
Influence of Tree Topology Restrictions on the Complexity of
Haplotyping with Missing Data

Michael Elberfeld Ilka Schnoor Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck

D-23538 Lübeck, Germany
{elberfeld,schnoor,tantau}@tcs.uni-luebeck.de

Technical Report
SIIM-TR-A-08-05

Schriftenreihe der Institute für Informatik/Mathematik der
Universität zu Lübeck

September 12, 2008

Abstract

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely hap-
lotypes based on genotype data. One fast haplotyping method is based on an evolutionary model
where a perfect phylogenetic tree is sought that explains the observed data. Unfortunately, when
data entries are missing, as is often the case in real laboratory data, the resulting formal problem
IPPH, which stands for incomplete perfect phylogeny haplotyping, is NP-complete and no theoreti-
cal results are known concerning its approximability, fixed-parameter tractability or exact algorithms
for it. Even radically simplified versions, such as the restriction to phylogenetic trees consisting of
just two directed paths from a given root, are still NP-complete, but here, at least, a fixed-parameter
algorithm is known. We generalize this algorithm to arbitrary tree topologies and present the first
theoretical analysis of an algorithm that works on arbitrary instances of the original IPPH problem.
At the same time we also show that restricting the tree topology does not always make finding phylo-
genies easier: while the incomplete directed perfect phylogeny problem is well-known to be solvable
in polynomial time, we show that the same problem restricted to path topologies is NP-complete.

1 Introduction

Biological Background and Previous Results.

Haplotype phase prediction is an important preprocessing step in genomic disease and medical condition
association studies. In these studies two groups of people are identified, where one group has a certain
disease or medical condition while the other has not, and one tries to find correlations between group
membership and the genomic data of the individuals in the groups. The genomic data typically consists
of information about which bases are present in an individual’s DNA at so-called SNP sites (single nu-
cleotide polymorphism sites). While the DNA sequences of different individuals are mostly identical, at
SNP sites there may be variations. Low-priced methods for large-scale inference of genomic data can
read out, separately for each SNP site, the bases present, of which there can be two since we inherit
one chromosome from our father and one from our mother. However, since the bases at different sites
are determined independently, we have no information to which chromosome a base belongs to. For
homozygous sites, where the same base is present on both chromosomes, this is not a problem, but for
heterozygous sites this information, called the phase of an SNP site, is needed for accurate correlations.

1



The idea behind haplotype phase prediction or just haplotyping is to computationally predict likely
phases based on the laboratory data (which misses this information). For an individual, the genomic
input data without phase information is called the genotype while the two predicted chromosomes are
called haplotypes.

From a mathematical point of view, haplotypes can be conveniently coded as strings over the alpha-
bet {0,1}, where for a given site 0 stands for one of the bases that can be observed in practice, while
1 encodes a second base that can also be observed. The case that three bases are observed happens so
seldom that it can be ignored. A genotype g is, conceptually, a sequence of sets that arises from two
haplotypes h1 and h2 as follows: The ith set in the sequence g is {h1[i],h2[i]}. However, it is customary
to encode the set {0} as 0, to encode {1} as 1, and {0,1} as 2, so that a genotype is actually a string over
the alphabet {0,1,2}. For example, the two haplotypes 0110 and 0101 give rise to (we also say explain)
the genotype 0122; and so do 0100 and 0111.

Since different haplotype pairs can explain the same genotype and any single haplotype is equally
likely a priori, haplotyping is not possible if only a single genotype is given. However, if a whole
set of genotypes from a larger group of different individuals is given, certain sets of haplotypes that
explain these genotypes are more likely than others. For instance, a small set of explaining haplotypes
is more likely than a large set since haplotypes mutate only rarely. It is customary to formalize sets of
genotypes as matrices (each row is a genotype) and also sets of explaining haplotypes (each row contains
a haplotype and rows 2i−1 and 2i of the haplotype matrix explain exactly the genotype in row i of the
genotype matrix).

One important method of haplotyping is based on the perfect phylogeny approach proposed by
Gusfield [16]. The idea is to seek a haplotype matrix that explains the genotype matrix and whose rows
(which are the haplotypes) can be arranged in a perfect phylogenetic tree. This means the following: A
haplotype matrix B admits a perfect phylogeny if there exists a tree (an undirected, connected, acyclic
graph) TB such that:

1. Each row of B labels exactly one node of TB.
2. Each column of B labels exactly one edge of TB.
3. Each edge of TB is labeled by at least one column of B.
4. For every two rows h1 and h2 of B and every column i, we have h1[i] 6= h2[i] if, and only if, i lies

on the path from h1 to h2 in TB.

When a haplotype matrix B admits a perfect phylogeny TB and, at the same time, explains a genotype
matrix A, we also say that A admits a perfect phylogeny (namely TB). The formal perfect phylogeny
haplotyping problem (PPH) is then the set of all genotype matrices that admit a perfect phylogeny. Gus-
field [16] showed that PPH is solvable in polynomial time. However, in practice, laboratory data is never
perfect and some entries may be missing in the input genotype matrices. In this case, the input matrices
may contain ?-entries in addition to the 0-, 1-, and 2-entries. The objective is then to replace the missing
entries by normal entries such that the resulting matrix is in PPH. This problem is known as IPPH, where
the I stands for incomplete (in the following, when we prefix a problem with the letter I, we mean that
the input matrix may contain ?-entries and the objective is to fill them up so that the resulting matrix
is an instance of the problem without the I). Unfortunately, IPPH is NP-complete [25]. A heuristic is
known for solving it [24], but no guarantees can be made concerning its runtime.

In order to solve the problem, one can try to exploit properties of typical input data that may make
the problem easier. The first simplification is the notion of directedness. In real data, typically some
genotype is completely known and is completely homozygous, which means that one haplotype of the
sought haplotype matrix is already known. Since the roles of 0-entries and 1-entries can be exchanged
individually for each column, we may assume that the known haplotype is the all-0-haplotype. This
problem variant is called “directed” because the position of the all-0-haplotype in the phylogenetic
tree singles out a node, which is then considered the root of the tree and gives an orientation to the

2



tree. The resulting problem is called IDPPH, with D generally standing for “directed,” but it is still
NP-complete [20].

A second, rather radical simplification (which is nevertheless often backed by the data) was proposed
by Gramm et al. [13]: In addition to being directed, they require the (undirected) phylogenetic tree to
form a simple path and call the problem incomplete directed perfect path phylogeny haplotyping. This
problem is still NP-complete, but Gramm et al. show that there is a fixed-parameter algorithm, where
the parameter is the maximum number of ?-entries per column.

Another radical simplification is to study matrices in which no heterozygous sites are found. This is
same as getting already phased haplotypes as input and the question is just whether they are arrangeable
in a perfect phylogeny. So, for the problem IPP (note the missing H, since no haplotyping needs to be
done) we get an incomplete haplotype matrix and must decide whether the missing entries can be filled
up with 0-entries and 1-entries so that the completed matrix admits a perfect phylogeny. This problem
is still NP-complete. However, the directed variant IDPP is solvable in polynomial time [2, 22].

In the present paper we further the study of the computational complexity of IPPH and the above
variants. We are especially interested in the following question: How do restrictions on the tree topology
influence the complexity of the problem? In other words, what is the complexity of IPPHleafs≤l , where
the explaining phylogenetic tree may have at most l leafs. As stated above, the best known result is that
IDPPHleafs≤2 is still NP-complete, but lies in FPT.

Our Results. Our first main result, presented in Section 2, is a completeness result.

Theorem 1.1. IDPPleafs≤l is NP-complete for every l ≥ 2.

We found this result astonishing because IDPP ∈ P. In other words, in contrast to all experience from
previous results, see the section on related work below, restricting the tree topology makes IDPP harder,
not easier. Naturally, there are other examples: Finding a spanning tree for a graph is easy, finding a
spanning path is hard.

The problem IDPPleafs≤l reduces to many other problems. It is easy to see (but not trivial) that
a problem where the input matrix consists of (possibly incomplete) haplotypes reduces to the same
problem for (possibly incomplete) genotype matrices via the identity mapping. Thus, the first result
implies that IDPPHleafs≤l is also NP-complete, which was previously proved by Gramm et al. [13] for
l = 2. It is also easy to see that any directed problem reduces to the undirected version by adding an
all-0-row. Thus, IPPleafs≤l is also NP-complete. Indeed, all previously known NP-completeness results
for variants of IPPH follow from the above theorem, except for the NP-completeness of IPP.

The completeness result also sparked our interest in trying to find an even more restricted version of
IPPH that is still NP-complete. A candidate would be IDPPHsorted, where the “phylogenetic tree” must be
a single directed path. We show, however, that this problem is NL-complete. For IDPP we show that it
is also NL-hard, but were not able to prove any better upper bound than the known bound IDPP ∈ P.

Our second main result, presented in Section 3, is an algorithm for solving IPPH that allows a rigor-
ous runtime analysis.

Theorem 1.2. Given an incomplete genotype matrix A, we can decide whether A ∈ IPPH holds in time
f (k, l)n2mO(l). Here k is the maximal number of ?-entries per column, n is the number of rows in the
incomplete genotype matrix, m is the number of columns, and f is some function. The parameter l is the
minimal number of leafs any perfect phylogeny admitted by a completion of A can have (set l = m if no
such perfect phylogeny exists).

This is, in essence, a statement about the fixed-parameter tractability of IPPH. It says that IPPH lies
in the class XP for the parameter pair (k, l). More importantly, it says that for each fixed l, the problem
IPPHleafs≤l is fixed-parameter tractable with respect to the number of unknown entries per column. This
settles the central open problem of [13], namely whether the result that IDPPHleafs≤2 is fixed-parameter

3



tractable also holds for the undirected case and for larger number of leafs. On both accounts, we answer
this question affirmatively.

Related Work. Haplotyping methods can be split into two groups: Statistical [8, 9, 18] and combina-
torial. There are two main combinatorial methods: Maximum parsimony haplotyping [3, 4, 10, 15, 19]
and the more recent perfect phylogeny approach that was introduced by Gusfield [16] and later explored
by numerous authors [1, 7, 5, 21, 13, 23, 6].

The idea of considering restricted tree topologies to speed up haplotyping is due to Gramm et al. [13]
and was recently also investigated in the context of finding block partitions [11]. A different approach
to deal with the NP-completeness of IPPH is due to Halperin and Karp [17]. They present a polynomial-
time algorithm for IPPH that works for special instances satisfying the so-called “rich data hypothesis.”

For complete data, numerous results on the complexity of PPH and its variants are known. Gusfield
showed that the problem can be solved in polynomial time [16], further papers first presented simpler
polynomial-time algorithms [1, 7] and later even linear-time algorithms [5, 21, 23]. In [6] we have
shown that PPH is hard for logarithmic space and lies in NC2.

The influence of restricting the tree topology on the complexity of haplotyping problems has, prior
to the present paper, always been begin: In [13] it is shown that IDPPHleafs≤2 has a fixed-parameter
algorithm, which is not known to be the case for IPPH. In [13] it is shown that partitioning a com-
plete genotype matrix into a minimal number of column sets such that each set admits a perfect path
phylogeny is equivalent, in complexity theoretic terms, to finding maximal matchings; while the same
problem for arbitrary perfect phylogenies is NP-hard and even very hard to approximate. Finally, in [6]
it is shown that DPPHleafs≤2 lies in AC0, while DPPH is L-hard.

2 Hardness Results

In this section we present our completeness and hardness results for perfect phylogeny and haplotyping
problems. Before we detail these results, let us first review the notation that we are going to use: For
the basic problem PP the input is a (complete) haplotype matrix and the question is whether it admits
a perfect phylogeny. This basic problem can be modified by adding prefixes and indices: We add the
prefix D to indicate that one of the nodes in the phylogeny must be labeled with the all-0-haplotype. We
append H to indicate that the input is a genotype matrix rather than a haplotype matrix and an explaining
haplotype matrix admitting a perfect phylogeny must be found. We add the prefix I to indicate that ?-
entries may be present in the input. We add the index “leafs≤ l” to indicate that only perfect phylogenies
having at most l leafs are allowed (a leaf is a degree 1 node in the undirected graph underlying the perfect
phylogeny). Finally, we use the index “sorted” to indicate that the phylogeny must form a path and that
the all-0-haplotype (the root) must label one of its ends.

We first show that the phylogenetic sorting problems IDPPsorted and IDPPHsorted are complete for NL.
In particular, these problems are not NP-complete under standard assumptions. These results can be
used to show that IDPP is hard for NL. Previously, it was already known that we need at least linear-time
to solve IDPP [14].

We then prove our first main result, Theorem 1.1 from the introduction, which states that IDPPleafs≤l
is NP-complete. Note that for l = 2 the only difference between the NL-complete IDPPsorted and the
NP-complete IDPPleafs≤2 is that in the latter problem the root can be anywhere on the phylogenetic path,
whereas for the first problem it must lie at one of the ends. Also note that IDPP is known to lie in P.

All reductions in this paper are first-order many-one-reductions.

4



2.1 Hardness and Completeness For NL

Theorem 2.1. IDPPsorted and IDPPHsorted are complete for NL.

Proof. We first review the partial order � on the columns of genotype matrices that was introduced by
Eskin, Halperin and Karp [7] and later used in [13]. It will allow an easy characterization of haplotype
and genotype matrices that admit phylogenetic sortings. Let 1� 2� 0. For two columns c1 and c2 of a
complete genotype matrix, let c1 � c2 if c1[i] � c2[i] holds for each row i. We say that two columns c1
and c2 are comparable if c1 � c2 or c2 � c1; otherwise, they are incomparable. A column c1 dominates
a column c2 if c1 � c2 and c1 6= c2. Using this partial order, we can characterize phylogenetic sortings
as follows:

Claim. A genotype matrix A admits a phylogenetic sorting if, and only if, every pair of columns of A is
comparable.

Proof. For the “if”-direction let A be an n×m genotype matrix with pairwise comparable columns.
Then there exists a sorting c1 � ·· · � cm of the columns of A. We construct a haplotype matrix B for A
that admits a phylogenetic sorting as follows: Let g be a genotype from A. Since the order � is defined
componentwise, there exist indices i and j such that g contains its 1-entries in columns c1, . . . ,ci, its
2-entries in columns ci+1, . . . ,c j, and its 0-entries in the remaining columns c j+1, . . . ,cn. We set the
explaining haplotypes for g to 1i1 j−i0n− j and 1i0n−i. In the phylogenetic sorting for B, the sequence
of edge labels is c1, . . . ,cm. For the “only if”-part consider a genotype matrix A with two incomparable
columns c1 and c2. Each explaining haplotype matrix for A contains the submatrix

[
0 1
1 0

]
in c1 and c2. No

phylogenetic sorting exists for this submatrix and, hence, the whole matrix does not admit a phylogenetic
sorting.

We next introduce a directed graph that can be thought of as a generalization of the order � to
incomplete genotype matrices. For an n×m genotype matrix A, the directed graph GA has the columns
c1, . . . ,cm of A as its vertices. There is an edge from a column ci to a column c j if there is a row k with
ci[k]� c j[k]. The idea behind this definition is that ci dominates c j in each completion of A with pairwise
comparable columns. This leads to the following characterization of IDPPHsorted:

Claim. An incomplete genotype matrix A lies in IDPPHsorted if, and only if, GA is acyclic.

Proof. For the “if”-direction let A be an n×m incomplete genotype matrix such that GA is acyclic. The
graph GA induces a topological sorting c1, . . . ,cm on the columns. We derive completions c′1, . . . ,c

′
m for

them in a stepwise fashion such that after step i the columns c′1, . . . ,c
′
i are pairwise comparable. In step

i, consider the column ci. For each row k with ci[k] 6= ?, set c′i[k] = ci[k]. For each row k with ci[k] = ?,
set c′i[k] = 1 if there is a j > i with c j[k] = 1 and, otherwise, set c′i[k] = 2. The completion assures that
after an iteration i there is no j > i and row k, with c j[k] � c′i[k]. We claim that after each iteration i
the columns c′1, . . . ,c

′
i are sorted in nonincreasing order. This trivially holds after the first iteration. If

it holds after iteration i, it also holds after iteration i + 1 where column ci+1 is completed: If an entry
ci+1[k] is already known, the relation ci+1[k]� c′i[k] is not possible, as argued above. If an entry ci+1[k]
is not known, the procedure chooses a value that does not exceed ci[k]. Overall, we obtain that there is a
completion of A with pairwise comparable columns and we know A ∈ IDPPHsorted by the first claim.

For the “only if”-direction, let c1, . . . ,cl be a cycle in GA. We assume, for the sake of contradiction,
that there are pairwise comparable completions c′1, . . . ,c

′
l . Since for each i there exists a row k with

ci[k] � ci+1[k] and also cl[k] � c1[k] for some row k, we have c′1 � ·· · � c′k � c′1, which contradicts the
partial order.

To prove the theorem, we now show that the problems ACYCLIC, IDPPsorted, and IDPPHsorted are
equivalent. For the NL-complete problem ACYCLIC we are given a directed graph without loops and ask

5



whether the graph is acyclic. First, we reduce ACYCLIC to IDPPsorted: For a directed graph G = (V,E)
we construct an |E|× |V | incomplete haplotype matrix B: We identify the vertices with columns and the
edges with rows. For each directed edge (v,w) ∈ E, we set the corresponding row in the column of v
to 1, in the column of w to 0 and the remaining entries to ?-entries. Then G is isomorphic to GB and
since haplotype matrices are special cases of genotype matrices, by the above claim the construction is
a reduction. Second, IDPPsorted reduces to IDPPHsorted via the identify mapping. Third, for the reduction
from IDPPHsorted to ACYCLIC, we construct the graph GA for a given incomplete genotype matrix A.
Again by the above claim, this construction is a reduction.

Theorem 2.2. IDPP is NL-hard.

Proof. We present a reduction from IDPPsorted to IDPP. Since IDPPsorted is NL-hard by Theorem 2.1,
the claim follows. Given an incomplete haplotype matrix B, our reduction constructs the matrix B′ by
appending the row 1 . . .1. We claim that B ∈ IDPPsorted if, and only if, B′ ∈ IDPP. For the “only-if”-part
let there exist a completion of B that admits a phylogenetic sorting. The additional all-1-row clearly
does not change this property and, thus, B′ admits a perfect phylogeny. For the “if”-direction let TB′

be a directed perfect phylogeny for a completion of B′. We argue that TB′ is already a phylogenetic
sorting: The root node of TB′ is labeled by the all-0-row and one node is labeled by the all-1-row. All
columns lie on the path between these nodes. By contracting the edges of TB′ that are not labeled by
columns, we obtain a phylogenetic sorting for a completion of B′. Since B is a submatrix of B′, we also
know B ∈ IDPPsorted.

2.2 Completeness for NP

In the present section we prove our first main result, Theorem 1.1 from the introduction: IDPPleafs≤l is
NP-complete for each l ≥ 2. Since IDPP ∈ P, this is the first time a perfect path phylogeny problem is
harder than the corresponding problem for general perfect phylogenies. The ideas of our reduction are
extensions of the NP-hardness proof for IDPPHleafs≤2 from Gramm et al. [13].

Proof of Theorem 1.1. We only show hardness. Fix an l ≥ 2. We present a reduction from the problem
MONOTONE NAE3SAT to IDPPleafs≤l . For this problem we are given a propositional formula in conjunc-
tive normal form with three positive literals per clause (monotone 3CNF) and the question is whether
there is a variable assignment such that not all literals of a clause share the same truth value. This prob-
lem is NP-hard by a reduction from the problem NAE3SAT: We replace each negated variable xi by a
new variable yi and append the clause yi∨ xi∨ xi.

Let φ be a monotone 3CNF formula with n variables v1, . . . ,vn and m clauses C1, . . . ,Cm. We construct
an (n + 3m + l− 2)× (3m + l− 2) incomplete haplotype matrix B. The first n rows, which we call
variable rows, are identified with the variables of φ . The next 3m rows and the first 3m columns are called
literal rows and literal columns, respectively. The remaining l− 2 columns are marked by b1 . . .bl−2.
First, we describe the non-?-entries of the upper left (n + 3m)× (3m) submatrix: Let C j be a clause of
φ with literals {l1

j , l
2
j , l

3
j}. For each literal lk

j and its corresponding variable vi, we put a 1 entry in row vi

and column lk
j . Then we put the submatrix

[
1 0 ?
? 1 0
0 ? 1

]
in columns l1

j , l2
j and l3

j and rows l1
j , l2

j and l3
j . Finally,

we set the lower right (l− 2)× (l− 2) submatrix to the identity matrix
[

1 0 · 0
0 1 · 0
· · · ·
0 0 · 1

]
and all entries in the

upper right (n+3m)× (l−2) submatrix and the lower left (l−2)×3m submatrix to 0. An example for
this construction for l = 6 is depicted in Figure 1.

We claim that φ ∈ MONOTONE NAE3SAT if, and only if, B ∈ IDPPleafs≤l .
First, let B′ be a completion of B that admits a directed perfect phylogeny T with at most l leafs.

The phylogeny T must satisfy some necessary properties: Consider a column bi. No other column
in B can lie on the same root-to-leaf path as bi because they contain the submatrix

[
1 0
0 1

]
. Thus, the

6



l1
1 l2

1 l3
1 l1

2 l2
2 l3

2 l1
3 l2

3 l3
3 b1 b2 b3 b4

v1 1
v2 1 1 1
v3 1 1
v4 1 1
v5 1
l1
1 1 0 ?

l2
1 ? 1 0

l3
1 0 ? 1

l1
2 1 0 ?

l2
2 ? 1 0

l3
2 0 ? 1

l1
3 1 0 ?

l2
3 ? 1 0

l3
3 0 ? 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0

0

?

?

Figure 1: This figure shows the reduced incomplete binary matrix for IDPPleafs≤6 and the monotone
3CNF formula φ = C1∧C2∧C3 with clauses C1 = v1∨ v2∨ v3, C2 = v2∨ v3∨ v4 and C3 = v2∨ v4∨ v5.
In the matrix, li

j denotes the ith literal of clause C j.

columns b1, . . . ,bl−2 enforce l−2 branches T1, . . . ,Tl−2 that emanate from the root and a branch Ti con-
tains exactly the column bi. The remaining columns, which are the literal columns, are distributed to at
most two further branches Tl−1 and Tl since l− 2 of the permitted leafs are used by T1, . . . ,Tl−2. The
branches Tl−1 and Tl are both nonempty because B contains the submatrix

[
1 0 ?
? 1 0
0 ? 1

]
in literal columns

and each completion of this matrix contains the submatrix
[

0 1
1 0

]
, which forces columns to lie in differ-

ent branches. Altogether we obtain that Tl−1 and Tl are paths. The first n rows assure that all literal
columns that correspond to the same variable lie on the same path since they contain 1-entries in the
same row. The next 3m rows force that the literal columns of each clause do not lie on a single root
to leaf path. From this knowledge we construct an assignment τ of the variables of φ that witnesses
φ ∈ MONOTONE NAE3SAT: For a variable vi, we set τ(vi) = 0, if the corresponding literal columns lie
in Tl−1 and τ(vi) = 1, if they lie in Tl .

For the other direction let τ : {v1, . . . ,vn} → {0,1} be an assignment of the variables of φ such that
the literals of each clause do not share the same truth value. We describe, simultaneously, a completion B′

for B and a directed perfect phylogeny T with at most l leafs for B′. First we construct l− 2 branches
T1, . . . ,Tl−2 from the root. Each branch Ti contains exactly the column bi and its leaf is labeled with
one of the lower l− 2 rows of B. Two further branches Tl−1 and Tl (which are paths) are made up by
the literal columns and contain completions for the first n + 3m rows. The path Tl−1 contains all literal
columns whose corresponding variables are set to 0 by τ in root to leaf order as follows: Consider the
clause C1 with literals {l1

1 , l
2
1 , l

3
1}. If exactly one literal lk

1 of C1 equals 0, we append a new edge to Tl−1
that is labeled with the literal column lk

1. The node after this edge is labeled by the literal row lk
1. This

positioning yields a completion for this row. If exactly two literals lk
1 and lp

1 of C1 are set to 0 and
p≡ k +1 (mod 3), we append two new edges. We label the first edge with the literal column lk

1 and the
subsequent node with the literal row lk

1. The second edge is labeled with column lp
1 and the node with

row lp
1 . Again, we obtain a completion for the rows. Similarly we proceed for the remaining clauses

C2, . . . ,Cm in increasing order. The last node of Tl−1 is labeled by all variable rows that are set to 0,

7



which constitutes a completion for these rows. We construct the branch Tl analogously by using rows
and columns that correspond to variables that are set to 1. Thus, we obtain a completion of B and a
directed perfect phylogeny with at most l leafs.

The theorem that we just proved has a number of consequences. As mentioned in the introduc-
tion, IDPPleafs≤l can easily be reduced to many other problems, including IPPleafs≤l , IDPPHleafs≤l , and
IPPHleafs≤l with l ≥ 2, and, thus, all of these problems are NP-complete, too.

Having a closer look at the matrix constructed in the proof, we see that for l = 2 we can prove
a slightly stronger result: IDPPleafs≤2 with at most 4 known entries per row and 3 known entries per
column is NP-complete. This is true since MONOTONE NAE3SAT, which is used for the reduction in the
proof of Theorem 1.1, is also NP-hard if we restrict to formulas where each variable appears at most 4
times.

Even though this result is admittedly rather specialized, it shows that neither the maximum number
of non-?-entries per row nor per column are parameters for which IDPPleafs≤2 can be fixed parameter
tractable. Indeed, for either of these parameters IDPPleafs≤2 does not lie in XP, unless P = NP. This
shows that the same it true for IPPH and when we wish to prove fixed-parameter results for IPPH, as we
do in the following section, we must look at other parameters.

3 Fixed Parameter Tractability Results

The NP-hardness of IDPPleafs≤l proved in Section 2.2 directly transfers to IPPHleafs≤l using trivial reduc-
tions. We also saw that, at least in the case l = 2, the problems stay hard when we fix the number of
known entries allowed in every column of the input matrix. However, bounding the number of allowed
missing entries per column by a constant k makes the problems tractable. We show even more: the prob-
lems are fixed-parameter tractable with respect to this parameter. For an introduction on fixed-parameter
algorithms and their applications in phylogenetics see [12]. In [13] Gramm et al. showed fixed-parameter
tractability for IDPPHleafs≤2. Their result is generalized by our second main result, Theorem 1.2 from
the introduction. To prove it, we focus on proving the following, slightly weaker, but more accessible
theorem and our proof will implicitly yield the main theorem also:

Theorem 3.1. Let l ≥ 2. Then IPPHleafs≤l is fixed-parameter tractable with respect to the maximal
number of ?-entries per column.

To prove this result we present a fixed-parameter algorithm for IPPHleafs≤l , that is an algorithm
running in time f (k) · nO(1), where k is the maximal number of missing entries per columns, f is some
function, and n is the length of the input. Note that the number l of allowed leafs is not treated as a
parameter but as a constant that is fix in the problem.

We present this fixed-parameter algorithm in Sections 3.1 to 3.3. However, although it ensures
fixed-parameter tractability, we will see that it cannot be considered as efficient, because the function
f (k) will be in the range of 3k!. In Section 3.4 we present a more efficient fixed-parameter algorithm for
IDPPleafs≤2.

3.1 Plan of the FPT-Algorithm for IPPH with a Bounded Number of Leafs

The structure of the algorithm we present is similar to the fixed-parameter algorithm for IDPPH from
Gramm et al. [13]: First, in a preprocessing phase, we modify the input matrix to make sure the number
of columns the actual algorithm has to deal with simultaneously is reduced to a number independent of
the size of the input. Then we use dynamic programming to construct a perfect phylogeny matching
the required restrictions. This will happen by constructing all possible perfect phylogenies column by
column, starting at the leafs of the resulting phylogenetic tree and working towards its center.

8



In this approach it is essential to know which columns to place on which level of the tree, that is, at
which distance to a leaf or to the center. For directed phylogenies the leaf count introduced by Gusfield
[16] is a good indicator: the leaf count of a column, being the number of 2-entries plus twice the number
of 1-entries, counts the number of explaining haplotypes that label nodes in the subtree connected to the
column. So a small leaf count indicates a small distance to a leaf and a big leaf count a small distance to
the root. In particular the leaf count of columns does not decrease on any path from any leaf to the root.
In the undirected case the leaf count looses this helpful quality and since we do not have a distinguished
root it is not clear how to measure the distance to the center of the phylogeny. To tackle these problems
we generalize the leaf count:

Let c be a column of a genotype matrix A and nx its number of x-entries for x ∈ {0,1,2}. Let T be
a perfect phylogeny admitted by A. By deleting the edge labeled c we partition T in two subtrees T0
and T1, such that all haplotypes labeling nodes in T0 have a 0-entry and all haplotypes labeling T1 have
a 1-entry in column c. We name these subtrees heavy and light sides of c according to the following
criteria:

• If n0 > n1, we call T0 the heavy side and T1 the light side of c.
• If n0 < n1, we call T1 the heavy side and T0 the light side of c.
• For n0 = n1, if the first non-2 entry in c is a 0-entry, we call T0 the heavy side and T1 the light side

of c, otherwise call T1 the heavy side and T0 the light side of c.

We define hs(c) := n2 +2max{n1,n0} to be the heavy side size and ls(c) := n2 +2min{n1,n0} to be the
light side size of c. Intuitively, the light side of c is the subtree that has the smaller number of explaining
haplotypes for A which are counted by ls(c). Analogously hs(c) counts the number of haplotypes on the
heavy side. As for the leaf count, haplotypes that explain multiple genotypes in A are counted a multiple
number of times. Note that hs(c) and ls(c) do not depend on T , but only on the genotype matrix A. The
light side value of c, lv(c), is the column vector containing the values the haplotypes labeling the nodes
in the light side of c have in column c, the heavy side value, hv(c), is defined analogously.

The light side size will be our criterion how to handle columns. When constructing a phylogeny T ,
columns with small light side size will be handled early and placed in the outer regions of T . Also this
notation allows us to specify a center by distinguishing a root. Before we state this more precisely in
Lemma 3.2, we define a pre-order ≤ that serves the same purpose for undirected perfect phylogenies as
does � for directed perfect phylogenies.

Let c and d be {0,1,2}-columns of length n. We write c≤d if, and only if, for every i ∈ {1, . . . ,n}
the following holds: d[i] = hv(d) implies c[i] = hv(c), and c[i] = lv(c) implies d[i] = lv(d). If c≤ d
and d≤ c, we say that c and d are equivalent and write c≡d. Note that if c has 0-entries exactly in the
places were d has 1-entries, and 1-entries exactly in the places where d has 0-entries, then c≡d, so we
consider two columns that can be obtained from each other by flipping 0- and 1-entries as equivalent.
This is justified by the fact that if a haplotype matrix B admits a perfect phylogeny, then B also admits
a perfect phylogeny in which all columns that are equivalent label the same edge. Note that for a set of
columns C that does not contain two equivalent columns ≤ is a partial order on C. We call ≤ the weight
order. It is easy to see that the weight order is extended by the light side order, that is, c ≤ d implies
ls(c)≤ ls(d).

From now on we consider only genotype matrices that have no two distinct columns c and d such
that c≡d.

Lemma 3.2. Let A be a genotype matrix that admits a perfect phylogeny T . Then there is exactly one
node r ∈ V that is in the heavy side of every column of A. Furthermore, the columns that label a path
from any node to r increase with respect to the weight order.

Proof. Let B be the explaining haplotype matrix admitting T . First we show the existence of a node in
the heavy side of all columns. Let c be a column with maximal light side size in A and let r be the node

9



from the heavy side of c that is adjacent to c. We prove that r also is in the heavy side of every other
column from A. Let d 6= c be a column from A. Note that d cannot label the same edge of c, nor can
B contain no haplotype that labels a node between d and c, because both would imply c≡ d which we
presume not to be the case. That means d either lies in the light or in the heavy side of c. If d lies in the
light side, then one of its sides contains the heavy side of c and the other side is contained in the light
side if c. Since c 6≡d both inclusions are strict and the size of the side containing the heavy side of c is
greater than hs(c), which means that this side is the heavy side of d. Hence, r is in the heavy side of d.
If d is in the heavy side of c, then analogously one of its sides includes the light side of c and its size is
greater than ls(c). Since the c has maximal light side size, this is the heavy side of d and it contains r,
because r is on the path from d to c. Thus r is in the heavy side of every column from A.

It is easy to see that r is unique: let s be a node different from r and let c be a column on the path
from r to s, then, since r is in the heavy side of c, s is in its light side.

We proceed with showing that the edges in every path to r are ordered increasingly. Let v be some
node in T . We show that the weight order is a linear order on the edges belonging to a path from v to
r. Let c and d be columns that label the path, such that the edge labeled c comes first on the way from
v to r. (Again, note that c and d cannot label the same edge, because d 6≡ c.) Since r is in the heavy
side of both columns, the light side of c is a subset of the light side of d, that means every explaining
haplotype having a lv(c)-entry in column c also has a lv(d)-entry in column d and every haplotype
having a hv(d)-entry in column d, also has hv(c)-entry in column c. Hence, c<d, which completes the
proof.

It follows directly that in every perfect phylogeny the columns in a path to the vertex r from the
previous lemma have increasing light side sizes. For a genotype matrix A we denote the haplotype that
has in every column c a hv(c)-entry by root(A).

The concept of heavy and light sides enables us to transfer methods from the directed to the undi-
rected case. Informally speaking, a 1-entry in a directed problem instance corresponds to a light side
value, the all-0-haplotype corresponds the haplotype root(A), and the leaf count corresponds to the light
side size.

3.2 The Dynamic Program

The dynamic program will be the main routine of the FPT-algorithm for IPPHleafs≤l . Given an incomplete
genotype matrix A it will for a light side size look at all columns that can be completed to match this
size and merge them into phylogenies build previously from columns with smaller light side sizes. That
means we construct phylogenies from outside to inside inserting column per column in the order of their
light side sizes.

The following lemma contains a characterization that makes it easy to insert single columns into
previously build (partial) phylogenies. We call two columns compatible if in every place were one of
them has its light side value, the other one has its heavy side value. An arbitrary number of columns are
compatible if every two of them are compatible.

Lemma 3.3. Let A be a genotype matrix. And let T be a tree in which every edge is labeled by exactly
one column of A and every column labels exactly one edge. Then the nodes of T can be labeled such
that T is a perfect phylogeny admitted by A if and only if the following conditions are satisfied:

1. there is a node r such that all paths from any node to r are ordered increasingly with respect to
the weight order (ordering condition),

2. for every node v all columns that are adjacent to v and do not belong to the path from v to r are
compatible (compatibility condition),

3. for every node v and every genotype g ∈ A there are no three columns c1, c2, c3 adjacent to v such
that g[c1] = g[c2] = g[c3] = 2 (2-path condition).

10



Proof. First let T be a perfect phylogeny admitted by A. We show that the three conditions are satisfied:
The ordering condition holds due to Lemma 3.2. Now assume Condition 2 is not satisfied at some node
v of T . That means there are two columns c,c′ adjacent to v and not on the path to r and there is a
genotype g ∈ A, such that g[c] = lv(c) and g[c′] = lv(c′). All haplotypes explaining g must have the
same entries in these columns, so the must belong to the light sides of both c and d, which is impossible
because those are disjoint. Thus, the compatibility condition is satisfied.

For the 2-path condition let v be an edge. Assume there are three adjacent edges labeled by columns
c1,c2,c3 and a genotype g∈ A such that g[c1] = g[c2] = g[c3] = 2. Let h and h′ the haplotypes explaining
g in T . For each column from {c1,c2,c3}, one of h and h′ must belong to its light side and the other one
to its heavy side. Since only one of the columns adjacent to v can belong to the path from v to r, we can
assume without loss of generality that c1 and c2 do not belong to that path. Then c1 and c2 have disjoint
light sides. So we can assume h to label a node in the light side of c1 and h′ to label a node in the light
side of c2. If c3 also does not lie on the bath from v to r, then none of h and h′ belong to the light side of
c3 because it is disjoint to either light sides of c1 and c2. If c3 belongs to that path, then both h′ and h lie
in the light side of c3. So we have a contradiction and thus, all three conditions hold.

To prove the other direction let T satisfy the three conditions. We show that the labeling induced by
assigning the haplotype having in every column its heavy side value to r makes T a perfect phylogeny
admitted by A. For this it suffices to show that for every genotype g ∈ A there are to labels explaining it.
Let g be a genotype from A and let Clv := {c ∈C | g[c] = lv(c)} and C2 := {c ∈C | g[c] = 2} be the sets
of columns in which g has a light side value, or respectively a 2-entry. The rest of the proof is organized
as follows: we show that

(a) there is a node v that is connected to r via a path that uses exactly the columns from Clv,
(b) there are two nodes w,w′ connected by a path that uses exactly the columns from C2 and goes

through v,
(c) the labels of w and w′ explain g.

Because T is ordered the columns from Clv form a connected component in T that contains r. The
compatibility condition ensures that this component is a single path from r to some node v. Thus (a) is
true. Let Tv be the subtree rooted at v. Assume there is a c ∈C2 that labels an edge not belonging to Tv.
Let v′ be the latest ancestor node of both columns and let d1 and d2 be the columns connected to v′ such
that d1 starts the path from v′ to v and d2 starts the path from v′ to c. Because of the ordering condition
g has a lv(d1)-entry in d1 and a 2 or a lv-entry in d2. This contradicts the compatibility condition in v′.
So, all columns from C2 are in Tv. Because of the ordering condition, C2 forms a connected component
in Tv that contains v. The 2-path condition implies that this component is a path, so (b) holds. Let
w,w′ be the two vertices that are connected by this C2-path. The paths from r to w and from r to w′

contain all columns from Clv, so the labels have a light side value in these columns. Every column from
c ∈C2 belongs to exactly one of those paths, therefore one of both labels has lv(c) and the other hv(c)
in column c. All columns not belonging to Clv or C2 do not appear in either path, thus all other columns
contain heavy side values. Hence, the labels of w and w′ explain g.

Note that compatibility and 2-path condition can be verified locally for each vertex. Let A be a
genotype matrix with column set C and let D⊆C. We identify D with the submatrix of A that has column
set D and talk about perfect phylogenies for D, root(D), etc. Let T be a perfect phylogeny admitted by D,
then the center of T , center(T ), is the set {c ∈ D | c is adjacent to the vertex labeled by root(D) in T}.
We show that, to check whether a new column can be inserted in a previously constructed phylogeny T ,
it is sufficient to consider the center of T . For sets of columns C ⊆C′ admitting perfect phylogenies T
and T ′ we say that T ′ extends T if for all c1,c2 ∈D it holds: c1 lies on the path from c2 the vertex labeled
root(C) in T if and only if c1 lies on the path from c2 to the vertex labeled root(C′) in T ′. Intuitively this
means that T ′ can be obtained from T by splitting up vertices and connecting them with new edges. In
the following we denote by l(T ) the number of leafs of a perfect phylogeny T .

11



Lemma 3.4. Let A be a genotype matrix and C,D subsets of its column set such that C admits a perfect
phylogeny T and c ∈ C,d ∈ D implies ls(c) ≤ ls(d). Let L ∈ N and H ⊆ C. Then the following is
equivalent:

• C∪D admits perfect phylogeny U with L leafs, such that U extends T and center(U) = H,
• center(T )∪D admits perfect phylogeny U with L− l(T ) + |center(T )| leafs, such that every

column from center(T ) is adjacent to a leaf and center(U) = H.

Proof. First let C∪D admit a perfect phylogeny U with L leafs, such that U extends T . Since center(T )∪
D ⊆C∪D, center(T )∪D admits a perfect phylogeny U ′ that can be extended to U . Assume there is a
c ∈ center(T ) that is not adjacent to a leaf in U ′. Then there is another column d ∈ center(T ) such that
the path from the node root(center(T )∪C) to d goes through c. Because of the ordering condition d < c
and also ls(d) < ls(c), therefore d /∈ D. On the other hand if d ∈ center(T ), then it holds as well for
U and T that c lies on the path from the root-node to d, because U extends U ′ and T . This contradicts
the fact, that c and d are both adjacent to the root node in T . Hence each c ∈ center(T ) is adjacent to a
leaf in U ′. Further, it holds that every column from D is adjacent to a leaf in U if and only if it is in U ′.
Additionally all columns from C that are adjacent to a leaf in U are exactly those adjacent to a leaf in T .
In U ′ all columns from center(T ) are adjacent to leafs, therefore U ′ has exactly L− l(T )+ |center(T )|
leafs. To see that center(U ′) = center(U), note that no column from C \ center(T ) can be in center(U)
because U extends T . Since U extends U ′ and those columns from C \ center(T ) are the only columns
“missing” in U ′, it follows center(U ′) = center(U).

For the other direction let center(T )∪D admit a perfect phylogeny U with L− l(T )+ |center(T )|
leafs, such that every column from center(T ) is adjacent to a leaf and center(U) = H. We extend U to
U ′ by replacing each leaf v that is adjacent to a c ∈ center(T ) by the light side of c in T . All vertices in
U ′ have a corresponding vertex in U or in T that has the same set of columns labeling adjacent edges.
So all vertices in U satisfy the compatibility condition and the 2-path condition. The ordering condition
is satisfied as well because two columns label consecutive edges in a path in U ′ starting at root(C∪{d})
if and only if they label consecutive edges in a path in U starting at root(center(T )∪{d}) or in a path
in T starting at root(C). Hence, U ′ is a perfect phylogeny that is admitted by C∪D. Since we did not
add any columns to the root node, both columns have the same center. We removed the leafs vc adjacent
to columns c ∈ center(T ) and added all leafs from T , therefore U has exactly L leafs.

Before presenting the algorithm we need some terminology. A (partial) completion of an incomplete
genotype column c is a column c′ obtained by filling (some of) the missing entries with 0, 1, or 2. A
quasi-completion of c is a column c′ that is equivalent to some completion of c. Let C be a set of
incomplete genotype columns. A quasi-completion of C is a set containing a quasi-completion of each
c ∈ C. We also require that in a quasi-completion there are no two columns c,c′ such that C≡ c′.
quasi-completions(C) denotes the set of all quasi-completions of C. The reason why we use quasi-
completions instead of completions is, that, to be able to use the previous results, our algorithm needs
to produce completions that contain no equivalent columns. Let D be a quasi-completion of C and D′ a
quasi-completion of a set of incomplete genotype columns C′. Note that C can be completed to admit a
perfect phylogeny if and only if C has a quasi-completion admitting a perfect phylogeny. We define D
and D′ to be consistent if for each c ∈C∩C′ there is a quasi-completion of c in D∩D′. In other words,
two quasi-completions are consistent if all columns that are completed in both sets are completed in the
same way.

Let C be the column set of a genotype matrix A. Note that the light size side of a column ranges
between 0 and the number n of genotypes in A. We define C=i := {c ∈C | ls(c) = i}, C≤i := {c ∈C |
ls(c)≤ i}, C≥i := {c ∈C | ls(c)≥ i} to be the subsets of columns with light side size equal to i, at most
i, at least i respectively.

The input to the dynamic program is an incomplete genotype matrix. Given a column set C of an
incomplete genotype matrix A, we use A[i, j] with 0 ≤ i ≤ j to denote the set {c ∈C | i ≤ ls(c) ≤ j} of

12



all columns from C with light side size between i and j. So, to distinguish incomplete from complete
columns we use subscripts to refer to the light side size of incomplete columns and superscripts if the
columns are completed.

The dynamic program fills a table H as follows: for every light side size i the program considers
A[i−2k,i], which is the set of all columns that can be completed to have light side size i, and for every
quasi-completion R of A[i−2k,i] generates the entry

H (R, i) := {(center(T ),L) |C ∈ quasi-completions(A[0,i]),

C consistent with R, (1)

C≤i admits perfect phylogeny T with L≤ l leafs} .

Informally H (R, i) contains information about all perfect phylogenies with up to l leafs that are admitted
by completions of A[0,i] consistent with R. Note that entries in column n represent perfect phylogenies
for A that have at most l leafs. The table is filled column per column starting with light side size 0 and
ending with light side size n. To compute an entry H (R, i) the program uses the previously generated
entries in columns i−1 according to the following equation.

Lemma 3.5. Let A be an incomplete genotype matrix, 1 ≤ i ≤ n, and R ∈ quasi-completions(A[i−2k,i]).
Then

H (R, i) = {(center(T ),L) |S ∈ quasi-completions(A[i−1−2k,i−1]),

S consistent with R,

(H, p) ∈H (S, i−1),

H ∪R=i admits perfect phylogeny T with L+ |H|− p leafs,

in T every c ∈ H is adjacent to a leaf} .

Proof. ⊆: Let (center(T ), l(T )) ∈H (R, i). That means there is C ∈ quasi-completions(A[0,i]) con-
sistent with R and T is a perfect phylogeny with L ≤ l leafs admitted by C≤i. Let D be a subset
of C that completes A[0,i−1] and S a subset of D that completes A[i−1−2k,i−1]. Then we know that
S ∈ quasi-completions(A[i−1−2k,i−1]) is consistent with R and D. Let U be the phylogeny admitted by
D≤i−1 that can be extended to T . It holds that (center(U), l(U))∈H (S, i−1). Since D≤i−1∪R=i =C≤i,
Lemma 3.4 implies that center(U)∪R=i admits a perfect phylogeny T ′ with l(T )+ l(U)−|center(U)|
leafs in which every column from center(U) is adjacent to a leaf. Thus, (center(T ), l(T )) belongs to the
set on the right hand side.
⊇: For the other direction, let (center(T ),L) be from the set on the right hand side, that means

there is an S ∈ quasi-completions(A[i−1−2k.i−1]) consistent with R and (H, p) ∈H (S, i− 1) such that
T is admitted by H ∪R=i, has L + |H| − p leafs, and each of its edges labeled by a column from H
is adjacent to a leaf. Since (H, p) ∈H (S, i− 1), there exists C ∈ quasi-completions(A[0,i−1]) that is
consistent with S and C≤i−1 admits a perfect phylogeny U with p leafs and center(U) = H. According
to Lemma 3.4 it follows that C≤i−1∪R=i admits a perfect phylogeny T ′ such that T ′ extends both T and
U , center(T ′) = center(T ), and T ′ has l(T )+ l(U)−|H|= L leafs. It holds that C is consistent with R,
therefore C∪R ∈ quasi-completions(A[0,i]) is also consistent with R and (C∪R)≤i = C≤i−1∪R=i. Thus,
(center(T ),L) ∈H .

Theorem 3.6. The algorithm DECIDE-IPPHleafs≤l (depicted in Figure 2) decides whether an incomplete
genotype matrix admits a perfect phylogeny with up to l leafs in time 3O(k2λ (A))λ (A)l+1nml where k is
the maximal number of missing entries per column and λ (A) = maxi |A[i,i]| is the maximal number of
columns from A having equal light side size.

13



Algorithm : DECIDE-IPPHleafs≤l
Input : An n×m genotype matrix A with at most k missing entries per column.
Output : “yes” if IPPHleafs≤l , “no” otherwise
1 delete all columns in which all entries are from {0,?} or all entries are from {1,?}
2 H ( /0,0)← /0
3 for i← 1 to n do
4 for all R ∈ quasi-completions(A[i−2k,i]) do
5 H (R, i)← /0
6 for all S ∈ quasi-completions(A[i−1−2k,i−1]) do
7 if R and S are consistent then
8 H (R, i)←H (R, i)∪

{(center(T ),L) | (H, p) ∈H (S, i−1),
H ∪R=i admits perfect phylogeny T with |H|+L− p leafs,
in T every c ∈ H is adjacent to a leaf}

9 if there is R ∈ quasi-completions(A[n−2k,n]) with H (R,n) 6= /0 then return “yes”
10 else return “no”

Figure 2: Algorithm DECIDE-IPPHleafs≤l solves the IPPHleafs≤l problem for arbitrary instances. It is used
as a subroutine in the fixed-parameter algorithm.

Proof. Correctness. Since the property of admitting a perfect phylogeny with at most l leafs is invariant
under adding or deleting all-0 or all-1 columns, line 1 does not change this property for A. Now, A[0,0] is
empty, therefore in line 2 column 0 of H is filled matching Equation (1). According to Lemma 3.5 all
other entries in the table also satisfy Equation (1). Hence, the n-th column of H has an entry different
from /0 if and only if there is a quasi-completion of A[0,n] = A that admits a perfect phylogeny with no
more than l leafs.

Running time. Processing line 1 can be done in time O(mn). For the running time of the for-loops
we start with bounds for sizes of quasi-completions(A[i− j,i]) and H (R, i). First note that A[i− j,i] contains
at most ( j +1)λ (A) columns. Since in every column at most k entries need to be completed with values
from {0,1,2} and for each completion c we can chose between c and its “flipped” version equivalent
to C, it holds |quasi-completions(A[i− j,i])| ≤ 3k( j+1)λ (A)2( j+1)λ (A). The center of a perfect phylogeny
with L leafs contains at most L columns because every center columns starts a path from the root to a
leaf. Hence, an element of H (R, i) consists of a set of up to l columns and a number smaller or equal
to l. There are at most ml to chose the columns from A and not more than 3kl ways to complete them,
therefore |H (R, i)| ≤ ml3kll.

The for-loop staring in line 3 goes though n iterations, the for-loop in line 4 through at most
3k(2k+1)λ (A)2(2k+1)λ (A) iterations. To find the quasi-completions S ∈ quasi-completions(A[i−1−2k,i−1])
that are consistent with a given quasi-completion R ∈ quasi-completions(A[i−2k,i]) we just have to chose
quasi-completions for the columns from A[i−1−2k,i−1−2k], because the quasi-completions for the remain-
ing columns are determined by R. Therefore the for-loop in line 6 iterates over at most 3kλ (A)2λ (A)

quasi-completions S. In line 8 the algorithm needs to construct all perfect phylogenies T admitted by
the union of centers H from H (S, i−1) and R=i, such that each c ∈H labels an edge adjacent to a leaf.
Note that R=i ⊆ center(T ). To construct all those phylogenies T it is sufficient for every c∈H to choose
whether it belongs to a light side of a column, and of which column, from R=i and to check whether
the compatibility and the 2-path condition are satisfied in all vertices adjacent to a column from R=i.
So, for a given H there are at most |R=i|l perfect phylogenies T that can be verified in time O(|R=i|n).
Since |H (S, i−1)| ≤ ml3kll and since |R=i| ≤ |A[i−2k,i]| ≤ (2k +1)λ (A), lines 3-8 can be performed in
time O(n3k(2k+1)λ (A)2(2k+1)λ (A)3kλ (A)2λ (A)ml3kll(2k + 1)l+1λ (A)l+1n). This term can be simplified to

14



3O(k2λ (A))λ (A)l+1n2ml .
For line 9 the program has to look up the entries in the last column of H which are not more than

|quasi-completions(A[i−2k,i])| ≤ 3k(2k+1)λ (A)2(2k+1)λ (A).
Thus, the total running time is bounded by 3O(k2λ (A))λ (A)l+1n2ml .

Note that λ (A) can be as large as m, therefore DECIDE-IPPHleafs≤l is not the desired fixed-parameter
algorithm. However, in the next section we show that A can be modified such that λ (A) has a bound that
does not depend on n and m but only on the parameter k.

3.3 The Preprocessing Phase

The aim of the preprocessing routine is to reduce the number of columns with the same light side size.
The idea is to find sets of columns that must be completed in the same way to admit a perfect phylogeny
with at most l leafs and to replace this columns by a single column allowing the same completions.

First we give a criterion, saying that certain submatrices do not occur in genotype matrices admitting
perfect phylogenies with up to l leafs:

Lemma 3.7. Let x,y1, . . . ,yl+1 ∈ {0,1,2} and x 6= yi for all i. Then the matrix A =

 y1 x ··· x
x y2 ··· x
...

. . .
...

x x ··· yl+1

 does

not admit a perfect phylogeny with at most l leafs.

Proof. First assume x = 2. Then root(A) = (y1, . . . ,yl+1). According to Lemma 3.2 root(A) labels a
vertex r in each perfect phylogeny for A and the columns on each path starting at r are ordered decreas-
ingly with respect to the weight order. Since all columns from A are incomparable with respect to this
order, every perfect phylogeny admitted by A has at least l +1 leafs.

Now assume x 6= 2. Without loss of generality let x = 0. In this case root(A) = (x, . . . ,x) and again no
two columns of A are comparable, so with the same arguments as above all perfect phylogenies admitted
by A have at least l +1 leafs.

A consensus c of a set C of incomplete genotype columns is a partial completion of all c ∈C. The
following lemma shows that κ(h) := (3l)hh! columns that have a consensus with k− h missing entries
can be replaced by its consensus without altering membership in IPPHleafs≤l . For the case l = 2 this
result was shown in [13], the given proof generalizes directly to this version for arbitrary l.

Lemma 3.8. Let A be a genotype matrix with at most k missing entries per column. Let h ≥ 0 be the
minimal number such that there is a subset C of columns from A with |C|> κ(h) that has a consensus c
with exactly k−h missing entries. Let A′ be the incomplete genotype matrix obtained from A by deleting
all columns from C and adding c. Then A ∈ IPPHleafs≤l if and only if A′ ∈ IPPHleafs≤l .

Proof. Clearly, A′ ∈ IPPHleafs≤l implies A ∈ IPPHleafs≤l . For the reverse direction suppose that A can be
completed to a genotype matrix E admitting a perfect phylogeny with at most l leafs. Let C′ be the set
of columns from E that complete the columns from C. We prove that also A′ can be completed to admit
a perfect phylogeny with up to l leafs. For h = 0, we have that |C|> 1 and all columns from C are equal
to c. So obviously, A′ = A.

Now we prove the claim for h > 0. If there is a column d ∈ C′ that is a completion of c, then E
completes A′ and therefore A′ ∈ IPPHleafs≤l . In the rest of the proof, we show that the other case, where
there is no such column in C′ can not occur. So, for sake of contradiction, suppose that no column from
C′ is consenting with c. Then each d ∈C has at least one ?-entry that faces a non-question mark entry in
c and that is completed differently in C′ than in c. We call these the disputed positions of d.

The minimality of h implies that every column with k− h′ missing entries has dimension at most
κ(h′) for all h′ < h. Consider those rows in C that contain a ?-entry, while the corresponding position in

15



c contains no question mark. The submatrix of C obtained in this way has the following property: Each
row contains at most κ(h−1) missing entries. Indeed, if this were not the case, then the columns of C
containing these ?-entries would have a consensus c′ having at least one more ?-entry than c does and
dimension larger than κ(h−1) contradicting the minimality of h.

We form sets Cx for x ∈ {0,1,2} containing those columns in C that have a disputed position facing
an x-entry in c. Since every column in C has a disputed position, we have C = C0∪C1∪C2. We show
that the cardinality of each of the sets C0, C1, and C2 is not larger than l ·h ·κ(h−1) , which implies that
C contains at most κ(h) columns, a contradiction.

We construct a graph Gx whose vertex set is exactly Cx. Let there be an edge between a vertex
d ∈Cx and e ∈Cx if there is a row in which both d and e have a disputed position that faces an x-entry
in c. We claim that the maximum degree of Gx is less than h · κ(h− 1). To see this, first note that
every vertex (which is a column) has at most h disputed positions. Next, for each row there are at most
κ(h−1) columns having a disputed positions in this row, because otherwise the column obtained from
c by replacing the entry in this row by a question mark has dimension larger than κ(h−1) contradicting
the minimality of h. Thus, each vertex can be adjacent to at most h · (κ(h−1)−1) different vertices.

We claim that the largest independent set in Gx has size at most l. To see this, assume that there are
l + 1 independent columns in Gx. Since each of those columns has a disputed position in a row where

the other l columns have an x-entry the (l +1)× (l +1)-matrix

[ ? x ··· x
x ? ··· x
...

. . .
...

x x ··· ?

]
is a submatrix of A. Since all

the question marks are at disputed positions, they are completed differently from 0 in C′. According to
Lemma 3.7, E does not admit a perfect phylogeny with at most l leafs. This is a contradiction.

We just have shown that Ax has maximum degree h ·(κ(l−1)−1) and independence number at most
l. So Ax has at most l + l ·h · (κ(h−1)−1)≤ l ·h · (κ(h−1)) vertices. Therefore, |Cx| ≤ l ·h · (κ(h−1))
which completes the proof.

The procedure PREPROCESSleafs≤l replaces columns according to Lemma 3.8 to obtain an incom-
plete genotype matrix whose maximum number of columns with the same light side size is bounded by
a number that depends only on the parameters k and l. This bound is λ (k) := (2k +1)lκ(k), where k is
the maximum number of missing entries in any column.

Lemma 3.9. Let A be a genotype matrix with at most k missing entries per column and let A′ be the
genotype matrix that is obtained by applying the preprocessing procedure PREPROCESSleafs≤l to A. Then
the following holds:

1. A has a perfect phylogeny with at most l leafs iff A′ has one.
2. If A′ contains more than λ (k) columns with the same light side size, then A′ /∈ IPPHleafs≤l .

Proof. Since whenever the algorithm replaces a set of columns C by a column p the prerequisites of
Lemma 3.8 are met, it holds that A can be completed to admit a perfect phylogeny with at most l leafs if
and only if A′ can.

For some i ∈ {0, . . . ,n} let D be the set of columns d from A′ that have light side size i and suppose
|D| > λ (k) = (2k + 1)lκ(k). We prove that A′ can not be completed to admit a perfect phylogeny with
up to l leafs. Since no more than κ(k) columns of A′ have a consensus, in any completion A′ the column
from D must be completed in more than (2k + 1)l different ways. Every completion of d ∈ D has light
side size between i and i + 2k. Therefore in each completion of A′ there are at least l + 1 columns with
the same light side size. Since in every perfect phylogeny with at most l leafs there can be at most l
columns with the same light side size, it follows that A′ /∈ IPPHleafs≤l .

We analyze the running time of PREPROCESSleafs≤l . In each but the last iteration of the repeat-loop
the number of columns decreases by at least 1 since some of the columns are replaced by a consensus.

16



Procedure : PREPROCESSleafs≤l
Input : An n×m genotype matrix A with at most k missing entries per column.
Output : A preprocessed matrix
1 repeat
2 for h← 0 to k do
3 for all columns c of A do
4 for all partial completions p of c with exactly k− l missing entries do
5 C←{c′ | c′ is column of A and partial completion of p}
6 if |C|> κ(l) then A← A with all columns in C replaced by p and break
7 until A remains unchanged

Algorithm : FPT-IPPHleafs≤l
Input : An n×m genotype matrix A with at most k missing entries per column.
Output : “yes” if IPPHleafs≤l , “no” otherwise.
1 call PREPROCESSleafs≤l(A)
2 for i← 0 to n do
3 if |A[i,i]|> λ (k) then return “no”
4 return DECIDE-IPPHleafs≤l(A)

Figure 3: Algorithm FPT-IPPHleafs≤l is a fixed-parameter algorithm for IPPHleafs≤l . The parameter is the
maximal number of missing entries per column. It uses the PREPROCESSleafs≤l procedure to reduce the
number of columns with the same light side size.

Thus, there can be at most m iterations of the repeat-loop. The three inner loops iterate over at most
km4k candidates and computing the set C for a given column p can be done in time O(nm). Hence, the
algorithm terminates in time O(k4km3n).

Now we can combine the preprocessing and the dynamic program to obtain a fixed-parameter algo-
rithm for IPPHleafs≤l .

Proof of Theorem 3.1. We show that FPT-IPPHleafs≤l is a fixed-parameter algorithm for IPPHleafs≤l where
the fixed parameter is the maximal number of missing entries per column.

The correctness follows from Lemma 3.9 and Theorem 3.6. Now we analyze the running time:
calling PREPROCESSleafs≤l the takes time O(k4km3n). The for-loop can be processed in time O(n2m).
After the preprocessing A has at most λ (k) columns with the same light side size. Therefore the dynamic
program DECIDE-IPPHleafs≤l runs in time 3O(k2λ (k))λ (k)l+1n2ml . This is the dominating factor and can
be simplified to time 3O(k2(3l)kk!)n2ml . Thus, IPPHleafs≤l is fixed-parameter tractable with respect to the
maximal number of ?-entries per column.

3.4 FPT Algorithms for Perfect Path Phylogeny Problems

In this section we present specialized algorithms for the problems IDPPleafs≤2 and IPPleafs≤2. First we
prove the following result:

Theorem 3.10. IDPPleafs≤2 and IPPleafs≤2 are fixed-parameter tractable with respect to the maximal
number of missing entries per row and

Note that these problems are also fixed-parameter tractability with respect to the maximal number
of missing entries per column. For IDPPleafs≤2, this follows from results in [13] and, for IPPleafs≤2, this
follows from Theorem 3.1.

17



Beside these, we present a simple fixed-parameter algorithm for IDPPleafs≤2 where the parameter is
the maximal number of missing entries per row plus the maximal number of missing entries per column.
While this parameter normally exceeds the above ones, our algorithm can be easily implement and the
exponential fraction as well as the polynomial fraction of the time bound are lower than in the previous
section.

To prove Theorem 3.10, we first present forbidden submatrix characterizations of haplotype matrices
that admit (directed) perfect phylogenies with an bounded number of leafs. Similar characterizations
are also known for general perfect phylogenies: Haplotype matrices that admit perfect phylogenies

and directed perfect phylogenies are characterized by the absence of the submatrices
[ 0 0

0 1
1 0
1 1

]
and

[
0 1
1 0
1 1

]
,

respectively. Independent from the objective of this section, forbidden submatrix characterizations give
an interesting insight into phylogenetic problems. The forbidden submatrix characterization of perfect
phylogenies with at most l leafs is as follows:

Lemma 3.11. A haplotype matrix B admits a perfect phylogeny with at most l leafs if, and only if, B

does not contain the submatrix F1 :=
[ 0 0

0 1
1 0
1 1

]
and none of the matrices that arise by inversions of columns

from the (l +1)× (l +1) identity matrix F2 :=
[

1 0 · 0
0 1 · 0
· · · ·
0 0 · 1

]
.

Proof. The “only if”-part follows directly from Lemma 3.7 and the fact that haplotype matrices con-
taining F1 as a submatrix do not admit a perfect phylogeny.

For the “if”-part let B be a haplotype matrix that does not admit a perfect phylogeny with at most
l leafs. Since all-0 or all-1 columns have no impact on the number of leafs needed, we assume B to have
none of them. If B does not admit a perfect phylogeny at all, it contains the submatrix F1. Therefore
assume B admits a perfect phylogeny T with more than l leafs. For a leaf i, let ci be a column on its
incident edge. Because all columns contain both 0-entries and 1-entries, each leaf i is labeled with a
haplotype hi from B. With the definition of perfect phylogenies follows that hi[ci] = a ∈ {0,1} implies
h j[ci] = 1−a for all j 6= i. Thus, F2, possibly with inverted columns, is a submatrix of B.

The following lemma states a characterization of directed perfect phylogenies with at most l leafs:

Lemma 3.12. A haplotype matrix B admits a directed perfect phylogeny with at most l leafs if, and only
if, B does not contain one of the following submatrices: G1 =

[
0 1
1 0
1 1

]
, the (l +1)× (l +1) identity matrix

F2 =
[

1 0 · 0
0 1 · 0
· · · ·
0 0 · 1

]
and the l× (l +1) matrix G2 =

[
1 0 · 0 1
0 1 · 0 1
· · · · ·
0 0 · 1 1

]
Proof. We show that a haplotype matrix B contains one of the submatrices G1,G2 and F2 if and only if
B′ obtained from B by adding the all-0-row contains one of the forbidden matrices of Lemma 3.12.

The “only if”-part is obvious. We show the “if”-part. If B′ contains F1, then B contains G1. If B′

contains F2, then also B does. If B′ contains F2 with one inverted column, then B contains G2 and, finally,
if B′ contains F2 with at least two inverted columns then B, contains G1.

For l = 2, the submatrix condition of Lemma 3.12 still holds if we transpose a given haplotype
matrix, which implies the following corollary:

Corollary 3.13. A haplotype matrix B admits a directed perfect path phylogeny if, and only if, its trans-
position BT admits a directed perfect path phylogeny.

Note, that the property of Corollary 3.13 does not hold for undirected perfect phylogenies and di-
rected perfect phylogenies with at least 3 leafs.

Now we are able to prove Theorem 3.10:

18



Proof of Theorem 3.10. To solve IDPPleafs≤2, we transpose a given incomplete haplotype matrix and use
the fixed-parameter algorithm for IDPPHleafs≤2 from [13] to solve it. Because the parameter of this
algorithm is the maximal number of missing entries per column, we obtain an algorithm where the
parameter is the maximal number of missing entries per row.

The fixed-parameter algorithm for IPPleafs≤2 works as follows: given an incomplete haplotype ma-
trix B, we consider all completions r′ of a row r, which leads to partial completions of B. For each r′,
we direct the matrix B and obtain matrix B′. That means, if r′[i] = 1 for a column i, we substitute each
1-entry in column i with a 0-entry and each 0-entry with a 1-entry. For B holds that B ∈ IPPleafs≤2 if, and
only if, B′ ∈ IDPPleafs≤2. Thus, we can use the algorithm for IDPPleafs≤2, which was described above,
as a subroutine in the iteration. If the subroutine call returns “yes”, we know B ∈ IPPleafs≤2. If each
subroutine call returns “no”, we know B /∈ IPPleafs≤2. Overall we have an algorithm for IPPleafs≤2 that is
parametrized by the maximal number of missing entries per row.

A Simple FPT Algorithm for IDPP Restricted to Two Leafs. We present a fixed-parameter algo-
rithms for IDPPleafs≤2 where the parameter is the maximal number of missing entries per row plus the
maximal number of missing entries per column. The algorithm uses the following graph, which was first
defined in [22]: Let B be an incomplete haplotype matrix. The vertex set of the undirected graph G1

B
is made up by the rows and the columns of B and there is an edge between a row vertex and a column
vertex if B contains a 1-entry in the corresponding row and column. The graph G1

B represents necessary
conditions for directed perfect path phylogenies:

Lemma 3.14. Let B be a haplotype matrix where each row and column contains a 1-entry and T a
directed perfect path phylogeny with branches T0 and T1 for B. If two vertices in G1

B are connected, then
the corresponding rows and columns lie in the same branch of T .

Proof. Let T be a directed perfect path phylogeny for a haplotype matrix B and c and c′ two column
vertices that are connected in G1

B. Let c,r1,c2, . . . ,rm,c′ be a path between these vertices where the ri

are row vertices an the ci are column vertices. Row r1 contains a 1-entry in column c and lies, therefore,
in the same branch with c. Column c2 contains a 1-entry in row r1 and lies, therefore, on the path
between r1 and the root. If we use these arguments inductively, we obtain that c and c′ lie in the same
branch of T . The same holds for row vertices and combinations of row and column vertices.

Our algorithm seeks for partitions of rows and columns that are described in the following lemma:

Lemma 3.15. A haplotype matrix B admits a directed perfect path phylogeny if, and only if, there exist
a partition of the rows into sets R0 and R1 and a partition of the columns into sets C0 and C1 such that
(a) the submatrices induced by R0 and C0 and by R1 and C1 admit phylogenetic sortings and (b) the
submatrices induced by R0 and C1 and by R1 and C0 contain only 0-entries.

Proof. Let T be a directed perfect path phylogeny with branches T0 and T1 for the haplotype matrix
B. If a row and a column lie in different branches, they do not share a 1-entry. Also each branch is a
phylogenetic sorting for the submatrix that is induced by its rows and columns. Thus T0 and T1 induce
suitable partitions for rows and columns.

The other way round, let C0, R0, C1 and R1 be as above with induced submatrices B0 and B1. By
identifying the root nodes of the phylogenetic sortings for B0 and B1, we obtain a directed perfect path
phylogeny for B.

The algorithm for IDPP works as follows: Given an incomplete haplotype matrix B, it iterates over
all completions of a row r and a column c that share a 1-entry. This yields a partial completion B′ of B.
For each B′ we use the graph G1

B′ to compute a partition of the rows into sets R0 and R1 and a partition of
the columns into sets C0 and C1. A row lies in R0 if it is connected to r and in R1 otherwise. Similarly we

19



proceed for the columns. After this the algorithm checks whether the induced submatrices for R0 and C0
and for R1 and C1 lie in IDPPsorted. If this is true, the algorithm returns “yes”. If this is not possible for
all B′ the algorithm returns “no”. Figure 4 describes this algorithm more detailed.

Algorithm : FPT-IDPPleafs≤2
Input : An incomplete haplotype matrix B.
Output : “yes” if B ∈ IDPPleafs≤2, “no” otherwise.
1 delete rows and columns without 1-entries
2 choose row r and column c with r[c] = 1
3 for all completions of r and c do
4 B′← corresponding partial completion of B
5 B′0← induced submatrix of the rows R0 and columns C0 that are connected to r in G1

B′

6 B′1← induced submatrix of the rows R1 and columns C1 that are not connected to r in G1
B′

7 if B′0 ∈ IDPPsorted and B′1 ∈ IDPPsorted then return “yes”
8 return “no”

Figure 4: FPT-IDPPP solves IDPPleafs≤2 in time O(2knm2) for n×m incomplete haplotype matrices where
the number of missing entries per row plus the maximal number of missing entries per column is at
most k

Theorem 3.16. IDPPleafs≤2 can be solved in time O(2knm2) where k is the number of missing entries per
row plus the maximal number of missing entries per column.

Proof. First we show that FPT-IDPPleafs≤2 decides IDPPleafs≤2. Then we deduce its runtime.
We claim that an incomplete haplotype matrix B lies in IDPPleafs≤2 if, and only if, FPT-IDPPleafs≤2

returns “yes”. We consider only matrices where each row and each column contains a 1-entry since
all-0-rows and all-0-columns can be append to a matrix without changing directed perfect phylogenies.

We start with the “if”-part of the proof. Assume that FPT-IDPPleafs≤2 says “yes”. That means there
exists a partial completion B′ for B and partitions of rows (R0,R1) and columns (C0,C1) such that the
induced submatrices of R0 and C0 and of R1 and C1 lie in IDPPsorted. Furthermore, the submatrices
induced by R0 and C1 and by R1 and C0 contain no 1-entries, since, otherwise, the algorithm would have
chosen different partitions. This witnesses B ∈ IDPPleafs≤2 by Lemma 3.15.

For the “only-if”-part we assume B ∈ IDPPleafs≤2, thus there exists a completion B′′ of B that admits
a directed perfect path phylogeny T . As in the proof of Lemma 3.15, each branch of the path phylogeny
is a phylogenetic sorting for the submatrix that is induced by its rows and columns. The entries of B′′

that do not belong to one of these submatrices are 0-entries. Thus, it suffice to show that the algorithm
considers at least once the partitions of rows and columns that is given by the branches of T . Therefore
let r′ and c′ be the completions of r and c in B′′ and let B′ be the partial completion of B with respect
to r′ and c′. We show that the algorithm chooses exactly the partitions that are induced by T whenever
it considers B′. As the algorithm does, we look at the partitions relatively to the row r. If a column c∗ is
not connected with r in GB′ , the same holds for c. Together with the fact that c∗ contains a 1-entry, there
exist a row r∗ with r∗[c∗] = 1, but r[c∗] = 0 and r∗[c] = 0. Since r[c] = 1, the columns c and c∗ contain
the submatrix

[
1 0
0 1

]
in B′ and must, therefore, lie in different branches. In a similar way we obtain that a

row lies in a different branch than r whenever they are not connected. If a column or a row is connected
with r, by Lemma 3.14, it lies in the same branch with r.

The asymptotic time complexity of FPT-IDPPleafs≤2 is dominated by the iteration over completions
of r and c. There are 2k iterations where k is the maximal number of missing entries per row plus the
maximal number of missing entries per column. The partition of rows and columns can be computed by
using depth-first-search from the vertex r in G1

B′ . This needs at most O(nm) time. For the if statement we

20



need to solve the IDPPsorted problem. By using the characterization from the proof of Theorem 2.1, this
can be done in time O(nm2) since the graph GB′ , which is used for this task, contains m vertices and at
most nm directed edges. Overall, we obtain that the algorithm solves IDPPleafs≤2 in time O(2knm2).

4 Conclusion

The results of the present paper show that studying the influence of tree topologies on the hardness of the
IPPH problem is worthwhile. On the one hand, restricting the tree topology can make problems harder as
is the case for IDPP whose complexity jumps from polynomial time to NP-complete. On the other hand,
tree topologies provide the first parameter for which a theoretical analysis of an algorithm is possible
that works on arbitrary instances of the IPPH problem.

The concept of a weight order has turned out to be very useful for the study of undirected perfect
phylogenies. We suggest trying to apply this notions to other problem versions as well.

There are some open problems that we would like to suggest for further research. First, is IPPHleafs≤l
fixed-parameter tractable with respect to the maximal number of missing entries per rows? We know
that this is the case for IDPPleafs≤2. Second, we showed that IDPP is NL-hard and it is known that
IDPP ∈ P. Can we characterize the complexity of IDPP more precisely? Finally, the main open problem
is to improve the fixed-parameter results for IPPH. In particular, is IPPH fixed-parameter tractable with
respect to the maximal number of ?-entries per column?

References
[1] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny: A direct approach.

Journal of Computational Biology, 10(3–4):323–340, 2003.
[2] C. J. Benham, S. Kannan, M. Paterson, and T. Warnow. Hen’s teeth and whale’s feet: Generalized characters

and their compatibility. Journal of Computational Biology, 2(4):515–525, 1995.
[3] A. G. Clark. Inference of haplotypes from PCR-amplified samples of diploid populations. Journal of Molec-

ular Biology and Evolution, 7(2):111–22, 1990.
[4] M. Daly, J. Rioux, S. Schaffner, T. Hudson, and E. Ladner. High-resolution haplotype structure in the human

genome. Nature Genetics, 29:229–232, 2001.
[5] Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the perfect phylogeny haplotyping (PPH)

problem. Journal of Computational Biology, 13(2):522–553, 2006.
[6] M. Elberfeld and T. Tantau. Computational complexity of perfect-phylogeny-related haplotyping prob-

lems. In Proceedings of MFCS 2008, volume 5162 of Lecture Notes in Computer Science, pages 299–310.
Springer, 2008.

[7] E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of haplotype structure via perfect phylogeny.
Journal of Bioinformatics and Computational Biology, 1(1):1–20, 2003.

[8] L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid
population. Molecular Biology and Evolution, 12(5):921–7, 1995.

[9] D. Fallin and N. Schork. Accuracy of haplotype frequency estimation for biallelic loci via the expectation-
maximation algorithm for unphased diploid genotype data. American Journal of Human Genetics, 67:947–
959, 2000.

[10] L. Friss, R. Hudson, A. Bartoszewicz, J. Wall, T. Donfalk, and A. Di Rienzo. Gene conversion and differen-
tial population histories may explain the contrast between polymorphism and linkage disequilibrium levels.
American Journal of Human Genetics, 69:831–843, 2001.

[11] J. Gramm, T. Hartman, T. Nierhoff, R. Sharan, and T. Tantau. On the complexity of snp block partitioning
under the perfect phylogeny model. Discrete Mathematics, 2008. To appear, doi:10.1016/j.disc.2008.04.002.

[12] J. Gramm, A. Nickelsen, and T. Tantau. Fixed-parameter algorithms in phylogenetics. The Computer Jour-
nal, 2007.

[13] J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. Haplotyping with missing data via perfect path phylogenies.
Discrete and Applied Mathematics, 155(6–7):788–805, 2007.

[14] D. Gusfield. Efficient algorithms for inferring evolutionary history. Networks, 21:19–28, 1991.

21



[15] D. Gusfield. Inference of haplotypes from samples of diploid populations: complexity and algorithms.
Journal of Computational Biology, 8(3):305–23, 2001.

[16] D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In Proceed-
ings of the Sixth Annual International Conference on Computational Molecular Biology (RECOMB), pages
166–175. ACM Press, 2002.

[17] E. Halperin and R. M. Karp. Perfect phylogeny and haplotype assignment. In Proceedings of the Sixth
Annual International Conference on Computational Molecular Biology (RECOMB), pages 10–19. ACM
Press, 2004.

[18] M. Hawley and K. Kidd. Haplo: A program using the EM algorithm to estimate the frequency of multi-site
haplotypes. Journal of Heredity, 86:409–41, 1995.

[19] L. Helmuth. Map of the human genome 3.0. Science, 293(5530):582–585, 2001.
[20] G. Kimmel and R. Shamir. The incomplete perfect phylogeny haplotype problem. Journal of Bioinformatics

and Computational Biology, 3(2):359–384, 2005.
[21] Y. Liu and C.-Q. Zhang. A linear solution for haplotype perfect phylogeny problem. In Proceedings of

the International Conference on Advances in Bioinformatics and its Applications, pages 173–184. World
Scientific, 2005.

[22] I. Pe’er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect phylogeny. SIAM Journal on
Computing, 33(3):590–607, 2004.

[23] R. Vijaya Satya and A. Mukherjee. An optimal algorithm for perfect phylogeny haplotyping. Journal of
Computational Biology, 13(4):897–928, 2006.

[24] R. Vijaya Satya and A. Mukherjee. The undirected incomplete perfect phylogeny problem. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2008. To appear, doi:10.1109/TCBB.2007.
70218.

[25] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Clas-
sification, 9(1):91–116, 1992.

22


