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Abstract

We study whether sets inside NP can be reduced to sets with low information content
but possibly still high computational complexity. Examples of sets with low information
content are tally sets, sparse sets, P-selective sets and membership comparable sets.
For the graph automorphism and isomorphism problems GA and GI, for the directed
graph reachability problem GAP, for the determinant function det, and for logspace
self-reducible languages we establish the following results:

1. If GA is ≤p
tt-reducible to a P-selective set, then GA ∈ P.

2. If GI is O(log n)-membership comparable, then GI ∈ RP.
3. If GAP is logspace O(1)-membership comparable, then GAP ∈ L.
4. If det is ≤log

T -reducible to an L-selective set, then det ∈ FL.
5. If A is logspace self-reducible and ≤log

T -reducible to an L-selective set, then A ∈ L.

The last result is a strong logspace version of the characterisation of P as the class of
self-reducible P-selective languages. As P and NL have logspace self-reducible complete
sets, it also establishes a logspace analogue of the conjecture that if SAT is ≤p

T-reducible
to a P-selective set, then SAT ∈ P.
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1 Introduction

Sets with low information content typically have high computational complexity, but they
become computationally tractable when a small amount of extra advice (in the sense of
Karp and Lipton [33]) is available for each word length. For example, only one advice
bit per word length is needed to decide a tally set. A less trivial example are P-selective
sets [53], which can be decided by an NP-machine [30], if n + 1 advice bits are available
for the words of length n, and by a P-machine [34], if n2 bits are available. Much research
has focused on the question of whether sets with low information content can be helpful in
deciding natural computationally difficult problems. Although it is easily seen that every
set is ≤exp

m -reducible to some tally set, for more realistic types of reductions like logspace
or polynomial-time reductions, sets with low information content have turned out to be
remarkably useless. For P-selective sets the following result is known:

Fact 1 ([2, 13, 46]). For all ε > 0 the following holds:

1. If SAT is ≤p
n1−ε-tt

-reducible to a P-selective set, then SAT ∈ P.

2. If GI is ≤p

n1/2−ε-tt
-reducible to a P-selective set, then GI ∈ P.

3. If GA is ≤p
n1−ε-tt

-reducible to a P-selective set, then GA ∈ P.

Assuming that SAT, GI and GA are not decidable in polynomial time, each of the above
results is a negative statement about reducibility to P-selective sets. We improve on the
result for the graph automorphism problem by showing that if GA is ≤p

tt-reducible to a
P-selective set, then GA ∈ P. This result is a corollary of the following theorem:

Theorem 2. If any solution of the promise problem (1GA, GA) is ≤p
tt-reducible to an O(1)-

membership comparable set, then GA ∈ P.

Membership comparable sets are a generalization of selective sets due to Ogihara [46].
A set A is polynomial-time f -membership comparable, f -mc in short, if for any f(n) many
words of length at most n we can exclude, in polynomial time, one possibility for their
characteristic string with respect to A. As shown by Ogihara [46] membership comparable
sets have low information content as only polynomially many advice bits per word length are
needed in order to decide them in polynomial time. For the satisfiability problem Sivakumar
showed the following result:

Fact 3 ([54]). If SAT is O(log n)-mc, then SAT ∈ RP.

This improved earlier results of Toda [58] and Beigel [12] stating that if SAT is ≤p
tt-

reducible to a P-selective set, then SAT ∈ RP. The “improvement” is due to the fact that
the ≤p

tt-reduction closure of the P-selective sets is properly contained in the class of all
O(log n)-mc sets [56]. Our Theorem 4 also improves Toda and Beigel’s result, but in a
different manner, similar to Theorem 2. For the graph isomorphism problem we show that
a direct analogue of Fact 3 holds.
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Theorem 4. If any solution of (1SAT, SAT) is ≤p
tt-reducible to an O(1)-mc set, then SAT ∈

RP.

Theorem 5. If GI is O(log n)-mc, then GI ∈ RP.

One of the ultimate goals of studying reduction closures of selective sets is to prove the
following important conjecture: if NP ⊆ PP-sel then P = NP. However, it is known [5] that
even watered-down versions of this conjecture can be either true or false relative to some
oracle. We show that many plausible logspace versions of this conjecture do hold. The
class L-sel of L-selective sets is defined in the obvious way by requiring the machines to
run in logarithmic space rather than polynomial time. The class BH(L-sel) is the boolean
hierarchy [15] over L-sel.

Theorem 6. Let C ∈
{
DCFL, CFL, SAC1, SL, UL, NL, FewL, L#L, P, Mod2L, Mod3L, . . .

}
.

If C ⊆ LBH(L-sel) then C ⊆ L.

As an application of Theorem 6 we prove the following result on the determinant function
det, which takes an integer matrix to its determinant.

Theorem 7. If det ∈ FLBH(L-sel), then det ∈ FL.

For all of the classes mentioned in Theorem 6 (except for SL, UL, and FewL, where
we use slightly a different argument) the proof of Theorem 6 is based on the following
characterization of L in terms of logspace self-reducibility [8]. It is a strong counterpart to
the characterization of P as the class of polynomial-time self-reducible set in P-sel [17] and
to similar characterizations of NP [28] and of NP∩ coNP [27].

Theorem 8. L is the class of logspace self-reducible sets in LBH(L-sel).

Concerning reducibility to logspace O(1)-mc sets instead of L-selective sets, we prove
the following theorem.

Theorem 9. If GAP is logspace O(1)-mc, then GAP ∈ L.

An important class of languages with low information content is the class of sparse sets.
Reducibility to sparse sets has been studied for a long time and the following results are
known (see [5, 49] for related and even stronger results).

Fact 10 ([47]). If SAT is ≤p
btt-reducible to a sparse set, then SAT ∈ P.

Fact 11 ([61]). If CVP is ≤log
btt-reducible to a sparse set, then CVP ∈ L.

We make progress on improving the last result by showing the following theorem.

Theorem 12. Let C be any of the classes from Theorem 6. If all sets in C are ≤log
T -

reducible to sparse sets that have only a constant number of words per length and are closed
under prefix, then C ⊆ L.
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In particular, if CVP is ≤log
T -reducible to a sparse set with the properties mentioned in

Theorem 12, then CVP ∈ L.
We use different proof techniques for our different theorems. For the result on the graph

automorphism problem we use the observation of Lozano and Torán [39] and Agrawal
and Arvind [1] that search non-adaptively reduces to decision for the graph automorphism
problem, as well as the parallel census technique [25, 26]. For the result on the graph
isomorphism problem we use the interactive proof protocol proposed by Goldreich, Micali,
and Wigderson [24]. For the characterization of L we show that search reduces to decision
for logspace self-reducible sets, and use the observation of Tantau [55], see also [44], that the
tournament reachability problem is first-order definable and hence decidable in logarithmic
space. For the conditional collapse results in Theorem 6 we build on Balcázar’s work [8] on
logspace self-reducible context-free languages, on Venkateswaran’s characterization [62] of
SAC1, and on Allender, Barrington, and Hesse’s [3] recent algorithm for converting Chinese
remainder representations into binary representations in logarithmic space. For the result
on GAP and logspace O(1)-mc sets, we adapt the proof techniques used by Agrawal, Arvind,
Beigel, Kummer, Ogihara, and Stephan [2, 13, 46] to logarithmic space.

This paper is organized as follows. In Section 2 we review the basic notions. In Section 3
we introduce the new notion of membership enumerability and study its basic properties.
This notion allows us to obtain uniform proofs of our main theorems later on. In Section 4 we
prove Theorems 2, 4 and 5 on GA, SAT, and GI. In Section 5 we treat logspace computations
and prove Theorems 6, 7, 8, 9 and 12.

2 Preliminaries

For a language A ⊆ Σ∗ we define χ∗
A to be the characteristic function of A extended to

tuples. It takes tuples of words as input and returns their characteristic string as output.
The pairing function 〈., . . . , .〉 takes arbitrary tuples of words and encodes them into one
word, such that coding and decoding can be done easily. The join A⊕B of two languages
is defined by A⊕B := {0x | x ∈ A}∪{1x | x ∈ B }. For definitions of standard complexity
classes see [48]. The class CFL contains the context-free languages, DCFL contains the
deterministic-context-free languages. The class SL of symmetric logspace is defined in [38].
The class UL was introduced by Àlvarez and Jenner [4], and FewL and ModkL are due to
Buntrock et al. [18]. The class SAC1 consists of all languages decided by logarithmically
depth-bounded polynomially-sized semi-unbounded-fan-in circuits. When discussing circuit
classes, selection of uniformity is an issue (see the work of Ruzzo [52]). Our choice is logspace
uniformity. The nonuniform version of SAC1 is closed under complementation [16] and this
closure property holds for the logspace-uniform SAC1 as well. For definitions of polynomial-
time truth-table reductions and Turing reduction see [37], for the logspace counterparts
see [36].

The notion of P-selectivity is due to Selman [53], while the notion of membership com-
parability is due to Ogihara [46]. Both notions can readily be generalized to logarithmic
space.
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Definition 13 ([53]). A selector for a language A is a binary function g such that for all
x, y ∈ Σ∗

1. g(x, y) ∈ {x, y},
2. if x ∈ A or y ∈ A, then g(x, y) ∈ A.

A language is in the class P-sel if it has a selector in FP, it is in L-sel if it has a selector in
FL.

Definition 14 ([46]). Let f : N → N. An f-membership comparing function for a lan-
guage A is a function g such that for all words x1, . . . , xf(n) of length at most n we have
b := g

(
〈x1, . . . , xf(n)〉

)
∈ {0, 1}f(n) and b 6= χ∗

A

(
x1, . . . , xf(n)

)
. A language is in the class

P-mc(f) if it has an f -membership comparing function in FP. It is in L-mc(f) if it has an
f -membership comparing function in FL.

As shown in [43, 46] we have P-sel ( P-mc(2) and the same proof technique can be used
to show L-sel ( L-mc(2). The classes L-sel and L-mc(k) share many properties with the
polynomial-time counterparts P-sel and P-mc(k). For example, PL-sel = P/poly and L-sel
cannot be decided with sublinear advice for any recursive time bound [30]. Likewise the
exact advice bounds for P-mc(k) shown by Ronneburger [50] also hold for L-mc(k).

It is well-known that all sets in NP have prover-verifier protocols of the following kind:

Definition 15. A prover-verifier protocol for a language A ∈ NP is a pair (f, V ) such that
f is a polynomially length-bounded function, V ∈ L, for all x ∈ A we have

(
x, f(x)

)
∈ V ,

and for all x 6∈ A and all y we have (x, y) 6∈ V . We say that a language A has a prover in
FC , if there exists a prover-verifier protocol for A such that f is an element of the function
class FC .

Every set in NP has a prover in FPNP. In the literature it is often said that search
reduces to decision for a language A, if A has a prover in FPA and the verifier works in
polynomial time. We will however always use verifiers that work in logarithmic space.

Definition 16 ([23, 22]). A promise problem is a pair (A,B) of languages consisting of
a promise A and a problem B. A solution of a promise problem is a set L such that
L ∩A = B ∩A.

Examples are the promise problems (1GA, GA) and (1SAT, SAT), where 1GA is the set of
graphs having at most one nontrivial automorphism, and 1SAT is the set of boolean formulas
having at most one satisfying assignment. See [35] for a discussion of the properties of these
problems.

Definition 17 ([8]). A language A is logspace self-reducible, if there exists a deterministic
logspace oracle machine such that on every input x it

1. accepts x iff x ∈ A, when given A as oracle,
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2. only asks queries that are lexicographically smaller than x and have the same length
as x,

3. only asks queries that are identical to x except for the last log |x| bits.

Definition 18. Let C be a class of languages. The boolean hierarchy BH(C) over C is the
smallest superset D ⊇ C such that A,B ∈ D implies A ∈ D and A ∩B ∈ D.

3 Membership Enumerable Languages

In this section we study the new notions of polynomial-time and logspace membership
enumerability. The idea is that a language A is membership enumerable, if χ∗

A is enumerable
in the sense of Cai and Hemachandra [19].

Definition 19. An enumerator for a function f : Σ∗ → Σ∗ is a function g : Σ∗ → Σ∗, such
that for all x we have g(x) = 〈x1, . . . , x`〉 for some ` and some words xi ∈ Σ∗, and f(x) = xi

for some i. A membership enumerator for a set A is an enumerator for χ∗
A. A language

is in the class P-men if it has a membership enumerator in FP, it is in L-men if it has a
membership enumerator in FL.

Theorem 20. The class P-men is closed under join and ≤p
tt-reductions. The class L-men

is closed under join and ≤log
T -reductions.

Proof. To show that P-men is closed under ≤p
tt-reductions, let A ≤p

tt B ∈ P-men. To show
that A ∈ P-men, let x1, . . . , xm be any input words. For each xi use the ≤p

tt-reduction to
compute polynomially many queries q1

i , . . . , q
`
i to B. Here, “polynomially many” means that

` is bounded by a polynomial in the total length of the input 〈x1, . . . , xm〉. After stringing
all queries together, using B ∈ P-men we can come up with polynomially many possibilities
for the characteristic string of the queries. Each of them induces a characteristic string for
the original input words. We can then simply output the set of all of these possibilities.

Next let A,B ∈ P-men. We show A ⊕ B ∈ P-men. Let any words x1, . . . , xm be given
as input. By possibly rearranging their ordering, w.l.o.g. we may assume that the first `
many words concern membership in A, whereas x`+1, . . . , xm concern membership in B.
We enumerate a set P of possibilities for χ∗

A(x1, . . . , x`) and a set Q of possibilities for
χ∗

B(x`+1, . . . , xm) and output the set {bc | b ∈ P, c ∈ Q}.
For logarithmic space, note that A ≤log

T B iff A ≤log
tt B as shown by Ladner and

Lynch [36]. Keeping this in mind, we can simply repeat the above proofs, replacing poly-
nomial time by logarithmic space everywhere. We only have to be careful that we do
not write down any intermediate values like the queries qj

i , but instead recompute them
whenever necessary.

Corollary 21. The boolean hierarchies over P-men and L-men collapse completely.

Proof. Any boolean connective of sets A1, . . . , Ak is ≤log
btt-reducible to the join of the same

sets.

6



Theorem 22. If A has a prover in FPP-men
tt then A ∈ P. If A has a prover in FLL-men then

A ∈ L.

Proof. Assume A has a prover f ∈ FPB
tt and B ∈ P-men. On input x we run the prover, who

produces queries q1, . . . , q` such that it can deduce its certificate f(x) from χ∗
B(q1, . . . , q`).

As B ∈ P-men we can generate a list of possibilities for χ∗
B(q1, . . . , q`) in polynomial time.

For each of these possibilities we reconstruct the prover’s output and check it with the
verifier. If the verifier accepts one of the outputs, we accept, otherwise we reject.

Once more this proof also works for logarithmic space, as FLB = FLB
tt and as we can

reproduce intermediate values as needed.

Theorem 23. Let A ∈ P-mc(f) for some monotone nondecreasing, polynomial-time com-
putable function f . Then χ∗

A has an enumerator that can be computed in time O
(
nO(f(n))

)
.

Proof. Let A ∈ P-mc(f) via a membership comparing function g. Let an input 〈x1, . . . , xm〉
be given and let n := |〈x1, . . . , xm〉| be its length. We wish to enumerate possibilities for
χ∗

A(x1, . . . , xm). We will say that a bit string b = b1 . . . bj with j ≤ m is consistent, if for
every f(n) many indices i1, . . . , if(n) ∈ {1, . . . , j} we have g

(〈
xi1 , . . . , xif(n)

〉)
6= bi1 . . . bif(n)

.
This means that b is a possible characteristic string of the first j many input words that
does not contradict any output of g.

In a first stage we run g on every possible selection of f(n) many of the input words.
As there are mf(n) ≤ nf(n) many such selections, this takes time nf(n)p(n), where p is a
polynomial bounding the runtime of g.

In a second stage we inductively construct a list of all consistent bit strings of length j.
For j = 1 we start with the list L1 = {0, 1}. Then we cross out all inconsistent bit strings,
arriving at a list L′

1. Having constructed L′
j , we define Lj+1 :=

{
b0 | b ∈ L′

j

}
∪

{
b1 | b ∈ L′

j

}
and let L′

j+1 contain all consistent bit strings in Lj+1.
Let `j be a bound on the maximum number of consistent bit strings of length j. As has

been shown by different authors [10, 11, 20, 14] this number is bounded by S
(
j, f(n)

)
=∑f(n)−1

i=0

(
j
i

)
≤ jf(n)−1 + 1 ≤ nf(n). As there are m lengths and as checking the consistency

of a single bit string takes time at most O
(
nf(n)

)
, the runtime of the second stage is at most

O
(
`mmnf(n)

)
⊆ O

(
n2f(n)+1

)
.

In particular, for constant f ≡ k we get P-mc(k) ⊆ P-men, a result first shown by Nick-
elsen [43]. We also get PP-sel

tt ⊆ P-men ⊆ P-mc(log).

Theorem 24. L-sel ⊆ L-men.

Proof. Let A ∈ L-sel via a selector g ∈ FL. Let any input words x1, . . . , xm be given and
let V := {x1, . . . , xm} be the set of these words. The selector g, which we may assume to
be commutative (see [31]), induces a tournament (see [41]) whose vertex set is V and where
there is an edge from xi to xj iff g(xi, xj) = xj . Let G be this tournament.

It is known [29, 30] that if V ∩A 6= ∅ there must exist an index i such that the set of all
vertices reachable from xi in G is exactly V ∩A. As shown by Tantau [55], the tournament
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reachability problem is first-order definable and hence, by an observation of Immerman [32],
decidable in logarithmic space. We can thus iterate over all vertices xi and for each of them
output a bit string whose j-th bit is 1 iff xj is reachable from xi in the tournament G.
Additionally, we output the bit string 0m. One of the bit strings output is now guaranteed
to be the characteristic string of the input words.

4 Application to GA, GI, and SAT

In this section we prove the theorems proclaimed in the introduction on GA, GI, and SAT.
For the proof of Theorem 2 on the graph automorphism problem we build on Lemma 25
below. The proof of Lemma 25 uses the parallel census technique (see [25, 26]) together
with the ideas of the proofs of Lemmas 5.2 and 5.3 of [39]. For the proof Theorem 4 on
the satisfiability problem we construct prover-verifier protocols for solutions of (1SAT, SAT).
For the proof of Theorem 5 on the graph isomorphism problem we use the interactive proof
system proposed in [24], which is also used in [39] and [9] in a similar fashion.

Lemma 25. If A is a solution of (1GA, GA), then GA has a prover in FPA
tt.

Proof. We use the notations of [39]. Our prover will, on input of a graph G = (V,E) with
|V | = n, output a non-trivial automorphism, if one exists. Our verifier must check whether
its input is a non-trivial automorphism, which can be done in logarithmic space.

To compute the non-trivial automorphism, using Mathon’s method [40] we first construct
graphs G(0), . . . , G(n−1) that form a tower of pointwise stabilizers in G’s automorphism
group. If G has a non-trivial automorphism, there is an index i0 such that the following
conditions hold:

1. None of G(i0), . . . , G(n−1) has a non-trivial automorphism.

2. The graph G(i0−1) has an automorphism mapping i0 to some j > i0, and this auto-
morphism trivially induces an automorphism of G.

3. For every j > i0 there is at most one automorphism in G(i0−1) mapping i0 to j.

4. In G(i0−1) there is no non-trivial automorphism mapping i0 to i0.

For each i and j consider the graph H ij := G
(i−1)
[i] ∪ G

(i−1)
[j] obtained by making a copy of

G(i−1) and labeling i in a special way in the first copy and j in an identical way in the
second copy. For all i > i0 these graphs will not have any nontrivial automorphism. For
i = i0 for all j > i the graphs H ij will have at most one non-trivial isomorphism. Thus all
of these graphs fulfill our promise.

As our queries to A we ask all of the H ij and also H ij
k` := H ij

[k]∪H ij
[`] for every pair k, ` of

vertices in H ij . Here we also label the k-th vertex and the `-th vertex in the copies in the
same special way. From the answers to the queries H ij , 1 ≤ i < j ≤ n, we can reconstruct
the value of i0. (This is where we use the parallel census technique.) We can also find a
j > i0 such that H i0j has a unique automorphism, from which an automorphism of G can
be reconstructed as follows: the automorphism maps the k-th vertex to the `-th vertex iff

8



H i0j
k` has a non-trivial automorphism. Since for all k and ` the graph H i0j

k` has at most one
non-trivial automorphism, we can reconstruct the non-trivial automorphism of H i0j from
the values of χA

(
H i0j

k`

)
.

Proof of Theorem 2. By Lemma 25 the language GA has a prover in FPA
tt. By assumption

A is ≤p
tt-reducible to a set in P-mc(k) for some k. Hence by Theorem 23 the set A is ≤p

tt-
reducible to a set in P-men, and hence A ∈ P-men. By Theorem 22 this yields GA ∈ P.

Using the same argument, but allowing for super-polynomially large sets of possible certifi-
cates, it is easy to show the following more general result: if any solution A of the promise
problem (1GA, GA) is ≤p

tt-reducible to an f-mc set, then GA ∈ DTIME
[
nO(f(n))

]
.

Proof of Theorem 4. Let A be a solution of (1SAT, SAT) that is in P-men via a machine M .
For an n-variable formula φ let Qφ denote the output of M on input 〈φ1, . . . , φn〉, where φi

is φ with the i-th variable substituted by 1. We define a set B as the set of all formulas φ
for which Qφ contains a satisfying assignment of φ.

Clearly, B ∈ P. Just as clearly, if φ has no satisfying assignment then φ 6∈ B. Now sup-
pose φ has exactly one satisfying assignment. Then φi ∈ 1SAT for all i, and χ∗

A(φ1, . . . , φn)
will be the satisfying assignment of φ, and hence φ ∈ B. This shows that B ∈ P is a solution
of (1SAT, SAT). By Valiant and Vazirani’s result [60] we get SAT ∈ RP.

Proof of Theorem 5. Let GI ∈ P-mc(c log n) for some c via f . We show GI ∈ RP. Let
(G0, G1) be a pair of graphs given as input. We run Algorithm 1. We claim that the
algorithm will never accept non-isomorphic graphs and will accept isomorphic graphs with
probability at least 1/nc.

First, consider the case (G0, G1) 6∈ GI. Then the graphs in Hi will be isomorphic iff
ri = 1. Hence χ∗

GI(H1, . . . ,H`) = r and f(H1, . . . ,H`) will never be equal to r.
Next, consider the case (G0, G1) ∈ GI. Then all the membership comparing function f

“sees” is a bunch of isomorphic graphs. No information concerning the bit string r is
contained in the graph pairs Hi. More precisely, the number of times it gets any fixed list of
graph pairs as input is independent of r. Hence the probability that f(H1, . . . ,H`) equals
the randomly chosen r is at least 1/(2c log n) = 1/nc.

5 Characterization of L and Application to Classes inside P

In this section we prove Theorems 6, 7, 8, 9, and 12 from the introduction. We begin
by showing that L is the class of logspace self-reducible, logspace membership enumerable
sets. We easily deduce Theorem 8. For the proof of Theorem 6 we mainly show that
numerous complexity classes inside P have logspace self-reducible complete problems. To
prove Theorem 12 on reducibility to sparse sets of a special type, we show that these sparse
sets are in the class BH(L-sel). The proof technique of Theorem 9, which claims that GAP

cannot be in L-mc(k) unless GAP ∈ L, is a transferal of the technique used in [2, 13, 46] for
showing that SAT ∈ P-mc(k) implies SAT ∈ P.
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Algorithm 1
input (G0, G1) with k vertices
let ` := dc log ne where n is the size of (G0, G1)
guess r = r1 . . . r` ∈ {0, 1}`

forall i ∈ {1, . . . , `} do
guess permutation σi : {1, . . . , k} → {1, . . . , k}
let Hi :=

(
G1, σi

(
Gri

))
.

if f(H1, . . . ,H`) = r then
output “isomorphic” and accept

else
output “perhaps non-isomorphic” and reject

Lemma 26. If A is logspace self-reducible, then A has a prover in FLA.

Proof. Let A be logspace self-reducible via M . On input x the prover’s queries will be all
queries q1, . . . , qm asked by M in the self-reduction tree of M on input x. Note that all
of these queries are identical to x except for the last log |x| bits and can hence easily be
produced in logarithmic space. The prover outputs the certificate χ∗

A(q1, . . . , qm). On input
(x, b) the verifier checks whether b = χ∗

A(q1, . . . , qm). This can be done by checking whether
b is internally consistent with the behavior of M . If it is the correct characteristic string,
the verifier accepts if M accepts x with b as answers to its oracle queries.

Theorem 27. L is the class of logspace self-reducible, logspace membership enumerable sets.

Proof. Let A be a logspace self-reducible set in L-men. Then A has a prover in FLA by
Lemma 26. By Theorem 22 we get A ∈ L.

We get Theorem 8 as a corollary, as LBH(L-sel) ⊆ LBH(L-men) ⊆ LL-men ⊆ L-men. The
inclusions follow, in order, from Theorem 24, Corollary 21, and Theorem 20.

Proof of Theorem 6. For each of the C we show that for all A ∈ C there exists a B ∈ LC

such that

1. either B is logspace self-reducible and A is ≤log
T -reducible to B,

2. or A has a prover in FLB.

As B ∈ LC ⊆ LBH(L-sel) ⊆ L-men, from the first statement we deduce B ∈ L by Theorem 8,
and hence A ∈ L. From the second statement we deduce A ∈ L by Theorem 22. The first
statement will be true for Cases 1 to 5 below, the second statement for Cases 6 and 7.

Case 1: C ∈ {NL, P}. As Balcázar [8] has shown that NL and P both have a logspace
self-reducible ≤log

m -complete sets, the first statement is true for C ∈ {NL, P}.
Case 2: C ∈ {DCFL, CFL}. Balcázar [8] has constructed a logspace self-reducible set B1

that is ≤log
m -complete for LOGDCFL, the ≤log

m -reduction closure of DCFL. As B1 ∈ LDCFL,
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the first statement is true for C = DCFL. Balcázar also constructed a ≤log
m -complete set B2

for LOGCFL.
Case 3: C = SAC1. Venkateswaran [62] has shown SAC1 = LOGCFL. Hence every set

in SAC1 reduces to the logspace self-reducible set B2 ∈ LSAC1
.

Case 4: C ∈ {ModkL | k ≥ 2}. For each k, the problem B :=
{
〈G, s, t, i〉 | G is a

topologically-sorted dag in which the number of path from s to t is congruent i mod-
ulo k

}
is ≤log

m -complete for ModkL. It is also logspace self-reducible, as on input 〈G, s, t, i〉
we can ask the queries 〈G, s′, t, i′〉 for all successors s′ of s and all i′ ∈ {0, . . . , k − 1}. From
the answers to these questions we can easily deduce whether 〈G, s, t, i〉 ∈ B. Hence the first
statement is true for ModkL.

Case 5: C = L#L. The problem of counting the paths from vertex 1 to vertex n in a
topologically-sorted n-vertex dag is a well-known canonically ≤log

m -complete problem for #L.
Define B to be the set of all strings of the form

〈
G, 1k, s, t, `

〉
such that G is a topologically-

sorted dag, k ≥ 2 is an integer, s and t are vertices of G, ` is a binary integer such that
0 ≤ ` ≤ k−1, and the number of paths in G from s to t is congruent to ` modulo k. Since the
number k is given in unary and G is topologically sorted, B is logspace self-reducible. Recent
work of Allender, Barrington, and Hesse [3] shows that converting the Chinese remainder
representation of a number into its binary representation can be done in logspace-uniform
NC1, and thus in logspace. Suppose we wish to compute the number X of paths in an
n-vertex topologically-sorted graph G from vertex 1 to vertex n. Since X ≤ nn ≤ 2n2

, X
can be recovered in logspace from X mod 2, X mod 3, X mod 5, . . . , X mod p, where p
is the n2-th prime number. As it is known [51] that the k-th prime number is O(k2), the
primes needed in the Chinese remainder representation of X are at most n4. They can thus
be calculated in logspace. So B is ≤log

T -hard for #L and thus ≤log
T -complete for L#L. This

shows that the first statement is true for L#L.
Case 6: C = SL. It is known [38, 45] that the complement of the undirected graph

accessibility problem UGAP is ≤log
m -complete for SL. We show that UGAP has a prover in

FLUGAP. It maps each input (G, s, t) to the set of all vertices reachable from s in G. Clearly,
this prover is in FLUGAP. On input

(
〈G, s, t〉 , I

)
the verifier checks whether s ∈ I, whether

t 6∈ I, and whether I is closed under reachability. If so, it outputs “unreachable” and
accepts. Thus, the second statement is true.

Case 7: C ∈ {UL, FewL}. We show the second statement to be true for UL. Let A ∈ UL
via M . Define B :=

{
〈x, c〉 | x is an input for M , c is a vertex in the topologically-sorted

configuration dag of M , and there is a path from the initial configuration of M on input x to
the accepting configuration through c

}
. Then B ∈ UL. On input x the prover queries (x, c)

for every configuration c of M on input x. It passes the characteristic string of these queries
with respect to B as its certificate to the verifier. On input (x, b) the verifier simulates M
on input x and uses the bit string b to decide non-deterministic choices. If it reaches the
accepting configuration under the “guidance” of b, it accepts. For C = FewL we construct
the same set B ∈ FewL for A ∈ FewL. Once more A has a prover in FLB, only this time the
verifier may find multiple legal nondeterministic choices in b. But then it can simply pick,
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say, the smallest one.

Proof of Theorem 7. Assume det ∈ FLBH(L-sel). Then Ldet ⊆ LBH(L-sel). The ≤log
m -reduction

closure of det is known [21, 57, 59, 63] to be exactly GapL, the class of functions that are the
difference of two functions in #L. Hence Ldet = LGapL = L#L. But then L#L ⊆ LBH(L-sel),
which yields L#L = L by Theorem 6, which in turn yields det ∈ FL.

Proof of Theorem 12. Fix some ordering of the set Σ of symbols and let ≤lex be the in-
duced ordering of words. A branch B ⊆ Σ∗ is the set of all prefixes of an infinite string
s1s2s3 . . . of symbols si ∈ Σ. Such a branch B is the intersection of the two L-selective sets{

c ∈ Σ∗ | c ≤lex s1 . . . s|c|
}

and
{

c ∈ Σ∗ | c ≥lex s1 . . . s|c|
}
. Thus every branch B is in the

boolean hierarchy over L-sel.
Any set that has only a bounded number of words per level and is closed under prefix

is the union of a finite number of branches. Hence any such language is also in the boolean
hierarchy over L-sel. By Theorem 6 we get the claim.

Proof of Theorem 9. If GAP is in L-mc(k) then so is the reachability problem for dags with
out-degrees at most 2, which is easily seen to be NL-complete. Let (G, s, t) be an input for
this problem. We start a search from the source s, and keep track of a list of at most 2k

many vertices, which fulfills two requirements. Firstly, all vertices in the list are reachable
from s. Secondly, if there is a path from s to t, the list will contain at least one vertex v
from which there is a path to t.

Initially, the list contains only the source, which clearly fulfills the requirements. As
long as the list has not grown to size 2k, we remove the first element of the list and add its
successors to the list. This, too, does not violate any requirement. If we ever put the target
into the list, we accept.

If the list grows to size 2k, we remove one vertex from the list having the property that
it is not the only vertex from which t is reachable. To obtain such an element, we use a
method also employed in [2, 13, 46]. Let vb with b ∈ {0, 1}k be the vertices in the list.
We build k dags D1, . . . , Dk as follows: each Di consists of 2k many copies of G. We add
a new target and a new source. The target in every copy of G is connected to the new
target. If the i-th bit of b is 1, the new source is connected to the vertex vb in the b-th copy
of G. If it is not, the new source is not connected to any vertex in the b-th copy. With this
construction the new target of Di is reachable from the new source of Di, iff t is reachable
in G from a vertex vb where the i-th bit of b is 1.

We run the k-membership comparing function on D1, . . . , Dk. Note that we do not
actually write these dags down anywhere, but rather dynamically calculate any bit of the
code of the dags that is needed by the k-membership comparing function. Then the bit
string b output by the function will be the index of a vertex that is not the only vertex from
which the target t is reachable in G. We can hence remove vb from our list.

As it is easily seen that we never reach the same list configuration twice, we get the
claim.
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6 Conclusion

We have shown that a wide variety of computationally complex problems cannot be reduced
to sets with low information content, unless unlikely collapses of complexity classes occur.
We started by showing that the graph automorphism problem cannot be ≤p

tt-reduced to
any P-selective set, unless it can be decided in polynomial time. This is a significant
improvement over the previously known results. Using the same proof technique we showed
that if (1SAT, SAT) has a solution that is ≤p

tt-reducible to an O(1)-mc set, then RP = NP.
This result is “orthogonal” to Fact 3. Our proof technique does not seem to be applicable
to the graph isomorphism problem, but we still made progress on the question of whether
GI is O(log n)-mc. If it is, then GI ∈ RP.

A persisting open problem is the question whether SAT being ≤p
tt-reducible to P-sel

implies SAT ∈ P, and likewise for GI. As we showed that GI ∈ P-mc(log) implies GI ∈ RP,
we implicitly get that GI being ≤p

tt-reducible to P-sel implies GI ∈ RP. Interestingly, we
were not able to show that GA ∈ P-mc(log) implies GA ∈ RP.

We also considered logspace computations, where we were able to prove even stronger
results. For example, none of the three problems CVP, GAP and UGAP can be ≤log

T -reducible
to an L-selective set, unless they are in L. The determinant function cannot be ≤log

T -reduced
to an L-selective set, unless it can be computed in logarithmic space.

Many of our logspace results boil down to our characterization of L as the class of
logspace self-reducible sets in LBH(L-sel), the ≤log

T -reduction closure of the boolean hierarchy
over L-sel. A more general form of this characterization was that L is the class of logspace
self-reducible and membership enumerable sets. A much less general form is the trivial
corollary that L is also the class of logspace self-reducible L-selective sets. This is the
typical kind of result available in the polynomial time setting. For example, P is known to
be the class of self-reducible P-selective sets, but not known to be the class of self-reducible
sets in BH(P-sel), let alone in PBH(P-sel) = P/poly.

The presence of the Turing-reduction in our characterization of L makes it somewhat
“robust.” For example, Balcázar has shown a result similar to ours, namely that LOGCFL ⊆
L/log implies CFL ⊆ L. However, he points out that the assumption CFL ⊆ L/log is
insufficient to arrive at the conclusion CFL ⊆ L, as L/log is not known to be closed under
≤log

m -reductions. Our Theorem 6 does not suffer this problem. We arrive at the conclusion
CFL ⊆ L already from the assumption CFL ⊆ LBH(L-sel). Relatedly Austinat, Diekert, and
Hertrampf [6, 7] have shown—unconditionally—that no inherently context-free languages
is finite automaton O(1)-membership comparable, see [6, 7] for detailed definitions. In
particular, no inherently context-free language is in the boolean hierarchy over the finite
automata selective sets.

We have not claimed that ≤log
T -reducibility to L-mc(k) sets has any dramatic conse-

quences. The reason is that although we could show L-sel ⊆ L-men, it is not known whether
L-mc(k) ⊆ L-men for all k. Nickelsen [42] showed L-mc(2) ⊆ L-men, but the general case
remains open.
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[4] C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoretical Comput. Sci.,
107:3–30, 1993.

[5] V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mundhenk, M. Ogiwara,
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