
Closure of
Polynomial Time Partial Information Classes

under Polynomial Time Reductions

Arfst Nickelsen and Till Tantau

Technische Universität Berlin
Fakultät für Elektrotechnik und Informatik

10623 Berlin, Germany
nicke@cs.tu-berlin.de, tantau@cs.tu-berlin.de

Abstract. Polynomial time partial information classes are extensions
of the class P of languages decidable in polynomial time. A partial in-
formation algorithm for a language A computes, for fixed n ∈ N, on
input of words x1, . . . , xn a set P of bitstrings, called a pool, such that
χA(x1, . . . , xn) ∈ P , where P is chosen from a family D of pools. A
language A is in P[D], if there is a polynomial time partial information
algorithm which for all inputs (x1, . . . , xn) outputs a pool P ∈ D with
χA(x1, . . . , xn) ∈ P . Many extensions of P studied in the literature, in-
cluding approximable languages, cheatability, p-selectivity and frequency
computations, form a class P[D] for an appropriate family D.

We characterise those families D for which P[D] is closed under certain
polynomial time reductions, namely bounded truth-table, truth-table,
and Turing reductions. We also treat positive reductions. A class P[D] is
presented which strictly contains the class P-sel of p-selective languages
and is closed under positive truth-table reductions.

Keywords: structural complexity, partial information, polynomial time
reductions, verboseness, p-selectivity, positive reductions.

If a language A is not decidable in polynomial time one may ask whether
it nevertheless exhibits some polynomial time behaviour. If there is no poly-
nomial time algorithm that answers the question “x ∈ A ?” for all inputs x,
there may still exist a partial information algorithm. For a tuple of input words
(x1, . . . , xn) such an algorithm outputs some partial information on membership
of these words with respect to A. More precisely it narrows the range of possibil-
ities for values of χA(x1, . . . , xn), where χA is the characteristic function for A.
Many types of partial information have been studied, including verboseness, ap-
proximability, (strong) membership comparability, cheatability, frequency com-
putations, easily countable languages, multiselectivity, sortability. For detailed
definitions and discussions of these notions see for example [2,1,6,15,8,14,13].

To get a more unified picture, [5] introduced the recursion theoretic notion of
D-verboseness, where the type of partial information is specified by a family D of
sets of bitstrings. The class of polynomially D-verbose languages, whose formal

definition given below, is denoted P[D]. Basic properties of these polynomial
time D-verboseness classes are presented in [19].

Reduction closures of partial information classes have been the focus of much
interest, mostly due to the fact that the polynomial time Turing reduction closure
of P-sel, the class of p-selective sets, is exactly P/poly. Hence, a language is Turing
reducible to a p-selective language iff the language has polynomial size circuits.
It is also known that P-sel is closed under positive truth-table reductions, but
not under 1-tt reductions. Reductions to p-selective sets have been studied in
detail in [12]. Opposed to selectivity, cheatability behaves quite differently: The
class of n-cheatable languages is known [3] to be closed under Turing reductions.
For other notions like strongly membership comparable sets [17] only little was
previously known concerning their closure properties.

Another important motivation to look at reductions to partial information
classes is that one can prove results of the following type: if P[D] contains, for
certain families D, languages which are NP-hard for certain polynomial time
reductions, then P = NP. One of the best results [7,8] in this respect is that
if P[3-size2] contains a language which is NP-hard for n1−ε-tt reductions, then
P = NP.

We fully characterise the partial information classes P[D] which are closed
under 2-tt reductions, bounded truth-table reductions and under Turing reduc-
tions. It turns out that exactly the classes of n-cheatable languages are closed
under any of these reductions. We also treat positive truth-table reductions and
present a class P[D] strictly containing P-sel which is closed under positive truth-
table reductions.

This paper is organised as follows. First we give some definitions and ba-
sic facts concerning partial information classes. In Section 2 we briefly discuss
closure under many-one and 1-tt reductions and give a simple combinatorial
characterisation of the classes P[D] closed under these reductions. In Section 3
we show the main theorem which characterises the classes P[D] that are closed
under different truth-table and Turing reductions. In Section 4 we examine posi-
tive truth-table reductions. Here again, we reduce the question of whether a class
P[D] is closed under positive k-tt reductions to finite combinatorics.

1 Preliminaries

Notations. Languages are subsets of Σ∗ = {0, 1}∗. The join of two languages A
and B is A⊕B := {0x | x ∈ A}∪{1x | x ∈ B }. Let B := {0, 1}. For a language A
the characteristic function χA : Σ∗ → B is defined by χA(x) = 1 iff x ∈ A. We
extend χA to tuples of words by χA(x1, . . . , xn) := χA(x1) · · ·χA(xn). In the
following, elements of Σ∗ for which membership in languages is of interest are
called words, elements of B∗ which are considered as possible values of charac-
teristic functions are called bitstrings. For a bitstring b the number of 1’s in b is
denoted #1(b), b[i] is the i-th bit of b, and b[i1, . . . , ik] := b[i1] · · · b[ik]. We extend
this to sets of bitstrings by setting P [i1, . . . , ik] :=

{
b[i1, . . . , ik] | b ∈ P

}
.

Partial information classes. In order to define partial information classes, we
first need the notion of pools and families.

Definition 1 (n-Pools, n-Families). Let n ≥ 1. A subset P ⊆ Bn is called
an n-pool. A set D = {P1, . . . , Pr} of n-pools is called an n-family if

1. D covers Bn, that is
⋃r
i=1 Pi = B

n, and
2. D is closed under subsets, that is P ∈ D and Q ⊆ P implies Q ∈ D.

Definition 2 (Polynomially D-Verbose). For a given n-family D a lan-
guage A is in the partial information class P[D] (respectively Pdist[D]) iff there
is a polynomially time-bounded deterministic Turing machine that on input of
n words (respectively distinct words) x1, . . . , xn outputs a pool Q ∈ D such that
χA(x1, . . . , xn) ∈ Q. The languages in P[D] are called polynomially D-verbose.

We present some definitions that make it easier to deal with polynomial D-
verboseness and then state some known facts which will be applied in the fol-
lowing. For more details on polynomial D-verboseness see [19].

Definition 3 (Operations on Bitstrings).

1. Let Sn be the group of permutations of {1, . . . , n}. For σ ∈ Sn and b ∈ Bn
we define σ(b) := b

[
σ(1)

]
· · · b

[
σ(n)

]
.

2. For i ∈ {1, . . . , n} and c ∈ B define projections πci : Bn → B
n by πci (b) :=

b[1] · · · b[i− 1] c b[i+ 1] · · · b[n].
3. For i, j ∈ {1, . . . , n} define a replacement operation ρi,j : Bn → B

n by
ρi,j(b) := b′ where b′[k] := b[k] for k 6= j and b′[j] := b[i].

We extend these operations from bitstrings to pools by ω(P) := {ω(b) | b ∈ P }.
An n-family D is said to be closed under permutations, projections and replace-
ments if for all permutations, projections and replacements ω and all P ∈ D we
have ω(P) ∈ D.

Definition 4 (Normal Form). An n-family is in normal form if it is closed
under permutations, projections and replacements.

Fact 5 (Normal Form). For every n-family D there is a unique n-family D′
in normal form with P[D] = P[D′].

Fact 6 (Class Inclusion Reduces to Family Inclusion). For all n-families
D and E in normal form we have P[D] ⊆ P[E] iff D ⊆ E.

Fact 7 (Change of Tuple Length). Let D be an m-family and m < n. Define
the following n-family dDen := {P ⊆ Bn | ∀i1 < · · · < im : P [i1, . . . , im] ∈ D}.
Then P[D] = P

[
dDen

]
. Furthermore, if D is in normal form so is dDen.

Fact 8 (Intersection). For all n-families D and E in normal form we have
P[D] ∩ P[E] = P[D ∩ E].

Definition 9 (Generated n-Family). For n-pools D1, . . . , Dr the minimal n-
family D in normal form for which {D1, . . . , Dr} ⊆ D is denoted by 〈D1, . . . , Dr〉.
It is the closure of {D1, . . . , Dr} under subsets, permutations, projections and
replacements. We say that D1, . . . , Dr generate 〈D1, . . . , Dr〉.

Some n-families are of special interest as their partial information classes have
been studied extensively in the literature. We write these special families in
capital letters with the tuple length attached as index.

Definition 10 (Special Families).

1. Let seln :=
〈{

0n−i1i | 0 ≤ i ≤ n
}〉

.
2. For 1 ≤ k ≤ 2n let k-sizen := {P ⊆ Bn | |P | ≤ k}.
3. For 1 ≤ k ≤ n+ 1 let k-cardn :=

{
P ⊆ Bn | |{#1(b) | b ∈ P }| ≤ k

}
.

4. Let bottomn :=
〈{
b | #1(b) ≤ 1

}〉
and topn :=

〈{
b | #1(b) ≥ n− 1

}〉
.

The class P[sel2] is exactly the class P-sel of p-selective languages, that is
languages A which have a polynomial time selector function. Such a selector gets
two words u and v as input and selects one of them. Provided u ∈ A or v ∈ A,
the selected word must also lie in A. The class of p-selective languages has been
extensively studied, starting with [20].

Fact 11 (SEL). P-sel = P[sel2] = P[seln] for n ≥ 2.

Languages in P
[
(2n − 1)-sizen

]
are called n-approximable, n-membership

comparable, non-n-p-superterse or n-p-verbose. The languages in P[n-sizen] are
sometimes called n-cheatable in the literature, but especially in the older lit-
erature this term is also used for the languages in P[2n-size2n]. The following
important fact is implicitly proven in [4]:

Fact 12 (SIZE). P[k-sizek] = P[k-sizen] for n ≥ k.

Languages in P[n-cardn] are called easily countable [15]. The languages in
P[topn] and P[bottomn] have no special names in the literature, but they will
come up in different places in the following proofs.

Reductions. In this paper all reductions under consideration will be polynomial
time truth-table or Turing reductions defined in the standard way, see [18] for
detailed definitions. We write ≤p

m for many-one reductions, ≤p
k-tt for truth-table

reductions with k queries,≤p
btt for truth-table reductions with a constant number

of queries, ≤p
tt for truth-table reductions with a polynomial number of queries,

and ≤p
T for Turing reductions. We write ≤p

k-ptt for positive truth-table reductions
with k queries. In a positive reduction for each input word the boolean function
that evaluates the answers to the queries is a monotone function. We write ≤p

ptt

for positive truth-table reductions with a polynomial number of queries.

2 Many-One and 1-tt Reductions

We review what is known [19] about closure under polynomial time many-one
and 1-tt reductions for classes P[D] and Pdist[D].

Theorem 13 (Many-One Reductions). Let D be an n-family. Then P[D]
is closed under ≤p

m-reductions. But Pdist[D] is not closed under ≤p
m-reductions,

unless Pdist[D] = P[D′] for some n-family D′.

Not all P[D] are closed under 1-tt reductions. To characterize the families D
for which this closure property holds, a new type of operation on bitstrings and
pools is needed:

Definition 14 (Bitflip). For n ≥ 1 and i ∈ {1, . . . , n} define the bitflip oper-
ation flipi : Bn → B

n by flipi(b) := b[1] · · · b[i − 1]
(
1 − b[i]

)
b[i + 1] · · · b[n]. This

operation is extended to pools and families of pools in the obvious way. An n-
family D is called closed under bitflip if flipi(D) = D for all 1 ≤ i ≤ n.

Theorem 15 (1-tt Reductions). For all n-families D in normal form, P[D]
is closed under ≤p

1-tt-reductions iff D is closed under bitflip.

If an n-family D is closed under bitflip then P[D] is also closed under com-
plement. The converse does not hold as the family D = sel2 shows.

3 From 2-tt to Turing Reductions

As we know from [20,16] the closure of P-sel under polynomial time Turing
reductions equals P/poly. But all P[D] are proper subclasses of P/poly. Therefore
we have:

Fact 16. For seln ⊆ D 6= 2-nsizen the class P[D] is not closed under polyno-
mial time Turing reductions.

In [8, Theorem 2.9] Beigel, Kummer and Stephan construct languages A
and B such that A ≤p

tt B ∈ Pdist[top3] and A 6∈ P
[
(2n − 1)-sizen

]
for all n. In

terms of closure under reductions this yields:

Fact 17. Let D 6= 2n-sizen be in normal form. If topn ⊆ D or bottomn ⊆ D,
then P[D] is not closed under ≤p

tt-reductions.

On the other hand Amir, Beigel and Gasarch [3,1] and Goldsmith, Joseph
and Young [11,10] showed that cheatability classes are closed under polynomial
time Turing reductions.

Fact 18. For all n ≥ 1 the classes P[n-sizen] are closed under ≤p
T-reductions.

In the following we show that this cannot be extended to other classes and
even that the cheatability classes are the only nontrivial classes in our context
which are closed under 2-tt reductions.

To deal with k-tt reductions, we introduce for each language A a language
Ak-tt which is many-one complete for the k-tt reduction closure of A.

Definition 19. For a language A and k ≥ 1 define

Ak-tt :=
{
〈x1, . . . , xk, φ〉 | φ : Bk → B, φ

(
χA(x1, . . . , xk)

)
= 1

}
.

This definition is inspired by the study of btt-cylinders [22,9,8]. A language is a
k-tt cylinder iff Ak-tt ≤p

m A.

Lemma 20. For all languages A and B we have B ≤p
k-tt A iff B ≤p

m Ak-tt.

Proof. Suppose B ≤p
k-tt A via M . If on input x the machine M computes queries

q1, . . . , qk and a boolean function φx such that φx
(
χA(q1, . . . , qk)

)
= χB(x), then

x ∈ B iff 〈q1, . . . , qk, φx〉 ∈ Ak-tt. Thus B ≤p
m Ak-tt.

Suppose B ≤p
m Ak-tt via M . If on input x the reduction machine M computes

〈q1, . . . , qk, φx〉, then asking the oracle A with queries q1, . . . , qk and evaluating
the answers with φx constitutes the k-tt reduction to A. ut
As an immediate corollary we obtain that a language class C closed under poly-
nomial time many-one reductions is also closed under k-tt reductions, iff for
every A ∈ C we also have Ak-tt ∈ C.

In order to prove the main results of this section we first show a rather
basic fact on bounded truth-table reductions. Although this fact should be well
known, we could not find it in the literature. It states that polynomial time k-tt
reductions can be replaced by sequences of 2-tt reductions.

Lemma 21. Let A and B be languages with A ≤p
k-tt B. Then there exist inter-

mediate languages C1, . . . , Cr such that A ≤p
2-tt C1 ≤p

2-tt · · · ≤
p
2-tt Cr ≤

p
2-tt B.

Proof. Let Bk = {b1, . . . , b2k} where the bi are in lexicographic order. The chain
of 2-tt reductions from A to B will consist of the following two subchains

A ≤p
2-tt Db1 ≤

p
2-tt Db2 ≤

p
2-tt · · · ≤

p
2-tt Db2k

≤p
2-tt Hk ≤p

2-tt Hk−1 ≤p
2-tt · · · ≤

p
2-tt H1 ≤p

2-tt B.

The languages Hi for i ∈ {1, . . . , k} are defined as follows:

Hi :=
{
〈x1, . . . , xi, b〉 | χB(x1, . . . , xi) = b ∈ Bi

}
.

Clearly, H1 ≤p
1-tt B and Hi+1 ≤p

2-tt Hi. Thus, the second part of the chain from
A to B is correct.

The first part consists of the following languages Db with b ∈ Bk :

Db :=
(
Bk-tt ∩

{
〈x1, . . . , xk, φ〉 | χB(x1, . . . , xk) ≥lex b

})
⊕Hk.

Note that Db1 = Bk-tt⊕Hk and hence by Lemma 20 we have A ≤p
1-tt Db1 . Note

furthermore that we also have Db2k
≤p

1-tt Hk.
To show Dbi ≤

p
2-tt Dbi+1 , let x be an input word. If x = 1y then we must

decide whether y ∈ Hk which can trivially be done by passing on 1y as a query to
Dbi+1 . If x = 0 〈x1, . . . , xk, φ〉 we ask two queries: we ask q1 := 0 〈x1, . . . , xk, φ〉
and q2 := 1 〈x1, . . . , xk, bi〉. If the answer to the second query is “yes” we know
χb(x1, . . . , xk) = bi and output φ(bi), ignoring the answer to the first query. If
the answer to the second query is “no” we output the answer to the first query
which is, indeed, correct. ut

Corollary 22. A language class C is closed under ≤p
btt-reductions iff C is closed

under ≤p
2-tt-reductions.

For the formulation of our Main Theorem 27, we need the following definition:

Definition 23 (k-Cone). For n, k ≥ 1 and an n-family D in normal form an
nk-pool P is a k-cone for D if for all tuples (φ1, . . . , φn) of functions φi : Bk → B,
the set of bitstrings{

φ1

(
b[1, . . . , k]

)
φ2

(
b[k + 1, . . . , 2k]

)
· · ·φn

(
b[(n− 1)k + 1, . . . , nk]

)
| b ∈ P

}
is a pool of D. The nk-family of all k-cones for D is denoted by k-cones(D).

Theorem 24. For an n-family D in normal form and k ≥ 1, P[D] is closed
under polynomial time k-tt reductions iff dDenk ⊆ k-cones(D).

Proof. Suppose dDenk ⊆ k-cones(D). Then every pool D ∈ dDenk is a k-cone
for D. To prove that P[D] is closed under ≤p

k-tt-reductions, by Lemma 20 and
Theorem 13 it suffices to show that for every A ∈ P[D] we have Ak-tt ∈ P[D].

Let A ∈ P
[
dDenk

]
via M . Then Ak-tt ∈ P[D] is witnessed by the following

algorithm. On input x1, . . . , xn test whether the xi are in syntactically correct
form, that is test whether xi =

〈
yi1, . . . , y

i
k, φi

〉
for some yij and φi. If not, replace

xi by an x′i of correct syntax. If we have found a pool D for this input of
correct syntax, we find a pool for the original input by projecting D in the i-th
component to 0, using that D is closed under projections. So suppose the xi
are all of the form xi = 〈yi1, . . . , yik, φi〉. Let M compute a pool D′ ∈ dDenk for
y1

1 , . . . , y
1
k, y

2
1 , . . . , y

2
k, . . . , y

n
1 , . . . , y

n
k . Because D′ is a k-cone for D, the pool

D :=
{
φ1(b11, . . . , b

1
k)φ2(b21, . . . , b

2
k) · · ·φn(bn1 , . . . , b

n
k) | b11 · · · bnk ∈ D′

}
is a pool in D and by definition of Ak-tt we have χAk-tt(x1, . . . , xn) ∈ D.

For the opposite direction, suppose that P[D] is closed under≤p
k-tt-reductions.

We will show dDenk ⊆ k-cones(D) by showing P
[
dDenk

]
⊆ P

[
k-cones(D)

]
and

using Fact 6. Consider a language A ∈ P
[
dDenk

]
. We will exhibit an algorithm

MA which witnesses A ∈ P
[
k-cones(D)

]
. Because A ∈ P

[
dDenk

]
, we have A ∈

P[D]; and because P[D] is closed under k-tt reductions by Lemma 20 there is a
machine M which witnesses Ak-tt ∈ P[D].

In order to keep the rest of the proof more readable, we introduce some
ad-hoc definitions and abbreviations:

Φ :=
{

(φ1, . . . , φn) | φi : Bk → B for 1 ≤ i ≤ n
}
,

φ := (φ1, . . . , φn),

x := (x1
1, . . . , x

1
k, x

2
1, . . . , x

2
k, . . . , x

n
1 , . . . , x

n
k),

b := b11 · · · b1k b21 · · · b2k · · · bn1 · · · bnk .

Furthermore, for every input tuple x ∈
(
Σ∗
)nk and every φ ∈ Φ we write

x ◦ φ :=
(
〈x1

1, . . . , x
1
k, φ1〉, 〈x2

1, . . . , x
2
k, φ2〉, . . . , 〈xn1 , . . . , xnk , φn〉

)
.

For a bitstring b ∈ Bnk, a pool D ⊆ Bnk and some φ ∈ Φ we write

φ(b) := φ1(b11 · · · b1k) · · ·φn(bn1 · · · bnk),
φ(D) := {φ(b) | b ∈ D} .

Finally, for a pool D ⊆ Bn and φ ∈ Φ we write φ−1(D) := {b | φ(b) ∈ D}.
We describe how algorithm MA on input x computes a pool Dx for x:

For all φ ∈ Φ:
Compute M(x ◦ φ) =: Dφ ∈ D. (We then know χAk-tt(x ◦ φ) ∈ Dφ.)
Then compute φ−1(Dφ). (It holds χA(x) ∈ φ−1(Dφ).)

Now compute
Dx :=

⋂
φ∈Φ

φ−1(Dφ).

Then χA(x) ∈ Dx, and Dx ∈ k-cones(D) as φ(Dx) ⊆ Dφ ∈ D for all φ ∈ Φ. ut

Lemma 25. Let D be an n-family in normal form. If P[D] is closed under poly-
nomial time n-tt reductions, then D = m-sizen for some m ∈ N.

Proof. Suppose P[D] is closed under n-tt reductions, where n is a fixed constant.
Let m be minimal with D ⊆ m-sizen. Let D = {b1, . . . , bm} ∈ D be a pool of
maximal size. We have to show that for every pool E ⊆ B

n with |E| = m
already E ∈ D. Suppose E = {e1, . . . , em}. By Fact 7 for change of tuple-length
we know that the pool D′ := {(bi)n | bi ∈ D}, where each bitstring consists of n
copies of an original bitstring from D, is in dDen2 . Now define boolean functions
φ1, . . . , φn such that φi(bj) = ej [i]. Then the image of D′ under (φ1, . . . , φn)
is E. Because D′ is an n-cone for D, it follows that E ∈ D. ut

Lemma 26. Let D be an n-family in normal form with seln ⊆ D such that
P[D] is closed under polynomial time 2n-tt reductions. Then D = 2n-sizen.

Proof. Because P[D] is closed under 2n-tt reductions, by Theorem 24 we know
that dDen2n ⊆ 2n-cones(D). It suffices to exhibit a pool D ∈ dDen2n and 2n-ary
boolean functions φ1, . . . , φn such that the image of D under (φ1, . . . , φn) is Bn.
Note that because dselnen2n = seln2n by Fact 11, we have seln2n ⊆ dDen2n .
We choose D ⊆ Bn2n as a pool of size 2n:

D := {b1, . . . , b2n} with bi :=
(
02n−i1i

)n
.

This means that each bitstring bi consists of the concatenation of n copies of
a bitstring of length 2n. Because the bitstrings in D form an ascending chain
(see Definition 10) D ∈ seln2n ⊆ dDen2n . Let Bn = {c1, . . . , c2n}. Now define
boolean functions φj such that φj

(
02n−i1i

)
= ci[j]. For those b which are not of

the form 02n−i1i choose some arbitrary value for φj(b). The choice of φj ensures

(φ1, . . . , φn)(bi) = φ1

(
02n−i1i

)
· · ·φn

(
02n−i1i

)
= ci[1] · · · ci[n] = ci.

This yields (φ1, . . . , φn)(D) = B
n. ut

We sum up the preceding results in the following theorem which characterises
the classes closed under 2-tt reductions as well as under Turing reductions:

Theorem 27 (Main Theorem). For n-families D in normal form with D 6=
2n-sizen the following are equivalent:

1. D = m-sizen for some m ≤ n.
2. P[D] is closed under polynomial time 2-tt reductions.
3. P[D] is closed under polynomial time Turing reductions.

Proof. The class P[m-sizen] with m ≤ n is equal to P[m-sizem] by Fact 12. The
class P[m-sizem] is closed under polynomial time Turing reductions by Fact 18.
A class closed under Turing reductions is also closed under 2-tt reductions.

If for an n-family D in normal form P[D] is closed under 2-tt reductions, then
by Corollary 22 it is also closed under polynomial time n-tt and 2n-tt reductions.
By Lemma 25, D = m-sizen for some m. By assumption m 6= 2n. If m > n we
would have seln ⊆ D, which is impossible by Lemma 26. Therefore D = m-sizen

for some m ≤ n. ut

4 Positive Reductions

A motivation to investigate positive reductions is the fact that NP is closed un-
der polynomial time positive Turing reductions. In general, when dealing with
classes which are not (known to be) closed under 1-tt reductions it suggests itself
to look for closure under some kind of positive reduction. Regarding reductions
to languages in partial information classes it can happen that a reduction type,
although more powerful than some other in general, looses its extra power when
the oracle is taken from P[D] for certain D. For example it can be shown that
querying an arbitrary number of queries to a language B ∈ P[k-sizek] can always
be replaced by putting only k − 1 of these queries to oracle B. Regarding posi-
tive reductions, Selman [21] showed that a polynomial time positive truth-table
reduction to a p-selective language can always be replaced by a many-one reduc-
tion. It follows that P-sel = P[sel2] is closed under ptt-reductions. We extend
this result to sel2 ∪ 2-size2, a family in normal form strictly above sel2. The
partial information class P[sel2∪2-size2] is exactly the class of languages L, for
which L and its complement L are strictly 2-membership comparable, see [17].

Theorem 28. If A ≤p
ptt B and B ∈ P[sel2 ∪ 2-size2] then A ≤p

m B.

Proof. First, note that sel2 ∪ 2-size2 = sel2 ∪{01, 10}. In the following we will
call this latter pool the xor-pool.

Let A ≤p
ptt B via a reduction R and let B ∈ P[sel2 ∪ 2-size2] via a ma-

chine M . To show A ≤p
m B, upon input x we must compute a query q such that

χA(x) = χB(q). Let q1, . . . , qk be the polynomially many queries produced by R
upon input x and let φ be the monotone evaluation function used by R. Note
that for once k depends on the length of the input x.

We define a graph G = (V,E) with coloured edges as follows. The vertices
V = {q1, . . . , qk} are exactly the queries qi. For each pair (qi, qj) with qi <lex qj
the machine M outputs (possibly a subset of) one of the three pools {00, 01, 11},
{00, 10, 11} and the xor-pool {01, 10}. In the first case there is a black directed
edge from qi to qj , in the second case there is a black directed edge from qj to qi.
If the xor-pool is output, qi and qj are connected by an undirected red edge.

This graph has the following two properties: First, if qi ∈ B then for every
black edge going from qi to a vertex qj we also have qj ∈ B. Second, if qi and qj
are connected by a red edge, then qi ∈ B iff qj 6∈ B.

We compute a single query q = qi such that knowing χB(q) yields χB(qj)
for all other vertices. To do so, we apply the following pruning algorithm to the
graph:

Search for a red edge (qi, qj) plus another node q` which is connected to both
qi and qj by black edges. If both black edges go from q` to qi and qj we know
χB(q`) = 0, for being connected by a red edge exactly one of the two words qi
and qj must be in B. Thus we can remove q` from the graph. Likewise, if both
edges go from qi and qj to q` we know χB(q`) = 1 and we can also remove q`.
Now, if the first black edge goes from qi to q` and the second from q` to qj , the
graph property yields χB(qi) = 1 and χB(qj) = 0. Conversely, if the black edges
go the other way round, we know χB(qi) = 0 and χB(qj) = 1. In either case we
can remove both qi and qj .

For the remaining graph G′ = (E′, V ′) there are two possible situations:
either the graph no longer contains a red edge or it contains a red spanning tree.

If the graph contains no red edge, it is a tournament; that is for all vertices in
the graph the machine R behaves like a selector. Using this selector we can com-
pute a pool from sel|E′| for the characteristic string of the vertices in the graph.
To compute the special query q, we proceed as follows: for each bitstring b ∈ P ,
in order of increasing number of 1’s, compute φ(b). If φ(b) = 0 (or φ(b) = 1) for
all b, we do not have to query the oracle at all. Otherwise there is exactly one
bitstring such that φ(b) = 0, but φ(b′) = 1 for the next bitstring. We take the
word at the position where a 0 in b changes into a 1 in b′ as our query q.

If the graph has a red spanning tree, knowing the characteristic value of any
vertex in the graph immediately yields the characteristic values of all other ver-
tices. Hence, we can compute two bitstrings b0 and b1 such that χB(q1, . . . , qk) ∈
{b0, b1}. Compute φ(b0) and φ(b1). If these are equal, we do not need to query B
at all. If they are different, there must exists a position i such that b0[i] = φ(b0)
and b1[i] = φ(b1) and we can ask q := qi. ut

Corollary 29. Let D be a family with P[D] ⊆ P[sel2 ∪ 2-size2]. Then P[D] is
closed under polynomial time positive truth-table reductions.

Proof. If A ≤p
ptt B ∈ P[D], then A ≤p

m B by Theorem 28. But P[D] is closed
under many-one reductions by Theorem 13. Therefore A ∈ P[D]. ut

We now exhibit some families D for which P[D] is not even closed under 2-ptt
reductions. To do this, we proceed similarly as in the previous section where we

showed that certain P[D] are not closed under k-tt reductions. For every A we
introduce a typical language Ak-ptt which is k-ptt reducible to A. We then define
positive k-cones and with these we characterize the families P[D] closed under
k-ptt reductions. Finally we present some special families that do not comply
with this characterization.

Definition 30. For a language A and k ≥ 1 define

Ak-ptt :=
{
〈x1, . . . , xk, φ〉 | φ : Bk → B is monotone, φ

(
χA(x1, . . . , xk)

)
= 1

}
.

The following lemma is the analogue of Lemma 20 for positive reductions. A
proof is almost identical to the proof of that lemma and is therefore omitted.

Lemma 31. For all languages A and B we have B ≤p
k-ptt A iff B ≤p

m Ak-ptt.

Definition 32 (Positive k-Cone). For k ≥ 1 and an n-family D in normal
form, an nk-pool P is a positive k-cone for D if for all tuples (φ1, . . . , φn) of
k-ary monotone boolean functions φi the set of bitstrings{

φ1

(
b[1, . . . , k]

)
φ2

(
b[k + 1, . . . , 2k]

)
· · ·φn

(
b[(n− 1)k + 1, . . . , nk]

)
| b ∈ P

}
is a pool of D. By k-pcones(D) we denote the nk-family of all positive k-cones
for D.

Theorem 33. Let D be an n-family. Then P[D] is closed under ≤p
k-ptt-reduction

iff dDenk ⊆ k-pcones(D).

The omitted proof is essentially the same as for Theorem 24 for k-tt reductions.

Theorem 34. Let D be a 2-family with bottom2 ⊆ D. If P[D] is closed under
2-ptt reductions, then D = 4-size2.

Proof. The pool {00, 01, 10} is in D and therefore with the definition from Fact 7
for change of tuple-length, it is easy to check that D = {0000, 0010, 0100, 1001}
is in dDe4. Choose φ1 = φ2 as the 2-ary boolean or-function. Then we have
(φ1, φ2)(D) = {00, 01, 10, 11} = B

2. Because D is closed under 2-ptt reductions
(φ1, φ2)(D) has to be in D. It follows that D = 4-size2. ut

If a class C is closed under 2-ptt reductions then co-C also is closed under
2-ptt reductions. Therefore Theorem 34 also holds if top2 ⊆ D.

We have now characterised the families D for tuple-length n = 2 for which
P[D] is closed under positive truth-table reductions:

Theorem 35. For 2-families D in normal form with D 6= 4-size2 the following
are equivalent:

1. P[D] is closed under polynomial time ptt reductions.
2. P[D] is closed under polynomial time 2-ptt reductions.
3. D ⊆ sel2 ∪ 2-size2.
4. bottom2 6⊆ D and top2 6⊆ D.

While in the previous section on general k-tt and Turing reductions a com-
plete picture was presented, in the case of positive reductions there remains work
to be done. The above result should be extended to general tuple-lengths n and
to positive Turing reductions.

References

1. A. Amir, R. Beigel, and W. Gasarch. Some connections between bounded query
classes and non-uniform complexity. In Proc. 5th Structure in Complexity Theory,
1990.

2. A. Amir and W. Gasarch. Polynomial terse sets. Inf. and Computation, 77, 1988.
3. R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University, 1987.
4. R. Beigel. Bounded queries to SAT and the boolean hierarchy. Theoretical Comput.

Sci., 84(2), 1991.
5. R. Beigel, W. Gasarch, and E. Kinber. Frequency computation and bounded

queries. In Proc. 10th Structure in Complexity Theory, 1995.
6. R. Beigel, M. Kummer, and F. Stephan. Quantifying the amount of verboseness.

In Proc. Logical Found. of Comput. Sci., volume 620 of LNCS. Springer, 1992.
7. R. Beigel, M. Kummer, and F. Stephan. Approximable sets. In Proc. 9th Structure

in Complexity Theory, 1994.
8. R. Beigel, M. Kummer, and F. Stephan. Approximable sets. Inf. and Computation,

120(2), 1995.
9. L. Berman and J. Hartmanis. On isomorphisms and density of NP and other

complete sets. SIAM J. Comput., 6(2):305–322, 1977.
10. J. Goldsmith, D. Joseph, and P. Young. Using self-reducibilities to characterize

polynomial time. Inf. and Computation, 104(2):288–308, 1993.
11. J. Goldsmith, D. A. Joseph, and P. Young. Using self-reducibilities to character-

ize polynomial time. Technical Report CS-TR-88-749, University of Wisconsin,
Madison, 1988.

12. L. Hemaspaandra, A. Hoene, and M. Ogihara. Reducibility classes of p-selective
sets. Theoretical Comput. Sci., 155:447–457, 1996.

13. L. A. Hemaspaandra, Z. Jiang, J. Rothe, and O. Watanabe. Polynomial-time
multi-selectivity. J. of Universal Comput. Sci., 3(3), 1997.

14. M. Hinrichs and G. Wechsung. Time bounded frequency computations. In Proc.
12th Conf. on Computational Complexity, 1997.

15. A. Hoene and A. Nickelsen. Counting, selecting, and sorting by query-bounded
machines. In Proc. STACS 93, volume 665 of LNCS. Springer, 1993.

16. K.-I. Ko. On self-reducibility and weak p-selectivity. J. Comput. Syst. Sci., 26:209–
221, 1983.

17. J. Köbler. On the structure of low sets. In Proc. 10th Structure in Complexity
Theory, pages 246–261. IEEE Computer Society Press, 1995.

18. R. E. Ladner, N. A. Lynch, and A. L. Selman. A comparison of polynomial time
reducibilities. Theoretical Comput. Sci., 1(2):103–123, Dec. 1975.

19. A. Nickelsen. On polynomially D-verbose sets. In Proc. STACS 97, volume 1200
of LNCS, pages 307–318. Springer, 1997.

20. A. Selman. P-selective sets, tally languages and the behaviour of polynomial time
reducibilities on NP. Math. Systems Theory, 13:55–65, 1979.

21. A. L. Selman. Reductions on NP and p-selective sets. Theoretical Comput. Sci.,
19:287–304, 1982.

22. P. Young. On semi-cylinders, splinters, and bounded-truth-table reducibility.
Trans. of the AMS, 115:329–339, 1965.

	Preliminaries
	Many-One and 1-tt Reductions
	From 2-tt to Turing Reductions
	Positive Reductions
	References

