructions: Accept if the tape contains a string of the form 0101∗. Otherwise, move
back to the left end. In the first 0’s block replace the last 0 by a 1, which enlarges the following 1’s
block by one 1. In this block replace the last two 1’s by 0’s, which enlarges the following 0’s block
by two 0’s. In this block replace the last three 0’s by 1’s. If at any point you inadvertently hit the
right endmarker or have a missing block, reject. Otherwise, return to the left end and repeat.

Clearly, the computation is overhead-free and runs in quadratic time. Furthermore, the input
word will be accepted exactly if it is of the prescribed form. �

3.2 Two-Stack Automata and Overhead-Free Computation

In this subsection we give the first characterization of overhead-free computation in terms of another
model. We show that two-stack automata of appropriately bounded total stack height are exactly
as powerful as overhead-free machines. This observation is useful because it is sometimes easier to
describe algorithms for two-stack machines than for overhead-free machines.

Definition 3.2 A two-stack automaton has two stacks whose bottoms are indicated by a special
bottom symbol. Initially, the first stack is filled with an input word w ∈ Σ∗ such that the first letter
is topmost. In each step, depending on the two top symbols of the stacks and depending on its current
internal state, the automaton changes its internal state and may choose to pop a symbol from one
of the stacks, to leave the stacks unchanged, or to push a symbol from a tape alphabet Γ ⊇ Σ onto
one of the stacks. When the automaton enters a special accepting state, the word is accepted. The
set of all words accepted by a two-stack automaton M is denoted L(M). A two-stack automaton is
overhead-free if (a) Σ = Γ and (b) during every computation the sum of the heights (not counting
the special bottom symbols) of the two stacks never exceeds the length of the input word.

As is well known, two-stack automata are exactly as powerful as general Turing machines if there
is no restriction on the stack heights. Overhead-free two-stack automata are obviously less powerful
(their configuration space is exponentially bounded), but can still accept interesting languages such
as, for instance, the set of palindromes: An automaton for this language works as follows: It accepts
if the input is ε. Otherwise, it pops the top symbol from the first stack and stores it in its internal
state. Then it pops all symbols from the first stack and pushes them onto the second stack. When
the first stack is empty, the automaton accepts if the second stack is empty, and otherwise pops the
top symbol from the second stack and compares it with the stored symbol. If these are not the same,
the automaton rejects. If they are the same, then the automaton pops all remaining symbols from
the second stack and pushes them onto the first one. It repeats this procedure until both stacks are
empty, at which point it accepts.

Theorem 3.3 If L ⊆ Σ∗ and ‖Σ‖ ≥ 2, then all of the following hold:

1. L ∈ DOF if and only if there exists a deterministic overhead-free two-stack automaton M with
L(M) = L.
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2. L ∈ NOF if and only if there exists a nondeterministic overhead-free two-stack automaton M

with L(M) = L.

3. L ∈ DOFpoly if and only if there exists a deterministic polynomial-time overhead-free two-stack
automaton M with L(M) = L.

4. L ∈ NOFpoly if and only if there exists a nondeterministic polynomial-time overhead-free two-
stack automaton M with L(M) = L.

Proof. For the first direction of part 1 of the theorem, let L ∈ DOF via a deterministic overhead-free
machine M ′. In order to simulate M ′ by an overhead-free two-stack automaton M , we use the two
stacks as follows: All tape symbols under or following the head of M ′ are on the first stack of M with
the symbol under the head topmost on that stack; all tape symbols before the head of M ′ are on the
second stack of M with the symbol just to the left of the head topmost. The different operations
of M ′ can easily be simulated in such a way that this invariant is maintained. For instance, a right
move of M ′ corresponds to popping the topmost symbol from the first stack and pushing to the
second stack whatever symbol M ′ wrote to the cell it was moving off of.

For the other direction of part 1, let M be an overhead-free two-stack automaton. It is simulated
by an overhead-free machine M ′ as follows. The tape of M ′ has three parts. The first part, which
starts after the left endmarker, is the contents of the second stack with the topmost symbol at the
right. This part is followed by a word of the form 10∗1 (0 and 1 being distinct symbols in Σ), by
the single symbol 1, or by the empty word ε. At all times, M ′ keeps track (in its internal state) of
which of these three forms the middle part currently has. Initially the middle part is ε. The final
part fills the tape up to the right endmarker and stores the first stack with its topmost symbol to
the left.

The head of the machine M ′ is always inside the middle part or on one of the symbols adjacent to
it. M ′ simulates the operations of M as follows: Popping a symbol from the first stack corresponds
to shifting the middle part one link along the chain ε → 1 → 11 → 101 → 1001 → . . ., and is done by
expanding the middle part one space rightward. Similarly, popping a symbol from the second stack
means the same expansion, but expanding the middle part one space leftward. Pushing a symbol to
the first stack is a contraction along this chain—freeing up the rightmost space of the middle part
and overwriting this freed position by the desired symbol. Pushing a symbol to the second stack is
implemented similarly.

Consider a simulation of the machine M by the machine M ′. By assumption, at all times the
total height of M ’s two stacks never exceeds the input length. So during the simulation the size of
the middle part never drops below zero. This shows that M ′ will reach exactly the same end state
as M does and that a word is accepted by M if and only if that word is accepted by M ′.

For part 2 of the theorem, the constructions work exactly the same way. For parts 3 and 4,
note that in the first direction of part 1 above every step of the overhead-free machine M ′ can be
simulated in a constant number of steps by the overhead-free two-stack automaton M , and that in
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the second direction of part 1 above every step of M can be simulated in a linear number of steps
by M ′. �

The above theorem does not hold for unary alphabets. Overhead-free machines over unary
alphabets clearly can only accept regular languages, but the language {a2n | n ∈ N} can be accepted
by a unary two-stack automaton: For every two symbols on the first stack, push one symbol onto
the second stack; then for every two symbols on the second stack, push one symbol onto the first
stack; and so on. If at the start of such a stack-to-stack shifting phase there is a single a on the
stack we are shifting from, then accept. If at the end of a stack-to-stack shifting phase there is an
orphaned a on the stack we are shifting from, then reject.

In the next subsections we will see that overhead-free Turing machines are surprisingly powerful.
By Theorem 3.3, this also tells us something about the power of overhead-free two-stack automata.
For example, by the results of the following subsections overhead-free two-stack automata can de-
terministically accept all deterministic context-free languages and can nondeterministically accept
all context-free languages.

3.3 Restarting Automata and Overhead-Free Computation

The next model we compare overhead-free computation to is that of restart automata. We show
that a special type of restart automata, namely RRW-automata, can be simulated using overhead-
free machines. Since RRW-automata are powerful enough to accept all deterministic context-free
languages, all deterministic context-free languages can also be accepted in an overhead-free way.

Many variants of restarting automata have been studied; see [Ott03] for an overview. We con-
centrate on RRW-automata since they appear to be the most powerful restarting automata that can
be simulated in an overhead-free way.

Definition 3.4 ([JMPV98]) An RRW-automaton is a one-tape machine whose tape is initialized
with an input word w ∈ Σ∗, delimited by left and right endmarkers. It “sees” the input through a
fixed-size window. It can perform four kinds of operations:

1. A move-right step, which moves the window one symbol to the right, possibly changes the
internal state, but leaves the tape contents unmodified.

2. A rewrite step, which causes the contents of the window to be replaced by a shorter string
drawn from Σ∗, though the endmarkers must be reproduced if a replacement takes place at an
end. The tape is shortened when such a step is performed.

3. A restart step, which causes the head to return to the left end of the tape, and the machine to
reenter the initial state.

4. An accept step, which causes the machine to accept.
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Moreover, between any two executions of a restart step there must be at least one rewrite step, and
between any two rewrite steps there must be at least one restart step. (The effect of this is that the two
types of steps—ignoring other types—alternate.) The class of languages accepted by nondeterministic
RRW-automata is denoted L(RRW). The deterministic version is denoted L(det- RRW).

As an example, a simple RRW-automaton that accepts the language {anbn | n ≥ 1} works as
follows. It accepts if its tape contains precisely the string ab. Otherwise, it scans its input until it
finds an occurrence of aabb, which it replaces with ab and restarts.

Theorem 3.5 L(det- RRW) ⊆ DOFpoly and L(RRW) ⊆ NOFpoly.

Proof. Let A ∈ L(det- RRW) via an RRW-automaton M . By Theorem 3.3 it suffices to show that
M can be simulated by a deterministic polynomial-time overhead-free two-stack automaton M ′.

Let w ∈ Σ∗ be an input word on the first stack (first letter uppermost). The machine M ′ uses its
finite-state memory to keep a record of the substring M “sees” through its window. M ′ constructs
this record initially by popping as many symbols from the first stack as M ’s window size dictates.
It then checks what operation M would perform on “seeing” that substring, and simulates it as
follows.

If M performs a move-right step, M ′ pushes the leftmost symbol of the window onto the second
stack, pops the next symbol from the first stack, and adjusts its record of the window contents
accordingly. If at any point there are insufficient characters left on the first stack to fill the window,
M ′ behaves as though a right endmarker had been observed.

If M performs a rewrite step, M ′ simply switches its record of the window contents to the new
string and then pops as many symbols from the first stack as are needed to fill up the window (with
insufficient characters indicating a right endmarker).

If M performs a restart step, M ′ pushes the stored window contents back onto the first stack
and then pops each element in turn from the second stack and pushes it back onto the first stack.

Finally, if M accepts, M ′ accepts also.
There is a quadratic time bound on the computation length since after each restart the sum of

the stacks’ sizes must decrease by at least one.
The construction works exactly the same way for nondeterministic automata. �

3.4 Editing Turing Machines and Overhead-Free Computation

We now introduce another computational model that is closely related to overhead-free computation.
We call this model the “editing Turing machine.” In this subsection we show that editing Turing
machines can be simulated by overhead-free machines if their tapes have “bounded weight,” a concept
we will define presently. Apart from being a very natural extension of the standard Turing machine
model, the concept of editing Turing machines allows us later on to give an elegant proof that all
context-free languages can be accepted in an overhead-free way.
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Definition 3.6 An editing Turing machine is a one-tape Turing machine whose tape is initialized
with an input word, bordered by endmarkers. We allow two additional operations apart from the
usual ones:

1. An insert operation, which inserts a new cell at the current head position (so, for example, the
cell under the head position before the insert will be, after the insert, just to the right of the
inserted cell), thus increasing the number of cells between the endmarkers by one. The insert
operation is not permitted on the left endmarker.

2. A delete operation, which removes the current cell from the tape, after which the head sits on
the cell formerly to the right of the deleted cell, thus decreasing the number of cells between the
endmarkers by one. The delete operation is not permitted on either endmarker.

Definition 3.7 Let M be a one-tape Turing machine with input alphabet Σ and tape alphabet Γ.
For a given configuration let w1 · · ·w` be the contents of the tape cells between the endmarkers and
let p denote the head position with p = 0 when the head is over the left endmarker. The weight of
the configuration is defined as

∑`
i=1 µi, where

µi =

1 if wi ∈ Σ or i = p,

1 + 3 log2(|p− i|) otherwise.

The weight of a configuration clearly decreases every time a delete operation is performed. The
weight function for noninput symbols is clearly nondecreasing in their distance from the head,
and indeed slowly increases the farther they are from the head. Thus, intuitively, to keep the
configurations’ weights low during a computation, we must try to keep the computation as “local”
as possible: Very loosely speaking, the head can be allowed to venture far from noninput symbols
only if many other symbols have already been deleted.

The weight of any configuration of an overhead-free machine (recall that such machines have
no noninput symbols or insert or delete operations) is constant: It is always equal to the input
length. In particular, the weight is bounded above by the input length. The following theorem
establishes that the converse is also true: If an editing Turing machine has the property that for
strings in the language there is always at least one accepting path such that at every step of that
path the weight of its configuration does not exceed the length of the original input, then it can be
simulated by an overhead-free machine. In fact, even if exceeding the input’s length by a—global
for the machine—constant is allowed, the simulation can still be performed.

Theorem 3.8 Let L ⊆ Σ∗ and ‖Σ‖ ≥ 2. Suppose M is an editing Turing machine with L = L(M),
and that there is a constant c such that, for each x ∈ L, for at least one accepting path of M

on input x every configuration on that path is bounded in weight by |x| + c. Then the following
implications hold: (a) If M is deterministic, then L ∈ DOF; (b) if M is nondeterministic, then
L ∈ NOF; (c) if M is deterministic and polynomially time-bounded, then L ∈ DOFpoly; (d) if M is
nondeterministic and polynomially time-bounded, then L ∈ NOFpoly.
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Proof. We prove only the fourth claim; the proofs of the other claims are similar.
We assume {0, 1} ⊆ Σ. We construct an overhead-free machine M ′ that simulates M . We first

describe how this can be done for the case Σ = Γ. Later on, we describe how additional symbols
can be incorporated.

For the case Σ = Γ, we need only describe how to implement the insert and delete operations.
The idea is to introduce a flexible free space area, which we insert at the current head position (and
will drag around with us). As in the proof of Theorem 3.3, the free space area is a string, either of
the form 10∗1, or just a 1, or the empty string ε, and in our finite-state control we at all times keep
track of which of these cases currently holds. The head always remains inside the area or on a cell
adjacent to it. When M performs a left or right move, the free space area is moved one symbol to
the left or right. When M performs a delete operation, the free space area grows by one symbol;
when M performs an insert operation, it shrinks by one symbol.

In detail, a right move is implemented as follows. There are three cases. The first case is if the
free space area is currently ε. In this case the head simply moves one space to the right. The second
case is if the free space area is currently 1. In this case the symbol in the cell just to the right of the
free space area is exchanged with the 1 of our free space area, with our head ending up one cell to
the right of where it started, namely, over the new free space cell. The third case is if the free space
area is currently of the form 10∗1. Briefly put, we will rewrite the 10k1α to become α10k1, where α

is the cell to the right of the free space area. In full detail: In this third case, the symbol in the cell
just to the right of the free space area is read and recorded in our finite state control. We overwrite
that just-read cell with a 1, which will be the right-end 1 of our new free space area. Then our head
will move left over the (zero or more) 0 symbols that are to the left of this just-written 1 until the
head reaches another 1. That 1 is then overwritten by the symbol we recorded in our internal state,
and the cell just to the right of that is overwritten by a 1, which will be the left end of our new free
space area.

Left moves, are implemented similarly. The insert and delete operations are implemented in the
natural way.

So far we have not handled the “plus some constant” in the theorem statement. This can be
done as follows. Note that we can, for any fixed constant c, handle our tape as having up to c extra
cells that we will imagine as being “located” between the free space area and the cell just to its right
but actually stored in our finite control. We also record in the finite control which, if any, of these
virtual cells the virtual tape head is over. This handles the “plus some constant” issue. (Note that
this extra space cannot be “located” between the tape’s rightmost cell and the right endmarker,
because we cannot uniquely mark a position on tape in our model, and thus would not be able to
return to the head position after “expanding” the tape if we did that).

Let us now consider how to simulate an editing Turing machine M for which Σ ( Γ. In this case,
we use part of the free space to keep track of any symbols from Γ−Σ that are on M ’s tape. We will
ensure that the size of the part we use for bookkeeping never exceeds the size of the free space area.
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The unused part (rightmost part) of the free space area will still consist just of 0’s, separated from
the bookkeeping part by a 1. We will ensure that the coding of each bookkeeping record over the
alphabet {0, 1} is self-delimiting. With these precautions, we will still be able to simulate inserts,
deletes, and regular moves—even when these involve symbols from Γ− Σ.

In detail, let g : (Γ − Σ) → {0, 1}k be an injective mapping, where k = dlog2 ‖Γ− Σ‖e. Let h

map any natural number n to a self-delimiting bit string of length 2blog2(n + 1)c + 4. Let us say
this is accomplished by encoding natural number n as the string s(n), the (n + 1)st string of {0, 1}∗

in lexicographic order, and then, further, re-encoding the bits of s(n)—call them s1s2 · · · sm—as the
string 11s10s20 · · · sm011.

A bookkeeping record is then a bit string of the form

f1f2f3g(γ)σh(n)

for f1, f2, f3 ∈ {0, 1}, γ ∈ Γ− Σ, σ ∈ {0, 1}, and n ∈ N. It is interpreted as follows: The first three
bits are flags. f1 and f2 respectively signal the leftmost and rightmost bookkeeping records on M ′’s
tape, so that the ends of the bookkeeping portion of the free space can be identified. f3 is a flag
that allows M ′ to identify the last record updated when shifting the bookkeeping records around as
described below. The next k bits represent γ, a symbol from Γ−Σ that has been written to tape (if
‖Γ−Σ‖ = 1, the additional character is mapped to ε). The remaining bits indicate how many cells
distant that symbol is from the current head position in the simulation of M . These distances are
negative for symbols from Γ−Σ to the left of M ’s head; positive for those to the right. The number
is stored as σh(n), where σ is a bit indicating the sign of the number to follow, which is stored as a
self-delimiting string.

Every time the machine M overwrites a symbol δ ∈ Σ with a symbol γ ∈ Γ−Σ, the machine M ′

instead deletes δ (this increases the size of the free space area) and adds a new bookkeeping record.
This record stores the symbol γ and the distance of γ from M ’s current head position as described
above. Upon creation, this distance is obviously zero. However, whenever M ’s head moves, this
distance is updated appropriately: When it moves left, all distances are increased by one; when it
moves right, the distances are decremented. In each update step, the sizes of the different book-
keeping records may increase or decrease, in which case they are shifted around inside the free space
area to keep the bookkeeping part compacted.

Bookkeeping records are also created when M inserts a symbol from Γ − Σ using the insert
operation. On the other hand, they can be deleted if M performs a delete operation on a symbol in
Γ− Σ, or if M overwrites a symbol from Γ− Σ with one from Σ. In each case, the distances must
be updated appropriately.

Finally, if at any point M ′ runs out of space (beyond the uses mentioned above of constant extra
memory in the finite control), it immediately rejects.

It remains to show that, if x ∈ L, there is at least one accepting path in M ′. In other words, we
have to show that there is at least one accepting path on which the size of the bookkeeping records
never exceeds that of the free space area. We know that if x ∈ L, there is at least one accepting
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path on which the weight of M ’s configuration never exceeds the input length (plus some constant,
which we can take care of using our finite-state memory as described earlier). So on such a path we
have 1 + 3 log2(|p− i|) bits for storing a bookkeeping record for the symbol at position i when M ’s
head is at position p 6= i. The size of a bookkeeping record is 3 + k + 1 + 2blog2(|p − i| + 1)c + 4.
Now with p 6= i, blog2(|p− i|+ 1)c ≤ log2(|p− i|) + 1, so 1 + 3 log2(|p− i|) bits is certainly sufficient
whenever log2(|p− i|) > k + 10. However, there can be at most one character at each distance p− i

from the head position. Thus there will be at most a constant number of bookkeeping records that
require additional space (i.e., for which log2(|p− i|) ≤ k +10), and each one requires only a constant
amount (at most k + 10 bits). This constant extra space can be provided by the finite control. �

Though the “for each x ∈ L, for at least one accepting path of M on input x every configuration
on that path is bounded in weight by |x|+ c” of Theorem 3.8 may seem a bit unnatural to some, we
mention in passing that the arguably more natural variant of Theorem 3.8 in which that is replaced
by “the weight of every configuration reached during executions of M is bounded by the length
of the input plus c” follows easily from Theorem 3.8. Furthermore, the greater flexibility in the
formulation of Theorem 3.8 will be central in allowing us to invoke Theorem 3.8 during the proof
that CFL ⊆ NOFpoly (Theorem 3.15).

3.5 Formal Language Classes and Overhead-Free Computation

Formal language classes, such as the class of regular languages or the class of context-free languages,
are related to overhead-free computation in different ways. For example, (non)deterministic overhead-
free computation is powerful enough to decide all (non)deterministic context-free languages. The
proofs of these theorems make heavy use of the results we obtained earlier regarding restart automata
and editing Turing machines.

The regular languages are clearly (via machines that move their heads steadily to the right and
never write at all) even in DOFlinear.

Theorem 3.9 All regular languages are in DOFpoly.

The next formal language class we study is the class of deterministic context-free languages.
These languages are in DOFpoly. The proof of this result is based on the following somewhat
surprising advance.

Theorem 3.10 ([JMPV99]) All deterministic context-free languages are in L(det- RRW).

From Theorems 3.5 and 3.10, we have the following.

Corollary 3.11 All deterministic context-free languages are in DOFpoly.

There is another formal language class, namely the Church–Rosser congruential languages, for
which we can prove containment in DOFpoly by invoking restarting automata. See [MNO88,Nar84]
for details on the definition and properties of these languages.
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Definition 3.12 ([MNO88,Nar84]) A language L ⊆ Σ∗ is a Church–Rosser congruential lan-
guage (CRCL) if there exists a finite, length-reducing, confluent string-rewriting system R on Σ and
a finite set of irreducible strings {w1, . . . , wn} such that L =

⋃n
i=1[wi]R.

Theorem 3.13 ([NO00a,NO00b]) CRCL ⊆ L(det- RRW).

From Theorems 3.5 and 3.13, we have the following.

Corollary 3.14 CRCL ⊆ DOFpoly.

We now prove that all context-free languages are in NOFpoly. Our proof makes use of the
characterization of overhead-free computation in terms of editing Turing machines (Theorem 3.8).

Theorem 3.15 CFL ⊆ NOFpoly.

Proof. As is common, by Chomsky Normal Form we mean that each production either turns one
nonterminal into exactly two nonterminals, or turns one nonterminal into exactly one terminal. It
is well-known that all CFLs that do not contain ε have Chomsky Normal Form grammars.

Let L ∈ CFL. We will henceforward assume ε 6∈ L. (If ε ∈ L, use the following construction
to build an NOFpoly machine for L − {ε}, and then patch the machine to also accept ε.) Let
G = (N,T, S, P ) be a grammar (N the nonterminals, T the terminals, S the start symbol, and P

the production set; N ∩ T = ∅) in Chomsky Normal Form that generates L. We show that L can
be accepted by an editing Turing machine in such a way that the weight of every configuration is
bounded by the input length plus some constant.

The editing Turing machine has the input alphabet T and the tape alphabet N ∪T . It performs
a bottom-up parse of the input word w by inverting in nondeterministically chosen places nonde-
terministically chosen production rules l → r. That is, starting from the current head position, it
searches either to the left or to the right for an occurrence of r on the tape (not necessarily the
nearest one—we’ll act nondeterministically in both what rule we are trying to reverse and what
instance of its right-hand side we act on). Having settled on such, it applies a sequence of (one or
two) delete operations to get rid of r, and then an insert operation to insert l instead. When the
tape contains only the symbol S, our machine accepts. If at any point the simulation runs out of
space, it rejects (on the current nondeterministic path).

In light of Theorem 3.8, it remains to show that for every word w ∈ L there exists an accepting
computation of M the weights of whose configurations are all bounded by the input length plus some
constant. Let T = (R,E) be a binary parse tree of w. The node set R contains all rule applications
X → Y Z or X → a, with X, Y, Z ∈ N and a ∈ T , used in the derivation of w (we focus not on
rules, but on rule applications; so a given rule may appear in more than one node, namely, if it
is applied multiple times in the derivation tree). The edge relation E relates each rule application
r = X → Y Z to the rule applications rY and rZ used on Y and Z in the derivation. For each rule
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application r ∈ R, let n(r) denote the number of leaves in the subtree rooted at r and let N(r)
denote the nonterminal symbol on the left-hand side of the rule associated with r.

Consider the sequence of nondeterministic choices that causes the parse to proceed as follows:
For each nonleaf node r with children rY and rZ , these children are parsed one after the other; if
n(rY ) ≥ n(rZ), then rY is parsed first; otherwise rZ is parsed first. This parse ordering ensures that
the weight never exceeds the input length. To see this, consider the nonterminal symbols on the
tape at any time in the course of the computation. Each of these symbols corresponds to a node r

whose subtree has already been parsed, and whose sibling’s subtree is in the process of being parsed
or, better still, has just been parsed and we are about to implement the rule inversion that combines
these two siblings’ nonterminals into a single nonterminal. Since r’s sibling’s subtree is smaller than
r’s subtree, the head will never be more than n(r) cells away from the symbol N(r).

Thus, every nonterminal N(r) corresponds to the deletion of n(r) terminals (which reduces
the weight by n(r)) and adds at most 1 + 3 log2 n(r) to the weight. Thus, the contribution of each
nonterminal to the total weight is nonpositive, and the weight of every configuration of M is bounded
by the input length. �

3.6 Complete Problems in Overhead-Free Computation Classes

Our final aim for this section is to show that all overhead-free computation classes contain problems
that are complete for classical complexity classes. For the proof, we first show that given any
language L ∈ DLINSPACE we can find a closely related language L′ ⊆ {0, 1}∗ that is accepted by
an overhead-free machine.

Lemma 3.16 Let L ∈ DLINSPACE with L ⊆ Σ∗. Then there exists an injective isometric ho-
momorphism h : Σ → {0, 1}∗ such that for L′ := h(L) ⊆ {0, 1}∗ we have L′ ∈ DOF. Sim-
ilarly, if L ∈ NLINSPACE, then there exists an injective isometric homomorphism h such that
L′ := h(L) ∈ NOF.

Proof. Let L ∈ DLINSPACE via a machine M that never writes on any cells other than those already
initially occupied by the input. As mentioned earlier, every language in DLINSPACE can be accepted
in such a fashion. Let M use the tape alphabet Γ ⊇ Σ, which may be strictly richer than Σ. Let
k :=

⌈
log2 ‖Γ‖

⌉
. Then there exists an injective mapping g : Γ → {0, 1}k that codes every symbol in

Γ as a binary string of length k. Let h be the restriction of g to the domain Σ.
We now show h(L) ∈ DOF via a machine M ′. This machine always reads k symbols as a block.

On input w it first ensures that w consists only of blocks that encode symbols from Σ. Then
w = g(u1)g(u2) · · · g(um) for some sequence of ui’s in Σ. The machine M ′ returns to the beginning
of the input and starts a simulation of what M would do on input u. Every time M reads/writes
a single symbol δ ∈ Σ, M ′ reads/writes the block g(δ) ∈ {0, 1}k. This way, whenever the machine
M would reach a state q with tape content u′1 · · ·u′m ∈ Γ∗, the machine M ′ will similarly reach the
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state corresponding to q and will at that point have tape content g(u′1) · · · g(u′m) ∈ {0, 1}∗. If M

would accept, M ′ does, and vice versa.
For the nondeterministic case the simulation works the same way. �

Since DLINSPACE and NLINSPACE are clearly closed under inverse isometric homomorphism
application, and DLINSPACE ⊇ DOF and NLINSPACE ⊇ NOF, we have the following.

Corollary 3.17 The closure of DOF under inverse isometric homomorphism application is DLINSPACE.
The closure of NOF under inverse isometric homomorphism application is NLINSPACE.

The closure of both DLINSPACE and NLINSPACE under ≤log
m -reductions is PSPACE, so we also

have the following.

Corollary 3.18 The class DOF contains a ≤log
m -complete set for PSPACE.

It is not hard to also see the following.

Corollary 3.19 The class DOFpoly contains a ≤log
m -complete set for P.

Corollary 3.20 The class NOFpoly contains a ≤log
m -complete set for NP.

The fact that powerful sets reduce to DOF does not say that those sets are in DOF themselves.
In fact, DOF is a proper subset of PSPACE since by the space hierarchy theorem some PSPACE

languages are not in DLINSPACE, let alone DOF.

4 Limitations of Overhead-Free Computation

The previous section demonstrated that several interesting languages can be accepted by overhead-
free machines. In this section we discuss what cannot be done using overhead-free machines.

We begin with an observation that shows that overhead-free machines on unary alphabets are just
as powerless (or powerful, depending on your point of view) as finite automata. Theorems 4.2 and 4.3
then show that there are (non)deterministic context-sensitive language that cannot be accepted by
(non)deterministic overhead-free machines. Both results are based on diagonalization techniques. In
the rest of the section we discuss whether certain natural sets can be accepted in an overhead-free
fashion.

The comments made earlier in the paper about language–alphabet pairs are relevant to the
following theorem. For example, the “L ∈ DOF” in the theorem statement really means (in the
sense of Definition 2.1) that (L,Σ) is in DOF, where Σ is a unary alphabet. The theorem would
break down were one to consider the same language L as being embedded in a richer input alphabet.

Theorem 4.1 Let L be a tally set. Then the following are equivalent: (a) L is regular, (b) L ∈
DOFpoly, (c) L ∈ DOF, (d) L ∈ NOFpoly, and (e) L ∈ NOF.
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Proof. If L is regular, then by Theorem 3.9 it is in DOFpoly and so is in DOF, NOFpoly, and NOF.
For the other direction, let L ∈ NOF via an overhead-free machine M . Since the input alphabet
is unary, M behaves exactly like a two-way nondeterministic finite automaton and can thus accept
only regular sets. �

Theorem 4.2 DOF ( DLINSPACE.

Proof. This follows immediately from Corollary 2 of a paper by Feldman and Owings [FO73].
They show that, for every constant m, deterministic linear-bounded automata with alphabet size at
most m cannot accept all deterministic context-sensitive languages. �

Theorem 4.3 NOF ( NLINSPACE.

Proof. Seiferas [Sei77] has shown that for every m there exists a language in NLINSPACE that cannot
be accepted by any nondeterministic off-line Turing machine that uses only m different symbols on
its tape and uses only as many cells on its work tape as there are symbols in the input. Since any
overhead-free machine can be simulated by such an off-line machine by first copying the input to
the work tape, we get the claim. �

An alternative proof of Theorem 4.3 can be based on combining Corollary 1 of the paper of Feld-
man and Owings [FO73] with the Immerman–Szelepcsényi Theorem [Imm88,Sze88]. Corollary 1 of
Feldman and Owings states that for each m there is a language whose complement is context-sensitive
and cannot be accepted by a nondeterministic linear-bounded automaton whose alphabet size is
bounded by m. This is an example of the often encountered effect that the Immerman–Szelepcsényi
technique can be used to simplify nondeterministic space hierarchy proofs (see [Imm88,Ges93]).

Theorems 4.2 and 4.3 show that overhead-free computation is less powerful than linear-space
computation in principle. A nice step would be to prove that certain simple, natural context-
sensitive languages cannot be accepted in an overhead-free fashion. Our candidate for a context-
sensitive language that is not in NOF is L :=

{
ww | w ∈ {0, 1}∗

}
.

Interestingly, though we name L a candidate non-NOF language, it is not hard to show that L

is in “2-head-DOFpoly,” the analog of DOFpoly in which the overhead-free machine has two heads.
This observation raises the question of how powerful extra heads make our model. First, by a classic
result of Hartmanis [Har72], even O(1)-head finite automata taken collectively yield the power of
logarithmic-space Turing computation. Thus, at least in that different context, additional heads are
well known to be a valuable resource. However, using the same argument as in Theorem 4.3, Seiferas’
results [Sei77] can be used to show that for every m there exists a context-sensitive language that is
not in m-head-NOF.
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5 Conclusion

In this paper we introduced a computational model, namely overhead-free computation, in which
Turing machines are allowed to manipulate their input, but may not use any symbols other than those
of the input alphabet. This models what a computer can compute by cannibalizing its noncontrol
memory, if the input initially fills the whole noncontrol memory. Building on this model we defined
the four complexity classes DOF, NOF, DOFpoly, and NOFpoly and studied how these classes relate
to standard formal-language and complexity classes. The most “realistic” of the four classes is
DOFpoly, which contains the languages that can be accepted efficiently (that is, in polynomial time)
with absolutely no space overhead.

We showed that overhead-free computation is related to other computational models. In par-
ticular, overhead-free computation directly corresponds to overhead-free two-stack automata. We
showed that overhead-free machines can simulate RRW-automata and editing Turing machines. The
smallest of our classes, namely DOFpoly, contains all deterministic context-free languages, and also
some non-context-free languages. The class NOFpoly contains all context-free languages. Curiously,
despite the similarity of the statements, the proofs of these last two results are not related.

The relationship between overhead-free computation and formal language classes is interesting.
Our results show DCFL ( DOF ( DCSL and CFL ( NOF ( CSL. In other words, overhead-free
computation is properly snuggled between the classes of context-free and context-sensitive languages.
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