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D-23538 Lübeck, Germany

elberfeld@tcs.uni-luebeck.de

Till Tantau
Institut für Theoretische Informatik

Universität zu Lübeck
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Abstract

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely hap-
lotypes based on genotype data. This problem, which has strong practical applications, can be
approached using both statistical as well as combinatorial methods. While the most direct combina-
torial approach, maximum parsimony, leads to NP-complete problems, the perfect phylogeny model
proposed by Gusfield yields a problem, called PPH, that can be solved in polynomial (even linear)
time. Even this may not be fast enough when the whole genome is studied, leading to the question
of whether parallel algorithms can be used to solve the PPH problem. In the present paper we answer
this question affirmatively, but we also give lower complexity bounds on its complexity. In detail, we
show that the problem lies in Mod2L, a subclass of the circuit complexity class NC2, and is hard for
logarithmic space and thus presumably not in NC1. We also investigate variants of the PPH problem
that have been studied in the literature, like the perfect path phylogeny haplotyping problem and the
combined problem where a perfect phylogeny of maximal parsimony is sought, and show that some
of these variants are TC0-complete or lie in AC0.

1 Introduction

We investigate the computational complexity of haplotype phase prediction problems. Haplotype phase
prediction is an important preprocessing step in genomic disease and medical condition association stud-
ies. In these studies two groups of people are identified, where one group has a certain disease or medical
condition while the other has not, and one tries to find correlations between group membership and the
genomic data of the individuals in the groups. The genomic data typically consists of information about
which bases are present in an individual’s DNA at so-called SNP sites (single nucleotide polymorphism
sites). While the DNA sequences of different individuals are mostly identical, at SNP sites there may
be variations. Low-priced methods for large-scale inference of genomic data can read out, separately
for each SNP site, the bases present, of which there can be two since we inherit one chromosome from
our father and one from our mother. However, since the bases at different sites are determined indepen-
dently, we have no information about which chromosome the base belongs to. For homozygous sites,
where the same base is present on both chromosomes, this is not a problem, but for heterozygous sites
this information, called the phase of an SNP site, is needed for accurate correlations. The idea behind
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haplotype phase prediction or just haplotyping is to computationally predict likely phases based on the
laboratory data (which misses this information). For an individual, the genomic input data without phase
information is called the genotype while the two predicted chromosomes are called haplotypes.

There are both statistical [10, 11, 17] as well as combinatorial approaches to haplotyping. The
present paper will treat only combinatorial approaches, of which there are two main ones: Given a
set of observed genotypes, the maximum parsimony approach [5, 6, 12, 15, 18] tries to minimize the
number of different haplotypes needed to explain the genotypes. The rationale behind this approach is
that mutations producing new haplotypes are rare and, thus, genotypes can typically be explained by a
small set of distinct haplotypes. Unfortunately, the computational problem resulting from the maximum
parsimony approach, called MH for maximum parsimony haplotyping, is NP-complete [25]. This is
remedied by Gusfield’s perfect-phylogeny-based approach [16]. Here the rationale is that mutation
events producing new haplotypes can typically be arranged in a perfect phylogeny (a sort of “optimal”
evolutionary tree). The resulting problem, called PPH for perfect phylogeny haplotyping, can be solved
in polynomial time as shown in Gusfield’s seminal paper [16]. It is also possible to combine these
two approaches, that is, to look for a minimal set of haplotypes whose mutation events form a perfect
phylogeny, but the resulting problems are – not very surprisingly – NP-complete once more [1, 26].

Due to the great practical importance of solving the PPH problem efficiently, a lot of research has
been invested into finding quick algorithms for it and also for different variants. These efforts have
culminated in the recent linear-time algorithms [8, 22, 23] for PPH. On the other hand, for a number of
variants, in particular when missing data is involved, NP-completeness results can be obtained. (In the
present paper we only consider the case where complete data is available.) These results have sparked
our interest in, ideally, determining the exact computational complexity of these problems in complexity-
theoretic terms. For instance, by Gusfield’s result, PPH ∈ P, but is it also hard for this class? Note that
this question is closely linked to the question of whether we can find an efficient parallel algorithm.

Before we list the results obtained in the present paper, let us first describe the problems that we
investigate (detailed definitions are given in the next section). The input is always a genotype matrix,
whose rows represent individuals and whose columns represent SNP sites. An entry in this matrix en-
codes the measurement made for the given individual and the given SNP site. The question is always
whether there exists a haplotype matrix with certain properties that explains the genotype matrix. A
haplotype matrix explaining a genotype matrix has twice as many rows, namely for each individual two
haplotypes, one from the father and one from the mother, and these two haplotypes taken together must
explain exactly the observed genotype in the input matrix for this individual.

The perfect phylogeny model is an evolutionary model according to which mutations at a specific
site can happen only once, in other words, there cannot be any “back-mutations.” For haplotype matrices
this means that there must exist an (evolutionary) tree whose nodes can be labeled with the haplotypes
in the matrix in such a way that all haplotypes sharing a base at a given site form a connected subtree.
In the perfect path phylogeny model [14] the phylogeny is restricted to be a very special kind of tree,
namely a path. In the directed version of the perfect phylogeny model the tree is rooted and the root
label is part of the input.
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Problem Question: Given a genotype matrix, an integer d (where applicable), and a root label
(where applicable), does there exist an explaining haplotype matrix . . .

MH . . . that has at most d different haplotypes?

PPH . . . that admits a perfect phylogeny?
DPPH . . . that admits a perfect phylogeny with the given root label?
MPPH . . . that admits a perfect phylogeny and has at most d different haplotypes?

PPPH . . . that admits a perfect path phylogeny?
DPPPH . . . that admits a perfect path phylogeny with the given root label?
MPPPH . . . that admits a perfect path phylogeny and has at most d different haplotypes?

Our Results. In this paper we show that PPH is hard for logarithmic space under first-order reductions.
This is the first lower bound on the complexity of this problem. We also show PPH ∈Mod2L, which is a
close (but not matching) upper bound on the complexity of this central problem.

We show that the PPPH problem, where the tree topology of the perfect phylogeny is restricted to
a path, is (provably) easier: This problem lies in FO, which is the same as the uniform circuit class
AC0 (constant depth, unbounded fan-in, polynomial size circuits). This implies, in particular, that PPPH

cannot be hard for logarithmic space – unlike PPH. To obtain this results we extend the partial order
method introduced by Gramm et al. [14] for directed perfect path phylogenies to the undirected case.
We also show that MPPPH is complete for TC0 = FO(COUNT).

Restricting the tree topology to a path is one way of simplifying the PPH problem. Another approach
that has been studied in the literature is to restrict the number of heterozygous entries in the genotype
matrices. We show that PPH is in FO when genotype matrices are restricted to contain at most two
heterozygous entries per row or at most one heterozygous entry per column. In contrast, if we allow at
most three heterozygous entries per row, PPH is still L-hard.

Related Work. Perfect phylogeny haplotyping was suggested by Gusfield [16]. The computational
complexity of the PPH problem is quite intriguing since, at first sight, it is not even clear whether this
problem is solvable in polynomial time. Gusfield showed that this is, indeed, the case and different
authors soon proposed simplified algorithms with easier implementations [2, 9]. A few years later three
groups independently devised linear time algorithms for the problem [8, 22, 23]. All these papers are
concerned with the time complexity of PPH and all these algorithms have at least linear space complexity.

Haplotyping with perfect path phylogenies was introduced by Gramm et al. [14] in an attempt to
find faster algorithms for restricted versions of PPH. For instance, Gramm et al. present a simple and fast
linear-time algorithm for DPPPH and they show that the version with incomplete data is fixed parameter
tractable with respect to the number of missing entries per site. These results all suggested (but did not
prove) that the PPH problem is somehow “easier” than PPPH. The results of the present paper, namely
that PPPH ∈ FO while PPH is L-hard, settle this point.

Our result that MPPPH is TC0-complete contrasts sharply with the NP-completeness of MPPH proved
in [1, 26]. One might try to explain these contrasting complexities by arguing that “considering perfect
path phylogenies rather than perfect phylogenies makes the problem trivial anyway, so this is no sur-
prise,” but this is not the case: For instance, the incomplete perfect path phylogeny problem, IPPPH, is
known to be NP-complete [14] just like IPPH.

Van Iersel et al. [26] have studied the complexity of MPPH for inputs with a bounded number of
heterozygous entries and they show that for certain bounds the problem is still NP-complete while for
other bounds it lies in P. These results are closely mirrored by the results of the present paper, only
the classes we consider are much smaller: The basic PPH problem is L-hard and so are some restricted
versions, while other restricted versions lie in FO. It turns out that, despite the different proof techniques,
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the restrictions that make MPPH lie in P generally also make PPH lie in FO, while restrictions that cause
MPPH to be NP-hard also cause PPH to be L-hard.

Organization of This Paper. After the following preliminaries section, Section 3 presents our results
on PPH, including the variants of PPH with restricted inputs matrices. In Section 4 we present the results
on PPPH and the maximum parsimony variant MPPPH.

2 Basic Notations and Definitions

2.1 Haplotypes, Genotypes, Perfect Phylogenies, Induced Sets

Conceptually, a haplotype describes genetic information from a single chromosome. When SNP sites are
used for this purpose, a haplotype is a sequence of the bases A, C, G and T. In the human genome, at any
given SNP site at most two different bases can be observed in almost all cases (namely an original base
and a mutated version). Since these two bases are known and fixed for a given site, we can encode one
base with 0 and the other with 1 (for this particular site). For example, the haplotypes AAGC and TATC
might be encoded by 0110 and 1100. A genotype combines two haplotypes by joining their entries. For
example, the haplotypes AAGC and TATC lead to the genotype {A,T}{A}{G,T}{C} and so do the two
haplotypes AATC and TAGC. Given a genotype, we call sites with only one observed base homozygous
and sites with two bases heterozygous. It is customary to simplify the representation of genotypes by
encoding a homozygous entry by 0 or 1 (depending on the single base present) and heterozygous entries
with the number 2. Thus, we encode the above genotype by 2120.

Formally, a haplotype is a vector of 0’s and 1’s. A genotype is a vector of 0’s, 1’s and 2’s. Given
a vector c, let c[i] denote the ith component. Two haplotypes h1,h2 ∈ {0,1}n explain a genotype g ∈
{0,1,2}n if for each i ∈ {1, . . . ,n} we have g[i] = h1[i] = h2[i] whenever g[i] ∈ {0,1} and h1[i] 6= h2[i]
whenever g[i] = 2. To examine multiple genotypes or haplotypes, we arrange them in matrices. The
rows of a haplotype matrix are haplotypes and the rows of a genotype matrix are genotypes. We call a
column of a matrix polymorphic if it contains both 0-entries and 1-entries or a 2-entry. We say that a
2n×m haplotype matrix B explains an n×m genotype matrix A if for each i ∈ {1, . . . ,n} the rows 2i−1
and 2i of B explain the row i of A.

Perfect phylogenies for haplotype and genotype matrices are defined as follows:

Definition 2.1. A haplotype matrix B admits a perfect phylogeny if there exists a rooted tree TB, called
a perfect phylogeny for B, such that:

1. Each row of B labels exactly one node of TB.
2. Each column of B labels exactly one edge of TB.
3. Each edge of TB is labeled by at least one column of B.
4. For every two rows h1 and h2 of B and every column i, we have h1[i] 6= h2[i] if, and only if, i lies

on the path from h1 to h2 in TB.

A genotype matrix A admits a perfect phylogeny if there exists a haplotype matrix B that explains A and
admits a perfect phylogeny.

We say that TB is a perfect path phylogeny if the topology of TB is a path, that is, TB consists of at
most two disjoint branches emanating from the root. If the root of TB is labelled with a haplotype given
beforehand, we call TB directed. Since the roles of 0’s and 1’s can be exchanged individually for each
column, we will always require the given haplotype to be the all-0-haplotype. Formally, we say that a
haplotype matrix B admits a directed perfect (path) phylogeny if there exists a perfect (path) phylogeny
as in Definition 2.1 with the root label 0n.
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The four gamete property is a well-known alternative characterization of perfect phylogenies: A
haplotype matrix admits a perfect phylogeny if, and only if, no column pair contains the submatrix[ 0 0

0 1
1 0
1 1

]
. By the four gamete property it is important to know for each pair of columns which combinations

of 0’s and 1’s are (or must be) present in the pair. Following Eskin, Halperin, and Karp [9] we call
these combinations the induced set of the columns. Formally, given a haplotype matrix B and a pair of
columns (c,c′) the induced set indB(c,c′)⊆ {00,01,10,11} contains all bitstrings ab ∈ {00,01,10,11}
such that there is a row r in B such that the entry in column c is a and the entry in column c′ is b. For a
genotype matrix A and two columns, the induced set indA(c,c′)⊆ {00,01,10,11} is the intersection of
all indB(c,c′) where B is any haplotype matrix that explains A. This means, for instance, that the induce
of the two columns of the genotype matrix

[
0 1
2 0

]
is {01,00,10}, the induce of

[
2 0
1 2

]
is {00,10,11}, and

the induce of
[

0 0
2 2

]
is {00}.

For a genotype with at least two heterozygous entries there exist multiple pairs of explaining haplo-
types. If a genotype g contains [ 2 2 ] in columns c and c′, then two explaining haplotypes for g contain
either

[
0 0
1 1

]
or

[
0 1
1 0

]
in c and c′. In the first case we say that g is resolved equally in (c,c′) and in the

second case we say that g is resolved unequally in (c,c′). By the four gamete property, when a genotype
matrix admits a perfect phylogeny, for each column pair all genotypes are resolved either equally or un-
equally. The resolution of a column pair is often, but not always, determined by the induce: In order to
obtain a perfect phylogeny, a column pair that induces 00 and 11 must be resolved equally and a column
pair that induces 01 and 10 must be resolved unequally.

2.2 Complexity Classes, Circuit Classes, Descriptive Complexity Theory

The classes L, P, and NP denote logarithmic space, polynomial time, and nondeterministic polynomial
time, respectively. The class Mod2L contains all languages L for which there exists a nondeterministic
logspace Turing machine such that x ∈ L if, and only if, the number of accepting computation paths on
input x is odd. The circuit classes AC0, TC0, NC1, and NC2, all of which are assumed to be uniform
in the present paper, are defined as follows: AC0 is the class of problems that can be decided by a
logspace-uniform family of constant-depth and polynomial-size circuits over and-, or- and not-gates
with an unbounded fan-in. For TC0 we may additionally use threshold gates. The class NC1 contains all
languages that can be decided by a logspace-uniform family of polynomial-size, O(logn)-depth circuits
over and-, or- and not-gates with bounded fan-in. For the class NC2 the depth is O(log2 n).

We use several notions from descriptive complexity theory, which provides equivalent character-
izations of the classes AC0 and TC0. In descriptive complexity theory inputs are encoded as logical
structures. A genotype matrix is described by the logical structure A = (IA ,AA

0 ,AA
1 ,AA

2 ,nA
r ,nA

c ) as
follows: IA is a finite set of indices for rows and columns and nA

r and nA
c are elements from IA that are

the maximum row and column indices, respectively. The relation AA
0 ⊆ IA × IA indicates 0-entries, that

is, (r,c) ∈ AA
0 holds exactly if the row r has a 0-entry in column c. The relations AA

1 and AA
2 are defined

similarly, only for 1- and 2-entries. We assume that the universe IA is ordered (we always have free
access to a predicate <), but will not need the bit-predicate (see [19] for a discussion of its importance).

Given a formula, the set of all finite logical structures satisfying the formula (that are models of the
formula) can be regarded as a language. If the formula is a first-order formula, the described language is
called first-order definable. The class of all such languages is denoted FO and equals AC0. For example,
the formula (∃r,c)[r ≤ nr ∧ c ≤ nc ∧A2(r,c)] is true for genotype matrices that contain a row with a
heterozygous entry and, therefore, defines the set of genotype matrices with at least one heterozygous
entry. The computational power of first-order logic can be increased by adding an additional number
domain and counting quantifiers. This class, which is called FO(COUNT), equals TC0.

To describe mappings between logical structures, one can use first-order queries, which are tuples
of defining formulas for the relations of the image structure. Since L is closed under reductions that can
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be described by first-order queries, we use these first-order reductions to prove L-hardness.
The inclusion structure between the described classes is known to be the following:

FO = AC0 ( FO(COUNT) = TC0 ⊆ NC1 ⊆ L⊆Mod2L⊆ NC2 ⊆ P⊆ NP .

3 Complexity of Haplotyping via Perfect Phylogenies

In the present section we study the complexity of PPH as well as the variants where the number of
heterozygous entries in the input is restricted. In Section 3.1 we show that PPH and its directed variant
are L-hard and in Mod2L. Thus, both problems are in NC2 by the inclusion Mod2L ⊆ NC2 shown in
[3], but not in NC1, unless L = NC1. In Section 3.2 we additionally take restrictions into account and
show that the hardness result still holds when we restrict the input to genotype matrices with at most
three heterozygous entries per row. In contrast, we show that PPH is first-order definable for genotype
matrices with at most two heterozygous entries per row or at most one heterozygous entry per column.

We will focus on the directed version DPPH rather then PPH since Eskin, Halperin and Karp [9]
have shown that PPH reduces to DPPH via an easy construction: In each column search downward for
the first homozygous entry and if it equals 1, exchange the roles of 0 and 1 in this column. Indeed,
this construction is so simple that it can be implemented using a first-order query: for each homozygous
entry we have to decide whether it is inverted and this depends on the value of the first homozygous entry
in the same column, which in turn is easy to determine for an ordered universe (recall that we always
have access to an ordering of the universe). Note that DPPH trivially reduces to PPH by adding a row
with only 0-entries to the matrix. Interestingly, the path variants PPPH and DPPPH are also equivalent
via first-order reductions, which is shown in Section 4, but this is a bit harder to prove.

3.1 Complexity of the PPH Problem

In the present section we prove two theorems on the complexity of PPH. The first gives a lower bound,
namely that PPH is hard for logarithmic space under first-order reductions. The second gives an upper
bound, namely PPH ∈Mod2L. Since DPPH is first-order equivalent to PPH, the same results hold for the
directed version, also. The bounds show that both problems are in NC2, but not in NC1 under common
assumptions from complexity theory. We thank Arfst Nickelsen for hinting at the basic idea of the proof
of Theorem 3.1 in a personal communication.

Theorem 3.1. PPH is hard for L under first-order reduction.

Proof. We present a first-order reduction from UGAP (the reachability problem for undirected graphs,
also known as UREACH or U-s-t-CON) to the complement of PPH. This implies the claim since UGAP is
L-hard via first-order reductions [19] and L is closed under complement.

The construction of a genotype matrix A from an undirected graph G with two distinct nodes s and t
consists of two steps. In the first step we replace each edge in G by a path of length 2 and obtain a new
graph G′. Let us call the nodes in G′ that were already present in G the old nodes and let us call the
added nodes on the midpoints of the length 2 paths the new nodes. The length of a path in G′ between
two old nodes is always even.

For the second step let n be the number of nodes and m be the number of edges in G′. We construct
an (m+4)× (n+1) genotype matrix A as follows: Each edge of G′ corresponds to exactly one row of A
and the remaining rows are called r1, r2, r3 and r4. Each node of G′ corresponds to exactly one column
of A and the remaining column is called d. From now on we denote both an edge e and its corresponding
row by e and similarly for a node v and the corresponding column v. The entries of A are as follows:
For each edge e = {v,w} from G′ there are 2-entries in e’s row in columns v, w, and d. The row r1 is set
to 1 in columns s and d, the row r3 is set to 1 in column t and the row r4 is set to 1 in column d. The
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remaining entries of A are set to 0. Note that the rows r1 and r2 force an equal resolution of the column
pair (s,d) and that rows r3 and r4 force an unequal resolution of the column pair (t,d). Figure 1 shows
an example of this construction. Clearly, the construction can be computed by a first-order query.

G

v1

v3

s

v6

t

G′

v1

e1

v2

e2

v3

s
e3

v5

e4

v6

e5

v7

e6

t

A

v1 v2 v3 s v5 v6 v7 t d

e1 2 2 0 0 0 0 0 0 2
e2 0 2 2 0 0 0 0 0 2
e3 0 0 0 2 2 0 0 0 2
e4 0 0 0 0 2 2 0 0 2
e5 0 0 0 0 0 2 2 0 2
e6 0 0 0 0 0 0 2 2 2
r1 0 0 0 1 0 0 0 0 1
r2 0 0 0 0 0 0 0 0 0
r3 0 0 0 0 0 0 0 1 0
r4 0 0 0 0 0 0 0 0 1

Figure 1: This figure shows an example of the reduction from UGAP to PPH. First, the graph G′ is
constructed based on the graph G by adding new nodes (depicted a bit smaller). Then the genotype
matrix A is build from G′. The first eight columns of A correspond to the nodes in G′ and the first six
rows of A correspond to the edges in G′.

We now prove the following claim: There exists a path between s and t in G if, and only if, A does
not admit a perfect phylogeny. Proving this claim proves the theorem.

First, we assume that there is a path between s and t in G and, hence, there is a path between s and t
in G′. Let v1, . . . , vl be the nodes and e1, . . . , el−1 be the edges on such a path in G′. Then v1 = s,
vl = t, and ei = {vi,vi+1} for each i ∈ {1, . . . , l− 1}. The construction of the matrix A enforces certain
resolutions for some column pairs in A. For each column pair (vi,vi+1) we have {01,10}⊆ indA(vi,vi+1)
and therefore it must be resolved unequally. As already stated, (v1,d) must be resolved equally and
(vl,d) must be resolved unequally. We assume, for the sake of contradiction, that there exists a haplotype
matrix B that explains A and admits a perfect phylogeny. Consider the genotype of edge e1, which is
heterozygous at positions v1, v2 and d. The enforced resolutions cause the explaining haplotypes for e1
at positions v1, v2, and d to be 010 and 101. Thus, the column pair (v2,d) is resolved unequally. Next,
consider the genotype e2, which is heterozygous at positions v2, v3 and d. Similar to the previous case
we see that the explaining haplotypes for e2 at positions v2, v3, and d are 011 and 100. Thus, (v3,d) is
resolved equally. By induction we obtain that (vi,d) must be resolved equally if i is odd and unequally,
otherwise. Since the length of each path from v1 to vl in G′ is even, l is odd and, therefore, (vl,d) must
be resolved equally, a contradiction.

Conversely, assume that there is no path between s and t in G and, therefore, no path between s
and t in G′. Then G′ consists of at least two components, one containing s and the other containing t.
We construct a haplotype matrix B that explains A by considering each component of G′ separately
and constructing explaining haplotypes for the genotypes of the edges in the component. Let Cs be the
component of G′ that contains s and let e be an arbitrary edge from Cs. One node of e, call it v, is an
old node with an even distance from s and the other node, call it w, is a new node with an odd distance
from s. We construct two haplotypes for e as follows: First note that the entries of the haplotypes are
predetermined at the homozygous positions of e. At the heterozygous positions v, w and d we set one
haplotype to 010 and the other to 101. This procedure enforces that for each node v in Cs the column pair
(v,d) is resolved equally if the distance from s to v is even and unequally otherwise. For the component
Ct that contains t we construct the haplotypes slightly differently. Let e = {v,w} be an edge from Ct

7



and v the node with even distance to t. At the heterozygous positions v, w and d we set one haplotype
to 100 and the other to 011. Then for each node v in Ct the column pair (v,d) is resolved unequally
if the distance from t to v is even and equally otherwise. For components that contains neither s nor t,
we construct the haplotypes similarly but with the role of s played by any old node in the component.
Finally, we insert the homozygous genotypes r1, r2, r3, and r4 as haplotypes into B.

The haplotype matrix B admits a perfect phylogeny for the following reason: Let v be a node from
Cs. If the distance from v to s is even, then (v,d) is resolved equally and B does not contain the submatrix
[ 1 0 ] in v and d. If the distance is odd, then, due to the unequal resolution of (v,d), B does not contain
the submatrix [ 1 1 ] in v and d. For each node from Ct this property holds for similar reasons with the
roles of odd and even distances exchanged. For each node v from a component C that contains neither s
nor t, either [ 1 0 ] or [ 1 1 ] is also not contained in v and d. Finally, observe that for two nodes v and w the
column pair (v,w) is resolved unequally and does not contain the submatrix [ 1 1 ] in B. Thus B admits a
perfect phylogeny since the induced set of each column pair contains at most three elements.

Theorem 3.2. PPH is in Mod2L.

Proof. PPH can be logspace-many-one reduced to solving systems of linear equations over Z/2Z. This
reduction is implicit in the construction of Theorem 1 of the paper by Eskin, Halperin, and Karp [9].
Solving systems of linear equations over Z/2Z is in Mod2L as shown in [3] and since Mod2L is closed
under logspace-many-one reductions, we get the claim.

3.2 Complexity of PPH for Restricted Instances

How do restrictions on the number of heterozygous sites influence the complexity of PPH? This question
will be addressed in the present section. Following Sharan, Halldórsson, and Istrail [25] we say that a
genotype matrix is (k, l)-bounded if each row contains at most k and each column at most l heterozygous
entries. We use a star to indicate that a parameter is not bounded. We parametrize problems in the same
way, so PPH(3,∗) denotes the set of all genotype matrices with at most three heterozygous entries per
row that admit a perfect phylogeny.

In the literature (k, l)-bounded variants were first studied for the NP-complete problem MH. The
hope was to find restrictions that holds in practice and that make the problem tractable. In different
papers parameters k and l have been determined such that MH(k, l) is either efficiently solvable or NP-
complete [4, 20, 21, 25, 26]. Bounded variants of MPPH have also been studied and the main results are
the same as for the corresponding variants of MH.

We study the complexity of (k, l)-bounded variants of PPH. Our results, summarized in Theorem 3.3,
show strong similarities to the complexity of bounded variants of MH and MPPH, but one complexity
level further down. We show that PPH(3,∗) is L-hard; and it is known [26] that MH(3,∗) and MPPH(3,∗)
are NP-complete. We show PPH(2,∗) ∈ FO and PPH(∗,1) ∈ FO; and it is known [4, 21, 26] that
MH(2,∗), MPPH(2,∗) ∈ P and MH(∗,1), MPPH(∗,1) ∈ P. We do not know the complexity of PPH(∗,2);
and the complexity MH(∗,2) and MPPH(∗,2) are also open.

Theorem 3.3.

1. PPH(3,∗) is L-hard.
2. PPH(2,∗) is first-order definable.
3. PPH(∗,1) is first-order definable.

Proof. We first show that PPH(3,∗) is L-hard. For this, just note that in our proof of Theorem 3.1 we
reduce to (3,∗)-bounded genotype matrices. Thus PPH(3,∗) is L-hard.

For the second statement, PPH(2,∗) ∈ FO, we first characterize (2,∗)-bounded genotype matrices
that admit a perfect phylogenies. Haplotype matrices that admit a perfect phylogeny can easily be
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characterized by the property that all induced sets contain at most three elements. The following claim
states that this also holds for (2,∗)-bounded genotype matrices.

Claim. Let A be a (2,∗)-bounded genotype matrix. Then A admits a perfect phylogeny if, and only if,
| indA(c,c′)| ≤ 3 holds for every column pair (c,c′).

Proof. The only-if-part is trivial. For the if-part let A be a (2,∗)-bounded genotype matrix and let
| indA(c,c′)| ≤ 3 for every column pair (c,c′). We construct a haplotype matrix B for A as follows: For
genotypes with at most one heterozygous entry, the explaining haplotypes are completely determined.
For each genotype g with two heterozygous positions c and c′, we resolve g in (c,c′) equally if {00,11}⊆
indA(c,c′) and unequally otherwise. The matrix B admits a perfect phylogeny since for each column pair
either the pair does not contain the submatrix [ 2 2 ] in A or all genotypes are resolved consistently with
the corresponding induced set of A.

By the above characterization, a first-order formula for PPH(2,∗) can be constructed as follows: For
each column pair it tests whether the induced set does not contain four distinct elements. To decide
whether 00, 01, 10 or 11 is contained in an induced set, the formula tests whether there is a genotype
with explaining haplotypes that necessarily induce this pair.

For the last statement, PPH(∗,1) ∈ FO, we also first establish a characterization. An interesting
aspect of this characterization is that it involves perfect path phylogenies, even though we deal only
with perfect phylogenies in the present section.

Claim. Let A be a (∗,1)-bounded genotype matrix. For a row r let Ar denote the submatrix of A that
consists of the columns where r is heterozygous. Then A admits a perfect phylogeny if, and only if, (a)
for every column pair (c,c′) we have | indA(c,c′)| ≤ 3 and (b) for every row r the matrix Ar admits a
perfect path phylogeny.

Proof. For the only-if-part let A be a genotype matrix and B a haplotype matrix that explains A and
admits a perfect phylogeny. Trivially, each column pair in A induces at most three elements. Let TB be a
perfect phylogeny for B and r be a row of A. Due to item 4 of Definition 2.1, the path in TB between the
two haplotypes that explain r is labeled exactly by the heterozygous columns of r. In order to construct
a haplotype matrix Br for Ar, we delete the columns not that do not lie on this path both from A and B,
we delete the corresponding edge labels, and we contract unlabeled edges. In this way, we can construct
a haplotype matrix and a perfect path phylogeny for Ar.

For the if-part let A be a (∗,1)-bounded genotype matrix such that | indA(c,c′)| ≤ 3 holds for every
column pair (c,c′) and there exists a haplotype matrix Br that explains Ar and admits a perfect path
phylogeny for every row r. We assemble a haplotype matrix B for A from the matrices Br and the
matrix A in a columnwise fashion. Let c be an arbitrary column. If A has a heterozygous entry in c, we
take c from a matrix Br. In this case, there is exactly one matrix Br that contains c. If A does not have a
heterozygous entry in c, we take c from the matrix A and double each entry since B has twice the number
of rows of A. To prove that B admits a perfect phylogeny, let c and c′ be two columns. If c and c′ are
contained in the same matrix Br, we have | indBr(c,c

′)| ≤ 3 and therefore | indB(c,c′)| ≤ 3. Otherwise, c
and c′ do not contain the submatrix [ 2 2 ] in A and therefore we have indA(c,c′) = indB(c,c′).

By the above claim, a formula for PPH(∗,1) can first test whether the size of the induced set of
each column pair is at most three. Then the formula tests whether for each row r the matrix Ar admits
a perfect path phylogeny. As we will see in the following section, this property can be tested using a
first-order formula, see Theorem 4.4, although the columns over which we quantify have to be restricted
to those with a heterozygous entry in row r.
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4 Complexity of Haplotyping via Perfect Path Phylogenies

In the present section we consider perfect path phylogenies, a problem variant first advocated in Gramm
et al. [14] and later studied in [13]. In the first of these papers it is shown that PPPH is solvable in linear
time. We show that it is first-order definable and, therefore, in AC0. To obtain this result, we first prove
DPPPH ∈ FO and then reduce PPPH to DPPPH by a first-order reduction. While this reduction is similar
to the reduction from PPH to DPPH in Section 3, the correctness proof for the path variant differs. Bafna
et al. [1] have shown the NP-completeness of MPPH. For the path variant MPPPH we show that it can
be described by a first-order formula with counting quantifiers and is, therefore, in TC0. In addition, we
prove that MPPPH is hard for TC0.

4.1 Complexity of the Basic Decision Problem

In the present section we show that the set of all genotype matrices admitting a perfect path phylogeny
can be described using a first-order formula; in other words, we show PPPH ∈ FO, see Theorem 4.4. In
order to prove this, we first show that the simpler problem DPPPH lies in FO and then show that PPPH

can be first-order reduced to its directed version.
We start with some notations and a characterization for DPPPH from the literature. Then we present

an alternative characterization that can be formalized with first-order logic and a first-order reduction
from PPPH to DPPPH. While the construction of this reduction is easy, its correctness proof is more
elaborated. Finally, we conclude that PPPH is first-order definable since the class of first-order definable
problems is closed under first-order reduction.

We define a partial order on the columns of a genotype matrix as follows: Let 1 � 2 � 0. For two
columns c and c′ we have c � c′ if c[i] � c′[i] for each row i. We say that two columns c and c′ are
comparable if c� c′ or c′ � c. If c� c′ and c 6= c′, then we say that c dominates c′. In the following let C
be a set of columns. A subset of C is called a (anti)chain if its elements are pairwise (in)comparable. An
antichain C′ ⊆C is maximal if it is not properly contained in any other antichain. A maximal antichain
C′ of size i is the highest maximal antichain of size i if there is no other antichain of size (exactly) i with
an element that dominates an element from C′. For a set C of columns there exists at most one highest
maximal antichain of size i, which we denote by hmai(C). Let hmai(C) = /0 if there is no such set.

We call two columns separable if each column has a 0-entry in the rows where the other has a
1-entry. Following [14] we say that a column set C has the ppp-property if there exist two (possibly
empty) chains C1 and C2 that cover C, so that their maximal elements (if they exist) are separable. We
call (C1,C2) a ppp-cover of C. The following fact characterizes DPPPH.

Fact 4.1 (Gramm et al. [14]). A genotype matrix A admits a directed perfect path phylogeny if, and only
if, the set of columns of A has the ppp-property.

The above characterization does not readily yield a first-order description of DPPPH since we cannot
quantify over chains (a second-order quantifier would be needed, lifting the complexity up to the poly-
nomial hierarchy). What we need is a more “element-oriented” characterization such as the one given
by the following lemma.

Lemma 4.2. A column set C has the ppp-property if, and only if, the width of C is at most 2 and one of
the following statements is true:

1. hma1(C) = {c∗} and hma2(C) = /0.
2. hma1(C) = /0, hma2(C) = {c1,c2}, and c1 and c2 are separable.
3. hma1(C) = {c∗}, hma2(C) = {c1,c2}, and c∗ and c1 are separable or c∗ and c2 are separable.

Proof. For the only-if-part, let C be a column set that has the ppp-property. Therefore, C can be covered
with at most two chains. By Dilworth’s theorem [7], which states that the width of a partial order equals
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the minimum number of chains to cover the order, the width of C is at most 2. This implies that the
sets hmak(C) are empty for all k ≥ 3. We make a case distinction, depending on whether hma1(C) or
hma2(C) or both are non-empty.

If we assume hma1(C) = {c∗} and hma2(C) = /0, then we are done since the first statement is satis-
fied. For the second case we assume hma1(C) = /0 and hma2(C) = {c1,c2}. Let (C1,C2) be a ppp-cover
of C. Since c1 and c2 are incomparable, they lie on different chains. Without loss of generality we
assume c1 ∈C1 and c2 ∈C2. One can see that c1 is the maximal element of C1 and that c2 is the maximal
element of C2. Since (C1,C2) is a ppp-cover, c1 and c2 are separable. For the remaining case we assume
hma1(C) = {c∗} and hma2(C) = {c1,c2}. Again, let (C1,C2) be a ppp-cover of C. Since {c∗} dominates
all elements of C, it is the maximal element of either C1 or C2. Without loss of generality we assume
c∗ ∈C1. The columns c1 and c2 lie in different chains and we first assume c1 ∈C1 and c2 ∈C2. Then
the columns c∗ and c2 are separable for the following reason: Let c be the maximal element of C2. Since
c2 � c and c and c∗ are separable, we know that c2 and c∗ are separable. If we assume c2 ∈ C1 and
c1 ∈C2, it follows that c1 and c∗ separable.

For the if-part, assume that the width of C is at most 2 and one of the three statements holds. First, if
hma1(C) = {c∗} and hma2(C) = /0, then C is a chain and, therefore, (C, /0) is a ppp-cover of C. Second,
let hma1(C) = /0, hma2(C) = {c1,c2}, and c1 and c2 be separable. Since the width of C is 2, the set C
can be covered by two chains C1 and C2. Again, c1 and c2 are the maximal elements of the chains and,
therefore, the maximal elements of C1 and C2 are separable. Hence (C1,C2) is a ppp-cover of C. Third,
let hma1(C) = {c∗}, hma2(C) = {c1,c2}, and c∗ and c1 be separable; for the case where c∗ and c2 are
separable, an analogue argument holds. Let C1 and C2 be two chains that cover C and assume c1 ∈C1
and c2 ∈C2. The column c∗ is the maximal element of either C1 or C2. In order to construct a ppp-cover
for C, alter C1 and C2 as follow: If c∗ is in C1, we move it to C2. If c1 is the maximal element of C1,
then (C1,C2) is a ppp-cover of C. If this is not the case, we move each element of C1 that dominates c1
to C2. This yields a further chain cover of C since the columns that dominate c1 form a chain and also
dominate c2. Now, c1 is the maximal element of C1 and c∗ is the maximal element of C2.

Theorem 4.3. DPPPH is first-order definable.

Proof. It suffices to show that the characterization of Lemma 4.2 can be tested using a first-order for-
mula. For this, first note that a genotype matrix can contain identical columns while a set of columns
contains each column only once. In order to decide properties about the column set of a genotype ma-
trix, our formula considers only the leftmost column of multiple identical columns. Besides this, the
formula works as follows: First, it tests whether the width of C is at most 2. For this we check whether
there are three pairwise incomparable columns in C. Since the partial order � is first-order definable,
the first part of the characterization can be described with a first-order formula. The second part of the
formula tests whether one of the three statements of Lemma 4.2 is satisfied. These statements describe
properties of the highest maximal antichains, which can be formalized with first-order logic as follows:
For a column c∗, we have hma1(C) = {c∗} if c∗ dominates every other column. For columns c1 and
c2, we have hma2(C) = {c1,c2} if they are incomparable, there is no column c such that c, c1 and c2
are pairwise incomparable and there is no antichain of size two with a column that dominates c1 or
c2. Since it is first-order definable whether two columns are separable, the whole characterization is
first-order definable.

Theorem 4.4. PPPH is first-order definable.

Proof. We present a first-order reduction from PPPH to DPPPH ∈ FO. The reduction consists of two
steps: The first is the reduction from the beginning of Section 3, which we already used to reduce PPH

to DPPH. Recall that this reduction finds for each column of the genotype matrix the first non-2-entry
and, if this entry is a 1-entry, exchanges the meaning of 0-entries and 1-entries for this column. In the
second step we consider each column c and set all entries in c to 0 whenever there is a column c′ with
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a smaller index that is identical to c. Since both steps are first-order queries, the whole construction is
a first-order query. Note that after this construction each pair of columns induces 00 and there are no
equal polymorphic columns. The next two claims imply that the construction reduces PPPH to DPPPH.

Claim. Let A be a genotype matrix and let A′′ arise from A by the described reduction. Then A ∈ PPPH

if, and only if, A′′ ∈ PPPH.

Proof. Just as the reduction consists of two steps, we prove the claim in two steps. Let A be the initial
genotype matrix, let A′ be the matrix after the first step, and let A′′ be the matrix after the second step.
We have A ∈ PPPH if, and only if, A′ ∈ PPPH since a perfect path phylogeny for A can be transformed
into a perfect path phylogeny for A′ by inverting columns. It remains to prove A′ ∈ PPPH if, and only if,
A′′ ∈ PPPH. Let B′ be a haplotype matrix that explains A′ and admits a perfect path phylogeny. In order
to construct a haplotype matrix B′′ for A′′, we copy the columns that are not set to 0 and set each entry
in the remaining columns to 0. A new perfect path phylogeny arises by displacing the columns that are
set to 0 such that they do not lie on a path between two haplotypes. Conversely, let B′′ be a haplotype
matrix that explains A′′ and admits a perfect path phylogeny. In order to obtain a haplotype matrix B′

for A′, we replace the columns that have been set to 0 by values in the unchanged column. We obtain a
perfect path phylogeny by labeling edges multiple times.

(Note that the matrix modifications described in the above proof does not alter the number of haplo-
types. This additional property will be used in Section 4.2 to identify the complexity of MPPPH.)

The second claim is a property that is well-known for perfect phylogeny haplotyping [9]. We show
that it also holds for the path variant.

Claim. Let A be a genotype matrix such that for each column pair (c,c′) we have {00} ⊆ indA(c,c′).
Then A ∈ PPPH if, and only if, A ∈ DPPPH.

Proof. For the first direction, just note that every directed perfect path phylogeny is also a perfect path
phylogeny. We prove the other direction by contraposition. Let A be a genotype matrix that does not
admit a directed perfect path phylogeny. By Fact 4.1, we know that the column set C of A does not have
the ppp-property and Lemma 4.2 implies that the width of C is at least 3 or the statements 1, 2 and 3 in
Lemma 4.2 are not satisfied. If the width of C is at least 3, then there exist three pairwise incomparable
columns c, c′, and c′′. Incomparable columns induce 01 and 10 and every column pair induces 00 by
assumption. Thus, the column pairs (c,c′), (c′,c′′), and (c,c′′) all induce 00, 01, and 10. No perfect path
phylogeny exists for these induces. To see this, one can test each possible path for c, c′ and c′′ or use
necessary properties for three columns that form a perfect path phylogeny from [24].

It remains to argue that if (a) the width of C is at most two and (b) neither statement 1, nor 2, nor 3
from Lemma 4.2 is satisfied, then no perfect path phylogeny exists. We make a case distinction depend-
ing on whether hma1(C) or hma2(C) or both are nonempty. First, hma1(C) = {c∗} and hma2(C) = /0
is not the case by (b). Second, consider the case hma1(C) = /0 and hma2(C) = {c1,c2}. Again by (b),
the columns c1 and c2 are not separable and therefore induce 11. Also they induce 01 and 10 since
they are incomparable. Finally, we know that (c1,c2) induces 00 and therefore the size of its induced
set is 4. For the remaining case let hma1(C) = {c∗} and hma2(C) = {c1,c2}. By assumption (b) both
c∗ and c1 and c∗ and c2 are not separable and therefore induce 11. Since c∗ dominates c1 and c2, both
(c∗,c1) and (c∗,c2) induce 10. Furthermore, we know that the columns c1 and c2 are incomparable and
therefore induce 01 and 10. Finally, we obtain {00,01,10} ⊆ indA(c1,c2), {00,10,11} ⊆ indA(c∗,c1)
and {00,10,11} ⊆ indA(c∗,c2). Again, no perfect path phylogeny exists for these induces.

By the above two claims, the reduction described at the beginning of this proof is correct and we
already argued that it is a first-order reduction. Thus, PPPH first-order reduces to DPPPH ∈ FO, which
proves the claim.
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4.2 Combining Perfect Path Phylogenies and Maximum Parsimony

In the present section we prove that MPPPH is TC0-complete, in stark contrast to the fact that MPPH is
NP-complete.

Theorem 4.5. MPPPH is TC0-complete.

Proof. First, we show that MPPPH has nearly the same complexity as PPPH, we only need to add counting
quantifiers. This implies MPPPH ∈ TC0. As in other proofs, we start with a characterizing claim. Later
on we argue that this characterization can be tested using a first-order formula with counting quantifiers.

Claim. Let A be a genotype matrix with {00} ⊆ indA(c,c′) for each column pair (c,c′) and no duplicate
polymorphic columns. Let m be the number of polymorphic columns in A. Then every haplotype matrix
that explains A and admits a perfect path phylogeny contains exactly m+1 different haplotypes.

Proof. Let A and m be as above, let B be a haplotype matrix that explains A, and let TB be a perfect path
phylogeny for B. We first prove that B contains at least m+1 different haplotypes, then we prove that B
contains at most m+1 different haplotypes.

Suppose, for the sake of contradiction, that B contains d < m + 1 different haplotypes. Let h1, . . . ,
hd be the sequence of node labels on the path TB. Note that these haplotypes h1, . . . , hd are exactly
the d different haplotypes from B. Each one of the m polymorphic columns of B must label one of
the d− 1 < m edges of TB, so two difference polymorphic columns c and c′ must label the same edge
{hi,hi+1}. The haplotypes h1, . . . , hi have the same value in column c, which we denote by a; and the
haplotypes hi+1, . . . , hd have the inverted value 1− a. The same holds for the column c′ with values
b and 1− b. Since each column pair in A induces 00, there exists a haplotype with a 0-entry in both
columns c and c′. Thus, either a = b = 0 and 1− a = 1− b = 1 or a = b = 1 and 1− a = 1− b = 0.
Consequently, we know that for each haplotype in TB the entries of c and c′ are equal. Hence, c and c′

are identical columns of B and, therefore, of A, a contradiction.
Now assume that B contains d > m + 1 different haplotypes. Again, let h1, . . . , hd be the sequence

of different haplotypes in TB. First note that only polymorphic columns occur on the path from h1 to hd
and since there are only m polymorphic columns, there exists an i such that no column labels the path
from hi to hi+1. Thus, at least one edge is unlabeled, and TB is no perfect path phylogeny.

From the above claim we can conclude that a genotype matrix A with {00} ⊆ indA(c,c′) for each
column pair (c,c′) and no equal polymorphic columns has the property (A,d) ∈ MPPPH if, and only
if, A ∈ PPPH and d is greater than the number of polymorphic columns of A. We know already that
PPPH ∈ FO. Thus, in light of the observation made in the proof of Theorem 4.4 that the reduction does
not change the number of haplotypes, all that remains to be shown is that the number of polymorphic
columns of A can be counted using a counting quantifier. However, this is clearly the case since being a
polymorphic column is a first-order property.

Next, we prove the TC0-hardness of MPPPH.

Claim. MPPPH is TC0-hard under AC0-reductions.

Proof. We prove the claim via an AC0-reduction from the TC0-complete problem MAJORITY, where the
input is a binary string x = x1, . . . ,xn and the question is whether at least half of the input bits in x are 1.
We construct an (n + 1)× n genotype matrix A as follows: If xi = 0, we set the ith genotype in A to
1i0n−i and, otherwise, we set it to 0n. The last genotype is always set to 0n. Since A admits a perfect
path phylogeny, one can easily verify that at least half of the input bits in x are 1 if, and only if, there
exists a perfect path phylogeny with at most n−dn

2e+1 different haplotypes for A.

Altogether, we obtain the TC0-completeness of MPPPH.

13



5 Conclusion

The three main results of the present paper are that (a) the complexity of PPH lies between L and Mod2L,
(b) while PPPH lies in AC0 and MPPPH is TC0-complete, and (c) restricted variants of PPH are either
L-hard or they lie in AC0. Concerning the latter results, the complexity of a few restricted variants is still
open. In particular, what is the complexity of PPH(3,2)?

A much broader, still largely open research field is the complexity of these problems when data may
be missing. Typically, the resulting problems are NP-complete, so we need to look for approximation
algorithms, fixed-parameter algorithms, or moderately exponential time algorithms. Specialized results
are known in this context, but there are still only very few precise complexity-theoretic results in this
setting.

References
[1] V. Bafna, D. Gusfield, S. Hannenhalli, and S. Yooseph. A note on efficient computation of haplotypes via

perfect phylogeny. Journal of Computational Biology, 11(5):858–866, 2004.
[2] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny: A direct approach.

Journal of Computational Biology, 10(3–4):323–340, 2003.
[3] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance of logspace-MOD-classes.

Mathematical Systems Theory, 25(3):223–237, 1992.
[4] R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp. On the complexity of several haplotyping problems. In

Proceedings of the 5th International Workshop on Algorithms in Bioinformatics (WABI 2005), volume 3692
of Lecture Notes in Computer Science, pages 128–139. Springer, 2005.

[5] A. G. Clark. Inference of haplotypes from PCR-amplified samples of diploid populations. Journal of Molec-
ular Biology and Evolution, 7(2):111–22, 1990.

[6] M. Daly, J. Rioux, S. Schaffner, T. Hudson, and E. Ladner. High-resolution haplotype structure in the human
genome. Nature Genetics, 29:229–232, 2001.

[7] R. P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics, 51(1):161–166,
1950.

[8] Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the perfect phylogeny haplotyping (PPH)
problem. Journal of Computational Biology, 13(2):522–553, 2006.

[9] E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of haplotype structure via perfect phylogeny.
Journal of Bioinformatics and Computational Biology, 1(1):1–20, 2003.

[10] L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid
population. Molecular Biology and Evolution, 12(5):921–7, 1995.

[11] D. Fallin and N. Schork. Accuracy of haplotype frequency estimation for biallelic loci via the expectation-
maximation algorithm for unphased diploid genotype data. American Journal of Human Genetics, 67:947–
959, 2000.

[12] L. Friss, R. Hudson, A. Bartoszewicz, J. Wall, T. Donfalk, and A. Di Rienzo. Gene conversion and differen-
tial population histories may explain the contrast between polymorphism and linkage disequilibrium levels.
American Journal of Human Genetics, 69:831–843, 2001.

[13] J. Gramm, T. Hartman, T. Nierhoff, R. Sharan, and T. Tantau. On the complexity of snp block partitioning
under the perfect phylogeny model. Discrete Mathematics, 2008. to appear, doi:10.1016/j.disc.2008.04.002.

[14] J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. Haplotyping with missing data via perfect path phylogenies.
Discrete and Applied Mathematics, 155(6–7):788–805, 2007.

[15] D. Gusfield. Inference of haplotypes from samples of diploid populations: complexity and algorithms.
Journal of Computational Biology, 8(3):305–23, 2001.

[16] D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In Proceed-
ings of the Sixth Annual International Conference on Computational Molecular Biology (RECOMB), pages
166–175. ACM Press, 2002.

[17] M. Hawley and K. Kidd. Haplo: A program using the EM algorithm to estimate the frequency of multi-site
haplotypes. Journal of Heredity, 86:409–41, 1995.

[18] L. Helmuth. Map of the human genome 3.0. Science, 293(5530):582–585, 2001.
[19] N. Immerman. Descriptive Complexity. Springer-Verlag, New York, 1999.

14



[20] G. Lancia, M. C. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony: Complexity of exact
and approximation algorithms. INFORMS Journal on Computing, 16(4):348–359, 2004.

[21] G. Lancia and R. Rizzi. A polynomial case of the parsimony haplotyping problem. Operations Research
Letters, 34(3):289–295, 2006.

[22] Y. Liu and C.-Q. Zhang. A linear solution for haplotype perfect phylogeny problem. In Proceedings of
the International Conference on Advances in Bioinformatics and its Applications, pages 173–184. World
Scientific, 2005.

[23] R. Vijaya Satya and A. Mukherjee. An optimal algorithm for perfect phylogeny haplotyping. Journal of
Computational Biology, 13(4):897–928, 2006.

[24] R. Vijaya Satya and A. Mukherjee. The undirected incomplete perfect phylogeny prob-
lem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008. to appear,
doi:10.1109/TCBB.2007.70218.
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