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Abstract. Kummer’s cardinality theorem states that a language is re-
cursive if a Turing machine can exclude for any n words one of the
n + 1 possibilities for the number of words in the language. This paper
gathers evidence that the cardinality theorem might also hold for finite
automata. Three reasons are given. First, Beigel’s nonspeedup theorem
also holds for finite automata. Second, the cardinality theorem for finite
automata holds for n = 2. Third, the restricted cardinality theorem for
finite automata holds for all n.

1 Introduction

How difficult is it to compute the function #n
A for a given language A? This

function takes n words as input and yields the number of words in A as output.
This counting problem, raised in this general form by Gasarch [6], plays an
important role in a variety of proofs both in complexity theory [18, 11, 21, 8, 14]
and recursion theory [16, 17, 4].

One way of quantifying the complexity of #n
A is to consider its enumera-

tion complexity. For the enumeration complexity of a function f we ask for the
smallest m such that f is m-enumerable. This notion, which was first defined by
Cai and Hemaspaandra [5] in the context of polynomial-time computations and
which was only later transfered to recursive computations, is defined as follows.
A function f , taking n-tuples of words as input, is m-enumerable if there exists
a Turing machine that on input x1, . . . , xn starts a possibly infinite computation
during which it prints words onto an output tape. At most m different words
may be printed and one of them must be f(x1, . . . , xn).

Intuitively, the larger m, the easier it should be to m-enumerate #n
A. This

intuition is wrong. Kummer’s cardinality theorem, see below, states that even
n-enumerating #n

A is just as hard as deciding A. Intriguingly, the intuition is
correct for polynomial-time computations and the work of Gasarch, Hoene, and
Nickelsen [6, 10, 19] shows that a polynomial-time version of the cardinality the-
orem does not hold.

Cardinality Theorem ([16]). If #n
A is n-enumerable, then A is recursive.



1.1 History of the Cardinality Theorem

The proof of the cardinality theorem combines ideas from different areas. Several
less general results were already proved when Kummer wrote his paper ‘A Proof
of Beigel’s Cardinality Conjecture’ [16]. The title of Kummer’s paper refers to the
fact that Richard Beigel [3] was the first to conjecture the cardinality theorem
as a generalisation of his so-called nonspeedup theorem. In the following formu-
lation of the nonspeedup theorem, χn

A denotes the n-fold characteristic function
of A. Note that the nonspeedup theorem is a consequence of the cardinality
theorem.

Nonspeedup Theorem ([3]). If χn
A is n-enumerable, then A is recursive.

Owings [20] succeeded in proving the cardinality theorem for n = 2. For
larger n he could only show that if #n

A is n-enumerable, then A is recursive in
the halting problem. Harizanov et al. [7] have formulated a restricted cardinality
theorem, see below, whose proof is somewhat simpler than the proof of the full
cardinality theorem.

Restricted Cardinality Theorem ([7]). If #n
A is n-enumerable via a Turing

machine that never enumerates both 0 and n simultaneously, then A is recursive.

1.2 Finite Automata and the Cardinality Theorem

In this paper I gather evidence that the cardinality theorem might also hold for
finite automata, see Conjecture 1.1 below.

The conjecture refers to the notion of n-enumerability by finite automata,
which was introduced in [22] and which is defined as follows. A function f , taking
n-tuples of words as input, is m-fa-enumerable if there exists a finite automaton
for which for every input tuple (x1, . . . , xn) the output attached to the last state
reached is a set of at most m values that contains f(x1, . . . , xn). The different
components of the tuple are put onto n different tapes, shorter words padded
with blanks at the end, and the automaton scans the tapes synchronously. A
more detailed definition of fa-enumerability is given at the beginning of the next
section.

Conjecture 1.1. If #n
A is n-fa-enumerable, then A is regular.

The following three results support the conjecture:

1. The nonspeedup theorem also holds for finite automata, see Fact 2.1.
2. The conjecture holds for n = 2, see Theorem 2.2.
3. The restricted form of the conjecture holds for all n, see Theorem 2.3.

Together these results bring us as near to a proof of Conjecture 1.1 as did the
results in recursion theory before Kummer’s breakthrough proof.



1.3 Reformulations of the Cardinality Theorem

Results on cardinality computations are ‘separation results in disguise’. The
above results can be reformulated purely in terms of separation and disjointness
of certain relations, which will be called regular. A regular relation is a relation on
words that can be accepted by a multi-tape automata with synchronously read
tapes. Two relations A and B are fa-separable if there exists a regular relation C
such that A ⊆ C ⊆ B̄. Relations A1, . . . , Ak are disjoint if A1∩· · ·∩Ak is empty.
We will only refer to this notion of disjointness in the following, not to the more
restrictive and more common notion of pairwise disjointness.

We will see that the condition ‘#2
A is 2-fa-enumerable’ is equivalent to ‘there

exist disjoint regular supersets of A × A, A × Ā, and Ā × Ā’. The condition
‘#n

A is n-fa-enumerable via a finite automaton that never enumerates both 0
and n simultaneously’ is equivalent to ‘A(n) and Ā(n) are fa-separable’. Here
A(n) denotes the set of n-tuples of pairwise distinct elements of A. These equiva-
lences allow us to reformulate the last two supporting results for Conjecture 1.1,
Theorems 2.2 and 2.3, as follows.

2′. If there exist disjoint regular supersets of A × A, A × Ā, and Ā × Ā, then
A is regular, see Theorem 3.2.

3′. If A(n) and Ā(n) are fa-separable, then A is regular, see Theorem 3.3.

Both statements are deceptively innocent-looking and the reader is invited
to try to prove them without referring to Theorems 2.2 and 2.3.

The statements are ‘optimal’ in the sense that if we slightly relax the imposed
conditions, then the set A need no longer be regular. Indeed, A can even become
nonrecursive as the following two results show.

– There exists a nonrecursive set A for which there exist disjoint regular su-
persets of A×A, A× Ā, Ā×A, and Ā× Ā, see Theorem 3.4.

– For each n ≥ 2 there exist disjoint, recursively inseparable sets A and B
such that A(n) and B(n) are fa-separable, see Theorem 3.5.

The idea of the construction for the last result can be extended to show that
there exist disjoint, recursively inseparable sets that are (3, 5)-fa-separable, see
Theorem 4.1 and Section 4 for definitions. The existence of such sets is somewhat
surprising, since an old result of Kinber [15, Theorem 2] states that such sets do
not exist.

This paper is organised as follows. In Section 2 we prove the cardinality
theorem for finite automata for n = 2 and the restricted cardinality theorem for
finite automata for all n. In Section 3 we reformulate the finite automata versions
of the cardinality theorem in terms of regular relations. In Section 4 we construct
a counter-example to the above-mentioned result of Kinber [15, Theorem 2].

2 Finite Automata Versions of the Cardinality Theorem

This section presents the three results mentioned in the introduction that sup-
port Conjecture 1.1.



We first fix notations. The i-th bit of a bitstring b ∈ {0, 1}n will be denoted
b[i]. Let b[i1, . . . , ik] := b[i1] . . . b[ik]. For a set P of bitstrings let P [i1, . . . , ik] :=
{b[i1, . . . , ik] | b ∈ P}. The cardinality of a set P will be denoted |P |. The n-
fold characteristic function χn

A of a language A ⊆ Σ∗ maps each word tuple
(x1, . . . , xn) to the bitstring b ∈ {0, 1}n for which b[i] = 1 iff xi ∈ A. The
function #n

A maps each word tuple (x1, . . . , xn) to
∣∣{x1, . . . , xn} ∩A

∣∣. Note that
if words x1, . . . , xn are not pairwise different, then #n

A(x1, . . . , xn) < n.
Finite automata compute functions as follows. As done in [1, 2, 22] we use

deterministic automata that instead of just accepting or rejecting a word may
produce many different outputs, depending on the type of the last state reached.
Formally, instead of a set of accepting states the automata are equipped with
output functions γ : Q → Γ that assign an output γ(q) ∈ Γ to each state q ∈ Q.
The output M(x) of an automaton M on input x is the value γ(q) attached
to the last state q reached by M upon input x. An automaton M computes a
function f if f(x) = M(x) for all x.

To fa-compute a function that takes n-tuples of words as input we use n input
tapes. Each word is put onto a different tape, shorter words padded with blanks
at the end such that all words have the same length. Then the automaton scans
the words synchronously, meaning that in each step all heads advance exactly
one symbol. Equivalently, one may also think of the input words being fed to
a single-tape automaton in an interleaved fashion: first the first symbols of all
input words, then the second symbols, then the third symbols, and so forth.

A function f , taking n-tuples of words as input, is m-fa-enumerable if there
exists a deterministic n-tape automaton M such that for all words x1, . . . , xn

the set M(x1, . . . , xn) has size at most m and contains f(x1, . . . , xn).

Fact 2.1 ([22]). If χn
A is n-fa-enumerable, then A is regular.

Theorem 2.2. If #2
A is 2-fa-enumerable, then A is regular.

Proof. If #2
A is 2-fa-enumerable, then χ2

A is 3-fa-enumerable via an automaton M
that always outputs one of the three sets {00, 01, 10}, {00, 11}, and {01, 10, 11}.

Consider an automaton N that gets three input words x, y, and z and com-
putes (in parallel) what M would output on the three inputs (x, y), (x, z), and
(y, z). The automaton N outputs a set P of possibilities for χ3

A(x, y, z) defined as
follows: P :=

{
b ∈ {0, 1}3 | b[1, 2] ∈ M(x, y), b[1, 3] ∈ M(x, z), b[2, 3] ∈ M(y, z)

}
.

We now employ an argument that is similar to Kadin’s [13] easy-hard argu-
ments. Easy-hard arguments have been used in complexity theory in different
proofs, see for example [9]. In such an argument one shows that either all words
in Σ∗ are easy (in a sense to be defined), in which case the language A is, well,
easy; or there exist some hard words, which allow us to decide all other words,
provided we know the characteristic values of the hard words.

Let us call a pair (x, y) of words easy if there exists a word z such that
Q := N(x, y, z)[1, 2] has size at most 2. The word z will be called an advisor for
(x, y). If a pair is not easy, that is, if there does not exist an advisor for it, we
call the pair hard. We now distinguish two cases, depending on the existence of
certain hard pairs.



Case 1. Suppose there exists a hard pair (x, y) with χA(x) 6= χA(y), that is,
χ2

A(x, y) = 01 or χ2
A(x, y) = 10. We only consider the case χ2

A(x, y) = 01, the
other case is symmetric. We claim that A can be decided by an automaton that
works as follows: on input of a single word z it computes R := N(x, y, z). As we
will argue in the following paragraph, R will contain at most one bitstring that
begins with 01. But then we can output the last bit of this bitstring, which must
be the correct value of χA(z). Thus A is regular.

To see that R contains only one bitstring starting with 01, suppose we had
both 010 ∈ R and 011 ∈ R. Then 000 /∈ R, since otherwise R[2, 3] ⊇ {10, 11, 00},
contradicting the assumption that one possibility has been excluded for #2

A(y, z).
Likewise, 101 /∈ R and also 111 /∈ R, since otherwise R[1, 3] ⊇ {00, 01, 11}. Since
(x, y) was a hard pair, either R[1, 2] = {00, 01, 10} or R[1, 2] = {01, 10, 11}.
In the first case, since 000 /∈ R and 00 ∈ R[1, 2], we must have 001 ∈ R.
Likewise, since 101 /∈ R and 10 ∈ R[1, 2], we must have 100 ∈ R. But then
R ⊇ {010, 011, 001, 100} and thus R[2, 3] ⊇ {10, 11, 01, 00}, a contradiction.
Similarly, in the second case we must have 100 ∈ R and 110 ∈ R and thus
R ⊇ {010, 011, 100, 110}, which yields R[2, 3] ⊇ {10, 11, 00}, also a contradiction.
This shows that R contains only one bitstring starting with 01.

Case 2. We must now show that A is regular if χA(x) = χA(y) for every hard
pair (x, y). The rough idea is as follows. Our aim is to show that χ2

A is 2-fa-
enumerable, because then A is regular by Fact 2.1. So we wish to output a set
of at most two possibilities for the characteristic string of any two input words.
On input of two words x and y we first check whether the pair (x, y) is hard.
How such a check can be performed is explained later. If the pair is hard, by
assumption we know that χA(x) = χA(y) and we can output the set {00, 11}.
Otherwise, the pair is easy. In this case we know that there exists an advisor z
such that Q := N(x, y, z)[1, 2] has size at most 2. Thus if we can find the advisor,
we can output Q. How an advisor can be found is explained next.

To find the advisor z, we employ a method that is also used in [22] for the
proof of Fact 2.1. The idea is to first construct a nondeterministic automaton I
with ε-moves. This automaton has two input tapes, on which it finds two words
x and y. As its first step it nondeterministically branches to all states the au-
tomaton N reaches when it reads the first symbols of x and y on its first and
second tape and some arbitrary symbol on the third tape (including the blank
symbol, which corresponds to guessing the end of the word on the third tape).
In the second step I branches to the states that N reaches upon then reading
the second symbols of x and y plus some arbitrary symbol on the third tape
and so on. When the ends of both x and y have been reached, I may go on
simulating N using ε-moves: it nondeterministically branches to the states N
would reach reading blanks on the first two tapes and some arbitrary symbol on
the third tape. Note that on some nondeterministic path the automaton I will
reach the state reached by N upon input (x, y, z).

We turn I into a deterministic automaton J using the standard power set
construction on its states. Upon input of a pair (x, y) the automaton J will
end its computation in a ‘power state’ p that is exactly the set of all states



reached by I upon input (x, y). We define the output attached to p in J as the
intersection of all sets γ(q)[1, 2] with q ∈ p, where γ is the output function of N .
This ensures that χ2

A(x, y) is always an element of J(x, y). Due to the existence
of the advisor z, there must exist a state q ∈ p such that γ(q)[1, 2] has size at
most 2. Thus the intersection that is output by J has size at most 2.

It remains to show how we can check whether (x, y) is a hard pair. Consider
the automaton I once more and once more turn it into a deterministic automa-
ton J ′. Only this time we have a closer look at the outputs γ(q) attached to the
states q ∈ p of the power state p. We check whether for one of these outputs
γ(q)[1, 2] has size at most 2. This is the case iff (x, y) is an easy pair. ut

The next proof adapts several ideas that were previously used in a new proof
by Austinat et al. [2, Proposition 1] of an old result of Kinber. Kinber’s original
proof turns out to be wrong, see Section 4.

Theorem 2.3. If #n
A is n-fa-enumerable via a finite automaton that never enu-

merates both 0 and n simultaneously, then A is regular.

Proof. We prove the claim by induction on n. For n = 1 the claim is trivial. So
suppose the claim has already been shown for n− 1.

Let #n
A be n-fa-enumerable via a finite automaton M that never enumerates

both 0 and n simultaneously. Then on input of pairwise different words x1, . . . , xn

the output of M either misses 0, which can be interpreted as ‘{x1, . . . , xn} inter-
sects A’, or it misses n, which can be interpreted as ‘{x1, . . . , xn} intersects Ā’.

Similarly to the proof of Theorem 2.2 we now distinguish two cases, depend-
ing on the existence of certain hard words. Let us call a tuple (y1, . . . , yn) an
advisor for a tuple (x1, . . . , xn−1), if all of these words are pairwise different
and if M makes the following n + 1 claims: it claims ‘{y1, . . . , yn} intersects Ā’
and for i ∈ {1, . . . , n} it claims ‘{x1, . . . , xn−1, yi} intersects A’. Note that an
advisor can only, but need not, exist if at least one xi is in A. Let us call a tuple
(x1, . . . , xn−1) of pairwise different words easy if (a) at least one xi is not in A
or (b) there exists an advisor for it, and let us call the tuple hard if neither (a)
nor (b) holds.

Case 1. Suppose that there exists a hard tuple (x1, . . . , xn−1). Since (a) does
not hold for it, all xi are in A. Consider an automaton N that works as follows.
On input y it simulates M on the input (x1, . . . , xn−1, y) and if the output
is ‘{x1, . . . , xn−1, y} intersects A’, it accepts, otherwise rejects. We show that
L(N), the set of all words accepted by N , is a finite variation of A, which is
hence regular. For y ∈ A the automaton M must output ‘{x1, . . . , xn−1, y}
intersects A’ and thus y ∈ L(N), except possibly for y ∈ {x1, . . . , xn−1}. For
y /∈ A, since (b) does not hold, the automata M can output ‘{x1, . . . , xn−1, y}
intersects A’ at most n − 1 times. Thus y /∈ L(N) whenever y /∈ A, except for
these finitely many exceptions.

Case 2. Suppose all tuples of pairwise different words are easy. We show that
#n−1

A is (n − 1)-fa-enumerable via an automaton M ′ that never outputs 0 and



n − 1 simultaneously. Then A is regular by the induction hypothesis. So let n
input words x1, . . . , xn−1 be given. If they are not pairwise different, we can
immediately output the set {0, . . . , n−2}. Otherwise, via the detour of a nonde-
terministic automaton, we search for an advisor as in the proof of Theorem 2.2.
If we find one, we output ‘{x1, . . . , xn−1} intersects A’. The existence of the ad-
visor ensures that this output is correct. If we fail to find an advisor, which can
only happen because (a) holds, we output ‘{x1, . . . , xn−1} intersect Ā’. Clearly
this output is also correct. ut

3 Regular Relations and Cardinality Computations

The introduction claims that ‘results on cardinality computations are separation
results in disguise’. This section explains what is meant by this claim. It starts
with a lemma that shows how cardinality computations can be reformulated in
terms of separation and disjointness of regular relations. Then we apply this
lemma and show how the previously obtained results can be reformulated with-
out referring to cardinality computations. At the end of the section, we show
that the obtained results are optimal in certain senses.

Recall that we called a relation R regular if its characteristic function χR,
defined by χR(x1, . . . , xn) = 1 iff (x1, . . . , xn) ∈ R, is fa-computable. We called
two relations A and B fa-separable if there exists a regular relation C such that
A ⊆ C ⊆ B̄.

Lemma 3.1. For every language A the following equivalences hold:

1. The function #n
A is n-fa-enumerable via an automaton that never enumerates

both 0 and n simultaneously, iff A(n) and Ā(n) are fa-separable.
2. The function #2

A is 2-fa-enumerable, iff there exist disjoint regular supersets
of A×A, A× Ā, and Ā× Ā.

3. The function χ2
A is 3-fa-enumerable, iff there exist disjoint regular supersets

of A×A, A× Ā, Ā×A, and Ā× Ā.

Proof. The first equivalence follows easily from the definitions.
For the second equivalence, first assume that there exist disjoint regular su-

persets R2 ⊇ A×A, R1 ⊇ A×Ā, and R0 ⊇ Ā×Ā. An automaton that witnesses
the 2-fa-enumerability of #2

A works as follows: on input (x, y) with x 6= y it out-
puts the set Q that contains 0 if both (x, y) ∈ R0 and (y, x) ∈ R0, that contains
1 if either (x, y) ∈ R1 or (y, x) ∈ R1, and that contains 2 if both (x, y) ∈ R2 and
(y, x) ∈ R2. Note that |Q| ≤ 2. Suppose x /∈ A and y /∈ A. Then (x, y) ∈ R0 and
(y, x) ∈ R0. Thus Q will contain 0 as required. Likewise, if x ∈ A and y ∈ A then
2 ∈ Q. Finally, if χA(x) 6= χA(y), then either (x, y) ∈ R1 or (y, x) ∈ R1 and thus
1 ∈ Q. In all cases we have #2

A(x, y) ∈ Q. For the second direction, let #2
A be

2-fa-enumerated by M . For i ∈ {0, 1, 2} define sets Si :=
{
(x, y) | i ∈ M(x, y)

}
and let ∆ := {(x, x) | x ∈ Σ∗}. The desired disjoint supersets are given by
S2 ∪∆ ⊇ A×A, S1 \∆ ⊇ A× Ā, and S0 ∪∆ ⊇ Ā× Ā.

For the third equivalence, let R11, R10, R01, and R00 denote disjoint supersets
of A×A, A×Ā, Ā×A, and Ā×Ā, respectively. Then χ2

A can be 3-fa-enumerated



by an automaton M that works as follows: on input (x, y) it checks (in parallel)
for which b we have (x, y) ∈ Rb. It then outputs the set of all such b. Clearly,
χ2

A(x, y) will be an element of this set and this set will have size at most 3.
For the second direction, if χ2

A is 3-fa-enumerable via M , we can define Rb with
b ∈ {00, 01, 10, 11} as the set of all pairs (x, y) such that b ∈ M(x, y). These sets
have the required properties. ut

Lemma 3.1 allows us to reformulate Theorems 2.2 and 2.3 as follows.

Theorem 3.2. If there exist disjoint regular supersets of A × A, A × Ā, and
Ā× Ā, then A is regular.

Theorem 3.3. If A(n) and Ā(n) are fa-separable, then A is regular.

In the following we prove that both results are ‘optimal’. For the first theorem
this means that if we add a superset of Ā×A to the list of disjoint sets, then the
theorem fails—even quite dramatically as Theorem 3.4 shows. For the second
theorem this means that we cannot replace Ā by an arbitrary set B.

Theorem 3.4. There exists a nonrecursive set A such that there exist disjoint
regular supersets of A×A, A× Ā, Ā×A, and Ā× Ā.

Proof. As shown in [1, 22], for every infinite bitstring b the set A of all bit-
strings that are lexicographically smaller than b has the property that χ2

A is
3-fa-enumerable. Such a set A is also called a standard left cut in the literature.
By Lemma 3.1, since χ2

A is 3-fa-enumerable, there exist of disjoint regular su-
persets of A×A, A× Ā, Ā×A, and Ā× Ā. Since there exist uncountably many
standard left cuts [12], there must exist a nonrecursive one. ut

Theorem 3.5. For each n ≥ 2 there exist disjoint, recursively inseparable sets A
and B such that A(n) and B(n) are fa-separable.

Proof. For an infinite bitstring b let Ab denote the set of all nonempty prefixes
of b and let Bb denote the set of all nonempty prefixes of b with the last bit
toggled. Then any two words in Ab are comparable with respect to the prefix
ordering v, whereas no two different words in Bb are comparable with respect
to v. Thus for every bitstring b the relation A

(2)
b is a subset of v, whereas B

(2)
b

is a subset of the complement of v. In particular, A
(n)
b and B

(n)
b are fa-separable

for every b and all n ≥ 2.
We construct an infinite bitstring b such that A := Ab and B := Bb are not

recursively separable. This bitstring is constructed in stages. Let (Mi)i∈N be an
enumeration of all Turing machines (the enumeration need not be effective). In
stage i we guarantee that L(Mi), the set of all words accepted by Mi, does not
separate Ab and Bb, that is, either Ab 6⊆ L(Mi) or Bb 6⊆ L(Mi).

Suppose we have already constructed bi := b[1, . . . , i] and must now decide
how to define b[i + 1]. We check whether both bi0 ∈ L(Mi) and bi1 /∈ L(Mi)
hold. If this is the case, let b[i + 1] := 1, which will ensure both Ab 6⊆ L(Mi) and
Bb 6⊆ L(Mi). If this is not the case, let b[i + 1] := 0, which will ensure either
Ab 6⊆ L(Mi) or Bb 6⊆ L(Mi). In either case we guarantee that L(Mi) does not
separate Ab and Bb. ut



4 Counter-Example to a Theorem of Kinber

In this section we extend the ideas used in the proof of Theorem 3.5 to construct
a counter-example to an old result of Kinber [15, Theorem 2]. Kinber’s theorem
states that if two sets are (m,n)-fa-separable for m > n/2, then they are fa-
separable. This claim is wrong, since we will construct sets that are (3, 5)-fa-
separable, but not even recursively separable. Before we prove this, we first
review Kinber’s notion of (m,n)-fa-separability, which is a generalisation of fa-
separability.

For two sets A and B let us call a pair (x, b), consisting of a word x ∈ Σ∗

and a bit b, bad if b = 1 and x ∈ B and if b = 0 and x ∈ A. Two disjoint sets
A and B are called (m,n)-separable, respectively (m,n)-fa-separable, if there
exists an n-ary function f computable by a Turing machine, respectively a finite
automaton, that on input of any n pairwise different words x1, . . . , xn outputs a
bitstring b ∈ {0, 1}n such that at most n−m pairs

(
xi, b[i]

)
are bad. The intuition

behind this definition is that an (m,n)-separating function must output 1 for
words in A and 0 for words in B and it may make up to n−m mistakes. Words
that are neither in A nor in B play no role. Note that sets are (1, 1)-fa-separable
iff they are fa-separable.

Kinber shows that for all m < n there are (m,n)-separable sets that are not
recursively separable. He claims that the situation for finite automata is different,
since he claims that for m > n/2 all (m,n)-fa-separable sets are fa-separable.
Theorem 4.1 shows that this claim is wrong.

Theorem 4.1. There exist (3, 5)-fa-separable, but not recursively separable sets.

Proof. We show that the recursively inseparable sets A and B constructed in
the proof of Theorem 3.5 are (3, 5)-fa-separable. Recall that these sets were of
the form A = Ab and B = Bb for some infinite bitstring b. We must construct
an automaton M that on input of five words x1, . . . , x5 will claim ‘xi ∈ A’ or
‘xi ∈ B’ for each i, such that among the claims for words in A∪B at most 2 are
wrong.

Let X := {x1, . . . , x5}. Let yi denote the word xi without the last bit (if xi

is the empty string, then xi /∈ A∪B and we can ignore it). We will say that xi is
associated with yi. Let us call two words xi and xj siblings if they are associated
with the same vertex yi = yj . Let Y := {y1, . . . , y5}.

The automaton scans the forest structure of (Y,v), that is, for each pair
(i, j) it finds out whether yi v yj holds. Then it considers all branches in the
tree (Y,v) for which at least three words are associated with the vertices on this
branch. Given such a branch, let y denote the last vertex on this branch. Then
all vertices on this branch are prefixes of y. The automaton assigns outputs to
some of the input words according to the following rule: for each i ∈ {1, . . . , 5}, if
yi is a proper prefix of y and xi v y we claim ‘xi ∈ A’ and if yi is a proper prefix
of y and xi 6v y we claim ‘xi ∈ B’. Since a word may be associated with a vertex
that lies on more than one branch, the just given rule may assign conflicting
outputs to a word xi. Also, we may not have assigned any output to xi. In either



case the automaton outputs ‘xi ∈ A’. Note that in both cases this ensures that
if xi has a sibling xj , the automaton also outputs ‘xj ∈ A’.

According to the construction, the output of the automaton for a word xi ∈
A∪B can be incorrect only if yi is not a proper prefix of the last vertex of one of
the above-mentioned branches, or if two of these branches ‘split’ exactly at yi.
Note furthermore that if xi ∈ A ∪ B has a sibling, at least one output will be
correct for the sibling pair.

We now argue that the described procedure (3, 5)-fa-separates A and B. Let
X ′ := X ∩ (A∪B) be the words for which our algorithm must produce a correct
output with an error margin of 2. Since for |X ′| ≤ 2 we can output anything,
the interesting cases are 3 ≤ |X ′| ≤ 5.

For |X ′| = 5, there can only be a mistake for one word associated with the
top vertex. There cannot be any splits. Thus we can make at most one mistake.

For |X ′| = 4, there can also be only one mistake for one word associated with
the top vertex, but there can be another mistake caused by a split earlier on the
branch to which the words in X ′ are associated. In total, we can make at most
two mistakes.

For |X ′| = 3, if a sibling pair is associated with any vertex on the branch,
at least one output is correct and we are done. Otherwise, again one mistake is
possible for the word associated with the top vertex. If there is no split at the
root vertex, we make at most one additional mistake at the ‘middle’ vertex. So
assume that there is a split at the root vertex. Then two additional input words
must be associated with the branch leading away in the wrong direction from
the root (since we considered only branches to which at least three words are
associated). But then there cannot be another split at the middle vertex of our
main branch and the output for this middle element must be correct. ut

Although Theorem 2 of Kinber’s paper fails, corollaries of this theorem can
still be true. For example, Kinber’s claim is true if instead of arbitrary disjoint
sets A and B we consider A and Ā: if a set and its complement are (m,n)-fa-
separable for m > n/2, then it is regular. Austinat et al. [2] were the first to give
a (correct) proof of this corollary. The result can also easily be derived from the
more general Theorem 3.3: if A and Ā are (m,n)-fa-separable for m > n/2, then
A(n) and Ā(n) are fa-separable via majority voting and thus A is regular.

5 Conclusion

This paper raises two questions that I would like to recommend for further
research. First, does the cardinality theorem hold for finite automata? Second,
for which m and n do there exist (m,n)-fa-separable, but not fa-separable sets?

One promising approach to prove the cardinality theorem for finite automata
seems to be the employment of proof techniques used in the recursive setting.
This approach was successfully taken in [22] to prove the nonspeedup theorem for
finite automata. Unfortunately, the transferal of the proofs appears to be highly
nontrivial. For example, Kummer’s proof of the cardinality theorem is based on



the following r.e. tree lemma: if a tree is recursively enumerable (r.e.) and some
finite tree cannot be embedded into it, then all its branches are recursive. It is
not clear what the correct transferal of this lemma to finite automata might be.

The idea of using regular relations to reformulate the cardinality theorem for
finite automata can also be applied to the original cardinality theorem. Using
a similar argument as in the proof of Lemma 3.1, one can show that a set A is
recursive iff there exist disjoint r.e. supersets of A×A, A× Ā, and Ā× Ā. More
generally, let A(k,n) denote the set of all tuples (x1, . . . , xn) of pairwise different
words such that exactly k of them are in A. Then the cardinality theorem can be
reformulated as follows: a set A is recursive iff there exists disjoint r.e. supersets
of A(0,n), . . . , A(n,n). In this relational formulation we can also ask whether the
cardinality theorem holds in different contexts. For example, we can ask whether
a set A must be context-free if there exist disjoint context-free supersets of A×A,
A× Ā, and Ā× Ā.
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21. R. Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26(3):279–284, 1988.

22. T. Tantau. Comparing verboseness for finite automata and Turing machines. In
Proc. 19th Symposium on Theoretical Aspects of Comput. Sci., volume 2285 of
Lecture Notes in Comput. Sci., pages 465–476. Springer-Verlag, 2002.


