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Proof. For each of the problems, we rednce its family union version to it. This suffices: By
Theorem 3.1 and the fact that the underlying problems like REACH arc complete for NI and T
under compatible logspace projections (even under fixst-order projections), the family versions
sre complete for the respective classes.

Recall that the difference between the problems p-FAMILY-UNION-A and p-SUBSET-UNION-A
is that in the first we are given k sets S; from each of which we must choose one element, while
for the latter we can pick k elements from a single set S arbitrarily. If the reduction were to
just set S to the union of the S;, then many choices of k sets of S will correspond to taking
multiple elernents from a single S;. In such cases, their union should not be an element of A.
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Figure 2. An example of the reduction from a family union graph problem to a subset union
graph problem. In the example, V = {x,,2}. The s; arc indicated as edge sets even 1hongh,
m reality, they are bitstrings encoding adjacency matrices. The small vertices are the v”,) and
vZ,, but only those for (n,b) € {(z,y),(y, 2), (z,z)} are shown.

To achieve the eflect that the union of a subset of § with multiple clements from the same
S; is not in A, we use the same construction for all A, except for 4 = FOREST. The construction
works as follows: Since the S; are compatible, they are defined over the same set V of vertices.
Each s € S; encodes an edge set E, C VZ, We construct » new vcrtcx set V! DV as follows:
For each pair (a,b) € V2 we introduce k new vertices vl o on vab and add them to V'. For
each 8 G Si we define a ncw edge set B, C V' x V' as follows First, for each (a,b) € V?
let (viy vk, € Ej, where v¥ = a. Second for each (a,b) C E., let (v5,b) € EL. Let ¢ be
the bitstring encoding the adjacency matrix of Ey. We set S = {s' | s € S; for some 1}. An
example of how this reduction works is depicted in Figure 2.

In order to argue that the reduction works for all problems, we make two observations.
Given eny subset {s},...,8,} C S, for each s} there is a unique corresponding s;, lying in
(some) S;. Let G’ = (V', E') denote graph whose adjacency matrix is the union of A
and, correspondingly, let G = (V, E) be the union of the S;. Now, first assttme that, mdeed
wc have 5; € S; for all 7 € {1,...,k}. Then for every pair (a,b) € V the new vertices v b 10

v, will form & path in G’ attachcd to a. Furthermoro, for every edge (a,b) € E there is a path
from atobin E'. On rhe other hand, for (e,b) ¢ F, we cannot get [rom a to b in G’ using only
new vertices: the cdge v5 — b will be missing. This proves our first observation: for vertices
a,b € V there is a path from a to h in G’ if, and only if, there is such a path in G. Our second
observation concerns the case that there are two strings s, and =4 such that g; and s; lic in the
seme set Sz In this case, for every two vertices a,b € V at least one edge is missing along the

path v , to v,,b Thus, we can observe that there is no path from any o € V to any other h € V
in &’
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