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Abstract. We study the reachability problem for finite directed graphs
whose independence number is bounded by some constant k. This prob-
lem is a generalisation of the reachability problem for tournaments. We
show that the problem is first-order definable for all k. In contrast, the
reachability problems for many other types of finite graphs, including
dags and trees, are not first-order definable. Also in contrast, first-order
definability does not carry over to the infinite version of the problem. We
prove that the number of strongly connected components in a graph with
bounded independence number can be computed using TC0-circuits, but
cannot be computed using AC0-circuits. We also study the succinct ver-
sion of the problem and show that it is ΠP

2 -complete for all k.

1 Introduction

One of the most fundamental problems in graph theory is the reachability prob-
lem. For this problem we are asked to decide whether there exists a path from
a given source vertex s to a given target vertex t in some graph G. For finite
directed graphs this problem, which will be denoted reach in the following,
is well-known to be NL-complete [12, 13]. It is thus easy from a computational
point of view and efficient parallel algorithms are known for it. The complexity
of the reachability problem drops if we restrict the type of graphs for which we
try to solve it. The reachability problem reachu for finite undirected graphs is
SL-complete [15] and thus presumably easier to solve. The even more restricted
problem reachforest for undirected forests and the problem reachout≤1 for di-
rected graphs in which all vertices have out-degree at most 1 are L-complete [2].

In this paper we study the reachability problem for finite directed graphs
whose independence number is bounded by some constant k. The independence
number α(G) of a graph G is the maximum number of vertices that can be
picked from G such that there is no edge between any two of these vertices.
Thus we study the languages reachα≤k := reach ∩

{
〈G, s, t〉 | α(G) ≤ k

}
for constant k, where 〈 〉 denotes a standard binary encoding. We show that,
somewhat surprisingly, reachα≤k is first-order definable for all k.
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First-order definability means the following. Let τ =
(
E2, s, t

)
be the sig-

nature of directed graphs with two distinguished vertices. The binary relation
symbol E represents an edge relation and the constant symbols s and t represent
a source and a target vertex. We show that for each k there exists a first-order
formula φreach,α≤k over the signature τ for which the following holds: for all
finite directed graphs G = (V,E) and all s, t ∈ V the τ -structure (V,E, s, t) is a
model of φreach,α≤k iff α(G) ≤ k and there is path from s to t in G. The formulas
will neither require an ordering on the universe nor the bit predicate [11].

The most prominent examples of graphs with bounded independence number
are tournaments [18, 20], which are directed graphs with exactly one edge be-
tween any two vertices. Their independence number is 1. Conditions for strong
connectedness of tournaments (and thus, implicitly, for reachability) were proven
in [9], but these conditions yield weaker bounds on the complexity of the reacha-
bility problem for tournaments than those shown in the present paper. A different
example of graphs with bounded independence number, studied in [4], are di-
rected graphs G = (V,E) whose underlying undirected graph is claw-free, i. e.,
does not contain the K1,m for some constant m, and whose minimum degree is
at least |V |/3. Their independence number is at most 3m− 3.

Languages whose descriptive complexity is first-order are known to be very
simple from a computational point of view. They can be decided by a family
of AC0-circuits (constant depth circuits) and also in constant parallel time on
concurrent-read, concurrent-write parallel random access machines [16]. Since
it is known that L-hard sets cannot be first-order definable [1, 6], reachα≤k is
(unconditionally) easier to solve than reach, reachu, and reachforest.

A problem closely related to the reachability problem is the problem of iden-
tifying the strongly connected components of a graph. We show that TC0-circuits
(constant depth circuits with threshold gates) can count the strongly connected
components in graphs with bounded independence number, but AC0-circuits
cannot—not even in tournaments.

In hardware design one is often concerned with succinctly represented graphs,
which are given implicitly via a program or a circuit that decides the edge relation
of the graph. Papadimitriou, Yannakakis, and Wagner [19, 23, 24] have shown
that the problems succinct-reach, succinct-reachu, succinct-reachforest,
and succinct-reachout≤1 are PSPACE-complete. Opposed to this, we show that
succinct-reachα≤k is ΠP

2 -complete for all k.
Our results apply only to finite graphs. Let reach∞α≤k be the class of all

triples (G, s, t) such that G is a (possibly infinite) directed graph with α(G) ≤ k
in which there is a path from s to t. We show that there does not exist a set
of first-order formulas (not even an uncountable one) whose class of models is
exactly reach∞α≤k for some k.

This paper is organised as follows. In Section 2 we study graph-theoretic
definitions and results and prove a general theorem that shows how the indepen-
dence number of a graph is connected to its different domination numbers. We
believe this theorem to be of independent interest. In Section 3 we show that
the problem reachα≤k is first-order definable, by explicitly giving a defining



formula. In Section 4 we study the circuit complexity of counting the number of
strongly connected components in a graph. In Sections 5 we study the infinite
version of our problem and in Section 6 the succinct version.

2 Graph-Theoretic Definitions and Results

In this section we first give definitions of basic graph-theoretic concepts. Then
we prove a generalisation of the so-called lion king lemma, see Theorem 2.2. At
the end of the section we prove Theorem 2.3, which will be the crucial building
block of our first-order definition of reachα≤k.

A graph is a nonempty set V of vertices together with a set E ⊆ V × V of
directed edges. The out-degree of a vertex u is the number of vertices v with
(u, v) ∈ E. A path of length ` in a graph G = (V,E) is a sequence v0, . . . , v` of
vertices with (vi, vi+1) ∈ E for i ∈ {0, . . . , ` − 1}. A vertex t is reachable from
a vertex s if there is a path from s to t. A strongly connected component is a
maximal vertex set U ⊆ V such that every vertex in U is reachable from every
other vertex in U . A set U ⊆ V is an independent set if there is no edge in
E connecting vertices in U . The maximal size of independent sets in G is its
independence number α(G). For i ∈ N, a vertex u ∈ V is said to i-dominate a
vertex v ∈ V if there is a directed path from u to v of length at most i. Let
domi(U) denote the set of vertices that are i-dominated by vertices in U . A set
U ⊆ V is an i-dominating set for G if domi(U) = V . The i-domination number
βi(G) is the minimal size of an i-dominating set for G. A tournament is a graph
with exactly one edge between any two different vertices and (v, v) /∈ E for all
v ∈ V . Note that tournaments have independence number 1.

Lemma 2.1. Let G = (V,E) be a finite graph, n := |V |, α := α(G). Then G
has at least

(
n
2

) / (
α+1

2

)
edges and there exists a vertex with out-degree at least

(n− 1)
/

2
(
α+1

2

)
.

Proof. The number of (α + 1)-element subsets of V is
(

n
α+1

)
. Every such set

contains two vertices linked by an edge. Every such edge is in
(

n−2
α−1

)
different

(α+1)-element subsets of V . Therefore there are at least
(

n
α+1

) / (
n−2
α−1

)
=

(
n
2

) /(
α+1

2

)
edges in G. This also shows that the average out-degree in G is at least(

n
2

) /
n
(
α+1

2

)
= (n− 1)

/
2
(
α+1

2

)
and one vertex has at least this out-degree. ut

Turán [21], referenced in [22], gives an exact formula for the minimal number of
edges in a graph as a function of the graph’s independence number. However, the
simple bound from the above lemma will be more appropriate for our purposes.

Theorem 2.2. Let G = (V,E) be a finite graph, n := |V |, α := α(G). Then
β1(G) ≤ dlogc ne and β2(G) ≤ α, where c = (α2 + α)/(α2 + α− 1).

Proof. We iteratively construct a 1-dominating set D1 for G of size at most
dlogc ne. In each step we put a vertex vi into D1 that dominates as many vertices
as possible of the subset Vi ⊆ V not dominated so far. Formally, set V0 := V



and for i ≥ 1, as long as Vi−1 is not empty, choose a vertex vi ∈ Vi−1 such that
Vi := Vi−1 \ dom1

(
{vi}

)
is as small as possible. Let imax be the first i such that

Vi is empty. By Lemma 2.1 the out-degree of vi is at least
(
|Vi−1| − 1

) /
2
(
α+1

2

)
and thus

|Vi| ≤ |Vi−1| − 1− |Vi−1| − 1
2
(
α+1

2

) < |Vi−1| −
|Vi−1|
2
(
α+1

2

)
= |Vi−1|

(
1− 1

2
(
α+1

2

))
= |Vi−1|

(
α2 + α− 1
α2 + α

)
=
|Vi−1|
c

.

This shows that the size of Vi decreases by at least the factor c in each step. Thus
after at most dlogc ne iterations the set Vi is empty and D1 := {v1, . . . , vimax} is
the desired 1-dominating set.

We next construct a 2-dominating set D2 of size at most α by removing
superfluous vertices from D1. Formally, let Wimax := {vimax} and let Wi−1 := Wi

if vi ∈ dom1(Wi), and Wi−1 := Wi ∪ {vi} otherwise. Clearly, D2 := W1 is a
2-dominating set. To prove |D2| ≤ α, assume that D2 contains at least α + 1
vertices vi1 , . . . , viα+1 ∈ D1. Since these vertices cannot be independent, there
must exist indices ir and is such that (vir

, vis
) ∈ E. By construction of the

set D1, this can only be the case if is > ir. But then vir
/∈ D2 by construction

of Wir
, a contradiction. ut

For tournaments G, Theorem 2.2 yields β1(G) ≤ log2(n) and β2(G) = 1. The
first result was first proved by Megiddo and Vishkin in [17], where it was used
to show that the dominating set problem for tournaments is not NP-complete,
unless NP ⊆ DTIME

(
nO(log n)

)
. The second result is also known as the lion

king lemma, which was first noticed by Landau in [14] in the study of animal
societies, where the dominance relations on prides of lions form tournaments. It
has applications in the study of P-selective sets [10] and many other fields.

Theorem 2.3. Let G = (V,E) be a finite graph, n := |V |, α := α(G), c :=
(α2+α)/(α2+α−1), and s, t ∈ V . Then the following statements are equivalent:

1. There is no path from s to t in G.
2. There is a subset D1 ⊆ V with |D1| ≤ dlogc ne such that dom1(D1) is closed

under reachability, s ∈ dom1(D1) and t 6∈ dom1(D1).
3. There is a subset D2 ⊆ V with |D2| ≤ α such that dom2(D2) is closed

under reachability, s ∈ dom2(D2) and t 6∈ dom2(D2).

Proof. Both 2 and 3 imply 1, since no path starting at a vertex s inside a set
that closed is under reachability can ‘leave’ this set to arrive at a vertex t outside
this set. To show that 1 implies 2, consider the set S of vertices reachable from s
in G. Then S is closed under reachability, s ∈ S and t 6∈ S. The induced graph
G′ :=

(
S,E ∩ (S × S)

)
also has independence number at most α. Therefore, by

Theorem 2.2, the graph G′ has a 1-dominating set D1 of size at most dlogc ne. To
show that 1 implies 3, consider the same graph G′ once more. By Theorem 2.2
it also has a 2-dominating set D2 of size at most α. ut



3 First-Order Definability of the Problem

In this section we show that reachability in graphs with bounded independence
number is first-order definable. We start with a review of some basic notions
from descriptive complexity theory.

We use the signature or vocabulary τ =
(
E2, s, t

)
. It consists of a binary

relation symbol E, representing an edge relation, and constant symbols s and t,
representing a source and a target vertex. A τ -structure is a tuple (V,E, s, t)
such that E ⊆ V × V and s, t ∈ V . We do not distinguish notationally between
the symbols in the signature and their interpretation in a structure, because it is
always clear from the context which of the two meanings is intended. The stan-
dardised binary code of a finite τ -structure (V,E, s, t) will be denoted 〈V,E, s, t〉.
A set A of codes of finite τ -structures is first-order definable if there exists a
first-order formula φ over the signature τ such that for all finite τ -structures
(V,E, s, t) we have (V,E, s, t) |= φ iff 〈V,E, s, t〉 ∈ A.

Theorem 3.1. For each k, reachα≤k is first-order definable.

Proof. Let k ≥ 1 be fixed. We give a stepwise construction of a formula φreach,α≤k

such that (V,E, s, t) |= φreach,α≤k iff 〈V,E, s, t〉 ∈ reachα≤k. Roughly spoken,
the formula φreach,α≤k will say ‘α(G) ≤ k and it is not the case that condition 3
of Theorem 2.3 holds for s and t’.

Let φdistinct(v1, . . . , vk) ≡
∧

i 6=j [vi 6= vj ]. This formula expresses that vertices
are distinct. The property ‘α(G) ≤ k’ can be expressed as follows:

φα≤k ≡ (∀v1, . . . , vk+1)
[
φdistinct(v1, . . . , vk+1) →

∨
i 6=j

E(vi, vj)
]
.

The next two formulas express that a vertex v, respectively a set {v1, . . . , vm}
of vertices, 2-dominates a vertex u:

φ2-dom(v, u) ≡ v = u ∨ E(v, u) ∨ (∃z)
[
E(v, z) ∧ E(z, u)

]
,

φ2-dom(v1, . . . , vm, u) ≡ φ2-dom(v1, u) ∨ · · · ∨ φ2-dom(vm, u).

Since β2(G) ≤ α(G) ≤ k, condition 3 of Theorem 2.3 can be expressed as
follows:

φcondition ≡ (∃v1, . . . , vk)[
φ2-dom(v1, . . . , vk, s) ∧ ¬φ2-dom(v1, . . . , vk, t) ∧

(∀u, v)
[(
φ2-dom(v1, . . . , vk, u) ∧ ¬φ2-dom(v1, . . . , vk, v)

)
→ ¬E(u, v)

]]
.

The desired formula φreach,α≤k is given by φα≤k ∧ ¬φcondition . ut
Note that the formula φreach,α≤k constructed in the proof has quantifier

alternation depth three, beginning with a universal quantifier.
Theorem 3.1 be easily extended to the following larger class of graphs: define

the r-independence number αr(G) of a graph G as the maximal size of an r-
independent set in G, which is a vertex subset such that there is no path of length
at most r between any two different vertices in this subset. Then reachability in
graphs with αr(G) ≤ k is first-order definable for all k, r ∈ N.



4 Circuit Complexity of the Problem

In this section we study the circuit complexity of the problem reachα≤k, as well
as the complexity of counting the number of strongly connected components in
a graph with bounded independence number. We show that this number can be
computed using TC0-circuits, but cannot be computed using AC0-circuits.

A family C = (Cn)n∈N of circuits is a family of AC0-circuits if each Cn has
n input gates, their size is bounded by a polynomial in n, their depth is bounded
by a constant, and each Cn consist of unbounded fan-in/fan-out and-, or-, and
not-gates. For TC0-circuits we also allow threshold gates, whose output is 1 if the
number of 1’s at the input exceeds some threshold. For x ∈ {0, 1}n we write C(x)
for the output produced by Cn on input x. The output may be a bitstring since
we allow multiple output gates. A circuit family C decides a set A ⊆ {0, 1}∗,
respectively computes a function f : {0, 1}∗ → {0, 1}∗, if for all x ∈ {0, 1}∗ we
have x ∈ A iff C(x) = 1, respectively f(x) = C(x).

As shown by Lindell [16], every first-order definable set can be decided by
AC0-circuits. In particular, by Theorem 3.1 there exists, for each k, an AC0-
circuit family Ck that decides reachα≤k. We now sketch how these families
can be used to decrease the average case complexity of reach, which is L-hard
and thus does not have AC0-circuits [1, 6]. Suppose there exists a constant k for
which we expect α(G) ≤ k to hold with high probability for input graphsG. Then
whenever α(G) ≤ k holds, we can use Ck to decide in constant depth whether
there is a path from s to t. For graphs with α(G) > k we use a slow standard
reachability circuit to decide whether such a path exists. If the probability of
α(G) ≤ k is sufficiently large, the preprocessing will decrease the average time
taken by the circuit to produce its output.

A problem closely related to the reachability problem is the problem of
counting strongly connected components. The following theorem pinpoints the
exact circuit complexity of this counting problem for graphs with bounded in-
dependence number. Let ζα≤k : {0, 1}∗ → {0, 1}∗ be the function that maps the
code 〈G〉 of a graph G to the binary representation of the number of strongly
connected components in G if α(G) ≤ k, and that maps 〈G〉 to 0 if α(G) > k.

Theorem 4.1. For each k, ζα≤k can be computed by TC0-circuits, but not by
AC0-circuits.

Proof. Let k be fixed. Let φreach,α≤k(u, v) be the formula with two free vari-
ables expressing that v is reachable from u and that the underlying graph has
independence number at most k. It is obtained from φreach,α≤k from the proof
of Theorem 3.1 by replacing the constant symbols s and t by variables u and v.
Consider the formula

φrep(v) ≡ (∀u)
[
u < v →

(
¬φreach,α≤k(u, v) ∨ ¬φreach,α≤k(v, u)

)]
,

where ‘<’ is a relation that is interpreted as a total ordering of the set of vertices.
For a graph G with α(G) ≤ k, the formula φrep(v) will be true exactly for the

smallest members (with respect to the ordering <) of each strongly connected



component. Thus, the number of vertices v for which φrep(v) holds is exactly
the number of strongly connected components in G. Since φrep is a first-order
formula, there exists a family of AC0-circuits that maps

〈
{v1, . . . , vn}, E

〉
to a

bitstring in which the i-th position is 1 iff
(
{v1, . . . , vn}, E

)
|= φrep(vi). Since

the number of 1’s in this bitstring can be computed in constant depth using
threshold gates, ζα≤k can be computed by TC0-circuits.

Next, for the sake of contradiction, assume that there exists an AC0-circuit
family C that computes ζα≤k. We construct an AC0-circuit for the parity func-
tion, contradicting the results of Ajtai et al. [1, 6]. Let a bitstring b = b1 . . . bn
be given as input. Define a tournament G =

(
{1, . . . , n + 1}, E

)
as follows: for

i + 1 < j there is an edge from j to i; for i + 1 = j there is an edge from j
to i if bi = 1; otherwise there is an edge from i to j. If b contains no 1’s, the
tournament will form one big circle, thus having just one strongly connected
component. Every additional 1 in b adds one strongly connected component.
The parity of b is thus given by the toggled least-significant bit of C

(
〈G〉

)
. ut

5 Infinite Version of the Problem

In this section we study the class reach∞α≤k and show that the results of Sec-
tion 3 on the first-order definability of reachα≤k do not carry over to reach∞α≤k.
This class contains all triples (G, s, t) such that G is a (possibly infinite) graph
with α(G) ≤ k in which there is a path from s to t. We start with a review of
the relevant notions from model theory.

Let τ be a signature. A class K of τ -structures is called elementary (over
finite structures) if there exists a first-order formula φ over τ such that for
every (finite) τ -structure A we have A |= φ iff A ∈ K. (Some authors use
‘finitely axiomatisable’ instead of ‘elementary’.) A class K of τ -structures is ∆-
elementary if there exists a set Φ of first-order formulas over τ such that for
every τ -structure A we have A |= Φ iff A ∈ K.

Fact 5.1 (Compactness Theorem). Let Φ be a set of first-order formulas
such that every finite Φ0 ⊆ Φ has a model. Then Φ has a model.

With these definitions, Theorem 3.1 simply states that reach∞α≤k is elementary
over finite structures for all k. The below proof that reach∞α≤k is not even
∆-elementary follows the standard pattern of proofs applying the compactness
theorem. The only essential part is the construction of appropriate model graphs
for finite subsets of a hypothetical axiomatisation of reach∞α≤k.

Theorem 5.2. reach∞α≤k is not ∆-elementary for any k.

Proof. Assume that there exists a set Φ of first-order formulas with (V,E, s, t) |=
Φ iff (V,E, s, t) ∈ reach∞α≤k. For each n ∈ N define the following formula ψn,
which is fulfilled by a graph iff there is a path of length n from s to t.

ψn ≡ (∃v1, . . . , vn−1)
[
E(s, v1) ∧ E(v1, v2) ∧ · · · ∧ E(vn−2, vn−1) ∧ E(vn−1, t)

]
.



Consider the set Ψ := Φ ∪ {¬ψ1,¬ψ2,¬ψ3, . . .}. We claim that every finite
Ψ0 ⊆ Ψ has a model (V,E, s, t). To see this, let n be large enough such that for
all i ≥ n we have ¬ψi 6∈ Ψ0 and define a graph G = (V,E) by V := {1, . . . , n+1}
and (i, j) ∈ E iff j ≤ i + 1. Then α(G) = 1 ≤ k and the shortest path from
s := 1 to t := n+ 1 has length n. Thus (V,E, s, t) is a model of Ψ0.

Since every finite subset of Ψ has a model, Ψ has a model (V,E, s, t) by the
compactness theorem. Since this model fulfills ¬ψn for all n, there can be no
path of finite length from s to t in G = (V,E). Thus Φ has a model that is not
an element of reach∞α≤k. ut

6 Succinct Version of the Problem

In this section we study succinctly represented graphs. Such graphs are given
implicitly via a description in some description language. Since succinct represen-
tations allow one to encode large graphs into small codes, checking properties
is (provably) harder for succinctly represented graphs than for graphs coded
in the usual way. Papadimitriou et al. [19, 24] have shown that most interesting
problems for succinctly represented graphs are PSPACE-complete or even NEXP-
complete. The following formalisation of succinct graph representations is due
to Galperin and Wigderson [7], but others are also possible [24, 8].

Definition 6.1. A succinct representation of a graph G =
(
{0, 1}n, E

)
is a 2n-

input circuit C such that for all u, v ∈ {0, 1}n we have (u, v) ∈ E iff C(uv) = 1.

The circuit tells us for any two vertices of the graph whether there is a directed
edge between them or not. Note that there is no need to bound the size of C.

Definition 6.2. Let A ⊆ {〈G, s, t〉 | G = (V,E) is a finite graph, s, t ∈ V }.
Then succinct-A is the set of all codes 〈C, s, t〉 such that C is a succinct rep-
resentation of a graph G with 〈G, s, t〉 ∈ A.

Theorem 6.3. For each k, succinct-reachα≤k is ΠP
2 -complete.

Proof. We first show succinct-reachα≤k ∈ ΠP
2 . Let 〈C, s, t〉 be an input and

let C represent a graph G = (V,E) with V = {0, 1}n. Note that log2 |V | = n. We
first check whether α(G) ≤ k, which can easily be done using a coNP-machine.
We then check whether there is path from s to t in G. By Theorem 2.3 this is
case iff for all sets D1 ⊆ {0, 1}n of size at most β1(G) either s 6∈ dom1(D1)
or t ∈ dom1(D1) or dom1(D1) is not closed under reachability, i.e., there exist
vertices u ∈ dom1(D1) and v ∈ {0, 1}n \ dom1(D1) such that C(uv) = 1. Since
β1(G) ≤ dlogc 2ne ≤ dn/ log2 ce, the size of the D1’s that need to be checked
is linear in n. Thus the ‘for all . . . exists . . . ’ test is a ΠP

2 -algorithm, since a
membership test for the set dom1(D1) can be performed in polynomial time.

We now prove that even the reachability problem succinct-reachtourn

for tournaments is ΠP
2 -hard. Let L ∈ ΠP

2 be any language. By the quantifier
characterisation of the polynomial hierarchy [25] there exists a polynomial time
decidable ternary relation R and a constant c such that

L =
{
x | (∀y, |y| = |x|c)(∃z, |z| = |x|c)

[
R(x, y, z)

]}
.



We construct a reduction from L to succinct-reachtourn. On input x we
construct, in polynomial time, a circuit C and two bitstrings s, t such that x ∈ L
iff 〈C, s, t〉 ∈ succinct-reachtourn. Let n denote the length of x and let ` := nc.

The circuit C will represent a highly structured tournament G of exponential
size. The vertex set of G is V = {0, 1}2`+1. Each vertex v ∈ V can be split into
a ‘y-component’ y ∈ {0, 1}`+1 and a ‘z-component’ z ∈ {0, 1}` with yz = v. All
vertices that have the same y-component form a level. All vertices on the same
level are connected such that they form a strongly connected subtournament
of G. We say a level is above another level if its y-component is lexicographically
larger than the other level’s y-component.

Edges between different levels generally point ‘downwards’, i. e., from higher
levels to lower levels. The only exception are edges between a vertex with y-
component 0ỹ with ỹ ∈ {0, 1}` and the vertex with the same z-component on
the level directly above. Such an edge points ‘upwards’ iff R(x, ỹ, z). The source
is any vertex on the bottom level, the target is any vertex on level 10`.

The graph G is a tournament and the representing circuit C can be con-
structed in polynomial time. From each level y one can go (at best) only one
level higher to the next level y′, since all edges between non-neighbouring levels
point downwards. Since all vertices on the same level are connected, if one can
reach a vertex v on level 0ỹ, one can reach a vertex on the level directly above iff
R(x, y′, z) holds for some z ∈ {0, 1}`. So in order to get from the source to the
target, for all ỹ ∈ {0, 1}` there must exist a z ∈ {0, 1}` such that R(x, ỹ, z). ut

7 Conclusion and Open Problems

We showed that the complexity of the reachability problem for graphs with
bounded independence number is lower than the complexity of the corresponding
problem for, say, forests. However, we did not claim that is also easier to actually
find a path in a tournament. While it is easily seen that there is a function in FL

that maps every forest to a path from the first to the last vertex, provided such
a path exists, we do not know whether such a function exists for tournaments.
We recommend this problem for further research.

We do not know whether the three levels of quantifier alternation in the first-
order formula for reachα≤k are necessary, but conjecture that this is the case.
Since we do not refer to an ordering relation in our first-order formula, it seems
promising to use an Ehrenfeucht-Fräıssé game [3, 5] to prove this.

In the succinct setting, we proved that the problem succinct-reachα≤k is
ΠP

2 -complete for all k. Opposed to this, for r > 1 our arguments only show
succinct-reachαr≤k ∈ ΠP

3 . In particular, we would like to know the exact
complexity of succinct-reachα2≤1.
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