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Abstract

This paper introduces logspace optimisation problems as analogues of the well-studied poly-
nomial-time optimisation problems. Similarly to them, logspace optimisation problems can have
vastly different approximation properties, even though the underlying existence and budget
problems have the same computational complexity. Numerous natural problems are presented
that exhibit such a varying complexity. They include the shortest path problems for directed
graphs, undirected graphs, tournaments, and forests. In order to study the approximability of
logspace optimisation problems in a systematic way, polynomial-time approximation classes are
transferred to logarithmic space. Appropriate reductions are defined and optimisation problems
are presented that are complete for these classes. It is shown that under the assumption L 6= NL

some natural logspace optimisation problems cannot be approximated with a constant ratio;
some can be approximated with a constant ratio, but do not permit a logspace approximation
scheme; and some have a logspace approximation scheme, but cannot be solved in logarithmic
space. An example of a problem of the latter type is the shortest path problem for tournaments.

1 Introduction

This paper was written because of two misconceptions. While doing research on logspace selectiv-
ity [16], I stumbled across the following problem: Given a tournament graph and two vertices, how
difficult is to decide whether there exists a path from the first vertex to the second one? (A tour-
nament is a directed graph in which there is exactly one edge between any two different vertices.)
Surely, the problem is easy if we are only interested in a polynomial-time algorithm. However, a
polynomial-time algorithm is often only the first step towards understanding the complexity of a
problem. We may ask whether the problem can also be solved efficiently in parallel or we could
study the problem’s space complexity (these questions are known to be closely related [9]). In
particular, we can ask whether the problem can be solved in logarithmic space. It turned out that
the complexity of the tournament reachability problem is very low [19]: A constant depth circuit
(an AC0-circuit) can decide whether a path exists. Thus the problem can be decide in logarithmic
space.

My first misconception was that this result ‘settled the complexity of the reachability problem
for tournaments in a most favourable way’. This misconception was due to the fact that for many
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other problems the complexity of the decision problem dictates the complexity of all sorts of related
problems. For example, if gap ∈ L, then we can also construct a path from the source vertex to the
target vertex, we can construct the shortest path, and we can decide whether the shortest path is
shorter or longer than a certain number; similarly, if hamilton-circuit ∈ P, we can also construct
a Hamiltonian circuit in polynomial time; and so on.

For the tournament reachability problem, the situation turned out to be more subtle. Although
we can efficiently decide whether there exists a path from s to t in a tournament G, the algorithm
does not actually construct such a path. In order to construct one, we might be tempted to apply
the same algorithm as for the standard reachability problem: starting from the source vertex, we
iteratively move on to the neighbour that has the least distance to the target. However, for this
algorithm we need to solve the following problem: Given a tournament G, two vertices s and t,
and a number `, does there exist a path from s to t of length at most `? Surprisingly, this problem
turns out to be NL-complete and thus we (presumably) cannot use it to construct a path in, say,
logarithmic space.

My second misconception was that this completeness result ‘settled the complexity of the reach-
ability problem for tournaments in the least favourable way’. After all, finding the smallest path
in a tournament cannot be done in logarithmic space, unless L = NL. However, what about finding
any path instead of the shortest one? A second surprise was in store: We can find a path from
the source to the target in logarithmic space, provided it exists. Indeed, for any factor r > 1 we
can find a path that is at most r times as long as the shortest path. Thus the problem can be
approximated in logarithmic space.

In a nutshell, in this paper I attempt to clarify my misconceptions by establishing a framework
for the study of logspace optimisation problems. It allows us to compare the complexity of problems
in different ways by asking the following questions about the complexity of shortest path problems:

1. How difficult is the underlying existence problem? It asks us to decide whether there exists a
path between the vertices.

2. How difficult is the underlying budget problem? It asks us to decide whether the length of the
shortest path is smaller than a certain number.

3. How difficult is it to construct a path between the vertices?
4. How difficult is it to construct a path that is approximately as long as the shortest path?
5. How difficult is it to construct the shortest path between the vertices?

For example, let us answer these questions for the shortest path problems for directed graphs,
for undirected graphs, and for tournaments. The underlying decision problems have different com-
plexity: The existence problem for directed graphs is NL-complete, for undirected graphs it is
SL-complete, and for tournaments it is in AC0. Most intriguingly, the underlying budget problems
are NL-complete. The last two of them are new examples of NL-complete problems.

Concerning the construction problems, the problems once more exhibit a different behaviour:
For none of them we can find the shortest path in logarithmic space, unless L = NL. For directed
graphs we even cannot find any path in logarithmic space, unless L = NL; for undirected graphs we
cannot find any path in logarithmic space, unless L = SL; and for tournaments we can find a path in
logarithmic space. As mentioned earlier, for tournaments there even exists a logspace approximation
scheme. As we shall see, there exist further examples of natural optimisation problems, like the ‘hot
potato problem’, whose budget problems are NL-complete, but which have a logspace approximation
scheme.

For the development of a theory of logspace optimisation problems that parallels classical
polynomial-time optimisation theory I proceed as follows:
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1. Two classes NLO and LO are defined. They are analogues of the polynomial-time classes NPO
and PO. Their relationship to NL and L is the same as the relationship of NPO and PO to
NP and P.

2. Logspace approximation classes are defined. They differ in how well their elements can be
approximated by logspace machines. The classes are stretched out between LO and NLO.

3. Numerous optimisation problems from different fields, though mainly from graph theory, are
presented and their complexity is pinned down by placing them inside the class framework.

4. Purely structural separation and completeness results for the introduced classes are shown.

Although the focus of this paper is on the complexity of concrete problems and on concrete
logspace algorithms, the study of the structural properties uncovers a number of surprising rela-
tionships. For example, we shall see that the problem of finding the shortest path in a directed
graph is logspace 1-tt-reducible (or ‘optimum-reducible’) to the problem of finding the shortest
path in an undirected graph. In symbols, sp ≤log

1-tt usp. Both problems are ≤log
1-tt-complete for the

class NLOpb of logspace optimisation problems that have polynomially bounded measure. As a
surprising corollary we obtain that the function that maps an undirected graph to the length of
the shortest path between the first and the last vertex is ≤log

1-tt-complete for the classes OptLpb and
OptLdo introduced in [1].

All classes introduced in this paper contain both minimisation problems and maximisation
problems. As is well-recognised in polynomial-time approximation theory, one must be careful when
claiming that a problem is complete for classes containing both minimisation and maximisation
problems, since reductions between them are seldomly straight-forward. This is especially true if,
as in this paper, one is (also) interested in approximation-preserving reductions. For subclasses of
NLO such reductions are possible, but it is not clear whether NLO itself has a complete problem
with respect to approximation-preserving reductions.

This paper is organised as follows. In Section 2 logspace optimisation classes are introduced.
This includes the classes NLO and LO and different logspace approximation classes in between. We
also transfer two notions of reducibility between (logspace) approximation problems: logspace-E-
reductions and logspace-AP-reductions. In Section 3 numerous logspace optimisation problems are
listed and their complexity and approximability are studied. Building on the results obtained in
the previous sections, in Section 4 we summarise the structural properties of logspace optimisation
and approximation classes. We show that optimal solutions for logspace optimisation problems
can computed by AC1-circuits. In Section 5 we study applications of the results to other areas of
complexity theory. We discuss the relationship of logspace optimisation classes to function classes
like OptL and study whether parallel queries to the class SL can be simulated by serial queries.

2 Logspace Optimisation Classes

In this section the formal definition of (arbitrary) optimisation problems is reviewed. Restricting
the class of these problems to problems whose solution relation can be checked in logspace with
one-way access to the solution yields the class of logspace optimisation problems. This class, denoted
NLO, has properties that parallel the properties of NPO. For example, the budget problem of every
problem in NLO is in NL and the budget problems of every problem in NPO is in NP. Likewise, NLO
is linked to OptL in exactly the same way as NPO to OptP. Alongside NLO, two variants NLOpb and
NLOdo are introduced. For these classes special restrictions are imposed on the measure function.

Optimisation problems in NPO can have vastly different properties concerning their approxima-
bility by logspace machines. In order to structurise the study of these properties, different logspace
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approximation classes are introduced.
Finally, in order to study the approximation structure of the class NLO, appropriate reductions

are introduced, namely logspace AP-reductions (approximation preserving reductions) and logspace
E-reductions (error preserving reductions). We also consider truth-table reductions between opti-
misation problems, but they are not approximation-preserving and are interesting mainly from a
structural point of view.

2.1 Optimisation Problems

In the literature two different approaches have been taken to defining optimisation problems. In
the more structurally oriented approach of Krentel [11], an optimisation problem is just a function
mapping instances to the values of optimal solutions. In this context, the optimisation problem of
the clique problem would be a function that maps a graph to the largest clique in this graph. The
main advantage of this approach is that optimisation classes are ordinary function classes, which
can easily be compared to other complexity classes. The main disadvantage of this approach is
that, similar to decision problems, the functions hide the solutions we are actually interested in.
In practice, for the clique problem we are neither interested in its underlying decision problem nor
in the problem of telling the size of the largest clique in the graph. We are interested in obtaining
the largest clique in the graph (or, at least, a clique as large as possible).

The second approach defines optimisation problems as much more structured objects. I follow
this approach.

Definition 2.1. An optimisation problem is a tuple consisting of an instance set I ⊆ Σ∗, a solution
relation S ⊆ I × Σ∗, a measure function m : S → N+, and a type t ∈ {min,max}.

For example, the optimisation problem max-clique is defined as follows: its instance set is the
set of (the codes of) all undirected graphs, the solution relation relates graphs to cliques within
these graphs, the measure function maps pairs of graphs and cliques to the size of these cliques,
and the type is max. The next definition fixes basic notations and terminology.

Definition 2.2. Let P = (I, S,m, t) be an optimisation problem. Let x ∈ I.

1. Let S(x) := {y ∈ Σ∗ | (x, y) ∈ S} denote the solutions for x.
2. Let m∗(x) := min{m(x, y) | y ∈ S(x)}, respectively m∗(x) := max{m(x, y) | y ∈ S(x)},

denote the optimal measure for x. Note that m∗(x) is undefined if S(x) = ∅.
3. Let S∗(x) := {y ∈ Σ∗ | m(x, y) = m∗(x)} denote the set of optimal solutions for x.
4. Let R(x, y) := max{m(x, y)/m∗(x),m∗(x)/m(x, y)} denote the performance ratio of the so-

lution y.
5. The existence problem P∃sol is the set {x | S(x) 6= ∅}.
6. The budget problems are the sets Popt< := {(x, z) | ∃y. m(x, y) < z} and Popt> := {(x, z) |

∃y. m(x, y) > z}.
7. A function f : Σ∗ → Σ∗ produces solutions for P if for every x ∈ P∃sol we have f(x) ∈ S(x).

It produces optimal solutions if for every x ∈ P∃sol we have f(x) ∈ S∗(x).

2.2 Polynomial-Time and Logspace Optimisation Problems

By restricting the computational complexity of the set I, the relation S, and the function m,
different optimisation classes can be defined. The two most widely-studied ones are PO and NPO.
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Definition 2.3. An optimisation problem (I, S,m, t) in the class NPO if I is decidable in poly-
nomial time, S is decidable in polynomial time and is polynomially length-bounded, and m is
computable in polynomial time. The problem is furthermore in PO if there exists a function in FP
that computes optimal solutions for it.

Two special subclasses of these classes are also frequently studied: NPOpb and POpb. These
classes contain problems whose measure function is polynomially bounded in the size of the input.
Many natural problems fall into this class. For example, max-clique ∈ NPOpb since the size of
the largest clique in a graph is bounded by the number of vertices of the graph.

Definition 2.4. Let C be a class of optimisation problems. Then Cpb contains all optimisation
problems (I, S,m, t) such that there exists a polynomial p with m(x, y) ≤ p(|x|) for all (x, y) ∈ S.

Let us now transfer these definitions to logarithmic space.

Definition 2.5. An optimisation problem (I, S,m, t) in the class NLO if

1. I is decidable in logarithmic space,
2. S is decidable in logarithmic space via a machine that reads the alleged solution in a one-way

fashion and is polynomially length-bounded, and
3. m is computable in logarithmic space via a machine that reads the solution and writes the

output in a one-way fashion.

A problem in NLO is furthermore in LO if there exists a function in FL that produces optimal
solutions for it.

The main technical peculiarity of the definition of NLO is the one-way access to the solution
tape. This restriction is necessary to ensure that a nondeterministic logspace machine can ‘guess’
such a solution, see the proof of the following lemma and theorem.

Lemma 2.6. Let (I, S,m, t) ∈ NLO. Then there exists a nondeterministic logspace machine M
with at most two nondeterministic choices per state such that for every instance x ∈ I the following
holds: If y ∈ S(x), then y, regarded as a bitstring, is a string of nondeterministic choices that make
M accept and output m(x, y) on that path. If y /∈ S(x), then y is a string of nondeterministic
choices that make M reject. All outputs of M for an instance x have the same length.

Proof. Let MS and Mm be the machines that decide S, respectively compute m. Let `(n) be a
bound on the length of the output produced by m on instances of length n. The machine M works
as follows on input x: First, it nondeterministically guesses a number of 0’s that it writes on the
output tape. Then it starts a simulation of the machines MS and Mm. It first simulates MS and
then Mm, each time until they attempt to read a bit from the solution tape. The machine then
guesses a bit nondeterministically and continues simulating first MS and then Mm, making them
‘believe’ that they have read the guessed bit from the (virtual) solution tape. Each simulation
stops, when the machine MS , respectively Mm, attempts to read the second bit from the tape.
Once more we guess this bit and continue the simulation. If the simulation reaches a point where
MS accepts and Mm has finished producing its output, we accept and stop, provided the number
of 0’s written at the beginning and the number of output bits written later add up to `(|x|). In all
other cases, M rejects.

Theorem 2.7. If P ∈ NLO, then P∃sol, Popt<, Popt> ∈ NL. If P ∈ LO, then P∃sol, Popt<, Popt> ∈ L.
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Proof. Let P ∈ NLO be a minimisation problem. Since P∃sol ≤log
m Popt<, we only need to show

Popt< ∈ NL. Let M be the machine from Lemma 2.6. An NL-machine that decides Popt< works
as follows: on input (x, z) it simulates M and every time M attempts to produce an output bit,
this bit is instead compared to a bit of z. If M accepts, the simulating machine accepts if the
comparison yielded that M ’s output is smaller than z. Since NL is closed under complement, we
also get Popt> ∈ NL. For maximisation problems we argue similarly.

The second claim follows easily from the definition.

Just as in the polynomial-time setting, it also makes sense to study the classes NLOpb and
LOpb. There exists an interesting intermediate class NLOdo that is snuggled between NLOpb and
NLO. This class does not have a counter-part in the polynomial-time setting.

Definition 2.8. A problem P ∈ NLO is in NLOdo if the machine Mm that computes m has deter-
ministic output. This means that Mm writes the first output bit only after the one-way tape that
contains the alleged solution has been read completely.

As pointed out in [1], for machines that produce deterministic output, the output depends only
on the last configuration reached before the first output bit is produced. Thus such machines can
only produce polynomially many different outputs, which shows NLOpb ( NLOdo ( NLO. Note
that these inclusions are proper inclusions for purely ‘syntactic’ reasons, not because of any deep
complexity-theoretic results.

2.3 Logspace Approximation Classes

In this section the notions of polynomial-time approximation algorithm, polynomial-time approx-
imation scheme, and fully polynomial-time approximation scheme are transferred to logarithmic
space.

Definition 2.9. Let P be an optimisation problem and let r : N → Q be a function. A function
f : I → Σ∗ is an r-approximator for P if it produces solutions for P and R

(
x, f(x)

)
≤ r(|x|) for all

x ∈ I.

Definition 2.10. Let P be an optimisation problem. A function f : I × N → Σ∗ is an approxi-
mation scheme for P if for all x ∈ P∃sol and all positive integers k we have f(x, k) ∈ S(x) and
R

(
x, f(x, k)

)
≤ 1 + 1/k.

Definition 2.11. Let P ∈ NLO.

1. P ∈ exp-ApxLO if there exists an r-approximator in FL for P , where r(n) = 2nc
for some c.

2. P ∈ poly-ApxLO if there exists an r-approximator in FL for P , where r is some polynomial.
3. P ∈ ApxLO if there exists an r-approximator in FL for P , where r is a constant.
4. P ∈ LAS if there exists an approximation scheme f for P such that f(., k) ∈ FL for all k.
5. P ∈ FLAS if there exists an approximation scheme for P that can be computed in space

O
(
log k log |x|

)
.

The approximation schemes for problems in FLAS are the best schemes we can reasonably hope
for. The definition requires that if we wish to attain a ratio of 1 + 1/k, we may use space at most
O(log k log n). For problems in NLOpb whose budget problems are NL-complete there is only little
chance that we can do any better than this. If we could, for example if we had an approximation
scheme that needs only space O(log1/2 k log n), we could decide the budget problem (and hence all
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of NL) in space O(log3/2 n). To see this, note that if the optimal solution is known to be an element
of {1, . . . , nd}, then a solution of ratio less than 1 + 1/nd is actually optimal.

Approximation means ‘coming up with good solutions efficiently’. In particular, for approx-
imable problems we are able to come up with some solutions efficiently. The following theorem
formalises this observation.

Theorem 2.12. If P ∈ exp-ApxLO, then P∃sol ∈ L.

2.4 Reductions between Optimisation Problems

To conclude this section, three reductions between optimisation problems are introduced. They are
transfers of the corresponding polynomial-time reductions to logarithmic space. The first reduction,
the error preserving reduction [10], is technically easier to use and more restrictive than the more
general approximation preserving reduction introduced in [5]. For completeness results we use error
preserving reductions, since for completeness we are interested in reductions that are as restrictive
as possible. The approximation preserving reduction is introduced since, at least in the polynomial-
time setting, the extra flexibility of this reduction is needed for certain problems that ‘should be
reducible to one another’, but which are not reducible to each other via error preserving reductions.
For an overview of polynomial-time reductions used in conjunction with approximation problems
see [5].

The third reduction is the truth-table reduction. Truth-table reductions are also less restrictive
than error preserving reductions, but differently from the approximation preserving reduction:
truth-table reductions turn (several) optimal solutions for the problem which we reduce to into an
optimal solution for the problem we wish to solve. ‘Turning an optimal solution into an optimal
solution’ is exactly what we do not require for the approximation preserving reduction. A truth-
table reduction does not make any promises about how it will map non-optimal solutions. For this
reason, it is not really useful in conjunction with questions of approximability, as is well-recognised
in the polynomial-time setting. Truth-table reductions are included in this paper since, as we shall
see, there are a number of problems that are complete for certain optimisation classes under truth-
table reductions, but which do not appear to be complete for these classes under approximation
preserving reductions.

The special case of truth-table reductions where we may ask only a single query has different
names in the literature. Orponen and Mannila [17] call them optimisation reductions. Krentel [11]
calls them metric reductions, though he reduces optimal measure functions to each other, not whole
optimisation problems. In the present paper they will just be called 1-tt-reductions.

Definition 2.13. Let P and P ′ be optimisation problems. We write P ≤log
E P ′ if there exists a

triple (f, g, α) with α ∈ Q such that

1. f, g ∈ FL,
2. for all x ∈ I we have f(x) ∈ I ′ and for all x ∈ P∃sol we have f(x) ∈ P ′

∃sol,
3. for all x ∈ I and y ∈ S′(f(x)

)
we have g(x, y) ∈ S(x) and

R
(
x, g(x, y)

)
− 1 ≤ α

(
R′(f(x), y

)
− 1

)
.

Definition 2.14. Let P and P ′ be optimisation problems. We write P ≤log
AP P ′ if there exists a

triple (f, g, α) with α ∈ Q such that

1. f, g ∈ FL,
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2. for all r > 1 and x ∈ I we have f(x, r) ∈ I ′ and for all x ∈ P∃sol we have f(x, r) ∈ P ′
∃sol,

3. for all r > 1, x ∈ I, and y ∈ S′(f(x, r)
)

we have g(x, y, r) ∈ S(x) and

R′(f(x, r), y
)
≤ r =⇒ R

(
x, g(x, y, r)

)
− 1 ≤ α(r − 1).

Definition 2.15. Let P and P ′ be optimisation problems. We write P ≤log
tt P ′ if there exists a

logspace oracle Turing machine M that works as follows: On input of an instance x ∈ I it writes
a (coded) query tuple 〈q1, . . . , qm〉 with qi ∈ I ′ onto an oracle tape. It then enters an oracle query
state, which magically changes the contents of the oracle tape into a tuple 〈y1, . . . , ym〉 such that
each yi is an optimal solution for qi, provided such a solution exists, and a special symbol otherwise.
No matter which optimal solutions are provided, the machine must then output an optimal solution
y ∈ S∗(x), provided x ∈ P∃sol.

3 Logspace Optimisation Problems

In this section we study the approximability of a large variety of logspace optimisation problems,
mostly of graph problems. For each problem, the problem is first formulated rigorously as an
optimisation problem; then its properties are formulated as a theorem and then proved. The
problems are organised according to similarity of their definition, nor according to similarity of
their approximation properties.

We start with a family of problems related to the question of which vertex in a vertex-labelled
graph is the most ‘valuable’ vertex reachable from a given vertex. We start with these particu-
lar problems since they are convenient for proving the first completeness results. For problems
considered later, we can establish completeness by reducing an appropriate ‘most valuable vertex
problem’ to them.

The next problems we tackle are shortest path problems, which are perhaps the most intuitive
problems in NLO. As we shall see, shortest path problems have vastly different approximation
properties for different kinds of graph. Alongside different negative approximability results, two
major positive approximation results are established by presenting appropriate approximation al-
gorithms: the shortest path problem for graphs with bounded independence number has a fully
logspace approximation scheme; and the shortest path problem for planar-embedded graphs has a
logspace poly-approximation algorithm.

Next, we study a family of problems that I call ‘hot potato problems’. A group of people is given
a hot potato and must pass it around for a given number of rounds, until it has cooled of. Passing
the potato from one person to another induces a certain cost (or value) and we wish to minimise
(maximise) this cost (value). All variants of this problem are FLAS and we can very precisely state
which of its variants are even LO.

Finally, we study a natural problem from automata theory and show that it is among the most
difficult problems in NLO.

3.1 Finding the Most Valuable Vertex of a Graph

We begin our investigation with problems that ask us to find a vertex in graph that is reachable
from a start vertex and that is ‘as valuable as possible’. Variants of this problem are complete for
different logspace optimisation classes.

Before we proceed, let us fix some graph-theoretic terminology. A directed graph is a pair (V,E)
with E ⊆ V × V . An undirected graph is a directed graph with a symmetric edge relation. A walk
is a sequence (v1, . . . , v`) of vertices with ` ≤ |V | such that (vi, vi+1) ∈ E for all i ∈ {1, . . . , `}. A
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walk is a path if all its vertices are distinct. The distance function dG : V × V → N ∪ {∞} maps
a pair (s, t) of vertices to the length of the shortest path between them. A cyclic walk is a walk
(v1, . . . , v`, v1) with ` ≥ 2 in which the first vertex is visited exactly twice (at the beginning and at
the end) and the second and third vertices are visited exactly once. A cyclic walk is a cycle if all
but the first and last vertex are distinct.

The difference between walks and paths can be crucial in approximation theory: the budget
problem of finding the longest path in a graph is known to be NP-complete and even hard to ap-
proximate [8], whereas for walks it is easy. In this paper only shortest path problems are considered.
For them, the difference is of less importance since we can easily turn a walk containing a vertex
several times into a even shorter path by omitting all vertices between the first and last occurrence
of every vertex that appears at least twice. For this reason, I call these problems shortest path
problems: although solutions are walks, the optimal solutions are always paths.

partial-most-valuable-vertex (partial-mvv)
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a partial weight function w : V → N+.
Solutions. Walk starting at s in G that ends at some vertex t for which w(t) is defined.
Measure. Weight w(t) of vertex at which the walk ends.

Theorem 3.1.

1. partial-mvv is ≤log
E -complete for NLOdo.

2. partial-mvv ∈ exp-ApxLO iff L = NL.
3. partial-mvv∃sol and partial-mvvopt> are ≤log

m -complete for NL.

Proof. 1. We first show that partial-mvv is complete for the class of maximisation problems
in NLOdo. Let P = (I, S,m, max) ∈ NLOdo be a maximisation problem. Let M be the machine
constructed in Lemma 2.6. Note that M produces its output deterministically, that is, the first
output bit will only be produced after all nondeterministic choices have been made. We construct
a logspace-E-reduction (f, g, α) from P to partial-mvv.

The function f takes an instance x as input. It maps this instance to the configuration graph
of M on input x. The vertices of this graph are all possible configurations of M on input x (of which
there are only polynomially many). There is an edge from a configuration c1 to a configuration c2 if
M can get from c1 to c2 in exactly one step without writing an output bit. Thus all steps that would
yield an output are suppressed. In order to decide whether we should attach a value to a given
vertex (and, if so, which value), we run the following deterministic logspace algorithm: We run
M , starting from the configuration encoded by the vertex. If M never reaches a nondeterministic
choice during this simulation and if the simulation leads to an accepting configuration, we decide
that we will attach an output to the vertex. In order to obtain this output, we rerun M starting
from the vertex and attach the produced output to it. The construction ensures f ∈ FL.

The function g maps solutions for f(x) to solutions for x. A solution for f(x) is a walk p in the
configuration graph of M that ends at some configuration that can be deterministically extended
to an accepting configuration. The function g maps (x, p) to a bitstring y as follows: We iterate
over the vertices on p. All vertices are ignored, except those where a nondeterministic choice is
taken. For these vertices, we output a bit that corresponds to this choice. Clearly we have g ∈ FL.

By construction, the measure mpartial-mvv

(
f(x), p

)
is exactly mP

(
x, g(x, p)

)
. To see this, note

that the output attached to the last vertex of p is exactly the output of M , when its nondeterministic
choices are taken according to g(x, p). This output of M is in turn mP

(
x, g(x, p)

)
. Setting α = 1,

we get RP

(
x, g(x, p)

)
− 1 ≤ α

(
Rpartial-mvv

(
f(x), p

)
− 1

)
.
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We must now show that we can also reduce all minimisation problems in NLOdo to partial-mvv.
For this, we show that we can reduce the problem partial-lvv of finding the least valuable vertex
to partial-mvv. Since, by the same argument as above, partial-lvv is ≤log

E -complete for the
class of minimisation problems in NLOdo, this suffices to prove completeness of partial-mvv for
all of NLOdo.

For the reduction partial-lvv ≤log
E partial-mvv, let an instance (G, s, w) for the minimisation

problem be given. The instance transformation function f maps (G, s, w) to (G, s, w′), where
w′(v) := b22`/w(v)c and ` is the length of the code of (G, s, w). The function g maps a walk p to
the same p. Since division is in FL, see [3], we have f ∈ FL.

It remains to show that the ratio is sustained. Let x = (G, s, w) be an instance and let p be
a walk for f(x) = (G, s, w′). Let t be the last vertex on p. Let t∗ be a vertex in the reachability
component of s such that w(t∗) is minimal. Then w′(t∗) will be maximal.

We distinguish two cases. First, assume w′(t) = w′(t∗). Then w(t) = w(t∗) since w′(t) ≤ 2`.
Thus a solution with an optimal ratio is mapped to a solution with an optimal ratio. Second,
assume w′(t∗) ≥ w′(t) + 1. Then w′(t∗)/w′(t)− 1 ≥ 1/w′(t). Setting α = 2 we get

Rpartial-lvv

(
x, g(x, p)

)
− 1 =

w(t)
w(t∗)

− 1 =
22`/w(t∗)
22`/w(t)

− 1 ≤ b22`/w(t∗)c+ 1
b22`/w(t)c

− 1

≤ w′(t∗)
w′(t)

− 1 +
1

w′(t)
≤ w′(t∗)

w′(t)
− 1 +

w′(t∗)
w′(t)

− 1

= α
(w′(t∗)

w′(t)
− 1

)
= α

(
Rpartial-mvv

(
f(x), p

)
− 1

)
.

2. The only-if-part follows from the completeness of partial-mvv∃sol, the if-part from Theo-
rem 4.3.

3. For the completeness of partial-mvv∃sol, we reduce gap to is as follows: map a tuple
(G, s, t) to (G, s, w), where w(t) = 1 and w is undefined otherwise.

We can restrict the problem by allowing only small weights, that is, weights taken from the
set {1, . . . , n}. The resulting problem has the same properties as the unrestricted version, if we
replace ‘deterministic output’ by ‘polynomially bounded’ everywhere.

partial-most-valuable-vertex-polynomially-bounded (partial-mvv-pb)
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a partial weight function w : V →

{1, . . . , |V |}.
Solutions. Walk starting at s in G ending at some vertex t for which w(t) is defined.
Measure. Weight w(t) of vertex at which the walk ends.

Theorem 3.2.
1. partial-mvv-pb is ≤log

E -complete for NLOpb.
2. partial-mvv-pb ∈ poly-ApxLO iff L = NL.
3. partial-mvv-pb∃sol and partial-mvv-pbopt> are ≤log

m -complete for NL.

Proof. 1. The same proof as in Theorem 3.1 works here. The only difference lies in the reduction
of the minimisation to the maximisation version. Here, we do not use 22` for the ‘rescaling’, which
is too large, but n2 and increase the graph by n2 − n many unreachable vertices.

2. The only-if-part follows from the completeness of partial-mvv-pb∃sol, the if-part from
Theorem 4.3.

3. Once more, the same proof as in Theorem 3.1 applies.
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most-valuable-vertex (mvv)
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a (total) weight function w : V → N+.
Solutions. Walk starting at s in G.
Measure. Weight w(t) of vertex t at which the walk ends.

Theorem 3.3.

1. mvv is ≤log
E -complete for exp-ApxLOdo.

2. mvv ∈ poly-ApxLO iff mvv ∈ LO iff L = NL.
3. mvv∃sol ∈ AC0 and mvvopt> is ≤log

m -complete for NL.

Proof. 1. The completeness proof for mvv is similar to the proof of Theorem 3.1. The difference
lies in the fact that we must now assign a value to all vertices. In the following, we only consider
maximisation problems, since lvv ≤log

E mvv in the same way as partial-lvv ≤log
E partial-mvv.

Let P = (I, S,m, max) ∈ exp-ApxLOdo. Let A be a deterministic logspace algorithm that
produces solutions for P . Let m(x, y) ≤ 2|x|

c
for some c. In the following, let us refer to the objects

constructed in the proof of Theorem 3.1 by putting a tilde above them. For example, w̃ denotes
the weight function constructed in that proof. The new reduction (f, g, α) from P to mvv works as
follows: For an instance x, let function f maps x to the triple (G̃, s̃, w). The new weight function w
is defined differently: For vertices v where w̃(v) is defined we set w(v) := 2|x|

c
w̃(v). For vertices v

where w̃(v) was undefined, let w(v) := 1.
The function g is defined as follows: Let p be a solution for x := (G, s, w) and let t be the

last vertex on the walk. If w(t) is undefined (which can be checked in logarithmic space), let
g(x, p) := A(x). Otherwise, let g(x, p) := g̃(x, p). Let α := 1.

We must now argue that our construction is ratio preserving. Let p ∈ SP

(
f(x)

)
and let t be

the last vertex on the walk p. If w̃(t) is defined, then mmvv

(
f(x), p

)
= 2|x|

c
mP

(
x, g(x, p)

)
. We also

have m∗
mvv

(
f(x)

)
= 2|x|

c
m∗(x, g(x, p)

)
. Thus RP

(
x, g(x, p)

)
= Rmvv

(
f(x), p

)
.

Now let w̃(t) be undefined. Then mmvv

(
f(x), p

)
= 1. Since mmvv

(
f(x)

)
≥ 2|x|

c
, we conclude

Rmvv

(
f(x), p

)
≥ 2|x|

c
. In other words, the ratio of the solution p is extremely bad. On the other

hand, for all y we have RP (x, y) ≤ 2|x|
c
. In other words, no ratio for P can be worse than 2|x|

c
.

Thus RP

(
x, g(x, p)

)
≤ Rmvv

(
f(x), p

)
.

2. First, let A be a poly-approximator for mvv. We can then solve gap deterministically in
logarithmic space as follows: on input (G, s, t) of total length `, run A on the tuple (G, s, w), where
w(t) = 2` and w(t′) = 1 for t′ 6= t. For almost all inputs, the poly-approximator A must output a
walk to t if there exists one. For the remaining implications, use Theorem 4.3.

3. For the completeness of mvvopt> we can use the construction for the second claim to reduce
gap to it. We map (G, s, t) to

(
(G, s, w), 2` − 1

)
.

most-valuable-vertex-polynomially-bounded (mvv-pb)
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a weight function w : V →

{1, . . . , |V |}.
Solutions. Walk starting at s in G.
Measure. Weight w(t) of the vertex t at which the walk ends.

Theorem 3.4.

1. mvv-pb is ≤log
E -complete for poly-ApxLOpb.

2. mvv-pb ∈ ApxLO iff mvv-pb ∈ LO iff L = NL.
3. mvv-pb∃sol ∈ AC0 and mvv-pbopt> is ≤log

m -complete for NL.
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The proof is almost identical to the proof of Theorem 3.3 and hence omitted.
The budget problem of the undirected version of the problem is quite interesting since, for

once, it is SL-complete. The budget problems of most other undirected optimisation problems are
NL-complete and thus presumably harder to solve.

undirected-most-valuable-vertex (umvv)
Instances. Undirected graph G = (V,E), a vertex s ∈ V , and a (total) weight function w : V →

N+.
Solutions. Walk starting at s in G.
Measure. Weight w(t) of vertex t at which the walk ends.

Theorem 3.5.

1. umvv ∈ exp-ApxLO.
2. umvv ∈ poly-ApxLO iff umvv ∈ LO iff L = SL.
3. umvv∃sol ∈ AC0, umvvopt> is ≤log

m -complete for SL.

Proof. 1. Just output a path containing only s.
2. We can use the same argument as for the second claim of Theorem 3.3 to show that if there

exists a poly-approximator for umvv, then ugap ∈ L. Next, assume L = SL. We show umvv ∈ LO.
Since umvvopt> ∈ SL, see below, we can compute the most valuable vertex in FLSL. Having found
this vertex, we can compute a path to this vertex in FLSL by the first claim of Theorem 3.9.

3. For the completeness of umvvopt>, hardness again follows from the argument from the second
claim. The tricky part is showing umvvopt> ∈ SL. Note that this is not as ‘obvious’ as it may
seem: the budget problems of most other undirected optimisation problems are NL-complete, see
Theorems 3.9 and 3.20.

We show umvvopt> ≤log
m ugap. Let an undirected graph G = (V,E) be given, a start vertex v,

a weight function w : V → N+, and a value z ∈ N+. We must construct, in logarithmic space,
an undirected graph G′ and vertices s′ and t′ such that there is a path from s′ to t′ iff there is a
vertex v in G reachable from s with w(v) > z.

The graph G′ is constructed as follows: Let V ′ := V ∪ {t′}, where t′ is a fresh vertex. Let
E′ contain all edges in E plus an edge between t′ and every vertex v ∈ V with w(v) > z. Thus
E′ = E ∪

{
{t′, v} | w(v) > z

}
. Let s′ := s.

To see that this reduction works, first assume that there is a vertex v ∈ V that is reachable
from s for which w(v) > z. Then the path to v in G is also a path to v from s′ in G′. Since w(v) > z
we can go from v to t′ in G′. Thus t′ is reachable from s′ in G′. For the other direction, suppose
there exists a path from s′ to t′ in G′. Let v be the vertex reached by the path directly prior to t′.
Then w(v) > z by definition. Furthermore, the path from s′ to v in G′ is also a path from s to v
in G. To see this, note that the path from s′ to v cannot use any of the edges we added in G′ since
the path does not contain the vertex t′, while every added edge does.

most-valuable-vertex-ratio-r (mvv-ratio-r) for rationals r > 1.
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a weight function w : V → N+ with

max{w(v) | v ∈ V } ≤ r min{w(v) | v ∈ V }.

Solutions. Walk starting at s in G.
Measure. The weight of the vertex at which the walk ends.
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Theorem 3.6.

1. mvv-ratio-r is ≤log
E -complete for ApxLOdo for all r > 1.

2. mvv-ratio-r ∈ LAS for any r > 1, iff L = NL.
3. mvv-ratio-r∃sol ∈ L, mvv-ratio-ropt> is ≤log

m -complete for NL for all r > 1.

Proof. 1. The problem can be approximated in logarithmic space with a ratio of r: just output
the path containing only s. To prove hardness, we first show that every maximisation problem
in ApxLOdo can be reduced to mvv-ratio-r for some appropriate r > 1. Second, we show that
we can reduce mvv-ratio-r to mvv-ratio-r′ for all r, r′ > 1. Third, we show lvv-ratio-r ≤log

E

mvv-ratio-2r to cover also minimisation problems.
Let P = (I, S,m, max) ∈ ApxLOdo. Let A be an r-approximation algorithm for some constant

r > 1. For the reduction (f, g, α) of P to mvv-ratio-r, as in the proof of Theorem 3.3 for mvv, let
us attach a tilde to denote the objects constructed in the proof of Theorem 3.1 for partial-mvv.

The instance transformation function f maps x to (G̃, s̃, w), where w is defined as follows: Let
w(v) = w̃(v) if w̃(v) is defined and if w̃(v) ≥ m

(
x,A(x)

)
; otherwise let w(v) = m

(
x,A(x)

)
. Note

that the output of f is a valid instance: the ratio between the maximal value of w(v), which is m∗(x),
and the minimal value of w(v), which is m

(
x,A(x)

)
, is at most r. The solution transformation

function g is defined as follows: Let p be a solution and let t be the last vertex on this walk. If
w(t) > m

(
x,A(x)

)
, let g(x, p) := g̃(x, p); otherwise let g(x, p) := A(x). Let α = 1. The reduction

is approximation preserving since the ratio of any solution p ∈ Smvv-ration-r(x) is exactly the same
as the ratio of g(x, p) with respect to P .

Our second aim is to show mvv-ratio-r ≤log
E mvv-ratio-r′ for all r, r′ > 1. We can assume

r < r′. The reduction (f, g, α) works as follows: The function f takes an instance x = (G, s, w)
for mvv-ratio-r as input and yields the instance (G, s, w′) for mvv-ratio-r′ as output, where
w′(v) := w(v)+βb, b := max{w(v) | v ∈ V }, and β =

⌈
r−r′

r(r′−1)

⌉
. Note that min{w(v) | v ∈ V } ≥ b/r.

Adding b ensures that f(x) is a valid instance for mvv-ratio-r′:

max{w′(v) | v ∈ V }
min{w′(v) | v ∈ V }

=
max{w(v) | v ∈ V }+ βb

min{w(v) | v ∈ V }+ βb
=

b(1 + β)
min{w(v) | v ∈ V }+ βb

≤ b(1 + β)
b(1/r + β)

=
r + rβ

1 + rβ
≤ r + (r − r′)/(r′ − 1)

1 + (r − r′)/(r′ − 1)
=

rr′ − r + r − r′

r′ − 1 + r − r′
= r′.

In the calculation, we used (r + rdze)/(1 + rdze) ≤ (r + rz)/(1 + rz), which holds since r ≥ 1. The
function g maps (x, p) to p. Let α = 1 + rβ. Let p be any solution for f(x) and let t denote the
last vertex of p. Let t∗ denote the last vertex of a walk in S∗(x). Since w(t) ≥ b/r, we have

Rmvv-ratio-r

(
x, g(x, p)

)
− 1 =

w(t∗)
w(t)

− 1 =
w(t∗)− w(t)

w(t)

= α

(
w(t∗) + βb

)
−

(
w(t) + βb

)
αw(t)

= α
w′(t∗)− w′(t)
w(t) + βrw(t)

≤ α
w′(t∗)− w′(t)

w(t) + βb
= α

(
Rmvv-ratio-r′

(
f(x), p

)
− 1

)
.

Our third and final aim is to show lvv-ratio-r ≤log
E mvv-ratio-2r. We use exactly the same

reduction as the one used to show partial-lvv ≤log
E partial-mvv. We only have to argue that

this reduction really maps instances for lvv-ratio-r to instances for mvv-ratio-2r. This can be
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seen as follows:

max{b22`w(v)c | v ∈ V }
min{b22`w(v)c | v ∈ V }

≤ max{22`w(v) | v ∈ V }
min{22`w(v) | v ∈ V } − 1

≤ max{22`w(v) | v ∈ V }
min{22`w(v) | v ∈ V }/2

= 2
max{w(v) | v ∈ V }
min{w(v) | v ∈ V }

= 2r.

2. For the only-if-part, suppose mvv-ratio-r ∈ LAS for some r = p/q > 1, where p and q
are positive integers. Let A be the logspace approximation scheme. We construct a deterministic
logspace decision algorithm for gap. On input (G, s, t), we construct a tuple (G, s, w) with w(t) = p
and w(t′) = q for t 6= t′. This tuple is clearly an instance for mvv-ratio-r. We can then run A on
this instance for the ratio r− (r− 1)/2. We accept if the measure of A’s output is p, otherwise we
reject. To see that this algorithm works, note that if t is reachable from s, then A must output a
walk to t, since any other walk has measure q and ratio p/q = r > r− (r−1)/2. The if-part follows
from Theorem 4.3.

3. For the budget problem, we can use the construction from the second claim in order to reduce
gap to mvv-ratio-ropt>. On input (G, s, t) we ask whether

(
(G, s, w), p

)
is in mvv-ratio-ropt>.

The last variant of the most valuable vertex problem is rather artificial, but it is useful for sepa-
rating LAS from FLAS under appropriate assumptions. Recall that log∗ n is the iterated logarithm
and that the tower function tow is its inverse.

most-valuable-vertex-ratio-decreasing (mvv-ratio-dec).
Instances. Directed graph G = (V,E), a vertex s ∈ V , and a weight function w : V → N+ with

max{w(v) | v ∈ V } ≤
(

1 +
1

log∗ |V |

)
min{w(v) | v ∈ V }.

Solutions. Walk starting at s in G.
Measure. The weight of the vertex at which the walk ends.

Theorem 3.7.

1. mvv-ratio-dec ∈ LAS.
2. mvv-ratio-dec /∈ FLAS, unless NL ⊆ DSPACE[log∗ n log n].
3. mvv-ratio-dec∃sol ∈ L, mvv-ratio-decopt> is ≤log

m -complete for NL.

Proof. 1. We can check in logarithmic space, whether a tuple (G, s, w) is an instance. The logspace
approximation scheme for mvv-ratio-dec works as follows: On input of an instance (G, s, w) and
a desired ratio r = 1 + 1/k, we check whether 1 + 1/ log∗ |V | ≤ r. If so, we output the path
containing just the first vertex. If not, that is, if the graph is not large enough such that the trivial
solution automatically satisfies the ratio, we brute force the optimal solution. This search needs
space O

(
tow k log n

)
.

2. Suppose mvv-ratio-dec ∈ FLAS via an approximation scheme A with space requirements
O

(
log k log |x|

)
. We argue that we can decide gap in space O(log∗ n log n). Let (G, s, t) be given

with G = (V,E) and n = |V |. Construct an instance (G, s, w) for mvv-ratio-dec by setting
w(t) = 1 + log∗ n and w(t′) = log∗ n for t′ 6= t. Run A on (G, s, w) and k = 2 log∗ n, that is, for
a desired ratio of 1 + 1/(2 log∗ n). We accept iff the walk produced by A ends at t. Note that if
there is a path from s to t in G, the algorithm A cannot output a walk that does not end at t
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since any such walk has a ratio of 1 + 1/ log∗ n > 1 + 1/(2 log∗ n). The space needed by A is
O(log k log n) = O(log log∗ n log n) ⊆ O(log∗ n log n).

3. For the budget problem, we reduce gap to mvv-ratio-decopt> as follows: map (G, s, t) to(
(G, s, w), log∗ n

)
with w(t) = 1 + log∗ n and w(t′) = log∗ n for t′ 6= t.

3.2 Shortest Path Problems

The shortest path problem we study is to find the shortest path in a directed graph. Both the budget
problem and the existence problems underlying the shortest path problem for undirected graphs
are canonical NL-complete problems. For other types of graphs, the situation is more complex. In
this section, we treat the shortest path problems for undirected graphs, directed graphs, forests,
tournaments, graphs with bounded independence number, and undirected planar-embedded graphs.

We start with directed graphs. The first of the claims of the next theorem is a ‘constructive ver-
sion’ of Savitch’s theorem [18]. It tells us that we can find the shortest path in space O(log ` log n),
where ` is the length of this path.

shortest-path (sp)
Instances. Directed graph G = (V,E), two vertices s, t ∈ V .
Solutions. Walk from s to t in G.
Measure. Length of the walk.

Theorem 3.8.

1. Optimal solutions for sp can be found in space O(log ` log |V |), where ` is the length of the
shortest path, or O(log2 |V |) if no path exists.

2. sp is ≤log
E -complete for NLOpb.

3. sp ∈ exp-ApxLO iff sp ∈ LO iff L = NL.
4. sp∃sol and spopt< are ≤log

m -complete for NL.

Proof. 1. The rough idea is the same as Savitch’s. The main difference is that we do not only
need to check whether there exists a path between a source s and a target t in a directed graph
G = (V,E), but we also have to output such a path. If there are several paths, we must ‘decide on
one of them’ and we must do so ‘within the recursion’.

We use two procedures. The first, called reachable(u, v, `), checks whether there exists a path
from u to v of length `. This procedure is the standard procedure from Savitch’s theorem. The
second procedure is called construct(u, v, `). It outputs a path from u to v of length `, provided
such a path exists. If no such path exists, it may output nonsense (and should thus not be called).

The procedure reachable(u, v, `) is defined as follows:

procedure reachable(u, v, `)
let flag := false
if ` = 0 ∧ u = v then flag := true
if ` = 1 ∧ (u, v) ∈ E then flag := true
if ` > 1 then

forall z ∈ V do
if reachable

(
u, z, b`/2c

)
∧ reachable

(
z, v, `− b`/2c

)
then flag := true

return flag

The algorithm needs space O(log ` log n). Building on the above procedure, we can now con-
struct an output algorithm. On input (u, v, `) the algorithm will output a path from u to v of
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length `. However, the output of the algorithm will not include the vertex v itself. This makes it
easier to assemble the outputs from recursive calls to a single path.

procedure construct(u, v, `)
if ` ≤ 1 then output u
else

forall z ∈ V do
if reachable

(
u, z, b`/2c

)
∧ reachable

(
z, v, `− b`/2c

)
then

call construct
(
u, z, b`/2c

)
call construct

(
z, v, `− b`/2c

)
exit

This algorithm also needs space O(log ` log n). The complete algorithm that produces optimal
solutions for sp works as follows: For each ` ∈ {1, . . . , |V |} the algorithm calls reachable

(
s, t, `).

For the smallest ` for which this test succeeds, it calls construct
(
s, t, `), appends t to the output,

and quits.
2. Clearly sp ∈ NLOpb. To prove completeness, we show partial-lvv-pb ≤log

E sp via a
reduction (f, g, α). The problem partial-lvv-pb is ≤log

E -complete for NLOpb by Theorem 3.2.
The instance transformation function f gets an instance (G, s, w) for partial-lvv-pb as input.

Let G = (V,E) and let n := |V |. The function f maps this instance to an instance (G′, s′, t′) for sp
as follows: The graph G′ is obtained from G by adding a new vertex t and adding a new directed
line graph from v to t of length exactly w(v)2n for each vertex v ∈ V for which w(v) is defined.
Set s′ := s. Let us call the vertices added during the construction of G′ added vertices and let us
call the vertices copied from G original vertices.

The solution transformation function g maps a walk p from s′ to t′ to the initial segment of p
that contains the original vertices. Let α := 4.

We have to show that this reduction is error preserving. To see this, let x = (G, s, w) be
an instance and let p be a walk from s′ to t′. Let v denote the last original vertex on p. Let
v∗ denote a vertex in G that is reachable from s whose weight w(v∗) is defined and minimal. If
w(v) = w(v∗), then Rpartial-lvv-pb

(
x, g(x, y)

)
= 1 and we are done. Otherwise w(v) − w(v∗) ≥ 1

and hence w(v)2n− w(v∗)2n− 2n ≥ 0. The walk p has length at least w(v)2n. The shortest path
from s′ to t′ has length at most w(v∗)2n + n. With these observation, we can bound the ratios as
follows:

Rpartial-lvv-pb

(
x, g(x, y)

)
− 1 =

w(v)− w(v∗)
w(v∗)

=
w(v)2n− w(v∗)2n

w(v∗)2n
≤ 2

w(v)2n− w(v∗)2n

w(v∗)2n + n

≤ 2
w(v)2n− w(v∗)2n + w(v)2n− w(v∗)2n− 2n

w(v∗)2n + n

= 4
w(v)2n− w(v∗)2n− n

w(v∗)2n + n

= 4
( w(v)2n

w(v∗)2n + n
− 1

)
≤ α

(
Rsp

(
f(x), y

)
− 1

)
.

3. We establish a cyclic implication between the three statements. If sp ∈ exp-ApxLO, then
we have sp∃sol ∈ L by Theorem 2.12 and hence L = NL. If L = NL, then by Theorem 4.3 we get
NLOdo ⊆ LO.

4. The decision problem sp∃sol is exactly gap, which is well-known to be NL-complete.

The next optimisation problem asks us to find the shortest path in an undirected graph. Its
existence problem is well-studied. It is complete for the class SL of symmetric logspace by definition.

16



Surprisingly, its budget problem is still NL-complete. Thus it is presumably easier to find an
arbitrary path in an undirected graph than finding the shortest one. Furthermore, the shortest
path problem for directed graphs can be ≤log

1-tt-reduced to the shortest path problem for undirected
graphs.

undirected-shortest-path (usp)
Instances. Undirected graph G = (V,E), two vertices s, t ∈ V .
Solutions. Walk from s to t in G.
Measure. Length of the walk.

Theorem 3.9.

1. There is a function in FLSL that produces solutions for usp.
2. usp is ≤log

1-tt-complete for NLOpb.
3. usp ∈ exp-ApxLO iff L = SL.
4. usp ∈ LO iff L = NL.
5. usp∃sol is ≤log

m -complete for SL, uspopt< is ≤log
m -complete for NL.

For the proof of the theorem, we need two lemmata. The second lemma is an extension of a
result due to Nisan and Ta-Shma [15], who prove SL = coSL.

Lemma 3.10. There exists a function in FL that maps a directed graph G, two vertices s and t,
and a number ` (coded in unary) to a connected, undirected graph G′ and two vertices s′ and t′,
such that dG(s, t) ≤ ` iff dG′(s′, t′) ≤ `.

Proof. Let G, s, t, and ` be given. Let G = (V,E) and let n := |V |. The undirected graph
G′ = (V ′, E′) is produced as follows: The vertex set V ′ is given by {1, . . . , `+1}×V . We can think
of this vertex set as a big grid consisting of ` + 1 rows and n columns. There is an (undirected)
edge in G′ between a vertex (r1, v1) and (r2, v2) iff

1. r2 = r1 + 1 and (v1, v2) ∈ E, that is, vertices on neighbouring rows are connected if they are
connected in G, or

2. r2 = r1 + 1 and v1 = v2, that is, the same vertices are connected on neighbouring rows, or
3. r2 = r1, that is, all vertices on the same row are connected.

Let s′ := (1, s) and t′ := (` + 1, t). This graph is clearly connected.
To see that G′ has the desired properties, first assume that there exists a path from s to t in G

of length m ≤ `. Let (v1, . . . , vm) with v1 = s and vm = t be this path. Then (1, v1), (2, v2), . . . ,
(m, vm), (m + 1, vm), . . . , (`, vm) is a path in G′ of length at most `. Second, assume that there
exists a path from s′ to t′ in G′ of length m ≤ `. Then m = `, since any path from the first row to
the last row must ‘brave all rows’—there are no edges that allow us to skip a row. Let (v′1, . . . , v

′
`)

be this path. Then v′i = (i, vi) for some vertices vi ∈ V . The sequence (v1, . . . , v`) is ‘almost’ a
path from s to t in G: For any i ∈ {1, . . . , `− 1} we either have vi = vi+1 or (vi, vi+1) ∈ E. Thus,
by removing consecutive duplicates, we obtain a path from s to t.

Lemma 3.11 (Spanning Forest Lemma). Let A ∈ L be a class of (the codes of) undirected
graphs that is closed under edge deletion. Let A-usp denote the undirected shortest path problem
whose instance set is restricted to graphs in A. Then there is a function in FLA-usp∃sol that produces
solutions for A-usp.
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Proof. We first show that there exists a function f ∈ FLA-usp∃sol that maps an instance (G, s, t) ∈ I
to a spanning forest of G. A spanning forest of a graph G = (V,E) is a forest G′ = (V,E′) with
E′ ⊆ E such that there is a path between any two vertices u, v ∈ V in G iff there is a path between
them in G′. Once we have constructed such a spanning forest, we can decide whether there is a
path from s to t in G by checking whether there is a path from s to t in G′. Provided there is a
path between s and t, by Theorem 3.14 we can construct such path in the forest G′ in logarithmic
space. This path is also a path in G.

Let (G, s, t) be given, let G = (V,E) ∈ A, and let n := |V |. For the following argument, it will
be useful to think of the elements of E as sets {u, v} rather than as tuples. Let E = {e1, . . . , em}.
Let Gi =

(
V, {e1, . . . , ei}

)
. Note that Gi ∈ A for all i ∈ {1, . . . ,m}. We obtain E′ from E as

follows: we remove all edges ei = {u, v} for which there exists a path from u to v in Gi−1. Clearly,
E′ can be constructed in logarithmic space with oracle access to A-usp∃sol.

We must now argue that G′ is a spanning forest of G. First, we argue by induction on i that for
any vertex u the set of vertices reachable from u in Gi is the same as the set of vertices reachable
from u in G′

i :=
(
V,E′ ∩ {e1, . . . , ei}

)
. For i = 0 this is obviously correct. Suppose the claim has

been shown for some i. Since Gi and Gi+1 differ in just one edge, namely ei+1, there can be at
most one new vertex v ∈ V that is reachable from u in Gi+1, but not in Gi. This vertex must be
connected, by ei+1, to some vertex v′ in Gi that is reachable from u. By assumption, v′ is reachable
from u in G′

i. If ei+1 ∈ E′, then v is reachable from u in G′
i+1 and we are done. Otherwise, by

construction, v is reachable from u in Gi, which is a contradiction.
Second, we must show that G′ is a forest. Suppose the exists a cycle in G′. Let i be the highest

index such that ei = {u, v} is an element of this cycle. Then there is a path from u to v in Gi−1

and thus ei /∈ E′, a contradiction.

Proof of Theorem 3.9. 1. The first claim follows from Lemma 3.11, setting A to be the class of all
undirected graphs. Note that, although we can even construct the shortest path in the spanning
forest, this shortest path is not necessarily the shortest path in G.

2. Clearly usp ∈ NLOpb. To prove completeness, we show sp ≤log
1-tt usp via a machine M .

We start with a directed graph G = (V,E) and two vertices s, t ∈ V as input. Let n := |V |.
For each ` ∈ {1, . . . , n} we invoke Lemma 3.10 to obtain a connected, undirected graph G′

`. Our
single query q to usp is obtained by writing the graphs G′

1, . . . , G′
n alongside each other and by

connecting the target vertex of each G′
i with the source vertex of the next graph G′

i+1. The global
source vertex is the source vertex of G′

1, the global target is the target vertex of G′
n.

Consider an answer to this query. It is a path p of minimal length from the global source to the
global target. Note that such a path must exist, since all G′

i are connected. The path must pass
through all G′

i. Inside each G′
i the path induces a shortest path pi from s′i to t′i.

We find the shortest path from s to t in G by running the following algorithm on the path p:
Find the smallest i such that the path pi inside G′

i has length i. Then, by Lemma 3.10, the shortest
path from s to t in G has length i. This path is given by pi, with the first components removed.

3. This follows from the first and the fifth claim.
4. Assume usp ∈ LO. Then uspopt< ∈ LO by Theorem 2.7. By the fourth claim this implies

L = NL. The other direction follows from Theorem 4.3.
5. We have usp∃sol = ugap, which is SL-complete by definition. To prove the NL-completeness

of uspopt<, we reduce gap to it. On input of a directed graph G, we apply the construction of
Lemma 3.10 to this graph for ` = n and obtain a triple (G′, s′, t′). We then ask ‘is there a path
from s′ to t′ in G′ of length at most n?’. By Lemma 3.10, the answer to this question will be ‘yes’
iff there is a path from s to t in G (of length at most n).
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We now study an optimisation problem that has a logspace optimisation scheme, but whose
budget problem is still NL-complete. This problem asks us to find the shortest path between two
vertices in a tournament. A tournament is a directed graph in which there is exactly one edge
between any two different vertices.

tournament-shortest-path (tournament-sp)
Instances. Tournament graph G = (V,E), two vertices s, t ∈ V .
Solutions. Walk from s to t in G.
Measure. Length of the walk.

Theorem 3.12.

1. tournament-sp is ≤log
1-tt-complete for NLOpb.

2. tournament-sp is ≤log
E -complete for NLOpb iff L = NL.

3. tournament-sp ∈ FLAS.
4. tournament-sp ∈ LO iff L = NL.
5. tournament-sp∃sol ∈ AC0, tournament-spopt< is ≤log

m -complete for NL.

Once more, we first need a lemma.

Lemma 3.13. There exists a function in FL that maps a directed graph G, two vertices s and t,
and a number ` (coded in unary) to a strongly connected tournament G′ and two vertices s′ and t′

such that dG(s, t) ≤ ` iff dG′(s′, t′) ≤ `.

Proof. The proof is similar to the proof of Lemma 3.10. We use the same vertex set V ′, but the
edge relation is defined differently, because we have to construct a tournament. Let < be a linear
ordering of V ′ such that s is minimal and t is maximal. There is an edge in G′ from a vertex (r1, v1)
to a vertex (r2, v2) iff any of one of the following condition holds:

1. r2 = r1 + 1 and (v1, v2) ∈ E ∪ {(v, v) | v ∈ V }. That is, if v1 and v2 are connected in G or if
v1 = v2, then there is an edge leading ‘downwards’ between them on adjacent rows.

2. r1 = r2 and v1 < v2, except for (v1, v2) = (s, t), where we put in an edge from s to t. That is,
the vertices on the same row form a big ‘ring’.

3. r2 = r1−1 and (v1, v2) /∈ E∪{(v, v) | v ∈ V }. That is, if v1 and v2 are not connected in G and
if they are not identical, then there is an edge leading ‘upwards’ between them on adjacent
rows.

4. r2 ≤ r1 − 2. That is, all edges spanning at least two rows point ‘upwards’.

The constructed tournament is strongly connected and it has the desired properties. This can be
seen by copying the rest of the proof of Lemma 3.10 in verbatim.

Proof of Theorem 3.12. 1. We can argue similarly to the proof of Theorem 3.9. We only have to
ensure that the graph obtained by connecting all the tournaments G′

i must be a tournament once
more. This is ensured by directing all missing edges from vertices in G′

i to G′
j whenever j < i. The

resulting tournament has the same properties as the graph obtained in Theorem 3.9 and we can
apply the same algorithm to it, in order to obtain the shortest path from s to t in G.

2. For the if-part, L = NL implies LOpb = NLOpb by Theorem 4.3 and all problems in LOpb are
complete for it. For the only-if part, suppose tournament-sp is ≤log

E -complete for LOpb. Then
sp ≤log

E tournament-sp via some reduction (f, g, α). We show gap ∈ L. Let a graph (G, s, t) be
given. We consider this graph as an instance for sp and apply f to it, obtaining a triple (G′, s′, t′)
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in which G′ is a tournament. By the third claim, we can compute a path from s′ to t′ in logarithmic
space. If no path exists, we reject (G, s, t). If a path exists, we apply g to it, obtaining a path in G.
If this path leads from s to t, we accept; otherwise we reject.

3. For the logspace approximation scheme, let a problem instance (G, s, t) be given and a ratio
r = 1 + 1/k. Let d := d(s, t) denote the distance between s and t. Our aim is to construct a path
from s to t in G of length at most d+d/k. The construction should use space at most O(log k log n).
Since we can check in logarithmic space whether there exists any path from s to t, see below, in
the following we may assume that t is reachable from s.

The algorithm consists of a loop that uses only space O(log k log n). At the beginning of each
iteration we have a tape initialised with a current vertex v, which is guaranteed to be reachable
from s. During each iteration we find a vertex v′, using a procedure described later, that has the
following two properties:

1. d(v′, t) ≤ d(v, t)− 2k. That is, v′ is at least 2k steps nearer to t.
2. The distance d(v, v′) is at most 2k + 2.

Having found v′, we output the minimal path from v to v′ and replace the current vertex v by v′.
By Theorem 3.8, we can output the shortest path from v to v′ using only O(log k log n) space. We
end the loop, when the distance between the current vertex and t is less than 2k + 2. Let ` be the
number of iterations we perform, where the last step, in which we directly go from v to t, counts as
another iteration. Then the length of the path we output is at most (2k + 2)`. Since in each step
we reduce the distance between the current vertex and t by at least 2k, we have ` ≤ d/2k. Thus
the length of the path we output is at most (2k + 2)` ≤ (2k + 2)d/2k = d + d/k.

It remains to show how we can obtain v′. We pick v′ according to the following rule: Let S
denote the set of vertices reachable from v in exactly 2k + 2 steps and let v′ be a king of S. A
king of a graph is a vertex such that all other vertices of the graph are reachable in at most two
steps from it. It is well-known, see for example [12], that every tournament has a king. Using the
procedure reachable(v, u, 2k + 2) from Theorem 3.8, we can obtain v′ in space O(log k log n).

The thusly obtained vertex v′ has the two desired properties. Trivially, it satisfies the second
condition. For the first condition, note that at least one vertex in S has distance d(v, t)− 2k − 2,
namely the vertex on the shortest path from v to t. However, all vertices in S have distance at
most 2 from the king v′. Thus v′ has distance at most d(v, t)− 2k from t.

4. The only-if-part follows from the completeness of tournament-spopt<, the if-part from
Theorem 4.3.

5. For the complexity of the existence problem see [13, 19]. For the budget problem, we argue
exactly the same way as in Theorem 3.9, only invoking Lemma 3.13 instead of Lemma 3.10.

The previous problems may have created the impression that the budget problem of any reach-
ability problem is NL-complete. However, the problem of finding the shortest path in a forest is in
LO.

forest-undirected-shortest-path (forest-usp)
Instances. Undirected forest G = (V,E) with α(G) ≤ k, two vertices s, t ∈ V .
Solutions. Walk from s to t in G.
Measure. Length of the walk.

Theorem 3.14.

1. forest-usp ∈ LO.
2. forest-usp∃sol and forest-uspopt< are ≤AC0

m -complete for L.
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Proof. 1. An undirected tree is a forest iff it is cycle-free, which is known to be an L-complete
problem. We can check whether there is any path from s to t by starting a walk at s and always
‘turning right’ at each vertex. If the walk does not hit t after 2|V | many steps, there does not exist a
path from s to t. In order to compute the shortest path from s to t we proceed as follows: First, we
output s and make s our current vertex. Then we repeatedly apply the following procedure to the
current vertex: for each of its neighbours, we check whether t is reachable from this neighbour in
the graph obtained by removing the edge connecting the current vertex and the neighbour. There
is exactly one vertex for which this test succeeds. We output this vertex, make it the new current
vertex, and repeat the procedure until we hit t.

2. For the completeness results note that the symmetric closure of the configuration graph of a
logspace machine is a forest.

Graphs with a bounded independence number are generalisations of tournaments. The inde-
pendence number α(G) of a graph G is the maximum number of vertices that can be picked from G
such that no two edges are connected. Tournaments have independence number 1.

independence-α-shortest-path (ind-α-sp) for positive integers α
Instances. Directed graph G = (V,E) with α(G) ≤ α, two vertices s, t ∈ V .
Solutions. Walk from s to t in G.
Measure. Length of the walk.

Theorem 3.15.

1. ind-α-sp is ≤log
1-tt-complete for NLOpb,

2. ind-α-sp ∈ FLAS for all α, ind-α-usp ∈ LO for all α.
3. ind-α-sp ∈ LO for any α, iff L = NL.
4. ind-α-sp∃sol ∈ AC0, ind-α-spopt< is ≤log

m -complete for NL for all α.

Proof. 1. This follows from the ≤log
1-tt-completeness of tournament-sp.

2. For the logspace approximation scheme for ind-α-sp, similarly to the proof for tournaments,
see Theorem 3.12, let a graph G = (V,E), vertices s, t ∈ V , and a ratio r = 1 + 1/k be given.
Roughly spoken, the algorithm works as in Theorem 3.12, only this time we do not have a single
current vertex, but a set C of up to α many. For a set C let dG(C, t) := min{dG(v, t) | v ∈ C}. Let
n := |V | and let d := dG(s, t) denote the distance between s and t.

The path construction algorithm is a loop in which we construct a sequence C1, C2, . . . , C` ⊆ V
of vertex sets with C1 = {s} and C` = {t}. For the construction of Ci+1 we access only Ci and use
space O(log k log n). Once we have constructed Ci+1 we erase Ci and reuse the space it occupied.
The sets Ci have the following properties for i ∈ {2, . . . , `− 1}:

1. All elements of Ci are reachable from s.
2. |Ci| ≤ α.
3. dG(Ci, t) ≤ dG(Ci−1, t)− 2k and hence dG(Ci, t) ≤ d− 2k(i− 1).
4. dG(Ci−1, v) = 2k + 2 for all v ∈ Ci.

For i = `, the first two conditions also hold and the last one becomes dG(Ci−1, t) ≤ 2k + 2. In each
iteration we reduce the distance between Ci and t by at least 2k. Thus `− 1 ≤ d/2k.

The set Ci is obtained from Ci−1 as follows: If dG(Ci−1, t) ≤ 2k + 1, let Ci := {t}. Otherwise
let S := {v ∈ V | dG(Ci−1, v) = 2k + 2} and choose Ci as a 2-dominating set of S of size α. Since
α(G) ≤ α, such a set exists as shown in [13]. We can obtain such a set in space O(log k log n) since
the question ‘v ∈ S?’ can be answered in space O(log k log n) by Theorem 3.8.
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In order to output the desired path from s to t of length at most d + d/k we first construct a
forest that contains this path. The forest is not actually written down anywhere (we are allowed
only a logarithmic amount of space). Rather, as in the proof of FL being closed under composition,
the forest’s code is dynamically recalculated in space O(log k log n) whenever one of its bits is
needed. Finding the shortest path in a forest can be done in logarithmic space by Theorem 3.14,
and the shortest path in the forest will be the desired path.

The forest is defined as follows: For each i ∈ {2, . . . , `} define a ‘small’ forest Fi as follows: For
each v ∈ Ci it contains the vertices and edges of the shortest path from Ci−1 to v. This path is
constructed by calling the procedure construct(c, v, e) from Theorem 3.8 for the first vertex c ∈ Ci−1

for which e := dG(c, v) is minimal. Since dG(c, v) ≤ 2k+2, this call needs space O(log k log n). The
graph Fi is, indeed, a forest since if two paths output by construct for the same source vertex split
at some point, they split permanently. The forest F is the union of all the forests Fi constructed
during the run of the algorithm.

Consider the shortest path in the forest F . This path passes all Ci. For i ∈ {1, . . . , `} let
ci ∈ Ci be the last vertex of Ci this path visits. Then the total length of the path is given by∑`−1

i=1 dG(ci, ci+1). We have dG(ci, ci+1) = 2k + 2 for i ∈ {1, . . . , `− 2}. Thus the total length is

(2k + 2)(`− 2) + dG(c`−1, t) = (2k + 2)(`− 2) + dG(C`−1, t)
≤ (2k + 2)(`− 2) + d− 2k(`− 2)
= d + 2(`− 2) ≤ d + 2(`− 1)
≤ d + d/k.

For the first inequality we used the third property of the sets Ci, for the last inequality we used
the inequality `− 1 ≤ d/2k.

For the undirected version, note that in an undirected graph G with α(G) ≤ α there is a path
between any two vertices s and t iff there is a path between them of length at most 2α.

3. The only-if-part follows from the completeness of ind-1-spopt<, the if-part from Theorem 4.3.
4. For the budget problem, note that tournament-spopt< ≤log

m ind-1-spopt<. For the existence
problem see [13].

The next graph type we study are planar-embedded graphs, which arise in numerous appli-
cations. A planar graph ‘can be painted on a sheet of paper without edges crossing each other’.
A planer-embedded graph is a graph that ‘is painted on a sheet of paper without edges crossing
each other’. That is, for planar-embedded graphs we are already given the embedding, whereas for
planar graphs it is only known that such an embedding exists.

In the following, I show that the reachability problem for undirected planar-embedded graphs
is logspace poly-approximable. Thus there exists a logspace algorithm that on input of an undirect
graph together with a planar embedding outputs a path from the source to the target or outputs
that no such path exists. In particular, this shows that the reachability problem for undirect
planar-embedded graphs in in L. Most intriguingly, it is not clear at all, whether the problem in L-
complete despite the fact the reachability for undirected forests is L-complete. Note that undirected
forests are obviously planar. The problem is that we do not know how to compute an embedding
efficiently.

Before we proceed, let us first formalise the notion of a planar-embedded graph. A planar-
embedded graph is an edge-labelled graph G = (V,E) such that the following conditions are met:

1. V ⊆ N× N,
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2. to each edge (v, v′) ∈ E the edges-labelling function η assigns a polygon traverse from v to v′

with corners in N× N,
3. for any two edges (v1, v

′
1), (v2, v

′
2) ∈ E the polygon traverses η(v1, v

′
1) and η(v2, v

′
2) are disjoint

in the real plane, except that end points may coincide.

A graph is planar if it isomorphic to a planar-embedded graph.

planar-embedded-undirected-shortest-cycle (pe-usp)
Instances. Planar-embedded graph G = (V,E, η), two vertices s, t ∈ V .
Solutions. Walk from s to t in G.
Measure. Length of the walk (length of walk sequence, not Euclidean distance).

Theorem 3.16.

1. pe-usp is in poly-ApxLOpb.
2. pe-usp∃sol ∈ L.

Proof. 1. This claim follows from the second claim and Lemma 3.11 instantiated for the class A of
undirected planar-embedded graphs.

2. In this proof, it will sometimes be useful to consider undirected edge between vertices v
and v′ as two directed edges (v, v′) and (v′, v).

For a directed edge (v, v′) ∈ E, let us define a right cyclic walk ρ(v, v′) as follows: Imagine a
large castle in which the polygon traverses are wall. We stand (a bit removed from) the vertices v
and put our left hand on the wall of the polygon traverse η(v, v′). Then we start walking forward,
always touching the wall with our left hand. When we reach the vertex v′, we continue walking and
keep our left hand on the wall. Then we will be touching the wall linking v′ to the next vertex v′′

‘to the right’ of v′. We continue our walk until we reach v once more. The sequence of visited
vertices forms the right cyclic walk ρ(v, v′).

For a given right cyclic walk, let us define the notions of inside and outside. A point p ∈ N×N
is inside the walk, if a ray shot from p, say, upwards, crosses the walk an odd number of times.
Otherwise, the point is outside the walk. Note that it is not immediately clear, what counts as
a ‘crossing’ of a ray and the walk: for example, the ray might only touch the walk or the walk
might partly lie on it. To resolve these problems, let us imagine that the right cyclic walk is always
‘slightly removed to the right’ from the actual polygon traverse. In other words, not the wall itself
is important, but where we walk. With this convention, a ray will always intersect a right cyclic
walk ‘cleanly’.

The algorithm for deciding reachability in planar-embedded undirected graphs works as follows:
Given s and t, check for each directed edge (v, v′) ∈ E, whether s is inside the right cyclic walk
ρ(v, v′) and t is outside or whether t is inside this walk and s is outside. If either is the case for
some edge, claim ‘no path exists from s to t’. If neither is the case for all edges, claim ‘there is a
path from s to t’.

The algorithm needs only logarithmic space: A right cyclic walk can be constructed in loga-
rithmic space and we can check in logarithmic space whether a point lies inside or outside such a
walk.

To see that this algorithm yields correct outputs, first consider the case that there is a path
from s to t in G. Then no right cyclic walk can separate s and t: on any path from s to t the
vertices on the path would have to switch from ‘inside’ to ‘outside’ (or the other way round) at
some point, which is impossible. Second, assume that there is no path from s to t in G. Consider
the reachability components S and T of s and t. Since these components are disjoint, either they
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must lie alongside each other, or S is ‘inside’ T , or T is ‘inside’ S. In the first case (the components
lie alongside each other), consider an edge (v, v′) on the outer border of S. Either ρ(v, v′) or ρ(v′, v)
will be exactly this outer border. Then s is inside, but t is outside. For the second case, the
outer border of S once more separates s and t. For the third case, the outer border of T separates
them.

3.3 Shortest Cycle Problems

In this subsection we study problems related to finding the smallest cycle in graphs. For directed
graphs, this problem is fairly easy to classify, for undirected graphs its complexity remains largely
unsolved.

shortest-cycle (sc)
Instances. Directed graph G = (V,E).
Solutions. Cyclic walk in G.
Measure. Length of the cyclic walk.

Theorem 3.17.

1. sc is ≤log
E -complete for NLOpb.

2. sc ∈ exp-ApxLO iff sc ∈ LO iff L = NL.
3. sc∃sol and scopt< are ≤log

m -complete for NL.

Proof. 1. We show sp ≤log
E sc. The instance transformation function f gets an instance (G, s, t) for

sp as input. We may assume that there exists a path from s to t and that the shortest such path
has length at least 2. The function f first constructs a dag (a directed acyclic graph) as follows:
let V ′ := {1, . . . , n} × V and let there be an edge from (r1, v1) to (r2, v2) in E′ iff r2 = r1 + 1 and
(v1, v2) ∈ E. Then it adds further edges to E′ as follows (thereby destroying the dag structure once
more): for all i ∈ {1, . . . , n} let there be an edge from (i, t) to (1, s). The resulting graph G′ is the
output of f .

The solution transformation function g gets a cyclic walk c in G′ as input. Since G′ was a dag
before we added the special ‘backward’ edges, any such cyclic walk must pass through at least one
such special edge. By ‘rotating’ the cyclic walk, we may assume that his edge is the first edge. Thus
the cyclic walk starts with (x, t), (1, s), (2, v2), (3, v3), and so on. Let (`, v`) be the next vertex on
the cyclic walk with v` = t. The function g outputs the walk (s, v2, . . . , v`). Let α = 2.

We must argue that the reduction is error preserving. To see this, note that the smallest cycle
in G′ is one edge longer (namely the edge leading back) than the shortest path in G from s to t.
Let `∗ denote the length of the shortest cycle in G′. Then

Rsp

(
x, g(x, c)

)
− 1 ≤ `− 1

`∗ − 1
− 1 =

`− `∗

`∗ − 1
= 2

`− `∗

`∗ + `∗ − 2
≤ 2

`− `∗

`∗

= α
(
Rsc

(
f(x), c

)
− 1

)
.

2. As in Theorem 3.8, this follows from the third claim and from Theorem 4.3.
3. For the completeness of sc∃sol, which was first shown already in [7], just note that the

graph G′ constructed for the first claim has a cycle iff there is a path from s to t in G.

The undirected version of the shortest cycle problem is much more mysterious. The little that
is known about the problem is listed in Theorem 3.18.
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undirected-shortest-cycle (usc)
Instances. Undirected graph G = (V,E).
Solutions. Cyclic walk in G.
Measure. Length of the cyclic walk.

Theorem 3.18.

1. sc ∈ NLOpb.
2. sc∃sol is ≤AC0

m -complete for L.

Proof. The first claim is trivial, the second has been shown in [4].

3.4 The Hot Potato Problem

In this subsection we consider variants of the following problem: A hot potato (or, perhaps more
realistically, a piece of news, a task, a packet, a token) must be passed around among a group of
people for ` rounds. After ` rounds it will have cooled of. The ‘value’ (or ‘cost’) of getting rid of the
potato by it to another person is given by a matrix and the objective is to maximize (or minimise)
the total value (cost) of the path taken by the potato. Note that the potato is allowed to go round
in cycles and may even be held by a person for any number of rounds (though, typically, this will
not be attractive value-wise). Let us concentrate on the maximisation version. The same results
also hold for the minimisation version.

In the following, the complexity of the problem and of different variants is studied. The basic
hot potato problem has a logspace approximation scheme, but its budget problem is NL-complete.
Two variants are especially intriguing: The budget problem of the undirected hot potato problem
for matrices that have only two different entries is in L; but the same problem for matrices having
three different entries is NL-complete.

maximum-hot-potato-problem (max-hpp)
Instances. An n× n matrix A with entries drawn from {1, . . . , n}, a number ` ≤ n, and a start

index i1.
Solutions. Index sequence (i1, . . . , i`).
Measure. Maximise sA(i1, . . . , i`) :=

∑`−1
p=1 Aip,ip+1 .

Theorem 3.19.

1. Optimal solutions for max-hpp can be computed in space O(log ` log n).
2. max-hpp is ≤log

tt -complete for NLOpb.
3. max-hpp ∈ FLAS.
4. max-hpp ∈ LO iff L = NL.
5. max-hpp∃sol ∈ AC0, max-hppopt> is ≤log

m -complete for NL.

Proof. 1. We argue similarly to the proof of Theorem 3.8. We use two algorithms reachable(u, v, c, `)
and construct(u, v, c, `). The first algorithm will return true if there exists a sequence σ =
(u, j1, . . . , j`−1, v) with sA(σ) ≥ c. Note that the length of this sequence is ` + 1. The second
algorithm will return such a sequence, provided it exists. Also, the second algorithm will omit the
last element of the sequence.

procedure reachable(u, v, c, `)
let flag := false
if ` = 1 ∧Au,v ≥ c then flag := true
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if ` > 1 then
forall z ∈ V do

forall c′ ∈ {1, . . . , c− 1} do
if reachable

(
u, z, c′, b`/2c

)
∧ reachable

(
z, v, c− c′, `− b`/2c

)
then flag := true

return flag

The algorithm needs space O(log ` log n), provided c is a polynomial in n.

procedure construct(u, v, c, `)
if ` ≤ 1 then output u
else

forall z ∈ V do
forall c′ ∈ {1, . . . , c− 1} do
if reachable

(
u, z, c′, b`/2c

)
∧ reachable

(
z, v, c− c′, `− b`/2c

)
then

call construct
(
u, z, c′, b`/2c

)
call construct

(
z, v, c− c′, `− b`/2c

)
exit

This algorithm, too, needs only space O(log ` log n) provided c is a polynomial in n. The
algorithm that produces optimal solutions works as follows: For each c ∈ {1, . . . , n2} it tries to find
an index i such that reachable(i1, i, c, ` − 1) holds. For the largest c for which this is the case, it
calls construct(i1, i, c, `− 1) for the corresponding i and then appends the missing index i.

2. We show sp ≤log
tt max-hpp. Let (G, s, t) be an instance for sp. Let n := |V |. Our reduction

maps this instance to n instances (A1, 2, 1), (A2, 3, 1), . . . , (An, n + 1, 1) for max-hpp. Given
optimal index sequences σ1, . . . , σn as answers to these queries, the reduction first discerns the
length ` of the shortest path from s to t in G. Once it knows this length `, it can retrieve a shortest
path from s to t from the sequence σ`.

Let us start with the construction of the matrices Ai for i ∈ {1, . . . , n}. We first construct a
directed graph G′ with V ′ = {1, . . . , i + 1} × V as follows. For rows r1, r2 < i + 1, we insert edges
roughly the same way as in Lemma 3.10: let there be an edge from (r1, v1) to (r2, v2) iff r1 = r2 +1
and (v1, v2) ∈ E ∪ {(v, v) | v ∈ V }. For the edges between row i and i + 1 there is a special rule:
there is just one edge from (i, t) to (i + 1, t). Note that this construction ensures that any walk
in G′ of length i must end at (i + 1, t).

Let us enumerate the elements of V ′ via a bijection ν : V ′ → {1, . . . , |V ′|} with ν(1, s) = 1. We
construct an |V ′| × |V ′| matrix Ai as follows: let Ai

v′1,v′2
= 2 if (v′1, v

′
2) ∈ E′ and let Ai

v′1,v′2
= 1 if

(v′1, v
′
2) /∈ E′. Thus Ai is the adjacency matrix of the graph G′, only with the modification that all

entries are increased by 1.
The matrices Ai have the following property: there is a sequence σi = (j1, . . . , ji+1) starting

at j1 = 1 with sA(σi) ≥ 2i iff there is a path from s to t in G of length at most i − 1. To see
this, first assume that such a sequence exists. Since all matrix entries are at most 2 and since the
sequence has length i + 1, we have sA(σ) = 2i. Thus we have Ajp,jp+1 = 2 for all p ∈ {1, . . . , i}.
This means that the sequence (v′1, . . . , v

′
i+1) with ν(v′p) = jp is a path in G′. Since the length of

this path is i, as pointed out above, this path must end at (i + 1, t). This in turn means that there
is a path from s to t in G of length at most i− 1. This path can be obtained by removing the first
components from each v′p and omitting consecutive duplicates. Second, let us assume that there
exists a path from s to t in G of length at most i− 1. Then there exists a path (v′1, . . . , v

′
i+1) from

(1, s) to (i + 1, t) in G′. Let jp := ν(v′p). Then for each p ∈ {1, . . . , i} we have Ajp,jp+1 = 2. This in
turn yields sA(j1, . . . , ji+1) = 2i.

26



Suppose we are given optimal sequences σ1, . . . , σn as answers to our queries. We determine
the smallest ` such that sA(σ`) ≥ 2`. Then the shortest path from s to t in G has length `− 1. As
shown above, we can obtain such a path from σ`.

3. For the logspace approximation scheme, first note that the problem is in NLOpb. This
may not be obvious, since we have to compute the sum

∑`−1
p=1 Aip,ip+1 while reading the sequence

(i1, . . . , i`) in a one-way fashion. However, this can be done since all partial sums are bounded by
n2 and can thus be stored in logarithmic space.

The logspace approximation scheme for max-hpp works as follows: Let A, `, and r = 1+1/k be
given. Let σopt = (i1, . . . , i`) denote a sequence that maximises sA(σopt). Our aim is to construct
a sequence σ of length ` such that sA(σopt)/ sA(σ) ≤ r = 1 + 1/k.

For small values ` ≤ 8k2 + 10k + 4 we perform a brute-force search to find the sequence σopt.
By the first claim, this brute-force search takes space O(log k2 log n) = O(log k log n).

For large ` > 8k2 + 10k + 4 we find a sequence of 2k + 1 indices (j1, . . . , j2k+1) such that
c := sA(j1, . . . , j2k+1) is maximal. That is, we find a short walk of maximal value in the matrix.
By iterating over all possible start points, it can be found in space O(log k log n). We output the
following sequence:

t := (i1, . . . , i1︸ ︷︷ ︸
q times

, j1, j2, . . . , j2k+1, j1, j2, . . . , j2k+1, . . . , j1, . . . , j2k+1),

where q = 1 + (`− 1) mod (2k + 1). Then sA(σ) ≥ c
⌊
(`− 1)/(2k + 1)

⌋
.

Now consider the sequence σopt = (i1, . . . , i`). For each index p ∈ {1, . . . , ` − 2k} we have
sA(ip, ip + 1, . . . , ip + 2k) ≤ c. To see this note that if this were not the case, then we would have
sA(ip, ip +1, . . . , ip +2k) > c, which contradicts the optimality of the sequence (j1, . . . , j2k+1). This
shows sA(σopt) ≤ c

⌈
`/2k

⌉
.

We can now bound the performance ratio of the sequence σ as follows:

sA(σopt)
sA(σ)

≤
c
⌈
`/2k

⌉
c
⌊
(`− 1)/(2k + 1)

⌋ ≤ `/2k + 1
(`− 1)/(2k + 1)− 1

=
(2k + 1)(` + 2k)
2k(`− 2− 2k)

≤ (2k + 1)(8k2 + 10k + 4 + 2k)
2k(8k2 + 10k + 4− 2− 2k)

=
(2k + 1)(2k2 + 3k + 1)

4k3 + 4k2 + k
=

(k + 1)(4k2 + 4k + 1)
k(4k2 + 4k + 1)

= 1 +
1
k
.

4. The only-if-part follows from the completeness of max-hppopt>, the if-part from Theorem 4.3.
5. For the completeness of the budget problem, we reduce gap to max-hppopt>. Using the

construction from the third claim, on input (G, s, t) we construct An and query whether m∗(An, n+
1, 1) ≥ 2n. This is the case iff the exists a path from s to t in G of length at most n− 1.

undirected-hot-potato-problem (max-uhpp)
Instances. A symmetric n × n matrix A with entries drawn from {1, . . . , n}, a number ` ≤ n,

and a start index i1.
Solutions. An index sequence (i1, . . . , i`).
Goal. Maximise sA(i1, . . . , i`) :=

∑`−1
p=1 Aip,ip+1 .

Theorem 3.20.

1. max-uhpp is ≤log
tt -complete for NLOpb.
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2. max-uhpp ∈ FLAS.
3. max-uhpp ∈ LO iff L = NL.
4. max-uhpp∃sol ∈ AC0, max-uhppopt> is ≤log

m -complete for NL.

Proof. 1. We argue similarly to the proof of Theorem 3.19. However, there is a complication: we
cannot simply take the symmetric closure of the graphs G′ and then define the matrices Ai as in
that proof. The reason is that an optimal sequence would then consist of constantly going back
and forth along an edge of weight 2.

Rather, for each i, we construct the graph G′ as the symmetric closure of the graph G′ con-
structed in Theorem 3.19 and define the matrix Ai differently: For r1, r2 < n + 1, if there is an
edge v′1 := (r1, v1) to v′2 := (r2, v2) in G′, let Ai

ν(v′1),ν(v′2) = i. For the edge between v′1 := (i, t) and
v′2 := (i + 1, t) let Aν(v′1),ν(v′2) = i + 1 and symmetrically Aν(v′2),ν(v′1) = i + 1. All other entries of A
are 1.

This time, there is a path from s to t in G of length at most i − 1 iff there is a sequence
σi = (j1, . . . , ji+1) staring at j1 = 1 such that sA(σ) ≥ (i− 1)i + (i + 1) = i2 + 1. To see this, first
let us assume that such a sequence exists. Since it has length i + 1, we must have Ajp,jp+1 ≥ i for
all p ∈ {1, . . . , i} and we must have Ajp,jp+1 ≥ i + 1 at least once. This means that the sequence
v′1, . . . , v′i+1 with ν(v′p) = jp is a path in G′ that visits the edge between (i, t) and (i + 1, t). Thus
there is a path from s to t in G. Second, let us assume that there exists a path from s to t in G of
length at most i− 1. Then for a path (v′1, . . . , v

′
i+1) from (1, s) to (i+1, t) in G′ and for jp := ν(v′p)

we have sA(j1, . . . , ji+1) = (i− 1)i + (i + 1) = i2 + 1.
2. The approximation scheme for the directed problem also works here.
3. The only-if-part follows from the completeness of max-uhppopt>, the if-part from Theo-

rem 4.3.
4. We reduce gap to max-hppopt>, using the construction from the third claim. On input

(G, s, t) we construct An and query whether m∗(An, n + 1, 1) ≥ n2 + 1, which is the case iff the
exists a path from s to t in G of length at most n− 1.

For a constant k ≥ 1, let max-hpp-k-entries denote the problem max-hpp restricted to
matrices that have only k different entries. Let max-hpp-entries-S denote the problem max-hpp
restricted to matrices whose entries are drawn from the set S ⊆ N. Define the undirected (or, if
you prefer, symmetric) versions correspondingly.

The matrices constructed in Theorems 3.19 and 3.20 have only two, respectively three, different
entries. In the non-symmetric case these entries are only 1 and 2. This proves the first of the
following two theorems, which should be contrasted with each other.

Theorem 3.21. max-uhpp-3-entriesopt> and max-hpp-entries-{1, 2}opt> are ≤log
m -complete

for NL.

Theorem 3.22. max-uhpp-2-entries ∈ LO and max-uhpp-entries-S ∈ LO for all finite S.

Proof. For the first claim, let e1 and e2 with e1 ≤ e2 be the two entry values found in the matrix A.
If there exists an index i with A1,i = e2, then an optimal sequence is given by (1, i, 1, i, . . . ). If
there does not exist any such index, let (i, j) be any pair with Ai,j = e2. Then an optimal sequence
is given by (1, i, j, i, j, . . . ).

For the second claim, let a symmetric matrix A be given as input with entries drawn from
S ⊆ {1, . . . , k} and let a length ` be given. For simplicity, let us assume that there is at least one
pair (i, j) such that Ai,j = k. Let σopt := (i1, . . . , i`) be a sequence that maximises sA(σopt). A
lower bound on this value is given by k(`− 2) ≤ sA(1, i, j, i, j, . . . ).
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I claim that Aip,ip+1 = k for all p ∈ {k + 1, . . . , `− 1}. To see this, suppose Aip,ip+1 ≤ k − 1 for
all p ∈ {1, . . . , k +1}. Then sA(i1, . . . , ik+2) ≤ (k− 1)(k +1) = k2− 1. Since the remaining Aip,ip+1

for p ∈ {k + 2, . . . , `− 1} are bounded by k, we have sA(σ) ≤ k2 − 1 + k(`− k − 2) = k`− 2k − 1.
However, we saw above that sA(σ) ≥ k`− 2k.

In order to find an optimal sequence, we just have to find an optimal sequence of length k + 2,
which can be done in space O(log k log n). Note that k is a constant. The last two entries i and j
of this sequence will necessarily have the property Ai,j = k. Thus we can extend this sequence to
an optimal sequence of length ` by appending the sequence (i, j, i, j, . . . ).

3.5 Problems Related to Automata Theory

Problems related to automata theory are among the most difficult in NLO as was already noticed
by Àlvarez and Jenner [1]. However, their focus lied on the completeness of the optimal measure
functions for the function class OptL, rather than on the completeness of the optimisation problem
itself for the class NLO.

max-word-nfa
Instances. Nondeterministic finite automaton M with ε-moves over the alphabet {0, 1}.
Solutions. Sequence of states leading from an initial state to an accepting state of length at

most |Q|.
Measure. The word accepted along the state sequence, interpreted as a positive integer.

Theorem 3.23.
1. max-word-nfa is ≤log

E -complete for the class of maximisation problems in NLO.
2. max-word-nfa is ≤log

1-tt-complete for NLO.
3. max-word-nfa /∈ exp-ApxLO, unless L = NL.
4. max-word-nfa∃sol and max-word-nfaopt> are ≤log

m -complete for NL.

Proof. 1. Let P = (I, S,m, max) be any problem in NLO. We construct a reduction (f, g, α) from
P to max-word-nfa. Let M be the machine from Lemma 2.6.

The instance transformation function f maps an instance x to the following NFA: Its states are
all configurations of M on input x. There is an ε-edge from one state c1 to a state c2 if M can go
from the configuration c1 to c2 in one step without writing any output bit. There is an edge with
a label i from c1 to c2 if M can go from c1 to c2 in one step and writes the bit i. The initial state
of M is the start configuration, the set of final states is the set of M ’s accepting configuration.

The solution transformation function g maps a pair (x, p) consisting of an instance x and a
walk p in M to a solution for x, by stringing together ‘nondeterministic choices’ taken on the
walk p. Let α = 1. By Lemma 2.6 we have RP

(
x, g(x, p)

)
= Rmax-word-nfa

(
f(x), p

)
.

2. By the first claim, we already know that the problem is ≤log
1-tt-complete for maximisa-

tion problems in NLO. We can also ≤log
1-tt-reduce minimisation problems P = (I, S,m, min) to

max-word-nfa, namely as follows: We use the same construction as above, but with all edges
with label 1 replaced by edges with label 0 and vice versa. Otherwise, the reduction is the same.
With this construction, mmax-word-nfa

(
f(x), p

)
, read as a bitstring, is exactly the bitwise negation

of m
(
x, g(x, p)

)
. Thus

mmax-word-nfa

(
f(x), p

)
= 2` − 1−m

(
x, g(x, p)

)
,

where ` is the number from Lemma 2.6. This shows that for a solution p that maximises the
left-hand side of the above equation, the value m

(
x, g(x, p)

)
is minimal.
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Note that this reduction does not preserve approximation ratios. For this we would have to
divide 22` by m

(
x, g(x, p)

)
. It is not clear how that could be done, since we have only indirect

access to this value.
3. and 4. We can easily reduce gap to max-word-nfa∃sol.

4 Structure of Logspace Optimisation and Approximation Classes

The previous section studied individual logspace optimisation problems and their individual ap-
proximation properties. In this section, where a more structural approach is taken, we study
whether the logspace optimisation classes form proper hierarchies and whether they are closed
under reductions.

4.1 Hierarchies of Logspace Optimisation Classes

The first observation about logspace approximation classes is that they form a proper hierarchy,
unless L = NL. In the following theorem, we treat NLO, NLOdo, and NLOpb separately, since they
do not match syntactically.

Theorem 4.1. Suppose L 6= NL. Then

LO ( FLAS ⊆ LAS ( ApxLO ( poly-ApxLO ( exp-ApxLO ( NLO,

LOdo ( FLASdo ⊆ LASdo ( ApxLOdo ( poly-ApxLOdo ( exp-ApxLOdo ( NLOdo,

LOpb ( FLASpb ⊆ LASpb ( ApxLOpb ( poly-ApxLOpb = exp-ApxLOpb ( NLOpb .

Proof. Suppose L 6= NL. Then the claims following from the following non-inclusions, which we
have already established in the theorems accompanying the individual problems.

1. tournament-sp ∈ FLASpb, but tournament-sp /∈ LO.
2. mvv-ratio-2-pb ∈ ApxLOpb, but mvv-ratio-2-pb /∈ LAS.
3. mvv-pb ∈ pol-ApxLOpb, but mvv-pb /∈ ApxLO.
4. mvv ∈ exp-ApxLOdo, but mvv /∈ poly-ApxLO.
5. sp ∈ NLOpb, but sp /∈ exp-ApxLO.

The above theorem leaves one separation open: Does FLAS ( LAS hold under the assumption
L = NL? While the corresponding statement for polynomial time is known to hold, the argument
used there does not carry over to logspace. However, we can at least prove a slightly weaker
statement.

Theorem 4.2. Suppose NL 6⊆ DSPACE[f(n) log n] for some unbounded, monotone, logspace-com-
putable function f . Then FLAS ( LAS, FLASdo ( LASdo, and FLASpb ( LASpb.

Proof. By Theorem 3.7, we have mvv-ratio-dec-pb ∈ LASpb, but mvv-ratio-dec-pb /∈ FLAS,
unless NL ⊆ DSPACE[log∗ n log n]. The function log∗ was of no particular importance in the proof.
By replacing it by f , we get the claim.

We can also ask the inverse question: Does the hierarchy collapse if NL = L? In the polynomial-
time setting, it is well-known that P = NP iff PO = NPO. For logarithmic space, the following
theorem holds. While its only-if-part follows from the hierarchy theorem above, the more tricky
if-part follows from a stronger lemma given below.
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Theorem 4.3. We have NLOdo ⊆ LO iff NL = L.

Lemma 4.4. For every P ∈ NLOdo there exists a function in FLNL that outputs optimal solutions
for P .

Proof. We show that such a function exists for P = partial-mvv. This proves the claim since
partial-mvv is ≤log

E -complete for NLOdo.
Given an instance (G, s, w) for partial-mvv, we construct an optimal path as follows: Using

gap ∈ NL as an oracle, we find the most valuable vertex that is reachable from s. Having found
such a vertex, using spopt< ∈ NL as an oracle, we construct a path from s to this vertex as follows:
Starting from s, we check which successor of s is nearest to the target vertex, output this vertex,
make this vertex out ‘current vertex’, and repeat until we have reached the target.

Note that the implication ‘if NL = L, then NLO = LO’ is not known to hold.

4.2 Closure Properties of Logspace Optimisation Classes

If we wish to be formal, none of the classes introduced in this paper are closed under any of
the reductions introduced in this paper. However, the reason for this is a bit annoying: Any
optimisation problem (logspace or not) for which we can produce optimal solution in logarithmic
space is ≤log

E -reducible to all reasonable problems in LOpb. However, there exist problems outside
even NPO for which we can produce optimal solutions in logspace: their solution relation is made
very hard (for example NEXP-complete), but we make the optimal solution always trivial.

The following theorems show that if we restrict ourselves to problems in NLO, the introduced
classes enjoy the expected closure properties. For a reduction ≤r and a class C, let Rr(C) := {P |
P ≤r P ′ ∈ C} denote the reduction closure of C.

Theorem 4.5. Rlog
E (C) ∩ NLO = C for C ∈ {LO, FLAS, LAS, ApxLO, poly-ApxLO, exp-ApxLO}.

Proof. Let P ≤log
E P ′ ∈ C via (f, g, α) and let P ∈ NLO. Let P ′ ∈ C via a approximator h,

an approximation scheme h, or a function h the produces optimal solutions. Then P ∈ C via
a function e with e(x) := g

(
x, h

(
f(x)

))
. The properties of E-reductions ensure that e has is

a sufficiently good approximator, a sufficiently good approximation scheme, or a function that
produces optimal solutions.

Theorem 4.6. Rlog
AP(C) ∩ NLO = C for C ∈ {ApxLO, poly-ApxLO, exp-ApxLO} and Rlog

AP(LO) ∩
NLO = LAS.

Proof. For the first claims, we can argue as in Theorem 4.5. For the last claim, let P ∈ LAS via
an approximation scheme A. We show P ≤log

AP trivial ∈ LO, where all words are instances for
trivial, exactly the word 0 is a solution for any instance, and all solutions have measure 1. The
reduction works as follows: The instance transformation function f maps (x, r) to x. The solution
transformation function g maps (x, 0, r) to A(x, r). Let α = 1.

Theorem 4.7. Rlog
1-tt(LO)∩NLO = LO, Rlog

1-tt(LOpb)∩NLOdo = LOdo, and Rlog
1-tt(FLASpb)∩NLOdo =

NLOdo.

Proof. For the first claim, note that a ≤log
1-tt-reduction must map an optimal solution to an optimal

solution.
For the second and third claim, we use the following observation: Every problem P ∈ NLOdo is

1-tt-equivalent to a problem P ′ ∈ NLOpb. The problem P ′ is defined as follows: It has the same
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instance set and solution relation as P . The measure function m is defined differently: Let x ∈ I
be an instance. Let M(x) = {m1, . . . ,m`} with m1 < m2 < · · · < m` be the set of all outputs that
could possibly be produced by m on input x. Such a set can be computed in logarithmic space
since m produces its output deterministically. Thus we only need to cycle through all possible
configurations in which m might start producing output. Define m′(x, y) := i if m(x, y) = mi.
Then P ≡log

1-tt P ′.
For the second claim, we must show that any problem P ∈ LOdo can be ≤log

1-tt-reduced to a
problem P ′ ∈ LOpb. By the above argument, P ≡log

1-tt P ′ for some P ′ ∈ NLOpb . Since by the first
claim P ′ ≤log

1-tt P ∈ LO implies P ′ ∈ LO, we have P ′ ∈ NLOpb ∩LO = LOpb.
For the third claim, note that tournament-sp ∈ FLAS is ≤log

1-tt-complete for NLOpb and that
Rlog

1-tt(NLOpb) ∩ NLOdo = NLOdo by the above observation.

4.3 Circuit Complexity of Logspace Optimisation Problems

In this subsection we establish that the circuit complexity of optimisation problems in NLO is as
low as one might expect: we can compute optimal solutions using AC1-circuits. This result extends
a theorem of Àlvarez and Jenner [1], who showed that the optimal measure function (rather than
an optimal solution function) of every problem in NLO is in FAC1.

Theorem 4.8. For every P ∈ NLO there exists a function in logspace-uniform FAC1 that computes
optimal solutions for P .

Proof. Let M denote the machine constructed in Lemma 2.6 for the a maximisation problem P .
For an input word w, let G denote the reflexive closure of the configuration graph of M on input w.
We assign labels to the edges of G as follows: Consider an edge from a configuration c1 to a
different configuration c2. The labels are pairs (c, o) with c ∈ {0, 1, ε} and o ∈ {0, 1, ε}. If c2 is the
only successor configuration of c1, that is, if the step from c1 to c2 is deterministic, we set c = ε.
Otherwise we set c = 0 for the first successor c2 of c1 and c = 1 for the other successor c′2 of c1.
We set o to be the output produced in the step from c1 to c2. If no output is produced, o = ε. We
assign the label (ε, ε) to all self-loops. The whole graph, including all labels, can be constructed in
FAC0.

We now introduce a ‘pointer jumping operation’ on directed graphs with labels that are pairs
(c, o) with c, o ∈ {0, 1, ε}∗. Given such a graph G = (V,E), we define a graph G′ = (V,E′) as
follows: In G′ there is an edge from u to v if there exists a vertex z ∈ V such that (u, z) ∈ E
and (z, v) ∈ E. (This operation is known as pointer jumping.) We assign a label to the edge
(u, v) as follows: for a given z ∈ V with (u, z) ∈ E and (z, v) ∈ E let (cz, oz) be the label of
the edge (u, z) and (c′z, o

′
z) of the edge (z, v). Pick z such that the concatenation ozo

′
z is maximal

lexicographically and define the label of (u, v) to be (czc
′
z, ozo

′
z). The pointer jumping operation

can also be implemented in FAC0 since concatenation and maximisation are in FAC0.
The complete circuit works as follows: it constructs the graph G; applies the pointer jumping

operation log n times, where n is the number of vertices in G; and outputs the c-part of the label of
the edge from the initial configuration to the accepting configuration. This circuit is a AC1-circuit.

It remains to show that the output is an optimal solution. To see this, note that the o-part
of the label of the edge from the initial configuration to the accepting configuration is exactly the
maximal output produced on any accepting computation of M . The o-part of this edge is exactly
the string of non-deterministic choices taken along this path. By Lemma 2.6, this string is an
optimal solution.
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For minimisation problems we argue exactly the same way, replacing maximisation by minimi-
sation.

Corollary 4.9. NLO ⊆ PO.

5 Applications

5.1 Completeness in OptL

As mentioned in Section 2.1, there are two different ways of defining optimisation problems. The
approach taken by Krentel [11] for polynomial time and by Àlvarez and Jenner [1] for logarithmic
space considers optimisation problems to be much less structured objects. In their approach, an
optimisation problem is just a function that maps an instance to the measure of an optimal solution.

Definition 5.1. The class OptL, respectively OptLdo, respectively OptLpb, contains all functions
f : Σ∗ → N such that there exists a logspace optimisation problem P ∈ NLO, respectively P ∈
OptLdo, respectively P ∈ OptLpb, with f(x) = m∗(x) whenever m∗(x) is defined and f(x) = 0
otherwise.

In a slight abuse of notation let us also write g ∈ OptL for partial functions g : Σ∗ → N+,
meaning that g′ ∈ OptL where g′(x) = g(x) whenever g(x) is defined and g′(x) = 0 otherwise.

Àlvarez and Jenner [1] define OptL slightly differently: they restrict it to maximisation prob-
lems. This restriction is confusing and should be avoided since completeness results are especially
interesting if they hold for all of OptL, not just for the minimisation or maximisation part. The
name MaxL, or perhaps max-OptL, seems better suited for the class treated by Àlvarez and Jen-
ner. They also use slightly different denotations for the classes OptLdo and OptLpb (restricted to
maximisation problems), which they denote OptL{determ} and OptL[log n].

The completeness results established in this paper for logspace optimisation classes have di-
rect corollaries in the form of new completeness results for OptL. Only the most interesting and
surprising corollaries are stated.

Theorem 5.2. The distance function for undirected graphs and the distance function for tourna-
ments are ≤log

1-tt-complete for OptLdo. The functions m∗
max-hpp and m∗

max-uhpp are ≤log
tt -complete for

OptLdo.

Proof. This follows directly from the corresponding completeness results for usp, tournament-sp,
max-hpp, and max-uhpp.

5.2 Parallel versus Serial Queries

The results on the complexity of the undirected shortest path problem, have an interesting conse-
quence for the question of whether parallel queries to ugap can be simulated by serial queries.

Theorem 5.3. If FLSL
tt ⊆ FLX [log] for some oracle X, then L = SL.

Proof. By Theorem 3.9 there is a function f ∈ FLSL
tt that maps an undirected graph G and two

vertices s and t to a path from s to t, provided such a path exists. By assumption we have
f ∈ FLX [log]. Then f has an enumerator in FL. An enumerator [2] is a function that maps an
input x to a set containing f(x). We can then decide ugap in logarithmic space, by applying the
enumerator to the input graph and by checking whether at least one element in the enumerator’s
output is a walk from s to t. If so, we accept; otherwise, we reject.
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Corollary 5.4. FLSL
tt = FLSL [log] iff L = SL.

The above corollary is a direct analogue to the equivalence ‘FPNP = FPNP [log] iff P = NP’ due
to Krentel [11] and to the equivalence ‘FLNL

tt = FLNL [log] iff L = NL’ due to Àlvarez and Jenner [1].

6 Conclusion

Different logspace optimisation problems can have vastly different properties, even though their
underlying budget or existence problems have the same complexity. Research on logspace decision
problems has been preoccupied with existence problems. The results of this paper suggest that
we should broaden our perspective. Even in the context of decision problems, there are surprising
differences between the complexity of existence problems and budget problems. A striking example
is the shortest path problem for undirected graphs: while it is SL-complete to decide whether there
exists a path from the first to the last vertex in an undirected graph, it is NL-complete to decide
whether there exists such a path of a given maximal length.

We have seen that natural logspace optimisation problems can have different approximation
properties. Most logspace optimisation problems are complete for an appropriate logspace approx-
imation class or for NLO. Assuming L 6= NL, the approximation classes form a proper hierarchy
and problems that are complete for one of these classes cannot be in any of the smaller classes.

The framework of this paper can be applied to many other problems that have already been stud-
ied in the literature. For example, Nisan, Szemeredi, and Wigderson [14] have given an algorithm
for constructing a path from the first to the last vertex in an undirected graph in space O(log3/2 n).
We may now ask whether anything can be said about how long this path will be, relative to the
shortest path. We know that his path cannot be the shortest one unless NL ⊆ DSPACE[log3/2 n],
but it might well be possible that usp can be approximated in space O(log3/2 n).

Another example is the reachability algorithm of Jakoby, Lískiewitcz, and Reischuk [6] for series-
parallel graphs. Their algorithm can be used to show that the reachability problem series-parallel
graphs is in poly-ApxLO, but it is not clear at all how difficult it is to find the shortest path between
two vertices in a series-parallel graph.

The most mysterious optimisation problem studied in this paper is the shortest undirected cycle
problem. I would like to propose this problem for further research. Another interesting practical
problem whose complexity is elusive is the shortest path problems for directed planar-embedded
graphs.
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