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Abstract

The immune response is a complex process
which involves large numbers of highly di-
verse cells, making it a well suited appli-
cation for agent based modelling. A major
problem with current models is the lack of
biophysically sound simulation methodology.
In this paper, we analyze the key algorithms
of an important agent based model of the im-
mune system, point out methodological defi-
ciencies and propose alternatives which cor-
respond to discrete versions of established
continuous models. To analyze the effects
of these modifications, a detailed simulation
of the immune response based on the pro-
posed algorithms has been implemented and
tested.

1 Introduction

The vertebrate immune system is one of the most com-
plex systems to have emerged in nature. Our know-
ledge of how the cells and molecules which make up
the immune system work and collaborate is still far
from complete. Both continuous mathematical mod-
els and agent-based simulations have been applied to
study the immune system [Forrest and Beauchemin,
2007]. Two key features of the immune system make
it an ideal application for agent-based modelling:

• Diversity: To keep up with a huge, ever-changing
environment of antigenic challenges, immune cells
have evolved sophisticated mechanisms to diver-
sify. Immune cells carry receptors which are gen-
erated randomly by recombination of DNA frag-
ments. These receptors may be diversified even
further by mutations of the coding sequence. The
total number of possible receptors has been es-
timated to 108 [Janeway and Travers and Wal-
port, 2005]. While such highly diverse and dy-
namically changing cell properties are difficult to
model using differential equations, it is compar-
atively straightforward to implement them in an
agent based model.

• Stochasticity: As a consequence of the high
diversity of antigen receptors, a new antigen is

normally only detected by a very low number
of immune cells. Thus, stochastic events dur-
ing the initial phase of the immune response may
have dramatic consequences (see [Mosmann et al.,
1986] for an example). This fact may be repre-
sented accurately using agent based models while
continuous models are usually based on the as-
sumption that stochastic perturbations may be
neglected due to the large number of particles.

Many agent based models used today to study the
immune system are based on the Celada-Seiden model
[Seiden and Celada, 1992; Puzone et al., 2002]. This
model uses bit strings to represent antigen, recep-
tors and peptides. It is capable of reproducing high-
level emergent behaviour like immune memory, affin-
ity maturation and repertoire shift. However, the con-
siderable advances in immunology in the last 15 years
make the immunological basis of the model seem a
little outdated. Much more is known today about
cell migration and interactions in lymphoid tissue and
so one should seek to incorporate this knowledge into
agent-based modelling.

The work presented here follows two main objec-
tives. On one hand, we seek a better understanding
of the simulation algorithms used in the original ver-
sion of the Celada-Seiden model (CS model). On the
other hand, we wish to modify and extend the model
to facilitate a more explicit representation of current
immunological knowledge. To this end, we proceed as
follows:

• We present the basic simulation algorithms of the
CS model in terms of operations on abstract par-
ticle types, in contrast to the existing literature
which is aimed at readers who are familiar with
immunology. We investigate to what extent these
algorithms correspond to established biophysical
laws.

• We evaluate the appropriateness of these algo-
rithms for immunological simulations in the light
of new results about cell migration and interac-
tions in the lymph node. We propose new al-
gorithms for diffusion, proliferation and cell-cell
interaction which all correspond to discrete ver-
sions of established continuous models. This link
allows for hybrid simulations where the contin-



uous model is used directly for sufficiently large
particle numbers, resulting in an increase of per-
formance.

To evaluate our findings, we have implemented an
agent-based simulation of the immune response based
on the proposed algorithms. The implementation is
discussed briefly and some results are presented in
section 5. However, the main focus of this paper is
on the basic properties of the simulation algorithms
rather than the implementation.

2 Background

Since the CS model cannot be explained in full detail
in this paper, the reader is asked to consult the liter-
ature for additional reference. This section will only
give a short informal introduction.

The authors described their model as a modified cel-
lular automata, but it is more similar to the lattice gas
simulations used in computational physics and fluid
dynamics. Implementations of the model normally use
a two-dimensional hexagonal lattice as the simulation
space. The simulation alternates between phases of
interaction between agents and a phase of diffusion,
where all agents may move to a random neighbour on
the lattice with a fixed probability. During the interac-
tion phase, agents may only interact with other agents
on the same lattice site. The agents are also called
particles in this paper and may be cells, molecules, or
antigen.

It shows at some points that the simulation space
of the CS model was not designed to explicitly repre-
sent a real space. For instance, there is no limit on the
number of particles at a given lattice point. The diffu-
sivity, i.e., the probability to move to a neighbouring
site during the diffusion phase, is equal for all parti-
cles. However, the existence of the lattice and the ran-
dom walk of the agents on it increase the stochasticity
of the model. It allows for a delay between antigen
invasion in the system and detection by a sensitive
immune cell, which may be at a distant lattice site.
Analogous effects exist in the course of infections in
real organisms.

Recently, observations of immune cells in lymph
nodes using two-photon microscopy revealed that the
CS model is actually closer to the truth than one
would have expected. Both B- and T-cells appear to
search for antigen in secondary lymphoid tissue us-
ing a random walk [Miller et al., 2002; Halin et al.,
2005]. It seems natural to try and incorporate these
findings into the CS model. In this paper, we take a
first step in this direction by looking at the basic sim-
ulation algorithms of the CS model and analyzing if
they could be used to construct an explicit representa-
tion of the migration and interactions of lymphocytes
in secondary lymphoid tissue.

3 Simulation algorithms

The algorithm description given here are based on
[Seiden and Celada, 1992]. However, since the model
was not formally defined in the cited source and some

1 argument τ : particle type
2 do for each site S
3 do for each particle π of type τ at S

4 if COIN
(

∆t
(∆s)2Dτ

)
5 target[π] ← random neighbour of S
6 else
7 target[π] ← S

Figure 1: Diffusion algorithm from the CS model
which has been generalized to support particle type
dependent diffusivities and explicit model resolution
parameters. After the algorithm has determined the
targets for all particles on all sites, all particles are
moved to their targets simultaneously.

details remain unclear, the most recent implementa-
tion of the model, CImmSim version 6.3 [Baldazzi et
al., 2006], was used for additional reference.

3.1 Notation
All algorithms are given as pseudo code in terms of
operations on abstract particle types τ . Two parti-
cles are assigned different types if there is any feature
which makes them distinguishable with respect to the
simulation, even if they represent the same kind of bio-
logical object. For example, two B cells which carry
different antigen receptors are modelled as different
types. The following model parameters are used in
the algorithms:

∆t > 0 Temporal model resolution
∆s > 0 Spatial model resolution
Cmax > 0 Capacity of a lattice point
Sτ > 0 Size of τ
Dτ ∈ [0, 1] Diffusivity of τ
Iτ,τ ′ ∈ [0, 1] Affinity or interaction strength be-

tween τ and τ ′

Pτ ∈ [0, 1] Proliferation rate of τ
The parameters Sτ and Dτ do not exist in the CS

model, but will be used later in our own extensions. Sτ

representing the size of an object in spatial units and
can be mapped to the real physical size of the object
via Cmax and ∆s (in the CS model, Sτ = 1 for all τ).
Dτ introduces particle type dependent diffusivity (in
the CS model, Dτ = Dτ ′ for all τ, τ ′). Likewise, the
CS model has no explicit notion of ∆t and ∆s (i.e.,
∆t = ∆s = 1 in the CS model).

In our pseudo code notation, the function COIN(p)
is used to denote a random experiment which succeeds
with probability p. If p ≥ 1, the experiment always
succeeds. As we will see later in this section, this
definition is necessary since p > 1 cannot always be
avoided.

3.2 Diffusion
As described in Sec. 2, the simulated particles per-
form a simple undirected random walk during the dif-
fusion phase. The corresponding pseudo code is given
in Fig. 1. The mean-field limit (i.e., the behaviour for
sufficiently large particle numbers) of this algorithm
is described by the differential equation



1 argument τ : particle type
2 do for each site S
3 ρ← 0
4 do for each particle π at S
5 ρ← ρ +

(
Stype(π)/Cmax

)m

6 do for each particle π of type τ at S

7 if COIN
(
ρ ∆t

(∆s)2Dτ

)
8 target[π] ← random neighbour of S
9 else

10 target[π] ← S

Figure 2: Variation of the diffusion algorithm from
Fig. 1 where diffusive pressure is increased propor-
tionally with the local concentration of cells.

∂Cτ

∂t
= Dτ∇2Cτ

where Cτ : Rm × R 7→ R is a continuous function
which represents the concentration of particles of type
τ on the lattice. This can be shown by considering the
expected change of the count of particles of type τ at
a given site after one time step and proving that the
resulting equation is a finite difference approximation
of the above differential equation. Details have to be
omitted, but the technique is fairly standard and has
been applied elsewhere [Malevanets and Kapral, 1997].

The above equation is well known in physics as the
Fickian law of diffusion. Thus, the diffusion algorithm
can be seen as a correct agent-based simulation of a
real diffusion process.

However, the Fickian law of diffusion only holds for
sufficiently low concentrations. When modelling pop-
ulations at higher concentrations where collisions be-
tween the objects increase diffusion pressure, one may
use the following generalized version [Murray, 2002]:

∂Cτ

∂t
= Dτ∇ ·

[(
Cτ

Cmax

)m

∇Cτ

]
, m > 0

It can be shown that this equation is the mean-field
limit of the algorithm given in Fig. 2 in which the
probability to move to a neighbouring site increases
with particle concentration on the source site. Inter-
estingly, a similar algorithm has been implemented
in CImmSim which modifies the probability of mo-
tion depending on the concentration of the target site.
While this might be thought to have a similar effect
as the algorithm in Fig. 2, it can be shown that the
CImmSim variant is equivalent to Fickian diffusion in
the mean field limit. This shows that the behaviour
of an algorithm in the mean field limit is not always
immediately obvious.

So far, it is unclear which of the algorithms is more
appropriate for immune system simulations. How
freely immune cells move in lymphoid tissue is still
a matter of debate. No difference to a normal ran-
dom walk was found in the two-photon experiments,
but more recent findings suggest that the seemingly

1 arguments τ, τ ′: particle types
2 do for each site S
3 L ← particles of type τ at S
4 L′ ← particles of type τ ′ at S
5 do for each π ∈ L
6 do for each π′ ∈ L′

7 if COIN(Iτ,τ ′)
8 interact(π, π′)
9 remove π′ from L′

10 continue using next π

Figure 3: Algorithm for particle-particle interactions
in the CS model. Note that two particles of the same
type are completely equal, and thus the order of par-
ticles in L and L′ does not influence the outcome of
the algorithm.

random motion may actually be a consequence of the
densely-packed environment [Beltman et al., 2006].

3.3 Interactions between particles
The actual immunological knowledge is implemented
in the interactions which can take place between the
particles and the consequences of these interactions.
In the pseudo codes in Fig. 3 and 4, this knowledge
is abstracted in the procedure call interact(π, π′). For
example, an interaction procedure could move one of
the particles to a different state (by changing its type),
or remove one of the particles (think phagocytosis).
In one interaction phase, all possible interactions be-
tween the particles are considered. Since the outcome
of each interaction between a pair of particle types
may affect the subsequently treated interactions, the
order in which the interactions are considered is ran-
domly determined at each site.

While this algorithm is easy to implement, it is sur-
prisingly difficult to determine the mean field limit,
because each outcome of the inner loop influences all
following iterations of the outer loop. So far, we were
unable to derive a closed formula for the mean field
limit of this algorithm. In section 4, we will improve
our understanding of this algorithm by studying it us-
ing a model of a simple chemical system.

In order to model the cell-cell and cell-molecule in-
teractions in the lymph node more explicitly, the algo-
rithm should be aware of the particle sizes and the spa-
tial resolution. Again, several continuous models are
available for interactions between particles, the most
common being the kinetic rate laws from chemistry
which are also often used in continuous models of the
immune system (e.g. [Carneiro et al., 2005]). An al-
gorithm which follows the law of mass action is shown
in Fig. 4. It is easy to see that the rate of the changes
induced by interact(π, π′) in the mean field limit is
equal to Iτ,τ ′ · Cτ · C ′

τ and thus proportional to the
rates of concentration. Thus, the algorithm obeys the
law of mass action.

3.4 Cell proliferation
Only antigen and activated immune cells proliferate
in the CS model. A continuous turnover of cells is im-



1 arguments τ, τ ′: particle types
2 do for each site S
3 L ← particles of type τ at S
4 L′ ← particles of type τ ′ at S
5 Imax ← size(L)
6 ρ ← size(L′) · (Sτ ′/Cmax)
7 do Imax times
8 if COIN(ρ ∆t Iτ,τ ′)
9 interact(head(L),head(L′))

10 L=tail(L)
11 L′=tail(L′)

Figure 4: Proposed interaction algorithm which obeys
the law of mass action. For simplicity, it is assumed
that size(L) ≤ size(L′) holds at line 5 such that the
maximum number of interactions does not exceed the
possible number of interactions.

1 argument τ : particle type
2 do for each site S
3 ρ← 0
4 do for each particle π at S
5 ρ← ρ + Stype(π)/Cmax

6 L← cells of type τ at S
7 if ∆t · Pτ · (1− ρ) > 0
8 do for each π ∈ L
9 if COIN(Pτ · (1− ρ))

10 clone(π)
11 else
12 do for each π ∈ L
13 if COIN(−Pτ · (1− ρ))
14 kill(π)

Figure 5: Proposed proliferation algorithm. In con-
trast to previous implementations of the CS model,
the capacity of each site is limited.

plemented by inserting new cells into the model and
deleting existing cells at a fixed rate, determined by a
half-life parameter for each cell type. In the original
version of the CS model, proliferation of activated cells
was completely unlimited. In CImmSim, the growth
rate of cells is damped with a Gaussian kernel (algo-
rithm not shown). Still, it is not possible for cells to
die due to overpopulation.

Several models for resource-limited growth of cells
exist [Murray, 2002]. The algorithm shown in Fig. 5
implements a discrete version of the logistic equation

∂Cτ

∂t
= PτCτ

Cmax − Cτ

Cmax

which imposes a stricter limit on the number of cells.
While temporal overpopulation of a site is still possi-
ble, the algorithm will remove the exceeding cells after
some time such that the maximum site capacity Cmax

is no longer exceeded. This is important for the algo-
rithms shown in Fig. 2 and 4 to provide meaningful
results.

4 Simulation of a Bistable Chemical
System

Given the high complexity of the CS model, spe-
cial care must be taken to avoid simulation artifacts.
These artifacts might arise, for example, as a conse-
quence of setting ∆s too small or ∆t too high. As
an analogy, think of stability criteria for finite differ-
ence methods to solve partial differential equations.
However, a rigorous mathematical stability analysis of
the entire model does not seem realistic. Instead, we
applied our simulation algorithms to a comparatively
simple bistable chemical system to estimate valid pa-
rameter ranges. The system consists of the four hy-
pothetical species A,A∗, B, B∗ and is defined by the
following chemical equations:

IA,A∗

2A + A∗ −→ 3A
IA∗,A

2A∗ + A −→ 3A∗

IA∗,B

A∗ + B −→ A + B

IA∗,B ↑ ↓ IA,B

A∗ + B∗ ←− A + B∗

IA,B∗

This system was studied extensively using a parti-
cle simulation [Malevanets and Kapral, 1997] which
was designed to comply with the Fickian law of diffu-
sion and the law of mass action. The particle simula-
tion is capable of producing stable Turing patterns if
the ratio of diffusivity vs. reaction rate is sufficiently
high, i.e., if diffusion is “fast enough” to maintain suffi-
cient independence between neighbouring lattice sites.
Since the particle simulation used by Malevanets and
Kapral is structurally similar to the CS model, it is
used here as a testbed for the algorithms presented in
the last section.

The simulations have been carried out on a 300x300
square lattice. As described above, a simulation alter-
nates between interaction and diffusion phases. Dur-
ing the interaction phase, the order at which the 6
possible reactions are treated is chosen randomly at
each lattice point. When using the interaction algo-
rithm from the CS model, each particle is only allowed
to interact once per interaction phase. This limitation
is not applied to our modified interaction algorithm.

It is not immediately obvious how the algorithm
from Fig. 4 can be extended to interactions of three
particles, especially if two of the interacting species
are identical as in the equation 2A + A∗ → 3A. Fig.
7 shows an implementation which still obeys the law
of mass action and ensures that no negative particle
numbers arise. However, note that it is possible that
A∗ is converted to A even if there is only one particle
of type A at the site. The extension of the interaction
algorithm of the CS model is not shown. It is sim-
ply done by considering all possible triples of particles
instead of all possible pairs.

Some simulation results are shown in Fig. 6. Both



Figure 6: Simulations of a bistable chemical system.
Top left: Solution of the system equations with per-
turbed initial conditions. Top right: Particle simula-
tion as described by Malevanets and Kapral. Bottom
left: Particle simulation using algorithms from the CS
model (Fig. 1 and 3). Bottom right: Particle simula-
tion using the diffusion algorithm from the CS model
(Fig. 1) and our proposed interaction algorithm (Fig.
4). The colors are linearly mapped to the interval of
concentrations of A on the lattice, white represent-
ing the maximum concentration. The bottom images
appear darker due to higher variance.

1 do for each site S
2 L ← particles of type A at S
3 L′ ← particles of type A∗ at S
4 Imax ← size(L2)
5 ρ ← (size(L) · (SA/Cmax))

2

6 do Imax times
7 if COIN(ρ ∆t IA,A∗)
8 move particle from L′ to L

Figure 7: Extension of the algorithm from Fig. 4 to
interactions between three particles. Here, the equa-
tion 2A + A∗ → 3A is shown.

CS model Modified version
∆t 1 1
∆s 1 1
Cmax 32 32
Sτ (∀τ) 1 1
DA = DA∗ 0.032 0.032
DB = DB∗ 0.32 0.32
IA,A∗ = IA∗,A 0.0007 0.182
IA∗,B = IA,B∗ 0.0006125 0.0104
IA,B = IA∗,B∗ 0.001225 0.0208

Table 1: Parameters used in the simulations of the
bistable chemical system shown in Fig. 6.

the original algorithms from the CS models and our
modified version are able to form stable Turing pat-
terns in certain parameter regions. The parameters
from [Malevanets and Kapral, 1997] can be used di-
rectly with our proposed algorithms (bottom right im-
age in Fig. 6). The corresponding values for the CS
model had to be determined by isolating the diffusion
and interaction parts and tuning them to the particle
simulation described by Malevanets and Kapral. Note
that these parameter values are close to maximal since
DB > 0.5 would violate the numerical stability condi-
tion DB∆t/(∆s)2 ≤ 0.5.

Of course, the fact that the algorithms are able to
generate stable Turing patterns in the studied param-
eter regions does not guarantee that no artifacts arise
when the algorithms are applied to simulate the im-
mune response. However, we are now able to charac-
terize the difference between the two interaction algo-
rithms a bit more precisely: for diffusion to play any
role at all, the interaction algorithm of the CS model
must be used with very low parameter values. Typ-
ical parameter values from CImmSim, for example,
range from 0.01 (unspecific phagocytosis of antigen
by macrophages) to 1 (specific phagocytosis of anti-
gen by maximum-affinity B cells). In this parameter
range, the number of interactions carried out is close
to maximal with high probability. The diffusion al-
gorithm no longer maintains a locally smooth particle
distribution under these conditions.

5 Simulation of the Immune Response

We have created an implementation of the CS model
using the algorithms proposed in this paper which in-
cludes B cells, T cells, macrophages, antigen and anti-
body and the interactions between them as described
in [Seiden and Celada, 1992], including somatic hyper-
mutation and a simple mechanism for immune mem-
ory which is also found in CImmSim.

The algorithms used were those given in Fig. 1 for
diffusion, Fig. 4 for interactions and Fig. 5 for cell
proliferation. The parameters Sτ are not used yet. To
increase the performance of the simulation, the user
may define thresholds for each simulated process. If
the number of particles participating in the process
exceeds the threshold, the simulation switches to the
continuous model. The user may also decide to not
use this approximation by setting the threshold higher
than Cmax. Extensive simulations have been carried
out to explore the effect of the hybrid simulation on
the simulation outcome [Textor, 2006], but can not be
discussed in detail in this paper. Briefly, the mean val-
ues of the measured quantities (duration of infection
clearance, success rate, maximum cell titers among
others) were not affected by the hybrid simulation
mode. Surprisingly, the variance of these quantities
increased when enabling the hybrid mode.

Results of a typical simulation run are shown in Fig.
8. Antigen is injected at a random site of the lattice
at time steps t = 100 and t = 2500. It starts pro-
liferating and spreads across the lattice by diffusion.
Some B cells and macrophages ingest the foreign anti-
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Figure 8: Results of a simulation of the immune re-
sponse on a 40 × 40 hexagonal lattice using Cmax =
32. Proliferating antigen is injected at t = 100 and
t = 2500. Due to immune memory, the second in-
fection is cleared faster than the first one and more
antibody is produced.

gen and present peptide fragments (represented as bit
strings) to the T cells. Once a T cell has recognized a
presented antigen on a B cell surface, both cells start
proliferating and produce clones with the same recep-
tor. Eventually, B cells start to secrete antibody and
the antigen is cleared. Some of the B cells remain in
the system as B memory cells. Thus, upon reinfec-
tion, the antigen is cleared faster and more antibody
is produced.

The implementation is available under the GNU
General Public License and can be downloaded
from http://www.tcs.uni-luebeck.de/forschung/
software/limmsim/ or obtained by e-mail from the
authors for reference.

6 Conclusions and Perspectives

In this paper, the basic simulation algorithms used
in the Celada-Seiden model, an agent-based simula-
tion of the immune response, have been analyzed. It
has been shown that using relatively simple modifi-
cations to the key simulation algorithms of the CS
model, a link to well-established continuous models is
established. It has been shown how reasonable pa-
rameter ranges for these algorithms can be obtained
using a simulation of a bistable chemical system. A
prototype of an immune system simulator based on
the new algorithms has been implemented and tested.

Further research should extend the model to three
dimensions and incorporate current immunological
knowledge, heading towards an explicit simulation of
a real secondary lymphoid organ, for example a lymph
node. This challenging task raises a number of new

questions. For example, it is not straightforward to
model different tissue regions and the interfaces be-
tween them in a uniform simulation space.

The link to continuous models also enables hybrid
simulations which may substantially increase the per-
formance of large-scale simulations. While prelimi-
nary results indicate that these simulations still pro-
duce valid results, the effects of this hybridization need
to be clarified further.
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