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Abstract

The parameterized complexity of a problem is generally considered “settled” once it has
been shown to be fixed parameter tractable or to be complete for a class in the W-hierarchy
or a similar parameterized hierarchy. Several natural parameterized problems have, how-
ever, resisted such a classification. At least in some cases, the reason is that upper and lower
bounds for their parameterized space complexity have recently been obtained that rule out
completeness results for parameterized time classes. In this paper, we make progress in
this direction by proving that the associative generability problem and the longest common
subsequence problem are complete for parameterized space classes. These classes are de-
fined in terms of different forms of bounded nondeterminism and in terms of simultaneous
time–space bounds. As a technical tool we introduce a “union operation” that translates
between problems complete for classical complexity classes and for W-classes.

1 Introduction

Parameterization has become a powerful paradigm in complexity theory, both in theory and
practice. Instead of just considering the runtime of an algorithm as a function of the input
length, we analyse the runtime as a multivariate function depending on a number of different
problem parameters, the input length being just one of them. While in classical complexity
theory instead of “runtime” many other resource bounds have been studied in great detail, in
the parameterized world the focus has lain almost entirely on time complexity. This changed
when in a number of papers [5, 8, 12] it was shown for different natural problems, including the
vertex cover problem, the feedback vertex set problem, and the longest common subsequence
problem, that their parameterized space complexity is of interest. Indeed, the parameterized
space complexity of natural problems can explain why some problems in FPT are easier to solve
than others (namely, because they lie in much smaller space classes) and why some problems
cannot be classified as complete for levels of the weft hierarchy (namely, because upper and lower
bounds on their space complexity rule out such completeness results unless unlikely collapses
occur).

Our Contributions. In the present paper, we present completeness results of natural param-
eterized problems for different parameterized space complexity classes. The classes we study
are of two kinds: First, parameterized classes of bounded nondeterminism and, second, parame-
terized classes where the space and time resources of the machines are bounded simultaneously.
In both cases, we introduce the classes for systematic reasons, but also because they are needed
to classify the complexity of the natural problems that we are interested in.
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In the context of bounded nondeterminism, we introduce a general “union operation” that
turns any language into a parameterized problem in such a way that completeness of the lan-
guage for some complexity class C carries over to completeness of the parameterized problem
for a class “paraWC,” which we will define rigorously later. Building on this result, we show
that many union versions of graph problems are complete for paraWNL and paraWL, but the
theorem can also be used to show that p-weighted-sat is complete for paraWNC1. Our techni-
cally most challenging result is that the associative generability problem parameterized by the
generator set size is complete for the class paraWNL.

Regarding time–space classes, we present different problems that are complete for the class
of problems solvable “nondeterministically in fixed-parameter time and slice-wise logarithmic
space.” Among these problems are the longest common subsequence problem parameterized by
the number of strings, but also the acceptance problem for certain cellular automata parame-
terized by the number of cells and also a simple but useful pebble game.

Related Work. Early work on parameterized space classes is due to Cai et al. [5] who in-
troduced the classes para-L and para-NL, albeit under different names, and showed that several
important problems in FPT lie in these classes: the parameterized vertex cover problem lies in
para-L and the parameterized k-leaf spanning tree problem lies in para-NL. Later, Flum and
Grohe [10] showed that the parameterized model checking problem of first-order formulas on
graphs of bounded degree lies in para-L. In particular, standard parameterized graph problems
belong to para-L when we restrict attention to bounded-degree graphs. Recently, Guillemot [12]
showed that the longest common subsequence problem (lcs) is equivalent under fpt-reductions
to the short halting problem for ntms, where the time and space bounds are part of the input
and the space bound is the parameter. Our results differ from Guillemot’s insofar as we use
weaker reductions (para-L- rather than fpt-reductions) and prove completeness for a class de-
fined using a machine model rather than for a class defined as a reduction closure. The paper
[8] by Elberfeld and us is similar to the present paper insofar as it also introduces new parame-
terized space complexity classes and presents upper and lower bounds for natural parameterized
problems. The core difference is that in the present paper we focus on completeness results for
natural problems rather than “just” on upper and lower bounds.

Organisation of This Paper. In Section 2 we review the parameterized space classes pre-
viously studied in the literature and introduce some new classes that will be needed in the
later sections. For some of the classes from the literature we propose new names in order to
systematise the naming and to make connections between the different classes easier to spot. In
Section 3 we study problems complete for classes defined in terms of bounded nondeterminism,
in Section 4 we do the same for time–space classes.

Due to lack of space, all proofs have been omitted. They can be found in the technical
report version of this paper.

2 Parameterized Space Classes

Before we turn our attention to parameterized space classes, let us first review some basic
terminology. As in [8], we define a parameterized problem as a pair (Q,κ) of a language Q ⊆ Σ∗

and a parameterization κ : Σ∗ → N that maps input instances to parameter values and that is
computable in logarithmic space.1 For a classical complexity class C, a parameterized problem

1In the classical definition, Downey and Fellows [7] just require the parameterization to be computable, while
Flum and Grohe [11] require it to be computable in polynomial time. Whenever the parameter is part of the
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(Q,κ) belongs to the para-class para-C if there are an alphabet Π, a computable function
π : N → Π∗, and a language A ⊆ Σ∗ × Π∗ with A ∈ C such that for all x ∈ Σ∗ we have
x ∈ Q ⇐⇒

(
x, π

(
κ(x)

))
∈ A. The problem is in the X-class XC if for every number w ∈ N

the slice Qw = {x | x ∈ Q and κ(x) = w} lies in C. It is immediate from the definition that
para-C ⊆ XC holds.

The “popular” class FPT is the same as para-P. In terms of the O-notation, a parameterized
problem (Q,κ) is in para-P if there is a function f : N → N such that the question x ∈ Q can be
decided within time f(κ(x)) · |x|O(1). By comparison, (Q,κ) is in para-L if x ∈ Q can be decided
within space f(κ(x))+O(log |x|); and for para-PSPACE the space requirement is f(κ(x))·|x|O(1).
The class XP is in wide use in parameterized complexity theory; the logarithmic space classes
XL and XNL have previously been studied by Chen et al. [10, 6].

To simplify the notation, let us write fx for f
(
κ(x)

)
and n for |x| in the following. Then the

time bound for para-P can be written as fxn
O(1) and the space bound for para-L as fx+O(log n).

Parameterized logspace reductions (para-L-reductions) are the natural restriction of fpt-
reductions to logarithmic space: A para-L-reduction from a parameterized problem (Q1, κ1)
to (Q2, κ2) is a mapping r : Σ∗

1 → Σ∗
2 such that

1. for all x ∈ Σ∗
1 we have x ∈ Q1 ⇐⇒ r(x) ∈ Q2,

2. κ2
(
r(x)

)
≤ g

(
κ1(x)

)
for some computable function g, and,

3. r is para-L-computable with respect to κ1 (that is, there is a Turing machine that outputs
r(x) on input x and needs space at most f(κ1(x))+O(log |x|) for some computable function
f).

Using standard arguments one can show that all classes in this paper are closed with respect
to para-L-reductions; with the possible exception of paraWNC1, a class we encounter in Theo-
rem 3.2. Throughout this paper, all completeness and hardness results are meant with respect
to para-L-reductions.

2.1 Parameterized Bounded Nondeterminism

While the interplay of nondeterminism and parameterized space may seem to be simple at
first sight (NL is closed under complement and NPSPACE is even equal to PSPACE, so only
XNL and para-NL appear interesting), a closer look reveals that useful and interesting new
classes arise when we bound the amount of nondeterminism used by machines in dependence
on the parameter. For this, it is useful to view nondeterministic computations as deterministic
computations using “choice tapes” or “tapes filled with nondeterministic bits.” These are extra
tapes for a deterministic Turing machine, and an input word is accepted if there is at least one
bitstring that we can place on this extra tape at the beginning of the computation such that
the Turing machine accepts. It is well known that NP and NL can be defined in this way using
deterministic polynomial-time or logarithmic-space machines, respectively, that have one-way
access to a choice tape. (For NP it makes no difference whether we have one- or two-way access,
but logspace dtms with access to a two-way choice tape can accept all of NP.)

Classes of bounded nondeterminism arise when we restrict the length of the bitstrings on
the choice tape. For instance, the classes βh for h ≥ 1, see [16] and also [1] for variants, are
defined in the same way as NP above, only the length of the bitstring on the choice tape may
be at most O(logh n). Classes of parameterized bounded nondeterminism arise when we restrict
the length the bitstring on the choice tape in dependence not only on the input length, but also

input, it is certainly computable in logarithmic space.
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of the parameter. Furthermore, in the context of bounded space computations, it also makes a
difference whether we have one-way or two-way access to the choice tapes.

Definition 2.1. Let C be a complexity class defined in terms of a deterministic Turing machine
model (like L or P). We define para∃↔C as the class of parameterized problems (Q,κ) for which
there exists a C-machine M , an alphabet Π, and a computable function π : N → Π∗ such that:
For every x ∈ Σ∗ we have x ∈ Q if, and only if, there exists a bitstring b ∈ {0, 1}∗ such that
M accepts with (x, π(κ(x))) on its input tape and b on the two-way choice tape. We define
para∃→C similarly, only access to the choice tape is now one-way.

We define para∃↔f logC and para∃→f logC in the same way, but the length of b may be at most
|π(κ(x))| ·O(log n).

para-NC1

para-L = D[∞, f+ log]

para-NL = N[∞, f+ log]

para-P = FPT

= D[f poly,∞]

para-NP = N[f poly,∞]

para-PSPACE = D[∞, f poly]
= N[∞, f poly]

paraβL

paraβP

paraWNC1

paraWL

paraWNL

paraWP

XL

XNL

XP

XNP

= W[P] =

D[∞, f log] = XL

N[∞, f log] = XNL

D[nf ,∞] = XP

N[nf ,∞] = XNP

para-P ∩ XL

para-NP ∩ XNL

XP ∩ para-PSPACE

XNP ∩ para-PSPACE

D[f poly, f log]

N[f poly, f log]

D[nf , f poly]

N[nf , f poly]

Figure 1: In this inclusion diagram bounded nondeterminism classes are shown in red and
time–space classes in blue. The X-classes are shown twice to keep the diagram readable. All
known inclusions are indicated, where C → D means C ⊇ D.

Observe that, as argued earlier, para∃↔L = para∃↔P = para∃→P = para-NP and para∃→L =
para-NL. Also observe that para∃↔f logP = para∃→f logP = W[P] by one of the many possible defini-
tions of W[P].

The above definition can easily be extended to the case where a universal quantifier is used
instead of an existential one and where sequences of quantifiers are used. This is interpreted
in the usual way as having a choice tape for each quantifier and the different “exists . . . for
all”-conditions must be met in the order the quantifiers appear. For instance, for problems in
para∃↔f log∃→L we have x ∈ Q if, and only if, there exists a bitstring of length fx log2 n for the
first, two-way-readable choice tape for which an NL-machine accepts. The classes para-NL[f log],
para-L-cert, and para-NL-cert introduced in an ad hoc manner by Elberfeld et al. in [8] can now
be represented systematically: They are para∃→f logL, para∃↔f logL, and para∃↔f log∃→L, respectively.
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In order to make the notation more useful in practice, instead of “∃→” let us write “N”
and instead of “∃→f log” we write “β” as is customary. As a new notation, instead of “∃↔f log”
and “∀↔f log” we write “W” and “W∀,” respectively. The three classes of [8] now become paraβL,
paraWL, and paraWNL.

Our reasons for using “W” to denote ∃↔f log will be explained fully in Section 3; for the moment
just observe that W[P] = paraWP holds. To get a better intuition on the W-operator, note that
it provides machines with “fx log2 n bits of nondeterministic information” or, equivalently, with
“fx many nondeterministic positions in the input” and these bits are provided as part of the
input. This allows us to also apply the W-operator to classes like NC1 that are not defined in
terms of Turing machines.

The right half of Figure 1 depicts the known inclusions between the introduced classes, the
left half shows the classes introduced next.

2.2 Parameterized Time–Space Classes

In classical complexity theory, the major complexity classes are either defined in terms of time
complexity (P, NP, EXP) or in terms of space complexity (L, NL, PSPACE), but not both at the
same time: by the well-known inclusion chain L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXP

space and time are intertwined in such a way that bounding either automatically bounds the
other in a specific way (at least for the major complexity classes). In the parameterized world,
interesting new classes arise when we restrict time and space simultaneously: namely whenever
the time is “para-restricted” while space is “X-restricted” or vice versa.

Definition 2.2. For a space bound s and a time bound t, both of which may depend on a
parameter k and the input length n, let D[t, s] denote the class of all parameterized problems that
can be accepted by a deterministic Turing machine in time t(κ(x), |x|) and space s(κ(x), |x|).
Let N[t, s] denote the corresponding nondeterministic class.

Four cases are of interest: First, D[fpoly, f log], meaning that t(k, n) = f(k) · nO(1) and
s(k, n) = f(k) · O(log n), contains all problems that are “fixed parameter tractable via a ma-
chine needing only slice-wise logarithmic space,” and, second, the nondeterministic counterpart
N[fpoly, f log]. The two other cases are D[nf , fpoly] and N[nf , fpoly], which contain problems
that are “in slice-wise polynomial time via machines that need only fixed parameter polynomial
space.” See Figure 1 for the trivial inclusions between the classes.

In Section 4 we will see that these classes are not only of scholarly interest. Rather, we will
show that lcs parameterized by the number of input strings is complete for N[fpoly, f log].

3 Complete Problems for Bounded Nondeterminism

In this section we present new natural problems that are complete for paraWNL and paraWL.
Previously, it was only known that the following “colored reachability problem” [8] is complete
for paraWNL: We are given an edge-colored graph, two vertices s and t, and a parameter k.
The question is whether there is a path from s to t that uses only k colors. Our key tool for
proving new completeness results will be the introduction of a “union operation,” which turns
P-, NL-, and L-complete problems into paraWP-, paraWNL-, and paraWL-complete problems,
respectively. Building on this, we prove the parameterized associative generability problem
to be complete for paraWNL. Note that the underlying classical problem is well-known to be
NL-complete and, furthermore, if we drop the requirement of associativity, the parameterized
and classical versions are known to be complete for paraWP and P, respectively.
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At this point, we remark that Guillemot, in a paper [12] on parameterized time complexity,
uses “WNL” to denote a class different from the class paraWNL defined in this paper. Guillemot
chose the name because his definition of the class is derived from one possible definition of
W[1] by replacing a time by a space constraint. Nevertheless, we believe that our definition
of a “W-operator” yields the “right analogue” of W[P]: First, there is the above pattern that
parameterized version of problems complete P, NL, and L tend to be complete for paraWP,
paraWNL, and paraWL, respectively. Furthermore, in Section 4 we show that the class WNL

defined and studied by Guillemot is exactly the fpt-reduction closure of the time–space class
N[f poly, f log].

Union Problems. For numerous problems studied in complexity theory the input consists of
a string in which some positions can be “selected” and the objective is to select a “good” subset
of these positions. For instance, for the satisfiability problem we must select some variables
such that setting them to true makes a formula true; for the circuit satisfiability problem we
must select some input gates such that when they are set to 1 the circuit evaluates to 1; and
for the exact cover problem we must select some sets from a family of sets so that they form a
partition of the union of the family. In the following, we introduce some terminology that allows
us to formulate all of these problems in a uniform way and to link them to the W-operator.

Let Σ be an alphabet that contains none of the three special symbols ?, 0, and 1. We call
a word t ∈ (Σ ∪ {?})∗ a template. We call a word s ∈ (Σ ∪ {0, 1})∗ an instantiation of t if
s is obtained from t by replacing exactly the ?-symbols arbitrarily by 0- or 1-symbols. Given
instantiations s1, . . . , sk of the same template t, their union s is the instantiation of t that has
a 1 exactly at those positions i where at least one sj has a 1 at position i (the union is the
“bitwise or” of the instantiated positions and is otherwise equal to the template).

Given a language A ⊆ (Σ∪{0, 1})∗, we define three different kinds of union problems for A.
Each of them is a parameterized problem where the parameter is k. As we will see in a moment,
the first kind is linked to the W-operator while the last kind links several well-known languages
from classical complexity theory to well-known parameterized problems. We will also see that
the three kinds of union problems for a language A often all have the same complexity.

1. The input for p-family-union-A are a template t ∈ (Σ ∪ {?})∗ and a family (S1, . . . , Sk)
of k sets of instantiations of t. The question is whether there are si ∈ Si for i ∈ {1, . . . , k}
such that the union of s1, . . . , sk lies in A.

2. The input for p-subset-union-A are a template t ∈ (Σ ∪ {?})∗, a set S of instantiations
of t, and a number k. The question is whether there exists a subset R ⊆ S of size |R| = k
such that the union of R’s elements lies in A.

3. The input for p-weighted-union-A are a template t ∈ (Σ ∪ {?})∗ and a number k.
The question is whether there exists an instantiation s of t containing exactly k many
1-symbols such that s ∈ A?

To get an intuition for these definitions, think of instantiations as words written on trans-
parencies with 0 rendered as an empty box and 1 as a checked box. Then for the family union
problem we are given k heaps of transparencies and the task is to pick one transparency from
each heap such that “stacking them on top of each other” yields an element of A. For the
subset union problem, we are only given one stack and must pick k elements from it. We call
the weighted union problem a “union” problem partly in order to avoid a clash with existing
terminology and partly because the weighted union problem is the same as the subset union
problem for the special set S containing all instantiations of the template of weight 1.
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Concerning the promised link between well-known languages and parameterized problems,
consider A = circuit-value-problem (cvp) where we use Σ to encode a circuit and use 0’s
and 1’s solely to describe an assignment to the input gates. Then the input for p-weighted-
union-cvp are a circuit with ?-symbols instead of a concrete assignment together with a number
k, and the question is whether we can replace exactly k of the ?-symbols by 1’s (and the other by
0’s) so that the resulting instantiation lies in cvp. Clearly, p-weighted-union-cvp is exactly
the W[P]-complete problem p-circuit-sat, which asks whether there is a satisfying assignment
for a given circuit that sets exactly k input gates to 1.

Concerning the promised link between the union problems and the W-operator, recall that
the operator provides machines with fx nondeterministic indices as part of the input. In par-
ticular, a W-machine can mark fx different “parts” of the input – like one element from each
of fx many sets in a family, like the elements of a size-fx subset of some set, or like fx many
positions in a template. With this observation it is not difficult to see that if A ∈ C, then all
union versions of A lie in paraWC. A much deeper observation is that the union versions are
also often complete for these classes. In the next theorem, which states this claim precisely, the
following definition of a compatible logspace projection p from a language A to a language B is
used: First, p must be a logspace reduction from A to B. Second, p is a projection, meaning
that each symbol of p(x) depends on at most one symbol of x. Third, for each word length n
there is a single template tn such for all x ∈ Σn the word p(x) is an instantiation of tn.

Theorem 3.1. Let C ∈ {NC1,L,NL,P}. Let A be complete for C via compatible logspace
projections. Then p-family-union-A is complete for paraWC under para-L-reductions.2

Proof. For containment, on input of a template t and family (S1, . . . , Sk) of sets of instantiations
of t, a paraWC-machine or -circuit interprets its k log2 n nondeterministic bits as k indices, one
for each Si. Let si ∈ Si be the elements selected in this way. We run a simulation of the
C-machine (or C-circuit) that decides A on the union s of s1, . . . , sk. For logspace machines, we
may not have enough space to write s on a tape, so whenever the machine would like to know
the jth bit of u, we simply compute the bitwise-or of the jth positions of the si.

For hardness, consider any problem (Q,κ) ∈ paraWC. By definition, this means the follow-
ing: There are a language X ⊆ Γ∗ in C and computable functions π : N → Π∗ and f : N → N
such that x ∈ Q if, and only if, there is a string b ∈ {0, 1}fx log2 n with (x, π(κ(x)), b) ∈ X.
Furthermore, since A is complete for C via compatible logspace projections, we can reduce X
to A via some p. (As always, n = |x| and fx = f(κ(x)).)

For the reduction of (Q,κ) to p-family-union-A, let an input x be given. Our para-L-re-
duction first computes π(κ(x)). Since our reduction p is compatible, for all possible b the string
p(x, π(κ(x)), b) will have 0-symbols and 1-symbols at the same positions and all other positions
will not vary with b at all. Our template t will be the string p(x, π(κ(x)), b) with ?-symbols
placed at these positions (as argued, we can use any b).

To define the sets of instances Si, observe that the strings b ∈ {0, 1}fx log2 n can be thought
of as sequences of fx symbols from the alphabet ∆ = {0, 1}log2 n, whose elements we call blocks.
For i ∈ {1, . . . , fx} let Si = {mδ

i | δ ∈ ∆} where mδ
i replaces the rth ?-symbol of the template t

by c ∈ {0, 1} as follows: If the rth position depends on a symbol in (x, π(κ(x)), b) that lies in a
block of b, but not in the ith block, let c = 0. Otherwise, let c be whatever symbol (0 or 1) the
reduction outputs when the ith block is set to δ. This concludes the construction.

As an example for the construction, suppose the reduction p simply doubles its input (so
w is mapped to ww) and π just returns the empty string, and Σ = {α, β, γ}. Consider, say,
x = αβγα and assume fx = 2. We then have ∆ = {00, 01, 10, 11}. The reduction would

2The proof shows that the theorem actually also holds for any “reasonable” class C and any “reasonable”
weaker reduction.
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produce two sets S1 and S2. For S1, we have a look at what p does on input of a string like
(x, π(κ(x)), b). For simplicity let us ignore parentheses and commas, and consider b = 1111,
so this string would just be αβγα1111. The reduction maps this to αβγα1111αβγα1111. In
this string, the fifth, sixth, thirteenth, and fourteenth bits actually depend on the first block of
αβγα1111, so the reduction would produce the first set

S1 = {αβγα0000αβγα0000,
αβγα0100αβγα0100,

αβγα1000αβγα1000,

αβγα1100αβγα1100}.

In a similar manner, the reduction would produce the second set

S2 = {αβγα0000αβγα0000,
αβγα0001αβγα0001,

αβγα0010αβγα0010,

αβγα0011αβγα0011}.

Observe that, indeed, we can get every string p(x, π(κ(x)), b) by taking the union of one string
from S1 and one string from S2.

To see that the reduction is correct, consider the union of the elements of any set {mδ1
1 , . . . ,

m
δfx
fx

} where the mδi
i are chosen from the different Si. By construction, their union will be

exactly the image of (x, π(κ(x)), δ1 . . . δfx) under p. In particular, x ∈ Q holds if, and only if,
we can choose one instantiation from each Si such that their union is in A.

Parameterized Satisfiability Problems. Recall that the problem p-weighted-union-cvp
equals p-circuit-sat. Since one can reduce p-family-union-cvp to p-weighted-union-cvp
(via essentially the same reduction as that used in the proof of Theorem 3.2 below), Theorem 3.1
provides us with a direct proof that p-circuit-sat = p-weighted-union-cvp is complete
for paraWP. We get an even more interesting result when we apply the theorem to bf, the
propositional formula evaluation problem. We encode pairs of formulas and assignments in the
straightforward way by using 0 and 1 solely for the assignment. Since bf is complete for NC1

under compatible logspace reductions, see [3, 2], p-family-union-bf is complete for paraWNC1

by Theorem 3.1. By further reducing the problem to p-weighted-union-bf, we obtain:

Theorem 3.2. p-weighted-union-bf is para-L-complete3 for paraWNC1.

Proof. The language bf is complete for NC1, see [3, 2], and completeness can be achieved by
compatible projections: Indeed, for input words of the same length, the reduction will map
them to the same formula, only the assignment to the variables will differ (the input word is
encoded solely in this assignment). Thus, by Theorem 3.1 we get that p-family-union-bf is
complete for paraWNC1 under para-L-reductions (actually, also under weaker reductions like
parameterized first-order reduction, but they are not in the focus of this paper).

We now show that p-family-union-bf reduces to p-subset-union-bf, which in turn re-
duces to p-weighted-union-bf. For the first reduction, let the sets S1 to Sk be given as input.
All elements sij of the Si represent assignments to the variables of the same formula φ. Our
aim is to construct a set S and a new formula φ′ = φ ∧ ψ, where the job of ψ is to ensure that
any selection of k elements from S can only lead to φ′ being true if the selection corresponds to

3As in Theorem 3.1 one can also use weaker reductions.
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picking “exactly one element from each Si.” In detail, for each sij we introduce a new variable
vij . The assignment s′ij for φ′ is the same as sij for the “old” variables and is 1 only for vij
among the new variables (vij “tags” sij). As an example, suppose there are three variable x,
y, and z in φ and suppose S1 = {φ000, φ001} (meaning that one assignment sets all variables
to false and the other sets only z to true) and S2 = {φ001}. Then there would be three addi-

tional new variables and S = {φ′000 100, φ′001 010, φ′001 001}. Now, setting ψ =
∧k

i=1

∨|Ii|
j=1 vij

ensures that ψ will only be true for the union of k assignments taken from S if exactly one
assignment was taken from each Si.

Next, we reduce p-subset-union-bf to p-weighted-union-bf. Towards this end, let S =
{b1, . . . , bn} be given as input and let φ be the formula underlying the si. Our new formula φ′

has exactly n variables v1 to vn and is obtained from φ by leaving the structure of φ identical,
but substituting each occurrence of a variable x as follows: let X ⊆ {1, . . . , n} be the set of
indices i such that in si the variable x is set to 1. Then we substitute x by

∨
i∈X vi. The output

S′ of the reduction is φ′ together with all assignments making exactly one of the variables vi
true. As an example, let φ = x∧ (y → x)∧ z and let S = {φ000, φ101, φ010, φ111}. Then there
would be four variables v1 to v4 and the formula φ′ would be v2 ∧ ((v3 ∨ v4) → v2) ∧ (v2 ∨ v4)
and the set S′ would be {φ′0001, φ′0010, φ′0100, φ′1000}.

To see that this reduction is correct, first assume that we have (t, S, k) ∈ p-subset-union-bf
via a selection {s1, . . . , sk} ⊆ S. Then we also have (t′, S′, k) ∈ p-weighted-union-bf via the
k elements of S′ where exactly the variables corresponding to s1 to sk are set to true: in φ′ the
expressions

∨
i∈X vi that was substituted for a variable x will be true exactly if one of the si has

set x to 1. Thus, φ′ will evaluate to 1 for the assignment in which exactly the selected vi are true
if, and only if, φ evaluates to true for the “bitwise or” of the assignments s1, . . . , sk – which it
does by assumption. For the other direction, assume that (t′, S′, k) ∈ p-weighted-union-bf.
Then, by essentially the same argument, we obtain a subset of S whose bitwise or makes φ
evaluate to 1.

By definition, W[sat] is the fpt-reduction closure of p-weighted-sat, which is the same
as p-weighted-union-bf. Thus, by the theorem, W[sat] is also the fpt-reduction closure of
paraWNC1 – a result that may be of independent interest. For example, it shows that NC1 = P

implies W[sat] = W[P]. Note that we do not claim W[sat] = paraWNC1 since paraWNC1 is
presumably not closed under fpt-reductions.

Graph Problems. In order to apply Theorem 3.1 to standard graph problems like reach
or cycle, we encode graphs using adjacency matrices consisting of 0- and 1-symbols. Then a
template is always a string of n2 many ?-symbols for n vertex graphs. The “colored reachability
problem” mentioned at the beginning of this section equals p-subset-union-reach.4 Note
that any reduction to a union problem for this encoding is automatically compatible as long as
the number of vertices in the reduction’s output depends only on the length of its input.

Applying Theorem 3.1 to standard L- or NL-complete problems yields that their family union
versions are complete for paraWL and paraWNL, respectively. By reducing the family versions
further to the subset union version, we get the following:

Theorem 3.3. For A ∈ {reach,dag-reach,cycle}, p-subset-union-A is complete for
paraWNL, while for B ∈ {undirected-reach, tree, forest, undirected-cycle}, the prob-
lem p-subset-union-B is complete for paraWL.

4For exact equality, in the colored reachability problem we must allow edges to have several colors, but this
is does not change the problem complexity.
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Proof. For each of the problems, we reduce its family union version to it. This suffices: By
Theorem 3.1 and the fact that the underlying problems like reach are complete for NL and L

under compatible logspace projections (even under first-order projections), the family versions
are complete for the respective classes.

Recall that the difference between the problems p-family-union-A and p-subset-union-A
is that in the first we are given k sets Si from each of which we must choose one element, while
for the latter we can pick k elements from a single set S arbitrarily. If the reduction were to
just set S to the union of the Si, then many choices of k sets of S will correspond to taking
multiple elements from a single Si. In such cases, their union should not be an element of A.

I1 =

{ x

yz

,

x

yz

}
and I2 =

{ x

yz

}

are mapped to

I =

{ x

yz

v1xy
v2xy

,

x

yz

,

x

yz

}
.

Figure 2: An example of the reduction from a family union graph problem to a subset union
graph problem. In the example, V = {x, y, z}. The si are indicated as edge sets even though,
in reality, they are bitstrings encoding adjacency matrices. The small vertices are the v1ab and
v2ab, but only those for (a, b) ∈ {(x, y), (y, z), (z, x)} are shown.

To achieve the effect that the union of a subset of S with multiple elements from the same
Si is not in A, we use the same construction for all A, except for A = forest. The construction
works as follows: Since the Si are compatible, they are defined over the same set V of vertices.
Each s ∈ Si encodes an edge set Es ⊆ V 2. We construct a new vertex set V ′ ⊇ V as follows:
For each pair (a, b) ∈ V 2 we introduce k new vertices v1ab, . . . , v

k
ab and add them to V ′. For

each s ∈ Si we define a new edge set E′
s ⊆ V ′ × V ′ as follows: First, for each (a, b) ∈ V 2

let (vi−1
ab , viab) ∈ E′

s, where v
0
ab = a. Second, for each (a, b) ∈ Es, let (vkab, b) ∈ E′

s. Let s′ be
the bitstring encoding the adjacency matrix of E′

s. We set S = { s′ | s ∈ Si for some i}. An
example of how this reduction works is depicted in Figure 2.

In order to argue that the reduction works for all problems, we make two observations.
Given any subset {s′1, . . . , s′k} ⊆ S, for each s′i there is a unique corresponding si, lying in
(some) Sj . Let G

′ = (V ′, E′) denote graph whose adjacency matrix is the union of {s′1, . . . , s′k}
and, correspondingly, let G = (V,E) be the union of the Si. Now, first assume that, indeed,
we have si ∈ Si for all i ∈ {1, . . . , k}. Then for every pair (a, b) ∈ V the new vertices v1ab to
vkab will form a path in G′ attached to a. Furthermore, for every edge (a, b) ∈ E there is a path
from a to b in E′. On the other hand, for (a, b) /∈ E, we cannot get from a to b in G′ using only
new vertices: the edge vkab → b will be missing. This proves our first observation: for vertices
a, b ∈ V there is a path from a to b in G′ if, and only if, there is such a path in G. Our second
observation concerns the case that there are two strings s′i and s

′
j such that si and sj lie in the

same set Sx. In this case, for every two vertices a, b ∈ V at least one edge is missing along the
path v0ab to v

k
ab. Thus, we can observe that there is no path from any a ∈ V to any other b ∈ V

in G′.
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Let us now argue that the reduction is correct: For the reachability problem, by the first
observation reachability is correctly transferred from G to G′ and by the second observation no
“wrong” choice of s′i will induce reachability. The exact same argument holds for undirected
reachability and reachability in dags. For trees and cycles, the argument also works since trees
and cycles remain trees and cycles for “correct” choices of the s′i and they get destroyed for any
“wrong” choice.

For forests, the reduction described above does not work since in case several s′i are picked
such that their si stem from the same Sj , the graph G′ becomes a collection of small trees: a
forest – and this is exactly what should not happen. The trick is to use a different reduction:
For every pair si, sj ∈ Sx for x ∈ {1, . . . , k} we add three new vertices to the graph: a, b, and
c. In s′i we add the edges (a, b) and (b, c), in s′j we add the edge (c, a). Now, clearly, whenever
s′i and s

′
j are picked stemming from the same Sx, a cycle will ensue; and if only one si is picked

from each Si, paths of length 1 or 2 will result in the new vertices that do not influence whether
the graph is a forest or not.

To conclude this section on union graph problems, we would like to point out that one
can also ask which problems are complete for the “co-W-classes” paraW∀NL and paraW∀L.
It is straightforward to see that an analogue of Theorem 3.1 holds if we define problems p-
partitioned-union∀-A as a “universal version” of the partitioned union problem (we ask
whether for all choices of bi their union is in A). For instance, p-partitioned-union∀-cycle
is complete for paraW∀L. It is also relatively easy to employ the same ideas as those from
the proof of Theorem 3.3 to show that the universal union versions of all problems mentioned
in Theorem 3.3 are complete for paraW∀NL and paraW∀L except for p-union∀-tree, whose
complexity remains open.

Associative Generability. The last union problem we study is based on the generators
problem, which contains tuples (U, ◦, x,G) where U is a set, ◦ : U2 → U is (the table of) a
binary operation, x ∈ U , and G ⊆ U is a set. The question is whether the closure of G
under ◦ (the smallest superset of G closed under ◦) contains x. A restriction of this problem is
associative-generator, where ◦ must be associative. By two classical results, generators
is P-complete [14] and associative-generator is NL-complete [15].

In order to apply the union operation to generator problems, we encode (U, ◦, x,G) as follows:
U , ◦, and x are encoded in some sensible way using the alphabet Σ. To encode G, we add a
1 after the elements of U that are in G and we add a 0 after some elements of U that are not
in G. This means that in the underlying templates we get the freedom to specify that only some
elements of U may be chosen for G. Now, p-weighted-union-generators equals the problem
known as p-generators in the literature: Given ◦, a subset C ⊆ U of generator candidates, a
parameter k, and a target element x, the question is whether there exists a set G ⊆ C of size
|G| = k such that the closure of G under ◦ contains x. Flum and Grohe [11] have shown that p-
generators is complete for W[P] = paraWP (using a slightly different problem definition that
has the same complexity, however). Similarly, p-weighted-union-associative-generator
is also known as p-agen and we show:

Theorem 3.4. p-agen is complete for paraWNL.

Proof. Clearly, p-agen ∈ paraWNL since the nondeterministic bits provided by the W-operator
suffice to describe the generator set and since testing whether a set is, indeed, a generator is
well-known to lie in NL.

For hardness note that agen is complete for NL under compatible logspace projections,
see [15]. By Theorem 3.1 we then have that p-family-union-agen is complete for paraWNL.
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We now show that this problem reduces to p-subset-union-agen, which in turn reduces to
p-weighted-union-agen, i. e., p-agen.

Hardness of p-subset-union-agen. For the first reduction let the compatible sets S1, . . . , Sk
be given as input. The template encodes a universe U , a set of generator candidates C ⊆ U , a
target element x ∈ U , and an operation ◦ : U2 → U . The instantiations encode subsets of the
generator candidates. Our aim is to construct a new instance of p-subset-union-agen, i. e., a
single set S′ of compatible strings encoding a universe U ′, a set of generator candidates C ′ ⊆ U ′,
a target element x′, and an operation ◦′ such that there are k elements of S′ that induce a
generating set for x′ if, and only if, there are k elements si, one from every Si, such that they
induce a generating set of x. To achieve this we first set U ′ = U∪{e1, . . . , ek} for new elements ei,
one for each Si, and also add them to the new set of generator candidates C ′ = C∪{e1, . . . , ek}.
We then augment the operation ◦ to ◦′ with respect to the new elements requiring that no ei can
be generated by any combination of two other elements from the universe and that no ei can be
used to generate elements from the universe other than itself (we achieve this by actually using
whole string as elements of our universe, as will be discussed later in this proof). Furthermore,
we insert a new target element x′ into the universe. Our aim is to enforce that x′ can only be
generated via the expression x◦′ e1◦′ e2◦′ · · ·◦′ ek. Finally, we add an error element error to the
universe that we will use to create dead ends in the evaluation of expressions: Any expression
that does not make sense or contains the error element is evaluated to error.

The set S′ then contains a string s′ij for every sij ∈ Si that is essentially sij adjusted to U ′,
C ′, x′, and ◦′, where we require that the binary string that selects a set of generators from C ′

also selects ei and no other of the introduced elements ej . From this we have that there is a
selection of k elements of S′ that induces a set of generators whose closure contains x, e1, . . . , ek
and therefore also x′ if, and only if, there is a set of k strings si ∈ Si describing a set of generators
whose closure contains x.

Unfortunately, our operator ◦′ is binary and, therefore, we cannot evaluate expressions like
x◦′ e1 ◦′ e2 ◦′ · · · ◦′ ek in a single step. Moreover, because of the required associativity of ◦′, it has
to be possible to completely evaluate any subexpression of a larger expression. To achieve this,
we actually use strings as elements of our universe, instead of single symbols, that are evaluated
“as far as possible.” For instance, the expression a ◦′ b ◦′ c ◦′ e1 ◦′ e2 evaluates to d ◦′ e1 ◦′ e2 if
the expression a ◦′ b ◦′ c evaluates to d. Since d ◦′ e1 ◦′ e2 cannot be evaluated further, we want
the string de1e2 to be part of our universe.

To formalize the idea of “strings evaluated as far as possible,” we need some definitions.
Given an alphabet Γ, let us call a set R of rules of the form w → w′ with w,w′ ∈ Γ∗ a
replacement system. An application of a rule w → w′ takes a word uwv and yields the word
uw′v; we write uwv ⇒R uw′v in this case. A word is irreducible if no rule can be applied
to it. Let ≡R be the reflexive, symmetric, transitive closure of ⇒R. Given a word u, let
[u]R = {v | u ≡R v} be the equivalence class of u. We use Γ∗/≡R = {[v]R | v ∈ Γ∗} to denote
the set of all equivalence classes of Γ∗. Observe that we can define a natural concatenation
operation ◦R on the elements of Γ∗/≡R : Let [u]R ◦R [v]R = [u ◦ v]R. Clearly, this operation is
well-defined and associative. An irreducible representative system of R is a set of irreducible
words that contains exactly one word from each equivalence class in (U ′)∗/≡R .

In the context of our reduction, Γ will be U ′ and R contains the following rules: First, for
elements a, b, c ∈ U of the original universe U with a◦b = c, we have the rule ab→ c. Second, we
have the rule xe1 . . . ek → x′. Third, we have the rules erroru → error and uerror → error

for all u ∈ U ′. Fourth, we have the rules eiu → error for all u ∈ U ′ \ {ei+1} and x′u → error

for all u ∈ U ′.
We can now, finally, describe the sets to which the reduction actually maps an input

(U, ◦, x, C): The universe U ′′ is an irreducible representative system of R, the operation ◦′′
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maps a pair (u, v) to the representative of [u ◦ v]R, let the target element x′′ be the representa-
tive of [x′]R, and let C ′′ contain all representatives of [c]R for c ∈ C ′}.

Our first observation is that (U ′)∗/≡R (and hence also U ′′) has polynomial size: Consider
any [w]R and let w be irreducible. If w does not happen to the error symbol itself, it cannot
contain the error symbol (by the third rule). Furthermore, in w there cannot be any element
from U to the right of any ei or of x

′ (by the fourth rule). Thus, it must be of the form w1w2

with w1 ∈ U∗ and w2 ∈ {e1, . . . , ek, x′}∗. Then w1 must actually be a single letter (by the first
rule) and w2 must by x′ or a sequence eiei+1 . . . ej for some i ≤ j (by the fourth rule). This
shows that the total number of different equivalence classes is at most 1 + |U ′|(k2 + 1).

The second observation concerns the equivalence class of [x′]R, which contains the string
xe1 . . . ek. We can only generate this class from elements [c]R with c ∈ C ′ if these elements
include all [ei]R and also the equivalence classes [c]R of elements c ∈ C that suffice to generate x.
This shows the correctness of the reduction.

Hardness of p-weighted-union-agen. Given a compatible set S = {s1, . . . , sk} whose
strings encode a universe U , a set of generator candidates C ⊆ U , an associative opera-
tion ◦ : U2 → U , and a target element x ∈ U , together with a selection of generator candi-
dates, we have to construct an instance S′ such that every string only selects a single generator
candidate. To achieve this we construct a new universe U ′ that contains the elements of the
old universe U with new elements described below. As in the previous reduction, we define
reduction rules alongside these new elements and then use an irreducible representative system
of the rules as our universe.

1. We have an error element error with similar rules as above.

2. We have an end element /. No rule has / on its right-hand side. Therefore, / has to be
an element of any generating set G. We require this element for technical reasons that we
will discuss later. There are rules /u→ error for all u ∈ U ′.

3. We have a counter element . Like the end symbol, this symbol cannot be generated by
any expression and has to be an element of any generating set.

4. We have elements σi for each si ∈ S, which we call selector elements. The idea behind
these elements is that we will use them together with the counter element to enumerate
all the elements u1, . . . , ul of the generator candidates selected by a string si ∈ S. The
objective is that strings like σi can be replaced by u4. We will give rules for this in a
moment.

In our new template, the candidates are (the representatives of the equivalence classes of)
the σi as well as /, , and error. Now, there is a selection of k + 3 elements of S′ that forms a
generating set for the target element if, and only if, there is a selection of k elements of S that
forms a generating set.

It remains to explain how rules can be set up such that σi gets replaced by u4. Consider
the expression σ1 σ1 σ3 σ2 . Here, σ1 can be replaced by some u and σ3 by some u′, but σ2
cannot yet be replaced since it is not clear what element will be appended to the expression (if
there is another element). To fix this, we use the end symbol / that has to be appended to every
expression. It marks the right end of the expression and enforces the unambiguous evaluation
of the very last subexpression and, therefore, the whole expression. Translated into rules, this
means that if, for instance, σi should select u4, then we have rules like σi u → u4u if u 6= ,
but do not have the rule σi → u4.

The target is the irreducible string x/.
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Again, the number of equivalence classes is polynomially in the size of the universe. There-
fore, the reduction can be computed in para-L space.

With the machinery introduced in this section, this result may not seem surprising: asso-
ciative-generators is known to be complete for NL via compatible logspace reductions and,
thus, by Theorem 3.1, p-family-union-associative-generators is complete for paraWNL.
To prove Theorem 3.4 we “just” need to further reduce to the weighted union version. However,
unlike for satisfiability and graph problems, this reduction turns out to be technically difficult.

4 Problems Complete for Time–Space Classes

The classes para-P = FPT and XL appear to be incomparable: Machines for the first class
may use fxn

O(1) time and as much space as they want (which will be at most fxn
O(1)), while

machines for the second class may use fx log n space and as much time as they want (which will
be at most nfx). A natural question is which problems are in the intersection para-P ∩ XL or
– even better – in the class D[f poly, f log], which means that there is a single machine using
only fixed-parameter time and slice-wise logarithmic space simultaneously.

It is not particularly hard to find artificial problems that are complete for the different
time–space classes introduced in Section 2.2; we present such problems at the beginning of this
section. We then move on to automata problems, but still some ad hoc restrictions are needed to
make the problems complete for time–space classes. The real challenge lies in finding problems
together with natural parameterization that are complete. We present one such problem: the
longest common subsequence problem parameterized by the number of strings.

Resource-Bounded Machine Acceptance. A good starting point for finding complete
problems for new classes is typically some variant of Turing machine acceptance (or halting).
Since we study machines with simultaneous time–space limitations, it makes sense to start
with the following “time and space bounded computation” problems: For dtsc the input is a
single-tape dtm M together with two numbers s and t given in unary. The question is whether
M accepts the empty string making at most t steps and using at most s tape cells. The problem
ntsc is the nondeterministic variant. As observed by Cai et al. [4], the fpt-reduction closure of
pt -ntsc (that is, the problem parameterized by t) is exactly W[1]. In analogy, Guillemot [12]
proposed the name “WNL” for the fpt-reduction closure of ps -ntsc (now parameterized by s
rather than t). As pointed out in Section 3, we believe that this name should be reserved for
the class resulting from applying the operator ∃↔f log to the class NL. Furthermore, the following
theorem shows that ps -ntsc is better understood in terms of time–space classes:

Theorem 4.1. The problems ps-dtsc and ps-ntsc are complete for the classes D[f poly, f log]
and N[f poly, f log], respectively.

Proof. We only prove the claim for the deterministic case, the nondeterministic case works
exactly the same way. For containment, on input of a machineM , a time bound t in unary, and
a space bound s in unary, a D[f poly, f log]-machine can simply simulate M for t steps, making
sure that no more than s tape cells are used. Clearly, the time needed for this simulation is a
fixed polynomial in t and, hence, in the input length. The space needed to store the s tape cells
is clearly O(s log n) since O(log n) bits suffice to store the contents of a tape cell (the amount
needed is not O(1) since the tape alphabet is part of the input).

For hardness, consider any problem (Q,κ) ∈ D[f poly, f log] via some machine M . Let
tM (k, n) and sM (k, n) be the time and space bounds of M , respectively. The reduction must
now map inputs x to triples (M ′, 1t, 1s). The reduction faces two problems: First, while M
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has an input tape and a work tape, M ′ has no input tape and starts with the empty string.
Second, while t can simply be set to tM (κ(x), x), s cannot be set to sM (κ(x), x) since this
only lies in O

(
f(κ(x)) log |x|

)
for some function f – while in a parameterized reduction the

new parameter may only depend on the old one (κ(x)) and not on the input length. The first
problem can be overcome using a standard trick: M ′ simulates M and uses its tape to store the
contents of the work tape of M . Concerning the input tape (which M ′ does not have), when
M accesses an input symbol, M ′ has this symbol “stored in its state,” which means that there
are |x| many copies of M ’s state set inside M ′, one for each possible position of the head on the
input tape. A movement of the head corresponds to switching between these copies. In each
copy, the behaviour of the machine M for the specific input symbol represented by this copy is
hard-wired.

The second problem is a bit harder to tackle, but one can also apply standard tricks. Instead
of mapping to M ′, we actually map to a new machine M ′′ that performs the following space
compression trick: For each log2 |x| many tape cells of M ′, the machine M ′′ uses only one tape
cell. This can be achieved by enlarging the tape alphabet of M ′: If the old alphabet was Γ,
we now use Γlog2 |x|, which is still polynomial in |x|. Naturally, we now have to adjust the
transitions and states of M ′ so that a step of M ′ for its old tape is now appropriately simulated
by one step of M ′′ for its compressed tape.

Taking it all together, we map x to (M ′′, t, s) where t is as indicated above and s =
sM (κ(x), x)/ log2 |x|, which is bounded by a function depending only on κ(x). Clearly, the
reduction is correct.

Automata. A classical result of Hartmanis [13] states that L contains exactly the languages
accepted by finite multi-head automata. In [8], Elberfeld et al. used this to show that pheads-
mdfa (the multi-head automata acceptance problem parameterized by the number of heads) is
complete for XL. It turns out that multi-head automata can also be used to define a (fairly) nat-
ural complete problem for D[f poly, f log]: A dag-automaton is an automaton whose transition
graph is a topologically sorted dag (formally, the states must form the set {1, . . . , |Q|} and the
transition function must map each state to a strictly greater state). Clearly, a dag-automata
will never need more than |Q| steps to accept a word, which allows us to prove the following
theorem:

Theorem 4.2. The problems pheads-dag-mdfa and pheads-dag-mnfa are complete for the
classes D[f poly, f log] and N[f poly, f log], respectively.

Proof. We only prove the claim for deterministic automata, the argument works exactly the
same way for nondeterministic ones. Let (Q,κ) ∈ D[f poly, f log] via someM . Then (Q,κ) ∈ XL

will hold via the same machine M . In [8] it is shown that every problem in XL can be reduced
to pheads-mdfa via a simulation dating back to the work of Hartmanis [13]: Each step of M is
simulated by a number of movement of the heads of an automaton A. The positions of a fixed
number of heads of A store the contents of one work tape symbol and for each step of M the
heads of A perform a complicated ballet to determine the current contents of certain tape cells
and to adjust the heads accordingly.

For our purposes, it is only important that each step ofM gives rise to a polynomial number
(in the input length) of steps of A for some fixed polynomial independent of the number of
heads. In particular, to simulate f(κ(x))nc steps of M , the automaton A needs to perform
f ′(κ(x))nO(c) steps. Thus, to reduce (Q,κ) to pheads-dag-mdfa, we first compute A as in the
reduction to pheads-mdfa, but make f ′(κ(x))nO(c) copies of A. We then modify the transitions
such that when a transition in the ith copy A maps a state q to a state q′, the transition then
instead maps this q to q′ from the (i + 1)st copy, instead. Clearly, the resulting automaton is
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a dag-automaton and it accepts an input word if, and only if, M accepts it in time f(κ(x))nc

and using only f(κ(x)) log n space.

Instead of dag-automata, we can also consider a “bounded time version” of mdfa and mnfa,
where we ask whether the automaton accepts within s steps (s being given in unary). Both
versions are clearly equivalent: The number of nodes in the dag bounds the number of steps
the automaton can make and cyclic transitions graphs can be made acyclic by making s layered
copies.

Another, rather natural kind of automata are cellular automata, where there is one in-
stance of the automaton (called a cell) for each input symbol. The cells perform individual
synchronous computations, but “see” the states of the two neighbouring cells (we only consider
one-dimensional automata, but the results hold for any fixed number of dimensions). Formally,
the transition function of such an automaton is a function δ : Q3 → Q (for the cells at the left
and right end this has to be modified appropriately). The “input” is just a string q1 . . . qk ∈ Q∗

of states and the question is whether k cells started in the states q1 to qk will arrive at a situation
where one of them is in an accepting state (one can also require all to be in an accepting state,
this makes no difference).

Let dca be the language
{
(C, q1 . . . qk) | C is a deterministic cellular automaton that accepts

q1 . . . qk
}
. Let nca denote the nondeterministic version and let dag-dca and dag-nca be the

versions where C is required to be a dag-automaton (meaning that δ must always output a
number strictly larger than all its inputs). The following theorem states the complexity of the
resulting problems when we parameterize by k (number of cells):

Theorem 4.3. The problems pcells-dca and pcells-nca are complete for XL and XNL, respec-
tively. The problems pcells-dag-dca and pcells-dag-nca are complete for D[fpoly, f log] and
N[fpoly, f log], respectively.

Proof. We start with containment and then prove hardness for all problems.

Containment. Clearly, pcells-dca lies in XL since we can keep track of the k states of the
k cells in space O(k log n). To see that pcells-dag-dca ∈ D[f poly, f log], just observe that for
dag-automata no computation can take more than a linear number of steps. The arguments
for the nondeterministic versions are the same.

Hardness for Deterministic Cellular Automata. To prove hardness of pcells-dca for XL, we
reduce from a canonically complete problem for XL. Such a problem can easily be obtained from
ps -dtsc by lifting the restriction on the time allowed to the machine, leading to the following
problem:

Problem 4.4 (ps -deterministic-space-bounded-computation (ps -dsc)).

Instance: (The code of) a single-tape machine M , a number s.
Parameter: s.
Question: Does M accept on an initially empty tape using at most s tape cells?

Proving that this problem is complete for XL follows exactly the same argument as that
used in Theorem 4.1.

Let us now reduce ps -dsc to pcells-dca. The input for the reduction is a pair (M, s). We
must map this to some cellular automaton C and an initial string of states. The obvious idea is
to have one automaton for each tape cell that can be used by M . In detail, let Q be the set of
states of M and let Γ be the tape alphabet of M . The state set of C will be R = (Q∪{⊥})×Γ,
where ⊥ is used to indicate that the head is elsewhere. Clearly, a state string from Rs allows us
to encode a configuration of M . Furthermore, we can now set up the transition relation of C in
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such a way that one parallel step of the s automata corresponds exactly to one computational
step of M : as an example, suppose in state q for the symbol a the machine M will not move
its head, write b, and switch to state q′. Then in C for every x, y ∈ {⊥} × Γ there would be
a transition mapping (x, (q, a), y) to (q′, b) and also transitions mapping ((q, a), x, y) to x and
(x, y, (q, a)) to y. For triples corresponding to situations that “cannot arise” like the head being
in two places at the same time, the transition function can be setup arbitrarily. The initial
string of states for the cellular automaton is of course (q0,�)(⊥,�) . . . (⊥,�), where � is the
blank symbol and q0 is the initial state of M .

With this setup, the strings of states of the cellular automaton are in one-to-one corre-
spondence with the configurations of M . In particular, we will reach a state string containing
an accepting state if, and only if, M accepts when started with an empty tape. Clearly, the
reduction is a para-L-reduction.

Hardness for Nondeterministic Cellular Automata. One might expect that one can use the
exact same argument for nondeterministic automata and simply use the same reduction, but
starting from ps -nsc. However, there is a complication: The cells work independently of one
another. In particular, there is no guarantee that a nondeterministic decision taken by one
cell is also take by a neighboring cell. To illustrate this point, consider the situation where the
machineM can nondeterministically step “left or right” in some state q. Now assume that some
cell c is in state (q, x) and consider the cells c − 1 and c + 1. For both of them, there would
now be a transition allowing them to “take over the head” and both could nondeterministically
decide to do so – which is wrong, of course; only one of them may receive the head.

To solve this problem, we must ensure that a nondeterministic decision is taken “by only
one cell.” Towards this aim, we first modify M , if necessary, so that every nondeterministic
decision is a binary decision. Next, we change the state set of C: Instead of (Q ∪ {⊥}) × Γ
we use (Q × {0, 1} ∪ Q ∪ {⊥}) × Γ. In other words, in addition to the normal states from Q
we add two copies of the state set, one tagged with 0 and one tagged with 1. The idea is that
when a cell is in state (q, x) ∈ Q× Γ, it can nondeterministically reach ((q, 0), x) or ((q, 1), x).
However, from those states, we can deterministically make the next step: if the state is tagged
by 0, both the cell and the neighboring cells continue according to what happens for the first of
the two possible nondeterministic choices, if the state is tagged by 1, the other choice is used.
Note that as long as the state is not yet tagged, the neighboring cells do not change their state.

With these modifications, we arrive at a new cellular automaton with the property that
after every two computational steps of the automaton its string of states encodes one of the two
possible next computational steps of the machine M . This shows that the reduction is correct.

Hardness for Cellular dag-Automata. To prove hardness of pcells-dag-dca for the class
D[f poly, f log], we reduce form ps -dtsc, which is complete for the class by Theorem 4.1. On
input (M, 1t, 1s), the reduction is initially exactly the same as for pcells-dca and we just ig-
nore the time bound t. Once an automaton C has been computed, we can turn it into a
dag-automaton and incorporate the time bound as follows: We create t many copies of C and
transitions that used to be inside one copy of C now lead to the next copy (this is same idea
as in the proof of Theorem 4.2). This construction ensures that the automaton will accept the
initial sequence if, and only if, M accepts on an empty input tape in time t using space s.

For the nondeterministic case, we combine the constructions we employed for pcells-dag-dca
and for pcells-nca.

We remark that, for once, the nondeterministic cases need special arguments.

Pebble Games. Pebble games are played on graphs on whose vertices we place pebbles (a
pebbling is thus a subset of the set of vertices) and, over time, we (re)move and add pebbles
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according to different rules. Depending on the rules and the kind of graphs, the resulting
computational problems are complete for different complexity classes, which is why pebble
games have received a lot of attention in the literature. We introduce a simple pebble game
played by a single player, different versions of which turn out to be complete for different
parameterized space complexity classes: A threshold pebble game (tpg) consists of a directed
graph G = (V,E) together with a threshold function t : V → N. Given a pebbling X ⊆ V , a
vertex v can be pebbled after X if the number of v’s pebbled predecessors is at least v’s threshold,
that is,

∣∣{ p | (p, v) ∈ E} ∩ X
∣∣ ≥ t(v). Given a pebbling X, a next pebbling is any set Y of

vertices that can be pebbled after X. The maximum next pebbling is the maximum of such Y .
The language tpg contains all threshold pebble games together with two pebblings S and T

such that we can reach T when we start with S and apply the next pebbling operation repeatedly
(always replacing the current pebbling X completely by Y ). For the tpg-max problem, Y is
always chosen as the maximum next pebbling (which makes the game deterministic). For
dag-tpg and dag-tpg-max, the graph is restricted to be a dag. In the following theorem, we
parameterize by the maximum number of pebbles that may be present in any step.

Theorem 4.5. The problems ppebbles-tpg-max and ppebbles-tpg are complete for XL and
XNL, respectively. The problems ppebbles-dag-tpg-max and ppebbles-dag-tpg are complete for
D[fpoly, f log] and N[fpoly, f log], respectively.

Proof. We first prove containment for all problems. Then we prove completeness first for the
dag versions and then for the general version.

Containment. To see that ppebbles-tpg-max ∈ XL holds, observe that a deterministic Turing
machine can store a pebbling in space κ(x)O(log n). Starting with S, the machine can compute
the successive next steps and accepts when T is reached. Similarly, ppebbles-tpg ∈ XNL since
we can nondeterministically guess the correct subset of the next pebbling that has to be chosen.
For the problems for dags, observe that by the acyclicity the maximal distance of a pebble to
any sink in the graph gets reduced by 1 in every step. Since the maximal distance at the start
of the simulation is bounded by |V |, we must reach T after at most |V | steps and, thus, the
simulation can be done in both time k · |V |O(1) and space k ·O(log |V |).

Completeness of the maximum dag-version. We reduce pcells-dag-dca to the problem
ppebbles-dag-tpg-max, which proves the claim by Theorem 4.3. Let (C, s) be given as input for
the reduction and let Q be C’s state set. The reduction outputs a pebble graph that encodes
the computation of s many copies of C in the following way: It consists of t = |Q| layers, each
encoding a configuration during the computation. Each layer consists of s blocks of |Q| vertices
and placing one pebble in each block clearly encodes exactly one state string.

To connect two layers L and L′, we first insert an auxiliary layer between them with s · |Q|3
vertices, namely one vertex for each cell and each triple of a state of the preceding cell, in the
own cell, and in the next cell. The threshold of the auxiliary vertex is 3. (Actually, for the
first and last cell, only |Q|2 auxiliary vertices are needed and the threshold is 2. However, to
simplify the presentation, we ignore these special cells in the following). Note that in a game
step, an auxiliary vertex can be pebbled if, and only if, the previous, current, and next cell were
in specific states. Also note that there will be exactly s vertices on each auxiliary level that can
be pebbled in such a step if the level before it corresponded to a configuration.

We now connect the vertices of the auxiliary layer to L′. Let (c, q) be a vertex of L′,
corresponding to a cell position c and a state q. Its predecessors will be all auxiliary vertices
(c, q1, q2, q3) of the preceding layer such that C’s transition function maps (q1, q2, q3) to q. The
threshold of all layer vertices is 1. Figure 3 depicts an example of this construction. Since the
auxiliary vertices can be pebbled exactly if the automaton reaches the three states (q1, q2, q3),
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Layer i

Layer i+ 1

Auxiliary
layer

1, q1 1, q2 2, q1 2, q2 3, q1 3, q2

1, q1 1, q2 2, q1 2, q2 3, q1 3, q2

Figure 3: Example of two layers of a threshold game constructed for Q = {q1, q2} and s = 3.
The threshold of the large vertices is 1, the threshold of the small vertices is 2 at the borders
and 3 in the middle. Each pair of large vertices represents the two states a cell can be in. Note
how each auxiliary vertex can be pebbled if, and only if, a certain pair or triple of states is
reached by the cells in layer i. The two arrows leading into the vertex (1, q1) at the bottom
mean that the first cell can switch to state q1 if it was in any state before, but its neighboring
cell was in state q1. The fact that there is no edge to (1, q2) means that the first cell will not
switch to state q2, regardless of its earlier state and that of its neighbor.

exactly those layer vertices can be pebbled that correspond to the next configuration of the
cellular automaton.

To conclude the description of the reduction, let S be the pebbling placing vertices on the
first layer corresponding to the initial state string (which is part of the input) and let T be the
pebbling placing vertices on the last layer corresponding to the (only) accepting configuration
(this can be achieved by an appropriate modification of C, if necessary).

By construction, the deterministic game played on the graph starting with S will end in T
if, and only if, the s-cell version of C accepts the state sequence after t steps. This shows that
the reduction is correct. Clearly, the reduction is a para-L-reduction.

Completeness of the dag-version. For the completeness for N[fpoly, f log] of the problem
ppebbles-dag-tpg we use the same reduction as above, but start from pcells-dag-nca. It is
not immediately obvious that this reduction is correct since in a non-maximal pebble game
the nondeterminism of the game allows us to “forget” pebbles and, possibly, this could “make
room” for “illegal” pebble to appear that could disrupt the whole simulation.

To see that this does not happen, let us introduce the following notion: For a cell number c
let us say that a vertex belongs to c if it is either a vertex on the main layers of the form (c, q) or
a vertex on an auxiliary layer of the form (c, q1, q2, q3). Clearly, every vertex belongs to exactly
one cell and in the deterministic case in each step for each cell exactly one vertex belonging to
this cell is pebbled.

The crucial observation is that if in a non-maximal step we do not pebble any vertex of a
cell c, we cannot pebble any vertex of cell c in any later step. This is due to the way the edges
are set up: In order to pebble a vertex belonging to a cell c it is always a prerequisite that at
least one vertex belonging to c was pebbled in the previous step.

Now, in the target pebbling T for each cell one vertex belonging to this cell is pebbled. By
the above observation, in order to reach T this must have been the case in all intermediate
steps. Because of the upper bound of s on the number of pebbles, we know that on each layer
exactly s vertices are pebbled and, thus, exactly one vertex belonging to each cell is pebbled.
This proves that, indeed, on each main layer the pebbled vertices correspond exactly to possible
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cell contents of a computation of the automaton.

Completeness of the maximal general version. Let us now prove that the problem ppebbles-
tpg-max is complete for XL by reducing from pcells-dca. We basically proceed as for the dag
version, but no longer need to produce an acyclic graph and no longer have a time bound
in the input. The idea is to let the computation continue “as long as necessary”: Instead
of constructing a graph consisting of many identical main layers that alternate with identical
auxiliary layers, we put only one main layer in the graph and only one auxiliary layer. The
predecessors of the auxiliary layer’s vertices are, as before, the vertices of the main layer.
However, the successors of the auxiliary layer’s vertices are no longer the vertices on the next
main layer, but the corresponding vertices on the first (and only) main layer.

With this construction, the pebbling will alternate between the main layer and the auxiliary
layer and, after every two game steps, the main layer will encode the next configuration of the
input machine M . By having S encode the start configuration and T encode the only accepting
configuration (on the main layer), we get a reduction.

Completeness of the general version. For the general version, as for the dag version, one
can argue that the same reduction as for the maximal case works for the general case.

Another natural parametrization is by the number of steps needed rather than by the number
of pebbles. It is easily seen that psteps-tpg ∈ para-NP and psteps-tpg-max ∈ para-P. Further-
more, psteps-tpg-max ∈ XL holds also since we can compute one next step in the game in space
O(log n) and by the standard trick of chaining together two logspace computations, we can
compute k steps in space O(k log n). Interestingly, the argument can neither be used to show
that psteps-tpg lies in XNL nor that psteps-tpg-max lies in D[f poly, f log]. We were not able
to prove completeness of either problem for a parameterized class.

One can also consider a “power parameterization” similar to that of p-power-ntsc: in
pstep power-tpg we are given a parameter k along with a threshold pebble game and ask whether
T can be reached from S in nk steps, where n is the order of the graph. As for the generic
Turing machine problem, the power parametrization results in problems that are complete for
N[nf , fpoly] (for pstep power-tpg) and for D[nf , fpoly] (for pstep power-tpg-max). The proof is
essentially the same as in the above theorem, only the machine can now use much more space
(fx · nc for some constant c instead of fx ·O(log n)), but we can also use more pebbles (up to n
many instead of just k).

Longest Common Subsequence. The input for the longest common subsequence problem
lcs is a set S of strings over some alphabet Σ together with a number l. The question is whether
there is a string c ∈ Σl that is a subsequence of all strings in S, meaning that for all s ∈ S just
by removing symbols from s we arrive at c.

There are several natural parameterization of lcs: We can parameterize by the number of
strings in S, by the size of the alphabet, by the length l, or any combination thereof. Guillemot
has shown [12] that pstrings,length-lcs is fpt-complete for W[1], while pstrings-lcs is fpt-equivalent
to ps -ntsc. Hence, by Theorem 4.1, both problems are complete under fpt-reductions for the
fpt-reduction closure of N[f poly, f log]. We tighten this in Theorem 4.8 below (using a weaker
reduction is more than a technicality: N[f poly, f log] is presumably not even closed under
fpt-reduction, while it is closed under para-L-reductions).

As a preparation for the proof of Theorem 4.8, we first present a simpler-to-prove result:
Let lcs-injective denote the restriction of lcs where all input words must be p-sequences [9],
which are words containing any symbol at most once (the function mapping word indices to
word symbols is injective).
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Theorem 4.6. lcs-injective is NL-complete and this holds already under the restriction |S| ≤
4.

Proof. The problem lcs-injective lies in NL via the following algorithm: We guess the common
subsequence c nondeterministically and use a counter to ensure that c has length at least l. The
problem is that we cannot remember more than a fixed number of letters of c without running
out of space. Fortunately, we do not need to: We always only keep track of the last two guessed
symbols. For each such pair (a, b), we check whether a appears before b in all strings in S. If so,
we move on to the next pair, and so on. Clearly, this algorithm needs only logarithmic space
and correctly decides lcs-injective.

To prove hardness for |S| = 4, we reduce from the NL-complete language layered-reach,
where the input is a layered graph G (each vertex is assigned a layer number and all edges only
go from one layer to the next), the source vertex s is the (only) vertex on layer 1 and the target
t is the (only) vertex on the last layer m. The question is whether there is a path from s to t.

For the reduction to lcs-injective we introduce a symbol for each edge of G. The common
subsequence will then be exactly the sequence of edges along a path from s to t. We consider
the layers L1, L2, . . . , Lm in order and, for each of them, append edge symbols to the four
strings as described in the following.

Consider a layer Li, containing vertices {v1, . . . , vn}. Assume i is odd. We go over the
vertices v1 to vn in that order. For v1, first consider all edges that end at v1. They must come
from layer i − 1. We add these edges in some order to the first string (for instance, in the
order of the index of the start vertex of these edges). Still considering v1, we then consider all
outgoing edges and append them in some fixed order. Then we move on to v2 and add edge
symbols in the same way for it, and so on. If i is even rather than odd, we add the same edge
symbols to the third rather than to the first string.

For the second (or, for even i, the fourth string), we go over the vertices in decreasing order.
We start with vn. We consider the incoming edges for vn and add them to the second string,
but in reverse order compared to the order we used for the first string. Next, we append the
outgoing edges, again in reverse order. Then we consider vn−1 and proceed in the same way.

As an example, consider the following layered graph:

v1

v2

v3

v4

v5

v6

v7

v8

v9

a f

b g

c
hd i

e j

This would result in the following strings, where spaces have been added for clarity and also
the symbols vi, which are not part of the strings (so the second string is actually edcbajhigf):

v1a v2bcd v3e fv7 giv8 hjv9

v3e v2dcb v1a jhv9 igv8 fv7

abv4fg cv5h dev6ij

edv6ji cv5h bav4gf

We make two crucial observations. First, if an edge is included in the common subsequence,
no other edge starting at the same layer can be included also: The edge symbols of one layer
come in one order in the first (or third) string and in the reverse order in the second (or fourth)
string. Thus, there cannot be two of them in the common subsequence. For the same reason,
there can only be one edge arriving at a layer in the common subsequence. The second crucial
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observation is that if the sequence contains an edge e arriving at a vertex v, it can only contain
edges leaving from vertex v, if it contains any edge leaving from v’s layer: Only the edge e′

leaving v will come after e in both the first and second (or third and fourth) string.
Putting it all together, we get the following: There is a path from s to t in G if, and only

if, there is a common subsequence of length m− 1 in the constructed strings: If there is a path,
the sequence of the edges on it form a subsequence; and if there is such a subsequence, because
of its length, it must contain exactly one edge leaving from each layer except the last – and
these edges must form a path as we just argued.

Although we do not prove this, we remark that NL-completeness already holds for |S| = 3,
while for |S| = 2 the complexity appears to drop significantly.

Corollary 4.7. pstrings-lcs-injective is para-L-complete for para-NL.

Proof. The problem lies in para-NL since by Theorem 4.6 we can solve any instance in NL

without even using the parameter. On the other hand, the theorem also shows that a slice of
the parameterized problem (namely for 4 strings) is already hard for NL. It is a well-known
fact that in this case the parameterized problem is hard for the corresponding para-class, which
happens to be para-NL.

Theorem 4.8. pstrings-lcs is para-L-complete for N[fpoly, f log].

Proof. Clearly, pstrings-lcs ∈ N[fpoly, f log] since a nondeterministic machine can guess the
common subsequence on the fly and only needs to keep track of k pointers into the strings, which
can be done in spaceO(k log2 n). To prove hardness, we reduce from the N[fpoly, f log]-complete
problem pcells-dag-nca, the acceptance problem for nondeterministic cellular dag-automata,
see Theorem 4.3.

Our first step is to tackle the problem that in an lcs instance we choose “one symbol after
the other” whereas in a cellular automaton all cells make one step in parallel. To address
this, we introduce a new intermediate problem pcells-dag-nca-sequential where the model
of computation of the cellular automaton is modified as follows: Instead of all k cells making
one parallel step, initially only the first cell makes a transition, then the second cell makes a
transition (seeing already the new state reached at the first cell, but still the initial state of the
third cell), then the third cell (seeing the new state of cell two and the old of cell four), and so
on up to the kth cell. Then, we begin again with the first cell, followed by the second cell, and
so on.

Claim. pcells-dag-nca reduces to pcells-dag-nca-sequential.

of the claim. The trick is to have cells “remember” the states they were in: On input of (C,
q1 . . . qk), we construct a “sequential” cellular automaton C ′ as follows. If Q is the state set of C,
the state set of C ′ is Q×Q. Each state q ∈ Q′ is now a pair (qprevious, qcurrent). The transition
relation is adjusted as follows: If there used to be a transition (qleft, qold, qright, qnew) ∈ Q4,
meaning that a cell of the parallel automaton C can switch to state qnew if it is in state qold,
its left neighbor is in state qleft, and its right neighbor is in state qright, the we now have
the following transitions in C ′: ((qleft, x), (y, qold), (z, qright), (qold, qnew)) where x, y, z ∈ Q are
arbitrary. Indeed, this transition will switch a cells state based on the previous state of the cell
before it and on the current state of the cell following it and will store that previous state. For
the first and last cells, this construction is adapted in the obvious manner. Clearly, the resulting
sequential automaton will arrive in a sequence (x1, q1) . . . (xk, qk) of states for some xi ∈ Q after
t · k steps if, and only if, the original automaton arrives in states q1 . . . qk after t steps. This
proves the reduction.
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The basic idea. We now show how pcells-dag-nca-sequential can be reduced to pstrings-
lcs. Before we plunge into the details, let us first outline the basic idea: Each cell of a cellular
dag-automaton “behaves somewhat like a reachability problem” meaning that we must find out
whether the automaton will arrive in the accepting state starting from the initial state. Thus,
as in the proof of Theorem 4.6, we use four strings to represent a cell of the automaton, giving a
total of 4k strings, where k is the number of cells. However, the cells do not act independently;
rather each step of a cell depends on the states of the two neighboring cells. Fortunately, this
“control” effect can be modelled by adding an “edge’s” symbol (actually, a transition’s symbol)
not only to the four strings of the cell, but also to the four strings of predecessor and successor
cells at the right position (namely “before the required state symbol”). In the following, we
explain the idea just outlined in detail.

Let (C, q1 . . . qk) be given as input for the reduction. Since C is sequential and also a
dag-automaton, its steps can be grouped into at most t many groups (“major steps”) of k
sequential steps (“minor steps”) taken by cells 1 to k in that order, where t depends linearly on
the size of C. By modifying C, if necessary, we may assume that C makes exactly t ·k sequential
steps when it accepts the input and, otherwise, makes strictly less steps. We use s to denote a
major step number.

Construction of the strings. We map (C, q1 . . . qk) to 4k strings s11, s
1
2, s

1
3, s

1
4, . . . , s

k
1, s

k
2, s

k
3,

sk4 and ask whether they have a common subsequence of length t · k. Each group of four strings
is setup similarly to the four strings from the proof of Theorem 4.6: si1 and si2 model the states
(vertices) the ith cell has just before odd major steps s; and si3 and si4 model the states the cell
has before even major steps s.

Consider cell i and its four strings si1 to si4. Recall that in Theorem 4.6 we conceptually
added the vertices of the first layer in opposite orders to si1 and si2, although in reality these
vertices were not part of the final strings and were added to make it easier to explain where the
actual symbols (the edges) were placed in the strings. In our setting, the role of the vertices
on the first layer is taken by the states Q = {q1, . . . , qn} of the automaton C tagged by the
major step number 1. Thus, si1 starts (conceptually) with (q1, 1) . . . (qn, 1) and si2 starts with
(qn, 1) . . . (q1, 1). Next come tagged versions of the states just before the third major step, so
si1 continues (q1, 3) . . . (qn, 3) and s

i
2 with (qn, 3) . . . (q1, 3). We continue in this way for all odd

major steps. For even major steps, we add analogous strings to si3 and si4.
Continuing the idea from Theorem 4.6, we now add “edges” to the strings. However, instead

of an edge from one vertex so another, the transition relation of a cellular automaton contain
4-tuples f = (fleft, fold, fright, fnew) ∈ Q4 of states, which allows a cell to switch to state fnew
when it was in state fold and its left neighbor was in state fleft and the right neighbor was in
state fright. Recall that in Theorem 4.6, for each e from some vertex a on an odd layer to a
vertex b, we added the symbol e after a in the first two strings and before b in the last two
strings. In a similar way, for the cellular automaton for each 4-tuple f we add new “symbols”
(f, s, i) consisting of a transition, a major step number, and a cell index i to the strings. This
symbol is added at several places to the strings (we assume that s is odd; for even s exchange
the roles of the first two and the last two strings everywhere); sometimes even more than once.
The rules are as follows:

1. Iterate over all (f, s, i) in some order and insert (f, s, i) directly after (fold, s) in s
i
1.

2. Next, again iterate over all (f, s, i), but now in reverse order, and insert (f, s, i) after
(fold, s) in s

i
2.

Note that using the two opposite orderings, as in Theorem 4.6, for each (fold, s) at most one
(f, s, i) can be part of a common subsequence.
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3. Next, iterate over all (f, s, i) in some order and insert (f, s, i) directly before (fnew, s+ 1)
in si3.

4. Next, iterate over all (f, s, i) in reverse order and insert (f, s, i) directly before (fnew, s+1)
in si4.

The effect of the above is to make the automaton switch to fnew in cell i after major step s.
Now, we still need to ensure that this switch is only possible when the preceding cell has already
switched to state fleft after step s and the next cell is in state fright before step s.

5. Next, iterate over all (f, s, i) and insert (f, s, i) directly after (fleft, s+1) in si−1
3 and si−1

4 .
For i = 1, no symbols are added.

6. Next, iterate over all (f, s, i) and insert (f, s, i) directly after (fright, s) in si+1
1 and si+1

2 .
For i = k, no symbols are added.

Note that since the last two steps are applied later, the added symbols are “nearer” to the state
symbols than the symbols added in the first two steps. In particular, a common subsequence
can contain first a symbol added in step 6 added after some (q, s + 1), then a symbol added
after (q, s) in step 5, and then symbols added before or after (q, s) in one of the first four steps.

The last rule ensures that when a tuple (f, s, i) is not mentioned for a string by one of the
first six rules, we can always make it part of a common subsequence:

7. Finally, iterate over the 4k strings. For each such string sij , consider the set X of all

(f, s, i) that are not present in sij . Add all symbols of X once after each letter of sij .

As the last step of the construction of the strings, in order to model the initial configuration
q1 . . . qk of the automaton, for each i ∈ {1, . . . , k} in si1 to s

i
4 we remove all symbols before (qi, 1).

Correctness: First direction. Having finished the description of the reduction, we now argue
that it is correct. For this, first assume that the automaton, does, indeed, accept the input
sequence q1 . . . qk. By assumption, this means that the automaton will make t · k sequential
steps. Assume that in major step s and minor step i the automaton makes transition fs,i,
meaning that the ith cell switches its state from fs,iold to fs,inew.

We claim that the sequence (f1,1, 1, 1)(f1,2, 1, 2) . . . (f1,k, 1, k)(f2,1, 2, 1) . . . (f t,k, t, k) is a
common subsequence of all sij . To see this, consider the first symbol (f1,1, 1, 1). It will be

present both in s11 and s12 since for the first transition the first cell was exactly in state q1 = f1,1old

and, thus, this symbol followed (q1, 1) in the construction and was not removed in the last
construction step. The symbol is also present in s13 and s14, namely right before the (“virtual”)
pair (fnew, 2). The symbol will also be present in s21 and s22 since q2 = f1,1right and we added

(f1,1, 1, 1) to both s21 and s22 in step 6. Finally, the symbol will be present in all other strings
near the beginning because of step 7.

Next, consider the second symbol (f1,2, 1, 2), which corresponds to the second step the
automaton has taken. Here, the second cell switches from f1,2old to f1,2new because the first cell has

already switched to f1,2left = f1,1new during the first transition and the third cell is still in f1,2right = q3.

Now, observe that in all strings (f1,2, 1, 2) does, indeed, come after (f1,1, 1, 1): For s21 to s24 this
is because of steps 1 to 4. For s13 to s14, we have, indeed, (f1,2, 1, 2) following (f1,1, 1, 1) by
step 5. For s31 to s32, the symbol (f1,2, 1, 2) is present by step 6. All other strings contain the
symbol by step 7 near the beginning.

Continuing in a similar fashion with the other symbols, we see that the sequence

(f1,1, 1, 1) . . . (f t,k, t, k)
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is a common subsequence of all strings and it clearly has length t · k.

Correctness: Second direction. It remains to argue that if there is a common subsequence of
the strings of length t ·k, then the automaton accepts the input. First observe that the common
subsequence must be of the form (f1,1, 1, 1)(f1,2, 1, 2) . . . (f1,k, 1, k)(f2,1, 2, 1) . . . (f t,k, t, k). The
reason is that for any two symbols (f, s, i) and (f ′, s′, i′) if s < s′ then the first of these symbols
always comes before the second in all strings. The same is true if s = s′ and i < i′. Finally, for
s = s′ and i = i′, the opposite orderings for the symbols in steps 1 and 2 (and, also, in steps 3
and 4) ensure that at most one of the two symbols can be present in a common subsequence.
Thus, the indices stored in the symbols of the common subsequence must strictly increase and,
since the length of the sequence is t · k, all possible indices must be present.

We must now argue that the fs,i form a sequence of transitions that make the automaton
accept. For this, we perform an induction on the length of an initial segment up to some
symbol (fs0,i0 , s0, i0) of the common sequence. For each cell index i, let f i = (fs,i, s, i) be
the last symbol in the segment whose last component is i. Let qi = f inew or, if the segment
is so short that there is no f i, let qi be the initial state qi. The inductive claim is that after
(s0 − 1) · k + i0 steps of the automaton, the cells will have reached exactly states q1, . . . , qk.
Clearly, this is correct at the start. For the inductive step, the crucial observation is that steps 1
to 6 guarantee that for i0 < k the only symbol (f s0,i0+1, s0, i0 +1) that can follow (fs0,i0 , s0, i0)
in a common sequence is one that makes that cell i0 + 1 change its state according to the
transition fs0,i0+1. For i0 = k, we similarly have that only symbols (fs0+1,1, s0+1, 1) can follow
that make cell 1 change its state according to the transition fs0+1,1.

5 Conclusion

Bounded nondeterminism plays a key role in parameterized complexity theory since it lies at
the heart of the definition of important classes like W[P], but also of W[1]. In the present paper
we introduced a “W-operator” that cannot only be applied to P, yielding paraWP, but also
to classes like NL or NC1. We showed that “union versions” of problems complete for P, NL,
and L tend to be complete for paraWP, paraWNL, and paraWL. Several important problems
studied in parameterized complexity turn out to be union problems, including p-circuit-sat
and p-weighted-sat, and we could show that the latter problem is complete for paraWNC1.
For the associative generability problem p-agen, which is also a union problem, we established
its paraWNL-completeness. An interesting open problem is determining the complexity of the
“universal” version of agen, where the question is whether all size-k subsets of the universe are
generators. Possibly, this problem is complete for paraW∀NL.

We showed that different problems are complete for the time–space class N[f poly, f log].
We shied away from presenting complete problem for the classes D[nf , f poly] and N[nf , f poly]
because in their definition we need restrictions like “the machine may make at most nk steps
where k is the parameter.” Such artificial parameterizations have been studied, though: In [11,
Theorem 2.25] Flum and Grohe show that “p-exp-dtm-halt” is complete for XP. Adding a
unary upper bound on the number of steps to the definition of the problem yields a problem
easily seen to be complete for D[nf , f poly]. Finding a natural problem complete for the latter
class is, however, an open problem.
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