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Abstract. A language is called (m,n)-verbose if there exists a Turing
machine that enumerates for any n words at most m possibilities for their
characteristic string. We compare this notion to (m,n)-fa-verboseness,
where instead of a Turing machine a finite automaton is used. Using
a new structural diagonalisation method, where finite automata trick
Turing machines, we prove that all (m,n)-verbose languages are (h, k)-
verbose, iff all (m,n)-fa-verbose languages are (h, k)-fa-verbose. In other
words, Turing machines and finite automata behave in exactly the same
way with respect to inclusion of verboseness classes. This identical be-
haviour implies that the Nonspeedup Theorem also holds for finite au-
tomata. As an application of the theoretical framework, we prove a lower
bound on the number of bits that need to be communicated to finite au-
tomata protocol checkers for nonregular protocols.

1 Introduction

Turing machines and finite automata share some properties that they do not
appear to share with computational models ‘in between’. While it is well known
that both for Turing machines and for finite automata nondeterminism is ex-
actly as powerful as determinism, for polynomial-time computations this is the
famous ‘P = NP?’ question. In this paper we study a property that Turing ma-
chines and finite automata share, but which they provably do not share with
classical resource-bounded computational models in between. This property is
the inclusion structure of verboseness classes.

Verboseness classes for Turing machines were originally defined in an effort to
better understand the structure of undecidable problems. Even if a language L
is nonrecursive, it might still be possible to compute some partial information
about it. A language L is called (m,n)-verbose [7] if there exists a Turing machine
that does the following: It gets n input words and then does a possibly infinite
computation during which it prints some bit strings onto an output tape. One of
the bit strings must be the characteristic string of the words with respect to L
and at most m different bit strings may be printed. The class of all (m,n)-verbose
languages is denoted V(m,n).



All languages are in V(2n, n), and V(1, n) contains exactly the recursive lan-
guages. The structure between these two extremes has been subject to thorough
investigation. Beigel’s Nonspeedup Theorem [3, 5] states V(n, n) = V(n− 1, n) =
· · · = V(1, n). All recursively enumerable and all semirecursive [10] languages are
in V(n + 1, n). It is known [7] that V(3, 2) = V(n + 1, n) for all n ≥ 2. More
generally, in [7] Beigel, Kummer, and Stephan describe a decision procedure for
checking whether V(m,n) ⊆ V(h, k) holds for given numbers m, n, h, and k.

Verboseness has also been studied extensively for the situation where the
enumerating Turing machine is restricted to use only a polynomial amount of
time. The inclusion structure of polynomial-time verboseness classes, denoted
VP(m,n) in the following, is quite different from the structure in the recursive
setting. For example VP(m,n) ( VP(m+1, n) for all m < 2n. Languages that are
in VP(n, n) for some n are commonly called cheatable [4], languages in the class
VP(2n − 1, n) are called n-approximable [6] or n-membership comparable [15].

The notion of verboseness can also readily be defined for finite automata. The
classes Vfa(m,n) are defined via multi-tape automata whose output is specified
by the type of the last state reached on a given input. Such an automaton
witnesses L ∈ Vfa(m,n) as follows: When run on n input words, placed on n
synchronously read input tapes, the output attached to last state reached by
the automaton must be a set of size at most m containing the characteristic
string of the words. The classes Vfa(m,n) will be called fa-verboseness classes.
Similar transfers of recursion or complexity theoretic concepts to finite automata
have already been studied in 1976 by Kinber [11] and much more recently by
Austinat, Diekert, Hertrampf, and Petersen [1, 2].

As in the recursive setting, all languages are in Vfa(2n, n) and Vfa(1, n) con-
tains exactly the regular languages. Austinat et al. [1, 2] present different exam-
ples of fa-verbose languages that lie between these extremes: For every infinite
bit string b both the set of all words that are lexicographically smaller than b and
the set of all prefixes of b are in Vfa(3, 2). This class contains context-sensitive
languages that are not context-free, and context-free languages that are not reg-
ular. However, for all m < 2n the classes Vfa(m,n) do not contain any infinite
context-free languages like {aibi | i ≥ 0} that lack infinite regular subsets.

What does the inclusion structure of the classes Vfa(m,n) look like? As the
inclusion structure of polynomial-time verboseness classes is quite different from
the structure of their recursive counterparts, it might seem surprising that the
inclusion structure of the classes Vfa(m,n) is exactly the same as for V(m,n).
Using the new notion of structural diagonalisation, where finite automata trick
Turing machines, we can even show that Vfa(m,n) \ V(h, k) is nonempty un-
less V(m,n) ⊆ V(h, k). Thus V(m,n) ⊆ V(h, k) iff Vfa(m,n) ⊆ Vfa(h, k) iff
Vfa(m,n) ⊆ V(h, k).

An immediate corollary is that the Nonspeedup Theorem also holds for finite
automata. This is interesting in itself. While the Nonspeedup Theorem is an
important theoretical result, it has limited practical importance as it concerns
the properties of languages that are not even recursive. Opposed to this, we shall
see that its finite automata counterpart can be used to prove a lower bound on



the number of bits that need to be communicated to finite automata protocol
checkers for nonregular protocols.

This paper is organised as follows. In Section 2 we review functions that
are enumerable by Turing machines and transfer this notion to finite automata.
We prove a key lemma, which holds both for Turing machines and for finite
automata. In Section 3 we show that the Generalised Nonspeedup Theorem [7]
is an easy consequence of the key lemma and thus also holds for finite automata.
We then review the combinatorial tools used in [7] to describe the inclusion struc-
ture of verboseness classes and apply them to fa-verboseness. In Section 4 we
complete the characterisation of the inclusion structure of fa-verboseness classes
by use of a structural diagonalisation argument. Finally, Section 5 presents a
consequence of the Finite Automata Nonspeedup Theorem for the difficulty of
protocol checking using finite automata.

2 Recursive and Finite Automata Enumerability

Before focusing on verboseness in the following sections, in this section we study
the more general concept of enumerability of functions. This notion was first
introduced by Cai and Hemaspaandra [8] in the context of polynomial-time
computations and only later transfered to recursive computations.

Definition 1 ([14, 9]). A function f , taking n-tuples of words as input, is in
the class EN(m) if there exists a deterministic Turing machine with n input
tapes that does the following: Upon input of words w1, . . . , wn, placed on the
input tapes, it starts a possibly infinite computation during which it prints words
onto an output tape. No more than m words may be printed, and one of them
must be f(w1, . . . , wn).

For Turing machines it is not important whether the input words are placed
on different tapes or just alongside each other on a single input tape, separated
by marker symbols. For finite automata this does make a crucial difference. We
shall only consider the more interesting situation where multiple tapes are used,
see below.

The connection between enumerability and verboseness is discussed in detail
in the next section, but note already that a language L is (m,n)-verbose iff
χnL ∈ EN(m). Here χnL is the n-fold characteristic function of L, which takes a
tuple (w1, . . . , wn) as input and yields a bit string of length n whose i-th position
is 1 iff wi ∈ L.

We now explain how finite automata compute functions. As done in [1, 2] we
use deterministic automata that instead of just accepting or rejecting a word may
produce many different outputs, depending on the type of the last state reached.
Formally, instead of a set of accepting states the automata are equipped with an
output function γ : Q→ Γ that assigns an output γ(q) ∈ Γ to each state q ∈ Q.
The output outA(w) of an automaton A on input w is the value γ(q) attached
to the last state q reached by A upon input w. An automaton A computes a



function f if f(w) = outA(w) for all w. Note that only functions having finite
range can be fa-computed in this sense.

As mentioned earlier, to fa-compute a function taking n-tuples of words as
input, we use n input tapes. Each word is put onto one tape, shorter words
padded with blanks at the end such that all words have the same length. Then
the automaton scans the words synchronously, meaning that in each step all
heads advance exactly one symbol. Equivalently, one may also think of the input
words being fed to a single-tape automaton in an interleaved fashion: first the
first symbols of all input words, then the second symbols, then the third symbols,
and so forth.

Having fixed how finite automata compute functions, we can now define how
they enumerate them.

Definition 2. A function f , taking n-tuples of words as input, is in the class
ENfa(m) if there exists a deterministic n-tape automaton A, having sets as out-
put, such that for all words w1, . . . , wn the set outA(w1, . . . , wn) has size at
most m and contains f(w1, . . . , wn).

Our first result is the key lemma below. It makes the same claim twice, only
the first time for enumerability and the second time for fa-enumerability. In
a sense this ‘double claim’ is the deeper reason why the inclusion structures
of verboseness and fa-verboseness classes coincide. The product f × g of two
functions f and g used in the lemma is defined in the usual way by (f×g)(u, v) :=(
f(u), g(v)

)
. The first part of the proof is similar to the proof of the Generalised

Nonspeedup Theorem given in [7], but see also [16].

Lemma 3 (Key Lemma).
If f × g ∈ EN(n + m), then either f ∈ EN(n) or g ∈ EN(m). Likewise, if
f × g ∈ ENfa(n+m), then either f ∈ ENfa(n) or g ∈ ENfa(m).

Proof. Assume f×g ∈ EN(n+m) via a machine M . Let us write M(u, v) for the
set of pairs enumerated by M upon input of the pair (u, v). Suppose there exists
a word u such that for all words v the set Pu,v :=

{
y |
(
f(u), y

)
∈M(u, v)

}
has

size at most m. Then g ∈ EN(m) and we are done. So suppose no such word u
exists. Then for all words u there exists a word v such that the set Pu,v has size at
least m+ 1. This implies that in M(u, v) at least m+ 1 pairs have the same first
component, and hence {x | (x, y) ∈M(u, v)} has size at most n + m −m = n.
But then f ∈ EN(n), as upon input of a word u, using dovetailing, we can search
for a word v with the property, that in M(u, v) at least m + 1 pairs have the
same first component. Having found this word, we stop the search and enumerate
{x | (x, y) ∈M(u, v)}.

Now assume f × g ∈ ENfa(n + m) via a 2-tape automaton A with output
function γ. Once more, assume there exists a word u such that for all words v the
set Pu,v :=

{
y |
(
f(u), y

)
∈ outA(u, v)

}
has size at most m. Then g ∈ ENfa(m)

via an automaton B that simulates what A would do upon input (u, v). Such a
simulation is possible as u is a single fixed word. When the simulation finishes,
the automaton B will ‘know’ the state q in which A would have ended up upon



input of (u, v). The automaton B can then output Pu,v instead of outA(u, v),
thus proving g ∈ ENfa(m).

Next assume that for all words u there exists a word v such that the set Pu,v
has size at least m+ 1. We then show f ∈ ENfa(n) using a variant of the search
trick used in the recursive setting. The aim is to ‘search’ for a word v such that
in outA(u, v) at least m + 1 pairs have the same first component – we know
that such a word exists, we just have to find it. The idea is to first construct
a nondeterministic automaton C with ε-moves. This automaton has just one
input tape, on which it finds an input word u. As its first step it branches
nondeterministically to all states the automaton A reaches when it reads the
first symbol of u on its first tape and some arbitrary symbol on the second tape
(including the blank symbol, which corresponds to guessing the end of the word
on the second tape). In the second step C branches to the states A reaches upon
then reading the second symbol of u plus some arbitrary symbol on the second
tape and so on. When the end of u is reached, C may go on simulating A using
ε-moves: It nondeterministically branches to the states A would reach reading
a blank on the first tape and some arbitrary symbol on the second tape. Note
that on some nondeterministic path the automaton C will reach the state reached
by A upon input (u, v).

We turn C into a deterministic automaton D using the standard power set
construction on its states. Upon input of a word u the automaton D will end its
computation in a ‘power state’ p that is exactly the set of all states reached by C
upon input u. We define the output attached to p in D as the intersection of all
sets {x | (x, y) ∈ γ(q)} with q ∈ p, thus ensuring that f(u) is always an element
of outD(u). Due to the existence of the word v, there must exist a state q ∈ p
such that in the set γ(q) at least m + 1 pairs have the same first component.
Thus the intersection output by D has size at most n. ut

The contraposition of the lemma states that if f 6∈ EN(n) and g 6∈ EN(m), then
f × g 6∈ EN(n + m); and likewise for finite automata. This can be seen as a
lower bound on the enumerability of the product of two functions: If f and g are
not n- and m-enumerable respectively, then f × g is not (n + m)-enumerable.
Compare this to the trivial upper bound: If f ∈ EN(n) and g ∈ EN(m), then
f × g ∈ EN(n ·m); and likewise for finite automata.

Repeatedly applying the lemma yields that if f1×· · ·×f` ∈ EN(n1 +· · ·+n`),
then fi ∈ EN(ni) for some i; and likewise for finite automata. In particular, if
f1 × · · · × fn is in EN(n), respectively ENfa(n), then at least one fi is recursive,
respectively fa-computable.

3 Application of the Key Lemma to Verboseness

In this section we apply the key lemma to verboseness classes. We first introduce
verboseness of functions as a useful and elegant generalisation of the verboseness
of languages. In the following, fn always denotes the n-fold product f × · · · × f .

Definition 4. A function f is (m,n)-verbose if fn ∈ EN(m). A function f is
(m,n)-fa-verbose if fn ∈ ENfa(m). A language is (m,n)-verbose, respectively



(m,n)-fa-verbose, if its characteristic function is. The classes of (m,n)-verbose
and (m,n)-fa-verbose languages are denoted V(m,n) and Vfa(m,n).

Theorem 5. If f is (m + h, n + k)-verbose, then f is either (m,n)-verbose or
(h, k)-verbose; and likewise for fa-verboseness.

Proof. By the key lemma, if fn+k = fn × fk ∈ EN(m + h) we have either
fn ∈ EN(m) or fk ∈ EN(h); and likewise for finite automata. ut

Corollary 6 (Generalised Nonspeedup Theorem). We have

V(m+ h, n+ k) ⊆ V(m,n) ∪ V(h, k),
Vfa(m+ h, n+ k) ⊆ Vfa(m,n) ∪ Vfa(h, k).

Corollary 6 can be used to prove inclusions of verboseness classes. For ex-
ample we immediately get V(m + 1, n + 1) ⊆ V(m,n). A systematic study of
the derivable inclusions leads to the definition of goodness [7]. In the following
an n-pool is a subset of {0, 1}n. For a bit string b ∈ {0, 1}n with individual bits
b1 · · · bn = b we write b[i1, . . . , i`] := bi1 · · · bi` ∈ {0, 1}`. For an n-pool P we
define P [i1, . . . , i`] := {b[i1, . . . , i`] | b ∈ P }.

Definition 7 ([7]). For a k-pool P let gP (n) be the maximum of
∣∣P [i1, . . . , in]

∣∣
taken over all indices i1, . . . , in ∈ {1, . . . , k}. A pool P is (m,n)-good, if for
every partition n1 + · · ·+ n` = n with 1 ≤ ni ≤ n we have

gP (n1) + · · ·+ gP (n`) ≤ m+ `− 1.

Theorem 8. Let every (m,n)-good k-pool have size at most h. Then

V(m,n) ⊆ V(h, k),
Vfa(m,n) ⊆ Vfa(h, k).

Proof. As the claim V(m,n) ⊆ V(h, k) is proven as part of Theorem 4.3 in [7], we
show only the second claim. We revisit the proof of [7], whose key ingredient is
the Generalised Nonspeedup Theorem, which is also correct for finite automata
as we have seen in Corollary 6.

Let L ∈ Vfa(m,n). To prove L ∈ Vfa(h, k), we construct an automaton B
that computes for every k words w1, . . . , wk an (m,n)-good k-pool P containing
the bit string χkL(w1, . . . , wk). By assumption, P will have size at most h. For
each i ∈ {1, . . . , n} let mi be the smallest number such that L ∈ Vfa(mi, i) via
some finite automaton Ai. Applying Corollary 6 to L ∈ Vfa(mi+j , i + j) we get
L ∈ Vfa(mi−1, i)∪Vfa(mi+j−mi+1, j). As L is not an element of Vfa(mi−1, i)
by the choice of mi, the language L must be in Vfa(mi+j −mi+ 1, j). Because of
the minimality of mj this yields mj ≤ mi+j−mi+1 and thus mi+mj ≤ mi+j+1.

The automaton B runs the following algorithm: Upon input of the k words
it simulates simultaneously for all j ∈ {1, . . . , n} and for all indices i1, . . . , ij ∈
{1, . . . , k} the automata Aj on the input words wi1 , . . . , wij . When B reaches the
end of the input words it will ‘know’ what all the outAj (wi1 , . . . , wij ) would be. It



then outputs the largest set of bit strings that is consistent with the output of all
the automata Aj on the different selections of words. More precisely, it outputs
the largest k-pool P with the property that P [i1, . . . , ij ] ⊆ outAj (wi1 , . . . , wij )
for all i1, . . . , ij ∈ {1, . . . , k} and all j ∈ {1, . . . , n}. Note that P indeed contains
χkL(w1, . . . , wk).

We claim that the pool P output by B is (m,n)-good. Let n1 + · · ·+ n` = n
be any partition with 1 ≤ ni ≤ n. From the construction of P and the definition
of gP we directly get gP (j) ≤ mj . Hence gP (n1)+· · ·+gP (n`) ≤ mn1+· · ·+mn` ≤
mn + `− 1 ≤ m+ `− 1. Thus P is, indeed, (m,n)-good. ut

4 Structural Diagonalisation

Theorem 8 from the previous section gives a sufficient condition for the inclusions
V(m,n) ⊆ V(h, k) and Vfa(m,n) ⊆ Vfa(h, k): It suffices that all (m,n)-good k-
pools have size at most h. For the recursive case, it is known [7] that this is also
a necessary condition. This reduces the inclusion and hence also the equality
problem for verboseness classes to finite combinatorics.

We now prove that the inclusion structure of fa-verboseness classes is the
same as of verboseness classes, by showing that the condition is also necessary if
we use finite automata instead of Turing machines. That is, we show that if there
exists an (m,n)-good k-pool P of size at least h+1, then there exists a language
in Vfa(m,n) that is not an element of Vfa(h, k). Actually our structural diago-
nalisation will show that the language is not even an element of the much larger
class V(h, k), thus yielding the strong class separation result in Theorem 12. In
the following, P will always denote an (m,n)-good k-pool of size h+ 1.

For finite automata the diagonalisation technique used in [7] does not work,
as it involves the usage of universal Turing machines together with finite injury
arguments. Instead of these, our structural diagonalisation uses a variant of the
k-branches introduced by Kummer and Stephan [13] for the study of frequency
computations. Using only a finite automaton, we can diagonalise along such
branches against all Turing machines. We call the diagonalisation structural as it
uses purely structural properties of the involved languages, and does not depend
on computational power at all.

The diagonalisation roughly works as follows: In the tree P ∗, see the next
paragraph, we construct an infinite branch B and associate a language LB with
it, see Definition 9. Under appropriate assumptions, see Theorem 10, we shall be
able to construct a branch B such that LB 6∈ V(h, k). In the proof of LB 6∈ V(h, k)
we show that all Turing machines that could possibly witness LB ∈ V(h, k) must
err on some k-tuple of words. In the construction we associate a k-tuple of words
with each node of the tree P ∗, and the i-th witness machine will err (at least)
on the k words associated with the i-th node on the branch. However, the clever
definition of LB will still allow us to prove LB ∈ Vfa(m,n) in Theorem 11.

The set P ∗ of words over the ‘alphabet’ P together with the prefix relation
forms an infinite tree. The root of this tree is the empty word, and the successors
of a node are obtained by appending different bitstrings from P . An infinite



branch (u0, u1, u2, . . . ) of P ∗ is a sequence of nodes ui ∈ P ∗ such that the first
node u0 is the root of P ∗, and each ui+1 is a successor of ui. As stated earlier,
with each node u ∈ P ∗ we wish to associate k different words. We obtain them
by adding k different tags to u at the front. We use, say, tagi := 0i1k−i as tags.

Definition 9. Let P be a k-pool and let B = (u0, u1, u2, . . . ) with ui+1 = uibi
and bi ∈ P be an infinite branch of P ∗. The language LB ⊆ {0, 1}∗ contains
only words associated with the nodes on this branch, namely those for which

χkLB
(
tag1 ui, . . . , tagk ui

)
= bi.

Note that just from knowing that a branch B goes through a node u, we can
derive the characteristic values χLB (w) of all words w associated with nodes
shorter than u. A more refined form of this observation will be used in the proof
of Theorem 11 to show that all LB are (m,n)-fa-verbose for appropriate m and n.

Theorem 10. Let P be a k-pool of size h + 1. Then there exists a branch B
of P ∗ with LB 6∈ V(h, k).

Proof. Let M0,M1,M2, . . . be an enumeration of all Turing machines that could
possibly witness LB ∈ V(h, k). We construct the branch in stages. Let the node ui
already be chosen. We must decide how to extend the branch to ui+1 = uibi.
Let Q be the set of bit strings enumerated by Mi on input (tag1 ui, . . . , tagk ui).
If |Q| > h, the machine Mi does not witness L ∈ V(h, k) for any language L and
we can define bi ∈ P arbitrarily. If however |Q| ≤ h, let bi ∈ P \ Q be any bit
string. This concludes the i-th stage. By construction, each machine Mi is now
tricked for the words (tag1 ui, . . . , tagk ui) and hence the language LB induced
by the branch B = (u0, u1, u2, . . . ) is not an element of V(h, k). ut

Using Theorem 10, we can easily generate a candidate for a set in Vfa(m,n) \
V(h, k). The theorem supplies us with a language not in V(h, k). The hard part
is to prove that it lies in Vfa(m,n).

Theorem 11. Let P be an (m,n)-good k-pool with 0k ∈ P . Then all languages
induced by infinite branches of P ∗ are in Vfa(m,n).

Proof. Let L be induced by a branch. We construct an automaton A that on
input of any n words w1, . . . , wn outputs a pool Q of size at most m containing
χnL(w1, . . . , wn).

As a side activity while scanning the input words, A will check which input
words are of the form tagt u for some t and some node u ∈ P ∗. We shall focus
on these words in the following, as words that do not pass this syntax check are
not elements of L.

As its first action the automaton scans the tags of the words and remembers
them in its state. Let {u1, . . . , u`} be the input words with the tags removed.
We say that wj is associated with the node ui, if wj = tagt ui for some t. Let ni
be the number of words associated with ui. The next aim of the automaton is
to find out how the nodes ui are related.



The automaton A always reads k bits of all words as a block. For each input
word the read bit string is part of the sequence of bit strings that make up
the node ui to which the word is associated. In its state the automaton keeps
track of a partition of the node indices {1, . . . , `}, which serves as a reminder of
which ui have already been identified to lie on different branches of P ∗. Initially,
all indices are grouped into one large equivalence class. Each time a block has
been read, the automaton checks whether there are two indices in the same
equivalence class for which the read bit strings now differ. If so, the automaton
remembers these indices together with the partition at that moment plus the bit
strings themselves. The bitstrings may be thought of as the different ‘directions’
the branches through the predecessor node headed. Furthermore, the automaton
splits the equivalence classes such that only those indices remain equivalent for
which it read the same ‘direction’.

When the automaton reaches the end of the input words, it will have stored
in its state the forest structure of the nodes {u1, . . . , ul}. It will know which
nodes are ancestors of which nodes, and which nodes are roots of this forest. If
a node uj is an ancestor of a node ui, the automaton will also know in which
direction a branch through ui heads when going through uj .

Consider the (uncountably many) infinite branches B of P ∗. Each induces a
language LB in the sense of Definition 9, which in turn induces a characteristic
string χnLB (w1, . . . , wn). This characteristic string depends only on the relative
positions of the ui and on the tags of the input words. Hence, from its knowledge
of these relative positions the automaton can produce a pool Q containing all
induced χnLB (w1, . . . , wn) and thus also including χnL(w1, . . . , wn).

It remains to show |Q| ≤ m. For branches B going through none of the
nodes ui, by construction of LB the characteristic value of χnLB (w1, . . . , wn) is 0n.
This will be the first bit string found in Q. Consider a root node ui, that is a node
that is not a descendant of another node uj , and consider all branches B going
through ui, but going through no other node uj . These branches induce at most
gP (ni) different bit strings in Q. However, as the branches going through ui
heading off in the ‘direction’ 0k all induce the bit string 0n once more, the
branches solely going through ui induce at most gP (ni)− 1 new bit strings in Q
apart from 0n.

Now consider a direct descendant uj of a root node ui and the branches
going exactly through uj and ui. The branches will induce gP (nj) many bit
strings in Q, but once more one of them will already be found in Q, namely the
one induced by branches that go through uj and ui, but which head off in the
direction 0k in uj . Using a structural induction argument, one can now show that
for each node ui the set of branches going exactly through ui and its ancestors
induces at most gP (ni)− 1 new bit strings in Q. In total we get

|Q| ≤ 1 +
(
gP (n1)− 1

)
+
(
gP (n2)− 1

)
+ · · ·+

(
gP (n`)− 1

)
≤ 1 +m+ `− 1− ` = m,

where we used the (m,n)-goodness of P in the last line. ut



Theorem 12. The following statements are equivalent:

1. All (m,n)-good k-pools have size at most h.
2. V(m,n) ⊆ V(h, k).
3. Vfa(m,n) ⊆ Vfa(h, k).
4. Vfa(m,n) ⊆ V(h, k).

Proof. Statement 1) implies both 2) and 3) by Theorem 8. As we trivially have
Vfa(m,n) ⊆ V(m,n) for all m and n, both 2) and 3) imply 4). To show that 4)
implies 1) we argue by contraposition. If there exists an (m,n)-good k-pool of
size h + 1, there also exists one containing 0k and then by Theorem 10 there
exists a language outside V(h, k) that is in Vfa(m,n) by Theorem 11. ut

5 Application to Protocol Testing

Beigel’s Nonspeedup Theorem [3] states V(n, n) = V(1, 1), that is all (n, n)-
verbose languages are recursive. As this is a statement about inclusion of verbose-
ness classes, we immediately know that the finite automata version Vfa(n, n) =
Vfa(1, 1) also holds, that is all (n, n)-fa-verbose languages are regular. We now
show how this Finite Automata Nonspeedup Theorem applies to protocol test-
ing.

A simple problem from protocol testing is the following: We are asked to con-
struct a testing device that monitors n signal lines. The device is synchronously
fed as input the n symbols currently transported on the different lines, and it
should check whether all symbol streams are valid with respect to some protocol.
When the streams end, the device should tell us on which lines the protocol was
not adhered to.

A simple protocol might be ‘the stream may not contain the same symbol
four times in succession’. If the symbols on the streams represent voltages, this
protocol might be used to verify that the signal lines are free of direct currents. A
much more complicated protocol is ‘the stream consists of valid Internet protocol
packets’. It might be used to test an Internet router with numerous signal lines
going through it.

If the protocol is sufficiently simple, we can use a finite multi-tape automa-
ton as described in this paper to perform the checking. For example, the simple
symbol repetition protocol can obviously be checked by such an automaton.
However, for complicated protocols where the set of valid streams is not regular,
we cannot hope to use a finite automaton for our testing. This is rather unfor-
tunate, as the high speed used on most signal lines typically forces the use of a
simple online device – like a finite automaton.

To overcome the difficulty one might attempt to employ a mixed strategy:
We use a finite automaton plus another simple special purpose hardware that also
monitors the signal lines. For example, such a special purpose hardware might
be a counter that is increased every time an ‘open’ symbol is transported on
some line, and decreased every time a ‘close’ symbol is transported. When the
streams end, the special hardware device could communicate some information



to the finite automaton, which should then decide which signal lines were faulty.
The special hardware might tell the automaton whether the ‘open’ and ‘close’
symbols paired up correctly, or it could tell the automaton the index of a line
where this was not the case.

Surely such a special hardware should allow us to check some nonregular
protocols. However, the Finite Automata Nonspeedup Theorem tells us that the
special hardware must communicate at least blog nc+ 1 bits to the automaton to
be of any use. To see this, assume that only log n bits were communicated. Then
another automaton, without knowing these log n bits, could still at least come
up with 2blognc ≤ n possibilities for the set of faulty lines. But then the set of
valid streams would be in Vfa(n, n) and would hence be regular, thus making the
special hardware superfluous. In particular, even getting the index of one faulty
line does not help the automaton at all.

6 Conclusion

We showed that the inclusion structure of verboseness classes is the same for
Turing machines and for finite automata. It is distinct from the correspond-
ing inclusion structure for computational models ‘in between’, like polynomial
time. In particular, the Nonspeedup Theorem holds both for Turing machines
and for finite automata, but does not hold for polynomially time-bounded ma-
chines. The proofs are based on two new ideas. First, our key lemma states
that f × g ∈ EN(n + m) implies f ∈ EN(n) or g ∈ EN(m); and likewise for
finite automata. Second, we introduced the notion of structural diagonalisation,
where finite automata trick Turing machines, and used it to show the strong
class separations of Theorem 12. While the original Nonspeedup Theorem has
limited practical applications, we showed how its finite automata version allows
our saving on hardware in finite automata protocol testing.

The parallels between Turing machines and finite automata with respect to
partial information algorithms do not appear to end with the inclusion struc-
ture of verboseness classes. For example, borrowing the notation from [13], in
[1, 2] the classes Ω(m,n) and Ωfa(m,n) are studied. For languages in the first
class a Turing machine (and for the second, a finite automaton) can output for
any n different words a bit string that agrees on at least m positions with the
characteristic string of the words. Although the inclusion problem for Ω(m,n)
is not solved, it turns out that all known inclusions of Ω(m,n)-classes also hold
for the corresponding Ωfa(m,n). Using structural diagonalisation, one can even
show strong class separations for these classes similar to the ones established in
this paper.

Such similarities lead to a conjecture concerning a powerful extension of
the Nonspeedup Theorem, namely Kummer’s Cardinality Theorem [12]. This
theorem states that #An ∈ EN(n) iff A is recursive, where #An (w1, . . . , wn) :=∑n
i=1 χA(wi). We conjecture that #An ∈ ENfa(n) iff A is regular. This conjecture

can also be rephrased ‘in terms of protocol testing’: Suppose we are given a finite
multi-tape automaton monitoring n input streams, which gets at most log n bits



of information from an external source. We conjecture that if the automaton
can just tell us the number of faulty lines, then the set of valid streams must be
regular.
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