
A Logspace Approximation Scheme
for the Shortest Path Problem

for Graphs with Bounded Independence Number

Till Tantau?

International Computer Science Institute
1947 Center Street

Berkeley, CA 94704, USA
tantau@icsi.berkeley.edu

Abstract. How difficult is it to find a path between two vertices in
finite directed graphs whose independence number is bounded by some
constant k? The independence number of a graph is the largest number
of vertices that can be picked such that there is no edge between any two
of them. The complexity of this problem depends on the exact question
we ask: Do we only wish to tell whether a path exists? Do we also wish to
construct such a path? Are we required to construct the shortest path?
Concerning the first question, it is known that the reachability problem is
first-order definable for all k. In contrast, the corresponding reachability
problems for many other types of finite graphs, including dags and trees,
are not first-order definable. Concerning the second question, in this
paper it is shown that not only can we construct paths in logarithmic
space, but there even exists a logspace approximation scheme for this
problem. It gets an additional input r > 1 and outputs a path that is at
most r times as long as the shortest path. In contrast, for directed graphs,
undirected graphs, and dags we cannot construct paths in logarithmic
space (let alone approximate the shortest one), unless complexity class
collapses occur. Concerning the third question, it is shown that even
telling whether the shortest path has a certain length is NL-complete
and thus as difficult as for arbitrary directed graphs.

1 Introduction

Finding paths in graphs is one of the most fundamental problems in graph
theory. The problem has both practical and theoretical applications in many
different areas. For such problems we are given a graph G and two vertices s
and t, the source and the target, and we are asked to find a path from s to t.
This problem comes in different versions: The most basic one is the reachability
problem, which just asks whether such a path exists. This problem is also known
as ‘accessibility problem’ or ‘s-t-connectivity problem’. The construction problem

? Supported by a postdoc research fellowship grant of the German academic exchange
service (DAAD). Work done in part at the Technical University of Berlin.

asks us to construct a path, provided one exists. The optimization problem asks
us to construct not just any path, but the shortest one. Closely related to the
optimization problem is the distance problem, which asks us to decide whether
the distance of s and t is bounded by a given number. If the optimization problem
is difficult to solve, we can consider the approximation problem, which asks us
to construct a path that is not necessarily a shortest path, but that is only a
constant factor longer than the distance of s and t.

In this paper it is shown that for directed graphs whose independence num-
ber is bounded by some constant k the reachability problem, the construction
problem, and the optimization problem have fundamentally different compu-
tational complexities. The paper extends a previous paper [18] that treated
only the reachability problem. The main contribution of the present paper is
a logspace approximation scheme for the optimization problem and a proof that
the distance problem is NL-complete. This paper presents the first example of
an optimization problem that cannot be solved optimally in logarithmic space
(unless L = NL), but that can be approximated well in logarithm space. Ap-
proximation theory has traditionally focused on polynomial-time computations;
mostly because approximation algorithm are typically only sought for if comput-
ing optimal solutions turns out to be NP-hard, but also because computing any
solution and computing an optimal solution seemed to have the same complexity
for the problems considered in small space complexity theory.

The independence number α(G) of a graph G is the maximum number of
vertices that can be picked from G such that there is no edge between any
two of these vertices. The most prominent examples of graphs with bounded
independence number are tournaments [17, 20], which are directed graphs with
exactly one edge between any two vertices. Their independence number is 1.
The reachability problem for tournaments arises naturally if we try to rank or
sort objects according to a comparison relation that tells us for any two objects
which ‘beats’ the other, but that is not necessarily acyclic.

A different example of graphs with bounded independence number, studied
in [5], are directed graphs G = (V,E) whose underlying undirected graph is claw-
free, i. e., does not contain the K1,m for some constant m, and whose minimum
degree is at least |V |/3. Their independence number is at most 3m− 3.

To get an intuition on the behaviour of the independence number function,
first note that independence is a monotone graph property: adding edges to a
graph can only increase, deleting only decrease the independence number. Given
two graphs with the same vertex set and independence numbers α and α′, the
independence number of their union is at most the minimum of α and α′ and the
independence number of their disjoint union is α + α′. Thus if a graph consists
of, say, four disjoint tournaments with arbitrary additional edges connecting
these tournaments, its independence number would be at most 4. Intuitively, a
graph with a low independence number must have numerous edges and, indeed,
at least

(
n
2

) / (
α(G)+1

2

)
edges must be present in any n-vertex graph G. This

abundance of edges might suggest that if paths between two given vertices exist,
there should also exist a short path between them. While this is true for the

undirected case, in the directed case (which we are interested in in this paper)
the distance between two vertices can become as large as n− 1 even in n-vertex
tournaments.

1.1 How Difficult Is It to Tell Whether a Path Exists?

The reachability problem for finite directed graphs, which will be denoted reach
in the following, is well-known to be NL-complete [11, 12] and thus easy from a
computational point of view. The complexity of the reachability problem drops
if we restrict the type of graphs for which we try to solve it. The reachabil-
ity problem reachu for finite undirected graphs is SL-complete [14] and thus
presumably easier to solve. The even more restricted problem reachforest for
undirected forests and the problem reachout≤1 for directed graphs in which
all vertices have out-degree at most 1 are L-complete [4]. Here and in the fol-
lowing ‘completeness’ always refers to completeness with respect to the restric-
tive ≤AC0

m -reductions, i. e., many-to-one reductions that can be computed by a
family of logspace-uniform constant-depth circuits with unbounded fan-in and
fan-out [2, 3].

The complexity of the reachability problem for finite directed graphs whose
independence number is bounded by a constant k is much lower: somewhat sur-
prisingly, this problem is first-order definable for all k, as shown in [18]. Formally,
for each k the language reachα≤k := reach ∩ {〈G, s, t〉 | α(G) ≤ k} is first-
order definable, where 〈 〉 denotes a standard binary encoding. Languages whose
descriptive complexity is first-order are known to be very simple from a com-
putational point of view. They can be decided by a family of logspace-uniform
AC0-circuits [15], in constant parallel time on concurrent-read, concurrent-write
parallel random access machines (CRCW-PRAMs) [15], and in logarithmic space.
Since it is known that L-hard sets cannot be first-order definable [1, 6], reachα≤k
is unconditionally easier to solve than reach, reachu, and reachforest.

When studying the complexity of a graph problem, one usually assumes (as
done above) that the input graph is encoded as a binary string ‘in some standard-
ized way’. Which particular way of encoding is chosen is of little or no concern
for the computational complexity of the problem. This is no longer true if the
input graphs are encoded succinctly, as is often the case for instance in hard-
ware design. Succinctly represented graphs are given indirectly via a program
or a circuit that decides the edge relation of the graph. Papadimitriou, Yan-
nakakis, and Wagner [19, 23, 24] have shown that the problems succinct-reach,
succinct-reachu, succinct-reachforest, and succinct-reachout≤1 are all
PSPACE-complete. Opposed to this, succinct-reachα≤k is ΠP

2 -complete for
all k, see [18] once more.

1.2 How Difficult Is It To Construct a Path?

The low complexity of the reachability problem seemingly settles the complexity
of finding paths in graphs with bounded independence number. At first sight,
the path construction problem appears to reduce to the reachability problem

via a simple algorithm: Starting at the source vertex, for each successor of the
current vertex check whether we can reach the target from it (for at least one
successor this test will be true); make that successor the current vertex; and
repeat until we have reached the target. Unfortunately, this algorithm is flawed
since it can lead us around in endless cycles for graphs that are not acyclic.
A correct algorithm does not move to any successor, but to the successor that
is nearest to the target. This corrected algorithm does not only produce some
path, but the shortest one. However, the algorithm now needs to compute the
distance between two vertices internally, which is conceptually a more difficult
problem than deciding whether two vertices are connected.

Nevertheless, we shall see that a path between any two connected vertices
can be constructed in logarithmic space in graphs with bounded independence
number. There even exists a logspace approximation scheme for this problem.
This means that for each r > 1 and each k there exists a logspace-computable
function that maps an input 〈G, s, t〉 with α(G) ≤ k to a path from s to t of
length at most r times the distance of s and t. If no path exists, the function
outputs ‘no path exists’.

1.3 How Difficult Is It To Construct the Shortest Path?

How difficult is it to construct the shortest path in a graph with bounded inde-
pendence number? We show that, again surprisingly, even for tournaments this
problem is as difficult as constructing the shortest path in an arbitrary graph.
As pointed out above, the complexity of constructing the shortest path hinges
on the complexity of the distance problem distancetourn :=

{
〈G, s, t, d〉 | G is

a tournament in which there is a path from s to t of length at most d
}

. This
problem is shown to be NL-complete. Thus distance and distancetourn are
≤AC0

m -equivalent, but reach and reachtourn are not. The succinct version of
distancetourn is shown to be PSPACE-complete.

1.4 Organization of This Paper

This paper is organized as follows. In Section 2 graph-theoretic terminology and
known results on the reachability problem for graphs with bounded indepen-
dence number are reviewed. In Section 3 a logspace approximation scheme for
the shortest path problem for graphs with bounded independence number is
presented. In Section 4 the distance problem for tournaments is shown to be
NL-complete and its succinct version is shown to be PSPACE-complete.

2 Review of Known Results

In this section graph-theoretic terminology and known results on the reachability
problem in graphs with bounded independence number are reviewed.

A (directed) graph is a nonempty set V of vertices together with a set E ⊆
V ×V of directed edges. A graph is undirected if its edge relation is symmetric. A

tournament is a graph with exactly one edge between any two different vertices
and (v, v) /∈ E for all v ∈ V . A forest is an undirected, acyclic graph. A tree is
a connected forest.

A path of length ` in a graph G = (V,E) is a sequence (v0, . . . , v`) of distinct
vertices with (vi, vi+1) ∈ E for i ∈ {0, . . . , `− 1}. A vertex t is reachable from a
vertex s if there is a path from s to t. The distance d(s, t) of two vertices is the
length of the shortest path between them or ∞, if no path exists. For i ∈ N, a
vertex u ∈ V is said to i-dominate a vertex v ∈ V if there is a path from u to v of
length at most i. A set U ⊆ V is an i-dominating set for G if every vertex v ∈ V
is i-dominated by some vertex u ∈ U . The i-domination number βi(G) is the
minimal size of an i-dominating set for G. A set U ⊆ V is an independent set if
there is no edge in E connecting vertices in U . The maximal size of independent
sets in G is its independence number α(G).

Fact 2.1 ([18]). Let G = (V,E) be a finite graph with at least two vertices,
n := |V |, α := α(G), and c := (α2 + α)/(α2 + α− 1). Then

1. β1(G) ≤ dlogc ne and
2. β2(G) ≤ α.

For tournaments G, Fact 2.1 yields β1(G) ≤ dlog2 ne and β2(G) = 1. The
first result was first proved by Megiddo and Vishkin in [16], where it was used
to show that the dominating set problem for tournaments is not NP-complete,
unless NP ⊆ DTIME

[
nO(logn)

]
. The second result is also known as the Lion

King Lemma, which was first noticed by Landau [13] in the study of animal
societies, where the dominance relations on prides of lions form tournaments. It
has applications in the study of P-selective sets [9] and many other fields.

The next fact states that the complexity of the reachability problem for
graphs with bounded independence number is low: reachα≤k is first-order de-
finable for all k. First-order definability is a language property studied in de-
scriptive complexity theory. It can be defined as follows for the special case of
languages A ⊆ {〈V,E, s, t〉 | (V,E) is a finite graph, s, t ∈ V }: Let τ = (E2, s, t)
be the signature of graphs with two designated vertices. A first-order τ -formula
is a first-order formula that contains, other than quantifiers, variables, and con-
nectives, only the binary relation symbol E and the constant symbols s and t. An
example is the formula ∃x

[
E(s, x) ∧ E(x, t)

]
. A τ -structure is a tuple (V,E, s, t)

consisting of a graph (V,E) and two vertices s, t ∈ V . A τ -structure is a model
of a τ -formula if the formula holds when we interpret the relation symbol E as
the edge relation E and the constant symbols s and t as the vertices s and t.
For example, the τ -formula ∃x

[
E(s, x) ∧ E(x, t)

]
is a model of every τ -structure

(V,E, s, t) in which there is a path from s to t in the graph (V,E) of length
exactly 2. The language A is first-order definable if there exists a τ -formula φ
such that 〈V,E, s, t〉 ∈ A iff (V,E, s, t) is a model of φ.

Fact 2.2 ([18]). For each k, reachα≤k is first-order definable.

The complexity of the reachability problem for graphs with bounded indepen-
dence number is also interesting in the succinct setting. Succinctly represented

graphs are given implicitly via a description in some description language. Since
succinct representations allow the encoding of large graphs into small codes,
numerous graph properties are (provably) harder to check for succinctly rep-
resented graphs than for graphs coded in the usual way. Papadimitriou et al.
[19, 24] have shown that most interesting problems for succinctly represented
graphs are PSPACE-complete or even NEXP-complete. The following formaliza-
tion of succinct graph representations follows Galperin and Wigderson [7], but
others are also possible [24, 8].

Definition 2.1. A succinct representation of a graph G =
(
{0, 1}n, E

)
is a 2n-

input circuit C such that for all u, v ∈ {0, 1}n we have (u, v) ∈ E iff C(uv) = 1.

The circuit tells us for any two vertices of the graph whether there is a directed
edge between them or not. Note that C will have size at least 2n since it has 2n
input gates.

Definition 2.2. Let A ⊆ {〈G, s, t〉 | G = (V,E) is a finite graph, s, t ∈ V }.
Then succinct-A is the set of all codes 〈C, s, t〉 such that C is a succinct rep-
resentation of a graph G with 〈G, s, t〉 ∈ A.

Fact 2.3 ([18]). For each k, succinct-reachα≤k is ΠP
2 -complete.

3 Complexity of the Approximation Problem

In this section it is shown that for graphs with bounded independence number we
can not only tell in logarithmic space whether a path exists between two vertices,
but we can also construct such a path. While it seems difficult to construct the
shortest path in logarithmic space (by the results of the next section this is
impossible unless L = NL), it is possible to find a path that is approximately
as long as the shortest path. Even better, there exists a logspace approximation
scheme for constructing paths whose length is as close to the length of the
shortest path as we would like:

Theorem 3.1. For all k there exists a deterministic Turing machine M with
read-only access to the input tape and write-only access to the output tape such
that:

1. On input 〈G, s, t,m〉 with 〈G, s, t〉 ∈ reachα≤k and m ≥ 1, it outputs a path
from s to t of length at most (1 + 1/m) d(s, t).

2. On input 〈G, s, t,m〉 with 〈G, s, t〉 /∈ reachα≤k it outputs ‘no path exists’.
3. It uses space O(logm log n) on the work tapes, where n is the number of

vertices in G.

For the proof of the theorem we need two lemmas. The second lemma is a
‘constructive version’ of Savitch’s theorem [21].

Lemma 3.2. There exists a function in FL that maps every input 〈G, s, t〉 ∈
reachforest to the shortest path from s to t in G and all other inputs to ‘no path
exists’.

Proof. The problem reachforest is L-complete as shown in [4]. In order to com-
pute the shortest path from s to t we iterate the following procedure, starting
at s: For each neighbour v of the current vertex, we check whether t is reachable
from v in the forest obtained by removing the edge connecting the current ver-
tex and v. There is exactly one vertex for which this test succeeds. We output
this vertex, make it the new current vertex, and repeat the procedure until we
reach t. ut

Lemma 3.3. There exists a deterministic Turing machine M with read-only
access to the input tape and write-only access to the output tape such that:

1. On input 〈G, s, t〉 ∈ reach it outputs a shortest path from s to t and uses
space O

(
log d(s, t) log n

)
on the work tapes, where n is the number of vertices

in G.
2. On input 〈G, s, t〉 /∈ reach it outputs ‘no path exists’. It uses space O(log2 n)

on the work tapes, where n is the number of vertices in G.

Proof. We augment Savitch’s algorithm [21] by a construction procedure that
outputs paths. If there are several paths, the procedure ‘decides on one of them’
and does so ‘within the recursion’.

Let reachable(u, v, `) be Savitch’s procedure for testing whether there is a
path from u to v of length at most `: For ` = 1, it checks whether (u, v) ∈
E or u = v. For larger `, it checks whether for some vertex z both the calls
reachable(u, z, b`/2c) and reachable(z, v, `−b`/2c) succeed. As noted by Savitch,
we can compute reachable(u, v, `) in space O(log ` log n) since we can reuse space.

We next define a procedure construct(u, v, `) that writes a path of length `
from u to v onto an output tape, provided reachable(u, v, `) holds. In order
to simplify the assemblage of outputs of different calls to construct , the last
vertex of the path, i. e., the vertex v, will be omitted. For ` = 1, construct
simply outputs u. For larger `, it finds the first vertex z for which both the calls
reachable(u, z, b`/2c) and reachable(z, v, ` − b`/2c) succeed. For this vertex z it
first calls construct(u, z, b`/2c) and then construct(z, v, `− b`/2c).

The machine M iteratively calls reachable(s, t, `) for increasing values of `.
For the first value ` for which this test succeeds, it calls construct(s, t, `), appends
the missing vertex t, and quits. If the tests do not succeed for any ` ≤ n, it
outputs ‘no path exists’. ut

Proof (of Theorem 3.1). Let an input 〈G, s, t,m〉 be given. Let G = (V,E) and
n := |V |. For a set U of vertices let d(U, t) := min{d(u, t) | u ∈ U}.

We first check, in space O(log n), whether 〈G, s, t〉 ∈ reachα≤k holds and
output ‘no path exists’ if this is not the case. Otherwise we enter a loop in
which we construct a sequence U1, U2, . . . , U` ⊆ V of vertex sets with U1 = {s}
and U` = {t}. For the construction of Ui+1 we access only Ui and use space
O(logm log n). Once we have constructed Ui+1 we erase Ui and reuse the space
it occupied.

The set Ui is obtained from Ui−1 as follows: If d(Ui−1, t) ≤ 2m + 1, let
Ui := {t}. Otherwise let Si := {v ∈ V | d(Ui−1, v) = 2m+2} and choose Ui ⊆ Si

as a 2-dominating, size-k vertex subset the graph G′ :=
(
Si, E ∩ (Si × Si)

)
induced on the vertices in Si. Since α(G′) ≤ α(G) ≤ k, such a 2-dominating
set Ui exists by Fact 2.1. We can obtain it in space O(logm log n) since the
question ‘v ∈ Si?’ can be answered in space O(logm log n) using the procedure
reachable from Lemma 3.3.

The sets Ui have the following properties for i ∈ {2, . . . , `− 1}:

1. All elements of Ui are reachable from s.
2. |Ui| ≤ k.
3. d(Ui−1, u) = 2m+ 2 for all u ∈ Ui.
4. d(Ui, t) ≤ d(Ui−1, t)− 2m and hence d(Ui, t) ≤ d(s, t)− 2m(i− 1).

To see that the last property holds, note that d(Ui, t) ≤ d(Si, t) + 2 and that
d(Si, t) = d(Ui−1, t) − 2m − 2. For i = `, the first two properties are also true
and the third one becomes d(Ui−1, t) ≤ 2m+ 1.

Intuitively, in each iteration we reduce the distance between Ui and t by at
least 2m and each Ui−1 can be connected to the next Ui by a path of length
2m+ 2. It remains to explain how to connect the Ui’s correctly.

In order to output the desired path from s to t of length at most (1 +
1/m) d(s, t), we first construct a forest that contains this path. The forest is not
actually written down anywhere (we are allowed only a logarithmic amount of
space). Rather, as in the proof of FL being closed under composition, the forest’s
code is dynamically recalculated in space O(logm log n) whenever one of its bits
is needed. Finding the shortest path in a forest can be done in logarithmic space
by Lemma 3.2, and the shortest path in the forest will be the desired path.

To define the forest F , for each i ∈ {2, . . . , `} we first define a ‘small’ forest
Fi as follows: For each u ∈ Ui it contains the vertices and edges of the shortest
path from Ui−1 to u. This path is constructed by calling the machine M from
Lemma 3.3 on input 〈G, u′, u〉 for the first vertex u′ ∈ Ui−1 for which d(u′, u)
is minimal. Since d(u′, u) ≤ 2m + 2, this call needs space O(logm log n). The
graph Fi is, indeed, a forest since if two paths output by M for the same source
vertex split at some point, they split permanently. Let F be the union of all the
forests Fi constructed during the run of the algorithm. This union is a forest
since every tree in a forest Fi has at most one vertex in common with any other
tree in a forest Fj with j 6= i.

Consider the shortest path from s to t in the forest F . This path passes
through all Ui. For i ∈ {1, . . . , `} let ui ∈ Ui be the last vertex of Ui on this path.
The total length of the path is given by

∑`−1
i=1 d(ui, ui+1). We have d(ui, ui+1) =

2m+ 2 for i ∈ {1, . . . , `− 2}. Thus the total length is

(2m+ 2)(`− 2) + d(u`−1, t) = (2m+ 2)(`− 2) + d(U`−1, t)
≤ (2m+ 2)(`− 2) + d(s, t)− 2m(`− 2)
= d(s, t) + 2(`− 2) ≤ d(s, t) + d(s, t)/m.

For the two inequalities, we both times used the last property of U`−1, by which
d(U`−1, t) ≤ d(s, t)− 2m(`− 2) and hence also 2(`− 2) ≤ d(s, t)/m. ut

The space bound from Theorem 3.1 is optimal in the following sense: Suppose
we could construct a machine M ′ that uses space O(log1−εm log n) and achieves
the same as M . Then distancetourn ∈ DSPACE[log2−ε n], because M ′ outputs
the shortest path for m = n+ 1. The results of the next section show that this
would imply NL ⊆ DSPACE[log2−ε n].

4 Complexity of the Distance Problem

In this section we study the complexity of the distance problem for graphs with
bounded independence number. This problem asks us to decide whether the
distance of two vertices in a graph is smaller than a given input number. It
is shown that this problem is NL-complete even for tournaments and that the
succinct version is PSPACE-complete.

The distance problem is closely linked to the problem of constructing the
shortest path in a graph: As argued in the introduction, we can construct the
shortest path in graph if we have oracle access to the distance problem for this
graph. The other way round, we can easily solve the distance problem if we have
oracle access to an algorithm that constructs shortest paths. Because of this
close relationship, the completeness result bashes any hope of finding a logspace
algorithm for constructing shortest path in tournaments, unless L = NL.

Theorem 4.1. The problem distancetourn is NL-complete.

Proof. We show reach ≤AC0

m distancetourn. Let an input 〈G, s, t〉 be given.
Let G = (V,E) and n := |V |. The tournament G′ = (V ′, E′) is constructed as
follows: The vertex set V ′ is {1, . . . , n} × V . We can think of this vertex set as
a grid consisting of n rows and n columns. There is an edge in G′ from a vertex
(r1, v1) to a vertex (r2, v2) iff one of the following conditions holds:

1. r2 = r1 +1 and (v1, v2) ∈ E∪{(v, v) | v ∈ V }, i. e., if v1 and v2 are connected
in G or if v1 = v2, then there is an edge leading ‘downward’ between them
on adjacent rows.

2. r1 = r2 and v1 < v2, where < is some linear ordering on V , i. e., the vertices
on the same row are ordered linearly.

3. r2 = r1 − 1 and (v1, v2) /∈ E ∪ {(v, v) | v ∈ V }, i. e., if v1 and v2 are not
connected in G and if they are not identical, then there is an edge leading
‘upward’ between them on adjacent rows.

4. r2 ≤ r1 − 2, i. e., all edges spanning at least two rows point ‘upward’.

The reduction machine poses the query ‘Is there a path from s′ = (1, s) to
t′ = (n, t) in G′ of length at most n − 1?’ Clearly this query can be computed
by a logspace-uniform family of AC0-circuits.

To see that this reduction works, first assume that there exists a path from
s to t in G of length m ≤ n− 1. Let (s, v2, . . . , vm, t) be this path. Then

(
(1, s),

(2, v2), . . . , (m, vm), (m+1, t), . . . , (n, t)
)

is a path in G′ of length n−1. Second,
assume that there exists a path from s′ to t′ in G′ of length m ≤ n − 1. Then

m = n − 1 since any path from the first row to the last row must ‘brave all
rows’—there are no edges that allow us to skip a row. Let (v′1, . . . , v

′
n) be this

path. Then v′i = (i, vi) for some vertices vi ∈ V . The sequence (v1, . . . , vn) is
‘almost’ a path from s to t in G: For each i ∈ {1, . . . , n − 1} we either have
vi = vi+1 or (vi, vi+1) ∈ E. Thus, by removing consecutive duplicates and loops,
we obtain a path from s to t in G. ut

By the above theorem, distance and distancetourn are ≤AC0

m -equivalent,
while reach and reachtourn are not. The ‘complexity jump’ from reachtourn

to distancetourn is reflected by a similar jump for the succinct versions.

Definition 4.2. Let succinct-distancetourn denote the language that contains
all coded tuples 〈C, s, t, d〉, where C is a circuit, s and t are bitstrings, and d is
a positive integer, such that C is a succinct representation of a graph G with
〈G, s, t, d〉 ∈ distancetourn.

Theorem 4.3. succinct-distancetourn is PSPACE-complete.

Proof. Since distancetourn ∈ NL, we have

succinct-distancetourn ∈ NPSPACE = PSPACE.

For the hardness, let A ∈ PSPACE be an arbitrary language and let M be a
polynomial-space machine that accepts A. We show that A is ≤AC0

m -reducible to
succinct-distancetourn. For an input x, let G denote the configuration graph
of M on input x, let s be the initial configuration, let t be the (unique) ac-
cepting configuration, and let d be an (exponential) bound on the running time
of M on input x. Let G′ be the tournament constructed in Theorem 4.1 and
let C be an appropriate circuit that represents G′. Then x ∈ A iff 〈C, s, t, d〉 ∈
succinct-distancetourn.

The representing circuit C can be constructed by a logspace-uniform family of
AC0-circuits. To see this, first note that the circuit C can easily be constructed in
logarithmic space since G′ is highly structured. For an appropriate construction,
C will depend on x only in a very limited way: For each bit of x there is a
constant gate in C that ‘feeds’ this bit to the rest of the circuit, which does not
depend on x at all. Thus we can hardwire almost all of C into the AC0-circuit
that computes it, only C’s constant gates must be setup depending on x. ut

5 Conclusion

The results of this paper extend the answer to the question ‘How difficult is it to
find paths in graphs with bounded independence number?’ in two different ways.
It was previously known that checking whether a path exists in a given graph
can be done using AC0-circuits. In this paper it was shown that constructing a
path between two vertices can be done in logarithmic space. Constructing the
shortest path in logarithmic space was shown to be impossible, unless L = NL.

These results settle the approximability of the (logspace) optimization prob-
lem ‘shortest paths in graphs with bounded independence number’. This mini-
mization problem cannot be solved exactly in logarithmic space (unless L = NL),
but it can be approximated well: there exists a logspace approximation scheme
for it. As we saw, the space O(logm log n) needed by the scheme for a desired ap-
proximation ratio of 1 + 1/m is essentially optimal—any approximation scheme
that does substantially better could be used to show unlikely inclusions like
NL ⊆ DSPACE[log2−ε n]. Thus it seems appropriate to call the scheme a ‘fully
logspace approximation scheme’ in analogy to ‘fully polynomial-time approxi-
mation schemes’.

The shortest path problem for tournaments is not the only logspace opti-
mization problem with surprising properties: In [22] it is shown that the distance
problem for undirected graphs is also NL-complete, while the reachability prob-
lem is SL-complete. On the other hand, the distance problem for directed graphs
is just as hard as the reachability problem for directed graphs. This shows that,
just as in the polynomial-time setting, logspace optimization problems can have
different approximation properties, although their underlying decision problems
have the same complexity.

References

1. M. Ajtai. Σ1
1 formulae on finite structures. Annals of Pure and Applied Logic,

24:1–48, 1983.
2. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibilities. SIAM

J. Comput., 13(2):423–439, 1984.
3. S. Cook. A taxonomy of problems with fast parallel algorithms. Inform. Control,

64(1–3):2–22, 1985.
4. S. Cook and P. McKenzie. Problems complete for deterministic logarithmic space.

J. Algorithms, 8(3):385–394, 1987.
5. R. Faudree, R. Gould, L. Lesniak, and T. Lindquester. Generalized degree condi-

tions for graphs with bounded independence number. J. Graph Theory, 19(3):397–
409, 1995.

6. M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierar-
chy. Math. Systems Theory, 17(1):13–27, 1984.

7. H. Galperin and A. Wigderson. Succinct representations of graphs. Inform. Con-
trol, 56(3):183–198, 1983.

8. G. Gottlob, N. Leone, and H. Veith. Succinctness as a source of complexity in
logical formalisms. Annals of Pure and Applied Logic, 97:231–260, 1999.

9. L. Hemaspaandra and L. Torenvliet. Optimal advice. Theoretical Comput. Sci.,
154(2):367–377, 1996.

10. N. Immerman. Descriptive Complexity. Springer-Verlag, 1998.
11. N. Jones. Space-bounded reducibility among combinatorial problems. J. Comput.

Syst. Sci., 11(1):68–85, 1975.
12. N. Jones, Y. Lien, and W. Laaser. New problems complete for nondeterministic

log space. Math. Systems Theory, 10:1–17, 1976.
13. H. Landau. On dominance relations and the structure of animal societies, III: The

condition for secure structure. Bull. Mathematical Biophysics, 15(2):143–148, 1953.

14. H. Lewis and C. Papadimitriou. Symmetric space-bounded computation. Theoret-
ical Comput. Sci., 19(2):161–187, 1982.

15. S. Lindell. A purely logical characterization of circuit uniformity. In Proc. 7th
Struc. in Complexity Theory Conf., pages 185–192, 1992. IEEE Computer Society
Press.

16. N. Megiddo and U. Vishkin. On finding a minimum dominating set in a tourna-
ment. Theoretical Comput. Sci., 61:307–316, 1988.

17. J. Moon. Topics on Tournaments. Holt, Rinehart, and Winston, 1968.
18. A. Nickelsen and T. Tantau. On reachability in graphs with bounded independence

number. In O. H. Ibarra and L. Zhang, editors, Proc. 8th Annual International
Computing and Combinatorics Conf., volume 2387 of Lecture Notes on Comput.
Sci., pages 554–563. Springer-Verlag, 2002.

19. C. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs.
Inform. Control, 71(3):181–185, 1986.

20. K. Reid and L. Beineke. Selected Topics in Graph Theory, chapter Tournaments,
pages 169–204. Academic Press, 1978.

21. W. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci., 4(2):177–192, 1970.

22. T. Tantau. Logspace optimisation problems and their approximation properties.
Technical report TR03-077, Electronic Colloquium on Computational Complexity,
2003.

23. K. Wagner. The complexity of problems concerning graphs with regularities. In
Proc. 7th Symposium on Math. Foundations of Comput. Sci., volume 176 of Lecture
Notes in Comput. Sci., pages 544–552. Springer-Verlag, 1984.

24. K. Wagner. The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica, 23(3):325–356, 1986.

