
Weak Cardinality Theorems for First-Order Logic

(Extended Abstract)

Till Tantau

Technische Universität Berlin
Fakultät für Elektrotechnik und Informatik

10587 Berlin, Germany

Fax +49-30-314-73500

tantau@cs.tu-berlin.de

February 25, 2003

Abstract

Kummer’s cardinality theorem states that a language is recursive if a Turing machine can
exclude for any n words one of the n+ 1 possibilities for the number of words in the language.
It is known that this theorem does not hold for polynomial-time computations, but there is
evidence that it holds for finite automata: at least weak cardinality theorems hold for finite
automata. This paper shows that some of the recursion-theoretic and automata-theoretic weak
cardinality theorems are instantiations of purely logical theorems. Apart from unifying previous
results in a single framework, the logical approach allows us to prove new theorems for other
computational models. For example, weak cardinality theorems hold for Presburger arithmetic.

1

1 Introduction

Given a language A and n input words, we often wish to know which of these words are in the
language. For languages like the satisfiability problem this problem is presumably difficult to solve,
for languages like the halting problem it is impossible to solve. To tackle such problems, Gasarch [7]
has proposed to study a simpler problem instead: we just count how many of the input words are
elements of A. To make things even easier, we do not require this number to be computed exactly,
but only approximately. Indeed, let us just try to exclude one possibility for the number of input
words in A.

In recursion theory, Kummer’s cardinality theorem [17] states that, using a Turing machine,
excluding one possibility for the number of input words in A is just as hard as deciding A. It is not
known whether this statement carries over to automata theory, that is, it is not known whether a
language A must be regular if a finite automaton can always exclude one possibility for the number
of input words in A. However, several weak forms of this theorem are known in automata theory.
For example, for n = 2 the cardinality theorem is known to hold also for finite automata [26].

These parallels between recursion and automata theory are surprising insofar as computational
models ‘in between’ exhibit a different behaviour: there are languages A outside the class P of
problems decidable in polynomial time for which we can always exclude, in polynomial time, for
any n words one possibility for their number in A.

The present paper explains (at least partly) why the parallels between recursion and automata
theory exist and why they are not shared by the models in between. Basically, the weak cardinality
theorems for Turing machines and finite automata are just different instantiations of the same logical
theorems. These logical theorems cannot be instantiated for polynomial time since polynomial time
lacks a logical characterisation in terms of elementary definitions.

Using logic for the formulation and proof of the weak cardinality theorems has another advan-
tage, apart from unifying previous results. Theorems formulated for arbitrary logical structures
can be applied to new fields: the weak cardinality theorems all hold for Presburger arithmetic and
the nonspeedup theorem also holds for ordinal number arithmetic.

In the logical setting, ‘computational models’ are replaced by ‘logical structures’ and ‘com-
putation’ is replaced by ‘elementary definition’. For example, the cardinality theorem for n = 2
now becomes the following statement: Let S be a logical structure with universe U that satis-
fies certain requirements. If for some set A and some number n we can elementarily define a
function f : U × U → {0, 1, 2} in S such that f(x, y) 6= |{x, y} ∩ A| for all x and y, then A is
elementarily definable in S.

One of the applications of cardinality computations is in the study of separability. As ar-
gued in [27], ‘cardinality theorems are separability results in disguise’. In recursion theory and
in automata theory one can rephrase the weak cardinality theorems as separability results. Such
a rephrasing is also possible for first-order logic and we can formulate purely logical separability
theorems that are interesting in their own right. An example of such a theorem is the following
statement: Let S be a logical structure satisfying certain requirements and let A be a subset of
S’s universe. If there exist elementarily definable supersets of A × A, A × Ā, and Ā × Ā whose
intersection is empty, then A is elementarily definable in S.

This paper is organised as follows. In section 2 the history of the cardinality theorem is re-
traced and the weak cardinality theorems are formulated rigorously. Section 3 prepares the logical
formulation of the weak cardinality theorems. It is shown how the class of regular languages and
the class of recursively enumerable languages can be characterised in terms of appropriate elemen-
tary definitions. In section 4 the weak cardinality theorems for first-order logic are formulated. In

1

section 5 applications of the theorems to separability are discussed.
In this extended abstract all proofs are given in the technical appendix.

2 History of the Cardinality Theorem

2.1 The Cardinality Theorem for Recursion Theory

For a set A, the cardinality function #n
A takes n words as input and yields the number of words

in A as output, that is, #n
A (w1, . . . , wn) = |{w1, . . . , wn} ∩A|. The cardinality function and the

idea of ‘counting input words’, due to Gasarch [7] in its general form, play an important role in a
variety of proofs both in complexity theory [19, 13, 24, 9, 15] and recursion theory [17, 18, 4]. For
example, the core idea of the Immerman–Szelepcsényi theorem is to count the number of reachable
vertices in a graph in order to decide the reachability problem.

One way of quantifying the complexity of #n
A is to consider its enumeration complexity, which

is the smallest number m such that #n
A is m-enumerable. Enumerability, which was first defined

by Cai and Hemaspaandra [6] in the context of polynomial-time computations and which was later
transfered to recursive computations, can be regarded as ‘generalised approximation’. It is defined
as follows: a function f , taking n tuples of words as input, is m-Turing-enumerable if there exists
a Turing machine that on input w1, . . . , wn starts a possibly infinite computation during which
it prints words onto an output tape. At most m different words may be printed and one of them
must be f(w1, . . . , wn).

Intuitively, the larger m, the easier it should be to m-Turing-enumerate #n
A . This intuition is

wrong. Kummer’s cardinality theorem, see below, states that even n-Turing-enumerating #n
A is just

as hard as deciding A. In other words, excluding just one possibility for #n
A (w1, . . . , wn) is just as

hard as deciding A. Intriguingly, the intuition is correct for polynomial-time computations since
the work of Gasarch, Hoene, and Nickelsen [7, 12, 21] shows that a polynomial-time version of the
cardinality theorem does not hold.

Theorem 2.1 (Cardinality theorem [17]). If #n
A is n-Turing-enumerable, then A is recursive.

The cardinality theorem has applications for instance in the study of semirecursive sets [14],
which play a key role in the solution of Post’s problem [23]. The proof of the cardinality theorem
is difficult. Several less general results had already been proved when Kummer wrote his paper ‘A
Proof of Beigel’s Cardinality Conjecture’ [17]. The title of Kummer’s paper refers to the fact that
Richard Beigel was the first to conjecture the cardinality theorem as a generalisation of his so-called
‘nonspeedup theorem’ [3]. In the following formulation of the nonspeedup theorem χnA denotes
the n-fold characteristic function of A. The nonspeedup theorem is a simple consequence of the
cardinality theorem.

Theorem 2.2 (Nonspeedup theorem [3]). If χnA is n-Turing-enumerable, then A is recursive.

Owings [22] succeeded in proving the cardinality theorem for n = 2. For larger n he could only
show that if #n

A is n-Turing-enumerable, then A is recursive in the halting problem. Harizanov
et al. [8] have formulated a restricted cardinality theorem, whose proof is somewhat simpler than
the proof of the full cardinality theorem.

Theorem 2.3 (Restricted cardinality theorem [8]). If #n
A is n-Turing-enumerable via a Tur-

ing machine that never enumerates both 0 and n simultaneously, then A is recursive.

2

2.2 Weak Cardinality Theorems for Automata Theory

If we restrict the computational power of Turing machines, the cardinality theorem no longer
holds [7, 12, 21]: there are languages A /∈ P for which we can always exclude one possibility for
#n
A (w1, . . . , wn) in polynomial time. However, if we restrict the computational power even further,

namely if we consider finite automata, there is strong evidence that the cardinality theorem holds
once more, see the following conjecture:

Conjecture 2.4 ([26]). If #n
A is n-fa-enumerable, then A is regular.

The conjecture refers to the notion of m-enumerability by finite automata. This notion was
introduced in [25] and is defined as follows: A function f is m-fa-enumerable if there exists a
finite automaton for which for every input tuple (w1, . . . , wn) the output attached to the last state
reached is a set of at most m values that contains f(w1, . . . , wn). The different components of the
tuple are put onto n different tapes, shorter words padded with blanks, and the automaton scans
the tapes synchronously, which means that all heads advance exactly one symbol in each step. The
same method of feeding multiple words to a finite automaton has been used in [16, 2, 1].

In a line of research [16, 2, 1, 25, 26, 27], the following three theorems were established. They
support the above conjecture by showing that all of the historically earlier, weak forms of the
recursion-theoretic cardinality theorem hold for finite automata.

Theorem 2.5 ([25]). If χnA is n-fa-enumerable, then A is regular.

Theorem 2.6 ([26]). If #2
A is 2-fa-enumerable, then A is regular.

Theorem 2.7 ([26, 2]). If #n
A is n-fa-enumerable via a finite automaton that never enumerates

both 0 and n simultaneously, then A is regular.

3 Computational Models as Logical Structures

The aim of formulating purely logical versions of the weak cardinality theorems is to abstract from
concrete computational models. The present section explains which logical abstraction is used in
later sections.

3.1 Presburger Arithmetic

Let us start with an easy example: Presburger arithmetic. This notion is easily transfered to
a logical setting—it is defined in terms of first-order logic in the first place: A set A of natural
numbers is called definable in Presburger arithmetic if there exists a first-order formula φ(x) over
the signature {+2} such that a ∈ A iff φ(x) holds if we interpret x as a and the symbol + as the
normal addition of natural numbers. For example, the set of even natural numbers is definable in
Presburger arithmetic using the formula φ(x) = ∃y (y + y = x).

In the abstract logical setting used in the next sections, the ‘computational model Presburger
arithmetic’ is represented by the logical structure (N,+). The class of languages the are ‘computable
in Presburger arithmetic’ is given by the class of languages that are elementarily definable in (N,+).
Recall that a relation R is called elementarily definable in a logical structure S if there exists a first-
order formula φ(x1, . . . , xn) such that (a1, . . . , an) ∈ R iff φ(x1, . . . , xn) holds in S if we interpret
each xi as ai.

3

3.2 Finite Automata

In order to make finite automata and regular languages accessible to a logical setting, for a given
alphabet Σ we need to find a logical structure SREG|Σ∗ with the following property: a language
A ⊆ Σ∗ is regular iff it is elementarily definable in SREG|Σ∗ .

It is known that such a structure SREG|Σ∗ exists: Büchi has proposed one [5], though a small
correction is necessary as pointed out by McNaughton [20]. However, the elements of Büchi’s
structure are natural numbers, not words, and thus a reencoding is necessary. A more directly
applicable structure is discussed in [27], where it is shown that the structure (Σ∗, Iσ1 , . . . , Iσ|Σ|) has
the desired properties. The relations Iσi , one for each symbol σi ∈ Σ, are binary relations that hold
for a pair (u, v) of words if the |v|-th letter of u is σi.

3.3 Polynomial-Time Computations

There is no logical structure S such that the class of languages that are elementarily definable
in S is exactly the class P of languages decidable in polynomial time. To see this, consider the
relation R = {(M, t) |M halts on input M after t steps}. This relation is in P, but the language
defined by the first-order formula φ(M) = ∃tR(M, t) is exactly the halting problem. Thus in any
logical structure in which we can elementarily define R we can also elementarily define the halting
problem.

3.4 Turing Machines

On the one hand, the class of recursive languages cannot be defined elementarily: the argument
for polynomial-time machines also applies here. On the other hand, the arithmetical hierarchy
contains exactly the sets the are elementarily definable in (N,+, ·).

The most interesting case, the class of recursively enumerable languages, is more subtle. Since
the class is not closed under complement, it cannot be characterised by elementary definitions.
However, it can be characterised by positive elementary definitions, which are elementary definitions
that do not contain negations: For every alphabet Σ there is a structure SRE|Σ∗ such that a
language A ⊆ Σ∗ is recursively enumerable iff it is positively elementarily definable in SΣ. An
example of such a structure SRE|Σ∗ is the following: its universe is Σ∗ and it contains all recursively
enumerable relations over the alphabet Σ∗.

4 Logical Versions of the Weak Cardinality Theorems

In this section the weak cardinality theorems for first-order logic are presented. The theorems are
first formulated in terms of elementary definitions. This allows us to apply them to all compu-
tational models that can be characterised in terms of elementary definitions. As argued in the
previous section, this includes Presburger arithmetic, finite automata, and the arithmetical hierar-
chy, but misses the recursively enumerable languages. This is remedied later in this section, where
positive elementary definitions are discussed. It is shown that at least the nonspeedup theorem can
be formulated in a ‘positive’ way. At the end of the section higher-order logics are briefly touched.

We are still missing one crucial definition for the formulation of the weak cardinality theorems:
What does it mean that a function is m-enumerable in a logical structure?

Definition 4.1. Let S be a logical structure with universe U and m a positive integer. A function
f : U → U is elementarily m-enumerable in S if there exists a relation R ⊆ U×U with the following
properties:

4

1. R is elementarily definable in S,

2. the graph of f is contained in R,

3. R is m-bounded, that is, for every x ∈ U there exist at most m different y with (x, y) ∈ R.

The definition is easily adapted to functions f that take more than one input or yield more
than one output. This definition does, indeed, reflect the notion of enumerability: A function
with finite range is m-fa-enumerable iff it is elementarily m-enumerable in SREG|Σ∗ ; a function is
m-Turing-enumerable iff it is positively elementarily m-enumerable in SRE|Σ∗ .

4.1 The Non-Positive First-Order Case

We are now ready to formulate the weak cardinality theorems for first-order logic. In the following
theorems, a logical structure is called well-orderable if a well-ordering of its universe can be defined
elementarily. For example (N,+) is well-orderable using the formula φ≤(x, y) = ∃z (x+z = y). The
cross product of two function f and g is defined in the usual way by (f × g)(u, v) =

(
f(u), g(v)

)
.

The first of the weak cardinality theorems, the nonspeedup theorem, is actually just a corollary
of a more general theorem that is formulated first: the cross product theorem.

Theorem 4.2 (Cross product theorem). Let S be a well-orderable logical structure with uni-
verse U . Let f, g : U → U be functions. If f × g is elementarily (n + m)-enumerable in S, then f
is elementarily n-enumerable in S or g is elementarily m-enumerable in S.

Theorem 4.3 (Nonspeedup theorem). Let S be a well-orderable logical structure with uni-
verse U . Let A ⊆ U . If χnA is elementarily n-enumerable in S, then A is elementarily definable
in S.

Theorem 4.4 (Cardinality theorem for two words). Let S be a well-orderable logical struc-
ture with universe U . Let every finite relation on U be elementarily definable in S. Let A ⊆ U . If
#2
A is elementarily 2-enumerable in S, then A is elementarily definable in S.

Theorem 4.5 (Restricted cardinality theorem). Let S be a well-orderable logical structure
with universe U . Let every finite relation on U be elementarily definable in S. Let A ⊆ U . If #n

A is
elementarily n-enumerable in S via a relation R that never ‘enumerates’ 0 and n simultaneously,
then A is elementarily definable in S.

The proofs of these theorems are given in the technical appendix.
The premises of the first two and the last two of the above theorems differ in the following

way: for the last two theorems we require that every finite relation on S is elementarily definable
in S. An example of a logical structure where this is not the case is (ω1,+, ·), where ω1 is the
first uncountable ordinal number and + and · denote ordinal number addition and multiplication.
Since this structure is uncountable, there exist a singleton set A = {α} with α ∈ ω1 that is not
elementarily definable in (ω1,+, ·). For such structures theorems 4.4 and 4.5 do not hold: #2

A

is elementarily 2-enumerable since #2
A(x, y) ∈ {0, 1} for all x, y ∈ ω1, but A is not elementarily

definable in (ω1,+, ·).

4.2 The Positive First-Order Case

The above theorems cannot be applied to Turing enumerability since they refer to elementary
definitions, not to positive elementary definitions. Unfortunately, the proofs of the theorems cannot

5

simply be reformulated in a ‘positive’ way. They use negations to define the smallest element
in a set A with respect to a well-ordering <: the defining formula is given by φ(x) = A(x) ∧
¬∃x′

(
x′ < x ∧A(x′)

)
.

This is a fundamental problem: the set {(M,x) | x is the smallest word accepted by M} is
not recursively enumerable. Thus if we insist on finding the smallest element in every recursively
enumerable set, we will not be able to apply the theorems to Turing machines. Fortunately, a closer
examination of the proofs shows that we do not actually need the smallest element in A, but just
any element of A as long as the same element is always chosen.

This is not as easy as it may sound—as is well-recognised in set theory, where the axiom of
choice is needed for this choosing operation. Suppose you and a friend wish to agree on a certain
element of A, but neither you nor your friend know the set A beforehand. Rather, you must decide
on a generic method of picking an element such that, when the set A becomes known to you and
your friend, you will both pick the same element. Methods like ‘pick some element from A’ will not
guarantee that you both pick the same element, except if the set happens to be a singleton.

We need a (partial) recursive choice function that assigns to every Turing machine M a word
that is accepted by M , provided such a word exists. Such a choice function does, indeed, exist: it
maps M to the first word that is accepted by M during a dovetailed simulation of M on all words.

In the following, first-order logic is augmented by choice operators. Choice operators have been
used for example by [11], but following definitions are adapted to the purposes of this paper and
differ from the formalism used in [11]. On the sematic side we augment logical structures by a
choice function; on the syntactic side we augment first-order logic by a choice operator ε:

Definition 4.6. A choice function on a set U is a function ζ : P(U)→ U such that ζ(A) ∈ A for
all nonempty A ⊆ U .

Definition 4.7. A choice structure is a pair (S, ζ) consisting of a logical structure S and a choice
function ζ on the universe of S.

Definition 4.8 (Syntax of the choice operator). First-order formulas with choice are defined
inductively the usual way with one addition: if x is a variable and φ is a first-order formula with
choice, so is ε(x, φ).

In the next definition, φ(S,ζ)(x) =
{
u ∈ U | (S, ζ) |= φ[x = a]

}
denotes the set of all u that

make φ hold in (S, ζ), when plugged in for the variable x.

Definition 4.9 (Semantics of the choice operator). The semantics of first-order logic with
choice operator is defined in the usual way with the following addition: a formula of the form
ε(x, φ) holds in a choice structure (S, ζ) for an assignment α, if φ(S,ζ)(x) is nonempty and α(x) =
ζ
(
φ(S,ζ)(x)

)
.

As an example, consider the logical structure S = (N,+, ·, <, 0) and let ζ map every nonempty
set of natural numbers to its smallest element. Let φ(x, y, z) = ε

(
z, 0 < z ∧ ∃a (x · a = z) ∧

∃b (y · b = z)
)
. Then φ(S,ζ)(x, y, z) is the set of all triples (n,m, k) such that k is the least common

multiple of n and m: the formula 0 < z ∧ ∃a (x · a = z)∧ ∃b (y · b = z) is true for all positive z that
are multiples of both x and y; thus the choice operator picks the smallest one of these.

The following theorem shows that the class of recursively enumerable sets can be characterised
in terms of first-order logic with choice.

Theorem 4.10. For every alphabet Σ there exists a choice structure (SRE|Σ∗ , ζ) such that a lan-
guage A ⊆ Σ∗ is recursively enumerable iff it is positively elementarily definable with choice in
(SRE|Σ∗ , ζ).

6

We can now formulate the cross product theorem and the nonspeedup theorem in such a way
that they can be applied both to finite automata and to Turing machines.

Theorem 4.11 (Cross product theorem, positive version). Let (S, ζ) be a choice structure.
Let the inequality relation be positively elementarily definable in (S, ζ). Let every finite relation
that is elementarily definable with choice in (S, ζ) be positively elementarily definable with choice
in (S, ζ). Let f, g : U → U be functions. If f × g is positively (n + m)-enumerable with choice in
(S, ζ), then f is positively n-enumerable with choice in (S, ζ) or g is positively m-enumerable with
choice in (S, ζ).

Theorem 4.12 (Nonspeedup theorem, positive version). Let (S, ζ) be a choice structure.
Let U be its universe. Let the inequality relation be positively elementarily definable in (S, ζ).
Let every finite relation that is elementarily definable with choice in (S, ζ) be positively elemen-
tarily definable with choice in (S, ζ). Let A ⊆ U . If χnA is positively n-enumerable with choice in
(S, ζ), then A is positively elementarily definable with choice in (S, ζ).

The cross product theorem, theorem 4.11, is a consequence of its positive version, theorem 4.2.
(And not the other way round, as one might perhaps expect.) The same is true for the nonspeedup
theorem. To see this, consider a well-orderable structure S whose existence is postulated in theo-
rem 4.2. Define a choice structure (S ′, ζ) as follows: S ′ has the same universe as S and contains all
relations that are elementarily definable in S. The function ζ maps each set A to its smallest ele-
ment with respect the well-ordering of S’s universe. With these definitions, a relation is positively
elementarily definable with choice in (S ′, ζ) iff it is elementarily definable in S.

4.3 The Higher-Order Case

We just saw that the cross product theorem for a certain logic, namely first-order logic, is a
consequence of the cross product theorem for a less powerful logic, namely positive first-order logic.
We may ask whether we can similarly apply the theorems for first-order logic to higher-order logics.

This is indeed possible and we can use the same kind of argument as above: Consider any logical
structure S. Define a new structure S ′ as follows: it has the same universe as S and it contains
every relation that is higher-order definable in S. Then a relation is elementarily definable in S ′
iff it is higher-order definable in S. This allows us to transfer the cross product theorem and all
of the weak cardinality theorems to all logics that are at least as powerful as first-order logic. Just
one example of such a transfer is the following:

Theorem 4.13 (Cross product theorem for higher-order logic).
Let S be a well-orderable logical structure with universe U . Let f, g : U → U be functions. If f×g is
higher-order (n+m)-enumerable in S, then f is higher-order n-enumerable in S or g is higher-order
m-enumerable in S.

5 Separability Theorems for First-Order Logic

Kummer’s cardinality theorem can be reformulated in terms of separability. In [27] it is shown that
it is equivalent to the following statement, where A(nk) denotes the set of all n-tuples of distinct
words such that exactly k of them are in A.

Theorem 5.1 (Separability version of Kummer’s cardinality theorem).
Let A be a language. Suppose there exist recursively enumerable supersets of A(n0), A(n1), . . . , A(nn)

whose intersection is empty. Then A is recursive.

7

In [27] it is also shown that the above statement is still true if we replace ‘recursive enumerable’
by ‘co-recursively enumerable’.

The weak cardinality theorems for first-order logic can be reformulated in a similar way. Let us
start with the cardinality theorem for two words. It can be stated equivalently as follows, where
Ā = U \A denotes the complement of A.

Theorem 5.2. Let S be a well-orderable logical structure with universe U . Let every finite relation
on U be elementarily definable in S. Let A ⊆ U . Suppose there exist elementarily definable supersets
of A×A, A× Ā, and Ā× Ā whose intersection is empty. Then A is elementarily definable in S.

The restricted cardinality theorem can be reformulated in terms of elementary separability.
Let us call two sets A and B elementarily separable in a structure S if there exists a set C with
A ⊆ C ⊆ B̄ that is elementarily definable in S.

Theorem 5.3. Let S be a well-orderable structure with universe U . Let every finite relation on U

be elementarily definable in S. Let A ⊆ U . If A(n0) and A(nn) are elementarily separable in S, then
A is elementarily definable in S.

6 Conclusion

This paper proposed a new, logic-based approach to the proof of (weak) cardinality theorems. The
approach has two advantages:

1. It unifies previous results in a single framework.

2. The results can easily be applied to other computational models.

Regarding the first advantage, only the cross product theorem and the nonspeedup theorem are
completely ‘unified’ by the theorems presented in this paper: the Turing machine versions and the
finite automata versions of these theorems are just different instantiations of theorems 4.2 and 4.3.

For the cardinality theorem for two words and for the restricted cardinality theorem the situation
is (currently) more complex. These theorem hold for Turing machines and for finite automata, but
different proofs are used. In particular, the logical theorems cannot be instantiated for Turing
enumerability. Nevertheless, the logical approach is fruitful here: the logical theorem can be
instantiated for new models like Presburger arithmetics.

Organised by computational model, the results of this paper can be summarised as follows: the
cross product theorem and the nonspeedup theorem

• hold for Presburger arithmetic,

• hold for finite automata,

• do not hold for polynomial-time machines,

• hold for Turing machines,

• hold for natural number arithmetic,

• hold for ordinal number arithmetic.

The cardinality theorem for two inputs and the restricted cardinality theorem

• hold for Presburger arithmetic,

• hold for finite automata,

8

• do not hold for polynomial-time machines,

• hold for Turing machines,

• hold for natural number arithmetic,

• do not hold for ordinal number arithmetic.

The behaviour of ordinal number arithmetic is interesting: the cardinality theorem for two inputs
and the restricted cardinality theorem fail since there exist ordinal numbers that are not elemen-
tarily definable, but this is not a ‘problem’ for the cross product theorem and the nonspeedup
theorem.

The results of this paper raise the question of whether the cardinality theorem holds for first-
order logic. I conjecture that this is the case, that is, I conjecture that for well-orderable structures S
in which all finite relations can be elementarily defined, if #n

A is elementarily n-enumerable then A
is elementarily definable. Proving this conjecture would also settle the open problem of whether
the cardinality theorem holds for finite automata.

References

[1] H. Austinat, V. Diekert, and U. Hertrampf. A structural property of regular frequency classes.
Theoretical Comput. Sci., 2003. To appear.

[2] H. Austinat, V. Diekert, U. Hertrampf, and H. Petersen. Regular frequency computations. In
Proc. RIMS Symposium on Algebraic Systems, Formal Languages and Computation, volume
1166 of RIMS Kokyuroku, pages 35–42. Research Inst. for Mathematical Sci., Kyoto University,
Japan, 2000.

[3] R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University, Stanford, USA, 1987.

[4] R. Beigel, W. Gasarch, M. Kummer, G. Martin, T. McNicholl, and F. Stephan. The complexity
of ODDA

n . J. Symbolic Logic, 65(1):1–18, 2000.

[5] J. R. Büchi. On a decision method in restricted second-order arithmetic. In E. Nagel, P. Suppes,
and A. Tarski, editors, Proceedings of the 1960 International Congress on Logic, Methodology
and Philosophy of Science, pages 1–11. Stanford University Press, 1962.

[6] J. Cai and L. A. Hemachandra. Enumerative counting is hard. Information and Computation,
82(1):34–44, July 1989.

[7] W. Gasarch. Bounded queries in recursion theory: A survey. In Proceedings of the Sixth
Annual Structure in Complexity Theory Conference, pages 62–78, Chicago, Illinois, 30 June–
3 July 1991. IEEE Computer Society Press.

[8] V. Harizanov, M. Kummer, and J. Owings. Frequency computations and the cardinality
theorem. J. Symbolic Logic, 52(2):682–687, 1992.

[9] L. A. Hemachandra. The strong exponential hierarchy collapses. J. Comput. Syst. Sci.,
39(3):299–322, Dec. 1989.

[10] E. Hemaspaandra, L. A. Hemaspaandra, and H. Hempel. A downward collapse within the
polynomial hierarchy. SIAM J. Comput., 28(2):383–393, 1998.

9

[11] D. Hilbert and P. Bernay. Grundlagen der Mathematik II, volume 50 of Die Grundlehren der
mathematischen Wissenschaft in Einzeldarstellungen. Springer-Verlag, second edition, 1970.

[12] A. Hoene and A. Nickelsen. Counting, selecting, and sorting by query-bounded machines.
In Proc. 10th Symposium on Theoretical Aspects of Comp. Sci., volume 665 of LNCS, pages
196–205. Springer-Verlag, 1993.

[13] N. Immerman. Nondeterministic space is closed under complementation. SIAM J. Comput.,
17(5):935–938, Oct. 1988.

[14] C. G. Jockusch, Jr. Reducibilities in Recursive Function Theory. PhD thesis, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1966.

[15] J. Kadin. PNP[O(logn)] and sparse Turing-complete sets for NP. J. Comput. Syst. Sci.,
39(3):282–298, Dec. 1989.

[16] E. B. Kinber. Frequency computations in finite automata. Cybernetics, 2:179–187, 1976.

[17] M. Kummer. A proof of Beigel’s cardinality conjecture. J. Symbolic Logic, 57(2):677–681,
June 1992.

[18] M. Kummer and F. Stephan. Effecitive search problems. Mathematical Logic Quarterly,
40:224–236, 1994.

[19] S. R. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis.
J. Comput. Syst. Sci., 25(2):130–143, Oct. 1982.

[20] R. McNaughton. Review of [5]. J. Symbolic Logic, 28(1):100–102, 1963.

[21] A. Nickelsen. On polynomially D-verbose sets. In Proc. 14th Symposium on Theoretical Aspects
of Comp. Sci., volume 1200 of LNCS, pages 307–318. Springer-Verlag, 1997.

[22] J. C. Owings, Jr. A cardinality version of Beigel’s nonspeedup theorem. J. Symbolic Logic,
54(3):761–767, Sept. 1989.

[23] E. L. Post. Recursively enumerable sets of positive integers and their decision problems.
Bulletin of the American Mathematical Society, 50:284–316, 1944.

[24] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 23:279–284, 1988.

[25] T. Tantau. Comparing verboseness for finite automata and Turing machines. In Proc. 19th
Symposium on Theoretical Aspects of Comp. Sci., volume 2285 of LNCS, pages 465–476.
Springer-Verlag, 2002.

[26] T. Tantau. Towards a cardinality theorem for finite automata. In Proc. 27th International
Symposium on Mathematical Foundations of Comp. Sci., volume 2420 of LNCS, pages 625–636.
Springer-Verlag, 2002.

[27] T. Tantau. On Structural Similarities of Finite Automata and Turing Machine Enumerability
Classes. PhD thesis, Technische Universität Berlin, 2003.

10

Technical Appendix

Proof of theorem 4.2. Let f × g be elementarily (n+m)-enumerable in S via a relation R. In the
following, two relations F and G are constructed such that either f is elementarily n-enumerable
via F or g is elementarily m-enumerable via G.

The construction of the relations F and G is based on an abstract form of easy-hard arguments.
Easy-hard arguments have been used in complexity theory in different proofs, see for example [15]
or [10]. In such an argument one shows that either all words in Σ∗ are easy (in a sense to be
defined), in which case a language is, well, easy; or there exists a hard word, which allows us to
decide all other words, provided we know the characteristic value of the hard word.

Translated to the more abstract setting of this proof, ‘easy’ is a property of the elements of U .
If all u ∈ U are easy, then f will be elementarily n-enumerable via F . Otherwise, in case a hard
element uhard exists, g will be elementarily m-enumerable via G.

Before we proceed, let us fix some notations. Let < be a well-ordering of U that is elementarily
definable in S. Such a well-ordering exists by assumption. Let R[u, v] denote the set

{
(x, y) ∈ U2 |

(u, v, x, y) ∈ R
}

. It is the set of all pairs that are ‘enumerated’ by R for the pair (u, v). Let us also
use the notation ‘(x, y) ∈ R[u, v]’ in formulas, where it just means ‘R(u, v, x, y)’.

Definition of easy elements and advisors
Let us call an element u ∈ U easy if there exists a v ∈ U such that in R[u, v] at least m + 1 pairs
have the same first component x. Such a v will be called an advisor for u. The ‘advisor relation’
A :=

{
(u, v) | v is an advisor for u

}
can be defined elementarily as follows:

(u, v) ∈ A :⇐⇒ ∃x∃y1 · · · ∃ym+1

(
distinct(y1, . . . , ym+1) ∧

∧m+1
i=1 (x, yi) ∈ R[u, v]

)
.

The formula distinct(y1, . . . , ym+1) is an abbreviation for
∧

1≤i<j≤m+1 ¬ yi = yj . The set of easy
elements is elementarily definable as the formula φeasy(u) := ∃v A(u, v) shows.

Case 1: A hard element exists
Suppose there exists a hard element. Let uhard ∈ U be the smallest such element with respect to <.
This element is elementarily definable in S via the formula φuhard

(x) = φhard(x) ∧ ¬∃x′
(
x′ < x ∧

φhard(x′)
)
.

The element f(uhard) can also be defined elementarily in S: Let us fix some elementarily
definable element v∗ of U . Consider the set R[uhard, v∗]. It has size at most n+m and we can thus
elementarily define the first element of this set, the second element, and so on. Since one of these
elements is

(
f(uhard), g(v∗)

)
, say the i-th one, we can construct a formula that singles out the ‘first

component of the i-th element of R[uhard, v∗]’.
Let y ∈ G[v] :⇐⇒

(
f(uhard), y

)
∈ R[uhard, v]. The graph of g is a subset of G since for all

v ∈ U we have
(
f(uhard), g(v)

)
∈ R[uhard, v]. Since uhard is hard, for all v the set

{
y ∈ U |(

f(uhard), y
)
∈ R[uhard, v]

}
has size at most m. Thus G is m-bounded and g is elementarily m-

enumerable via G.

Case 2: All elements are easy
Suppose that all u ∈ U are easy. Let A′ be defined as follows: (x, y) ∈ A′ :⇐⇒ A(x, y) ∧
¬∃y′

(
y′ < y ∧A(x, y′)

)
. Since all elements u are easy, they all have advisors. Thus A′ is the graph

of a (total) function that maps every element u to an advisor for u, namely to the smallest one.
Let

x ∈ F [u] :⇐⇒ ∃v
(
A′(u, v) ∧ ∃y (x, y) ∈ R[u, v]

)
.

11

The first part of the formula fixes v to be the smallest advisor for u. In the set R[u, v] at least
m+ 1 pairs have the same first component (recall that this was the defining property of advisors).
Thus there are at most n+m−m = n different x with (x, y) ∈ R[u, v]. Since the graph of f is a
subset of F , the function f is elementarily n-enumerable.

Proof of theorem 4.3. We argue by induction on n. For n = 1 the claim is correct. Suppose χn+1
A

is elementarily (n + 1)-enumerable in S. Applying the cross product theorem to χn+1
A = χnA × χA

yields that χnA is elementarily n-enumerable in S or that χA is elementarily definable in S. In
the first case we are done by the induction hypothesis, in the second case we directly have the
claim.

Proof of theorem 4.4. Suppose that #2
A is elementarily 2-enumerable via a relation R. Our first aim

is to switch from the cardinality function #2
A to the characteristic function χ2

A. Ideally, if we could
show that χ2

A is elementarily 2-enumerable, then theorem 4.2 would yield the claim. Unfortunately,
if R enumerates both the numbers 0 and 1 on input (x, y), we only know χ2

A(x, y) ∈ {00, 01, 10};
and if R enumerates both the numbers 1 and 2, we only know χ2

A(x, y) ∈ {01, 10, 11}. Thus, as
first step, we only show that χ2

A is elementarily 3-enumerable.
Let C2 be the ternary relation that is defined as follows:

b ∈ C2[x, y] :⇐⇒
(
b = 00 → 0 ∈ R[x, y] ∨ x = y

)
∧
(
b = 01 ∨ b = 10→ 1 ∈ R[x, y] ∧ ¬x = y

)
∧
(
b = 11 → 2 ∈ R[x, y] ∨ x = y

)
.

Recall from the previous proof that C2[x, y] = {b | (x, y, b) ∈ C2}. The graph of χ2
A is contained

in C2 (hence the name) and C2[x, y] is always a subset of one of the following sets: {00, 01, 10},
{00, 11}, and {01, 10, 11}.

Unlike 0, 1, and 2, the constants 00, 01, 10, and 11 are not necessarily in the universe U .
Thus we might be unable to ‘refer’ to these constants in the formula that defines the relation C2.
However, these constants are only used ‘internally’ and we can pick any four distinct elements of U
and interpret them as 00, 01, 10, and 11 respectively. (If U has less than four elements the claim
is trivial.)

The second aim is to enumerate sets of minimal size for χ3
A, that is, for any three input elements.

This is achieved by the relation C3 that is defined as follows:

b ∈ C3[x, y, z] :⇐⇒
∨

b1b2b3∈{0,1}3

(
b = b1b2b3 ∧ b1b2 ∈ C2[x, y] ∧ b1b3 ∈ C2[x, z] ∧ b2b3 ∈ C2[y, z]

)
.

The formula expresses that the bitstring b ∈ {0, 1}3 is consistent with the sets enumerated by C2

on every selection of two elements. In particular, χ3
A(x, y, z) ∈ C3[x, y, z]. Once more, we pick any

eight distinct elements of U to represent bitstrings of length three.
The next step is to employ an easy-hard argument similar to the argument used in the proof of

theorem 4.2. This time, let us call a pair (x, y) of elements easy if there exists an element z such
that

{
b1b2 | b1b2b3 ∈ C3[x, y, z]

}
has size at most 2. The element z will be called an advisor for

(x, y). The advisor relation, denoted B in this proof in order to avoid a name clash with the set A,
is the following ternary relation:

(x, y, z) ∈ B :⇐⇒ ¬
∨

b,c,d∈{0,1}2,
b,c,d distinct

(
b0 ∈ C3[x, y, z] ∨ b1 ∈ C3[x, y, z]

)
∧
(
c0 ∈ C3[x, y, z] ∨ c1 ∈ C3[x, y, z]

)
∧
(
d0 ∈ C3[x, y, z] ∨ d1 ∈ C3[x, y, z]

)
.

12

The formula φeasy(x, y) := ∃z B(x, y, z) is true exactly for easy pairs (x, y).

Case 1: Existence of a hard pair that is partly in and out
Suppose there exists a hard pair (xhard, yhard) with χA(xhard) 6= χA(yhard), that is, χ2

A(xhard, yhard) =
01 or χ2

A(xhard, yhard) = 10. We only need to consider the case χ2
A(xhard, yhard) = 01 since the other

case is symmetric. We can freely use xhard and yhard is formulas in the following, since all finite
sets are elementarily definable by assumption.

I claim that z ∈ A holds iff 011 ∈ C3[xhard, yhard, z]. To prove this, we show that there exists
at most one bitstring in P := C3[xhard, yhard, z] that starts with 01. Suppose we had both 010 ∈ P
and 011 ∈ P . Then 000 /∈ P , since otherwise {b2b3 | b1b2b3 ∈ P } ⊇ {10, 11, 00}, contradicting the
assumption that one possibility has been excluded for #2

A(yhard, z). Likewise, 101 /∈ P and also
111 /∈ P , since otherwise {b1b3 | b1b2b3 ∈ P } ⊇ {00, 01, 11}.

Since (xhard, yhard) is a hard pair, we have either {b1b2 | b1b2b3 ∈ P } = {00, 01, 10} or {b1b2 |
b1b2b3 ∈ P } = {01, 10, 11}. In the first case, since 000 /∈ P and 00 ∈ {b1b2 | b1b2b3 ∈ P }, we must
have 001 ∈ P . Likewise, since 101 /∈ P and 10 ∈ {b1b2 | b1b2b3 ∈ P }, we must have 100 ∈ P .
But then P ⊇ {010, 011, 001, 100} and thus {b2b3 | b1b2b3 ∈ P } ⊇ {10, 11, 01, 00}, a contradiction.
Similarly, in the second case we must have 100 ∈ P and 110 ∈ P and thus P ⊇ {010, 011, 100, 110},
which yields {b2b3 | b1b2b3 ∈ P } ⊇ {10, 11, 00}, also a contradiction. This shows that P contains
only one bitstring starting with 01.

Case 2: All hard pairs are either in or out
For this case, assume that χA(xhard) = χA(yhard) holds for every hard pair (xhard, yhard). The aim is
to show that χ2

A is elementarily 2-enumerable, which implies the claim by theorem 4.2. The rough
idea is as follows. On input of two elements x and y, we first check whether the pair (x, y) is hard,
using the formula ¬φeasy. If so, by assumption we know that χA(x) = χA(y) and we can output
the set {00, 11}. Otherwise, the pair is easy. In this case we know that there exists an element z,
namely an advisor, such that

{
b1b2 | b1b2b3 ∈ C3[x, y, z]

}
has size at most 2. Once we have fixed

such an advisor, we can output the set.
In detail, the construction is as follows. Let B′ be defined by (x, y, z) ∈ B′ :⇐⇒ B(x, y, z) ∧

¬∃z′
(
z′ < z ∧B(x, y, z′)

)
, where < is a well-ordering of U that is elementarily definable in S. The

relation B′ is the graph of a partial function that maps every easy pair (x, y) to an advisor for it
and that is undefined for all hard pairs. Consider the relation T that is defined as follows:

b ∈ T [x, y] :⇐⇒
(
¬φeasy(x, y)→

(
b = 00 ∨ b = 11

))
∧
(
φeasy(x, y)→ ∃z

(
B′(x, y, z) ∧ (b0 ∈ C3[x, y, z] ∨ b1 ∈ C3[x, y, z])

))
.

The first line ensures that T enumerates {00, 11} if (x, y) is a hard pair. If it is easy, the second
line first fixes z such that it is an advisor and then ‘outputs’ all bitstrings in the set C3[x, y, z] with
the last bit removed. Since (x, y) is easy, this set will have size at most 2. Thus χ2

A is elementarily
2-enumerable via T .

Proof of theorem 4.5. We prove the claim by induction on n. For n = 1 the claim is true. So
suppose the claim has already been shown for n− 1.

Let #n
A be elementarily n-enumerable via a relation R such that R[x1, . . . , xn] never contains

both 0 and n for any xi ∈ U . As in the previous proofs, we define easy elements, based on a notion
of advisors. Let us call a tuple (y1, . . . , yn) ∈ Un an advisor for a tuple (x1, . . . , xn−1) ∈ Un−1 if it
satisfies the following relation:

(x1, . . . , xn−1, y1, . . . , yn) ∈ B :⇐⇒ distinct(x1, . . . , xn−1, y1, . . . , yn)
∧ 0 ∈ R[y1, . . . , yn] ∧

∧n
i=1 n ∈ R[x1, . . . , xn−1, yi].

13

Note that an advisor tuple can only, but need not, exist if at least one xi is in A. Let us call a
tuple (x1, . . . , xn−1) of pairwise different elements easy if

1. at least one xi is not in A or

2. there exists an advisor for it.

A tuple (x1, . . . , xn−1) of pairwise different elements is hard if it is not easy.

Case 1: Existence of a hard tuple
Suppose there exists a hard tuple (xhard

1 , . . . , xhard
n−1). Since all finite sets are elementarily definable,

we can freely use xhard
i in formulas in the following. Let

y ∈ Â :⇐⇒ n ∈ R
[
xhard

1 , . . . , xhard
n−1 , y

]
∨
∨n−1
i=1 y = xhard

i .

I claim Â =ae A. This means that A and Â are equal almost everywhere, that is, that their
symmetric difference is finite. This will prove that A is elementarily definable.

Since condition 1 does not hold for hard tuples, all xhard
i are in A. For y ∈ A\{xhard

1 , . . . , xhard
n−1 }

we thus have #n
A (x1, . . . , xn−1, y) = n, which implies n ∈ R[xhard

1 , . . . , xhard
n−1 , y]. Thus for all y ∈ A

we have y ∈ Â.
For y /∈ A, we can have n ∈ R[xhard

1 , . . . , xhard
n−1 , y] for at most n− 1 different y’s, since otherwise

such y’s would form an advisor for (xhard
1 , . . . , xhard

n−1), contradicting the assumption that condition 2
does not hold. Thus y /∈ Â whenever y /∈ A, except for these finitely many exceptions.

Case 2: All tuples are easy
Suppose all tuples of pairwise different elements are easy. We argue that #n−1

A is elementarily
(n− 1)-enumerable via a relation T for which T [x1, . . . , xn−1] never contains both 0 and n− 1 for
any xi. This yields the claim by the induction hypothesis. For the definition of T , first consider
the following relation T̃ , which ‘works’ only for distinct xi:

k ∈ T̃ [x1, . . . , xn−1] :⇐⇒
[(
∃y1 · · · ∃yn B(x1, . . . , xn−1, y1, . . . , yn)

)
→ k > 0

]
∧
[(
¬∃y1 · · · ∃yn B(x1, . . . , xn−1, y1, . . . , yn)

)
→ k < n− 1

]
.

For distinct xi, if there exists an advisor tuple for (x1, . . . , xn−1), the very existence of the advisor
tuple ensures that for at least one xi we have xi ∈ A. Thus #n−1

A (x1, . . . , xn−1) > 0. If there does
not exist an advisor tuple, which can only happen if condition 1 holds, at least one xi is not in A.
Thus #n−1

A (x1, . . . , xn−1) < n− 1.
The desired relation T that works for all xi, not just for distinct xi, can be obtained from T̃ as

follows:

k ∈ T [x1, . . . , xn−1] :⇐⇒
(

distinct(x1, . . . , xn−1)→ k ∈ T̃ [x1, . . . , xn−1]
)

∧
(
¬distinct(x1, . . . , xn−1)→ k < n− 1

)
.

Proof of theorem 4.10. The logical structure SRE|Σ∗ has the universe Σ∗. It contains each recur-
sively enumerable relation on Σ∗ as an operation. In particular, its signature is countably infinite.
The choice function ζ maps a subset A ⊆ Σ∗ to a word Σ∗ according to the following rules: If A is
not recursively enumerable or empty, it maps A to the empty word. If A is recursively enumerable
by some machine M , it maps A to the first word that is accepted during a dovetailed simulation
of M on all words.

14

Trivially, every recursively enumerable relation is positively elementarily definable with choice
in (SRE|Σ∗ , ζ). The hard part is proving that only recursively enumerable relations can be defined
thus. We prove this using structural induction on positive first-order formulas with choice.

If φ and ψ define recursively enumerable sets, so do φ ∧ ψ and φ ∨ ψ. The set defined by ∃xφ
is also recursively enumerable since we can ‘search’ for an x that makes φ true using dovetailing.
The set defined by ε(x, φ) is also recursive enumerable: Let M be the machine that accepts the set
defined by φ. We run a dovetailed simulation of M on all inputs. If this simulation halts and the
first word accepted is x, then we accept.

Proof of theorem 4.11. Since the proof is similar to the proof of the normal version of the cross
product theorem, the following presentation is condensed. Let f × g be positively elementarily
(n + m)-enumerable with choice in (S, ζ) via a relation R. We construct two relations F and G
such that either f is positively elementarily n-enumerable with choice via F or g is positively
elementarily m-enumerable with choice via G.

Definition of easy elements and advisors
As in the proof of theorem 4.2, let us call an element u ∈ U easy if it has an advisor, which is a
v ∈ U such that in R[u, v] at least m+1 pairs have the same first component x. The advisor relation
A :=

{
(u, v) | v is an advisor for u

}
can be positively elementarily defined in (S, ζ) as follows:

(u, v) ∈ A :⇐⇒ ∃x∃y1 · · · ∃ym+1

(
distinct(y1, . . . , ym+1) ∧

∧m+1
i=1 (x, yi) ∈ R[u, v]

)
.

Let φeasy(u) := ∃v A(u, v).

Case 1: A hard element exists
Suppose there exists a hard element. We can elementarily define such an element using the choice
operator: the formula ε

(
x,¬φeasy(u)

)
will be true exactly for one element x = uhard. The el-

ement f(uhard) can also be elementarily defined with choice. For a fixed elementarily definable
element v∗ of U consider the set R[uhard, v∗]. It has size at most n + m and one of its elements
is
(
f(uhard), g(v∗)

)
. By repeatedly applying the choice operator to the set, we can define any par-

ticular pair elementarily with choice. Thus we can construct a formula that singles out the ‘first
component of the element of R[uhard, v∗] obtained after i elements have been picked from it’. Since
both uhard and f(uhard) can be defined elementarily with choice, by assumption they can also be
defined positively elementarily with choice.

Let y ∈ G[v] :⇐⇒
(
f(uhard), y

)
∈ R[uhard, v]. The graph of g is a subset of G since for all

v ∈ U we have
(
f(uhard), g(v)

)
∈ R[uhard, v]. Since uhard is hard, for all v the set

{
y ∈ U |(

f(uhard), y
)
∈ R[uhard, v]

}
has size at most m. Thus G is m-bounded and g is elementarily m-

enumerable via G.

Case 2: All elements are easy
Suppose that all u ∈ U are easy. Then they all have advisors. Let

x ∈ F [u] :⇐⇒ ∃v
(
ε
(
v,A(u, v)

)
∧ ∃y (x, y) ∈ R[u, v]

)
.

The first part of the formula fixes v to be a fixed advisor for u. In the set R[u, v] at least m + 1
pairs have the same first component. Thus there are at most n + m − m = n different x with
(x, y) ∈ R[u, v]. Since the graph of f is a subset of F , the function f is positively elementarily
n-enumerable with choice.

Proof of theorem 4.12. The proof is identical to the proof of theorem 4.3, with the reference to the
cross product theorem being replaced by a reference to its positive version.

15

Proof of theorem 5.2. Let B2 ⊇ A×A, B1 ⊇ A×Ā, and B0 ⊇ Ā×Ā be elementarily definable in S.
Let B2∩B1∩B0 = ∅. Then the function #2

A can be elementarily 2-enumerated via a relation R that
is defined as follows: For a pair (x, y) with x 6= y let (x, y, 2) ∈ R if (x, y) ∈ B2 and (y, x) ∈ B2; let
(x, y, 1) ∈ R if (x, y) ∈ B1 or (y, x) ∈ B1; and let (x, y, 0) ∈ R if (x, y) ∈ B0 and (y, x) ∈ B0. For a
pair (x, x) let (x, x, 0) ∈ R and (x, x, 1) ∈ R. The relation R is 2-bounded and contains the graph
of #2

A. Thus A is elementarily definable in S by theorem 4.4.

Proof of theorem 5.3. Let C separate A(n0) and A(nn). Then the function #n
A can be elementar-

ily n-enumerated via a relation R that is defined as follows: For a tuple (x1, . . . , xn) of pair-
wise distinct elements let (x1, . . . , xn, i) ∈ R for all i ∈ {1, . . . , n − 1}; let (x1, . . . , xn, 0) ∈ R if
(x1, . . . , xn) ∈ C; and let (x1, . . . , xn, n) ∈ R if (x1, . . . , xn) /∈ C. For tuples of non-distinct ele-
ments let (x1, . . . , xn, i) ∈ R for all i ∈ {0, . . . , n − 1}. The relation R is n-bounded, it contains
the graph of #n

A , and it never ‘enumerates’ both 0 and n. Thus A is elementarily definable in S by
theorem 4.5.

16

