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Abstract

The diameter of an undirected graph is the minimal number d such that there is a
path between any two vertices of the graph of length at most d. The radius of a graph is
the minimal number r such that there exists a vertex in the graph from which all other
vertices can be reached in at most r steps. In the present paper we study the computational
complexity of deciding whether a given graph has some fixed small diameter or radius. For
graphs given as adjacency matrices the problem is trivial, but for graph that are represented
succinctly using circuits, the complexity is more interesting: We show that for every fixed d ≥
2 the problem of deciding whether a succinctly represented undirected graph has diameter
at most d is Πp

2-complete, while for d = 1 the problem is Πp
1-complete; and for every fixed

r ≥ 2 the problem of deciding whether a succinctly represented undirected graph has radius
at most r is Σp

3-complete, while for r = 1 the problem is Σp
2-complete. This shows that these

problems are fairly natural problems that are complete for higher levels of the polynomial
hierarchy.

1 Introduction

In the paper On the Complexity of Kings [1] Hemaspaandra et al. showed that the succinct
diameter problem for directed graphs (and even for tournaments) is Πp

2-complete for all fixed
d ≥ 2 and that the succinct radius problem for directed graphs is Σp

3-complete for all fixed
r ≥ 2. The purpose of the present paper is to show that these results also hold for undirected
graphs.

This is not quite obvious since the main proof that the succinct k-diameter problem for
directed graphs is Πp

2-complete uses tournament graphs, which are inherently directed. The
closest undirected analogues to such graphs are cliques and the diameter of a clique is, trivially,
always 1. Also, for directed graphs the diameter and the radius of a graph are only loosely
related (a directed graph can have infinite diameter and finite radius), while for undirected
graphs we always have r ≤ d ≤ 2r. This makes it especially intriguing that the complexities of
these problems differ by a whole level of the polynomial hierarchy.

The present paper will focus on just giving the completeness proofs, for a detailed back-
ground on these problems please see [1].
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2 Basic Definitions and Notations

Throughout this paper Σ = {0, 1}. We refer to elements of {0, 1}∗ = Σ∗ as bitstrings.
An (undirected) graph is a pair (V,E) consisting of a nonempty vertex set V together with

an edge set E ⊆ {{u, v} | u, v ∈ V, u 6= v}. A path of length l in a graph is sequence v0, v1, . . . ,
vl of vertices such that {vi−1, vi} ∈ E holds for all i ∈ {1, . . . , l}. We denote the fact that the
sequence forms a path by v0 → v1 → · · · → vl, but note that, nevertheless, edges are always
undirected in the present paper. The diameter of a graph is the smallest number d such that
for every pair u, v ∈ V of vertices there is a path from u to v of length at most d. If a graph has
more than one strongly connected component, its diameter is ∞. The radius of a graph is the
smallest number r such that there exists a vertex c, called a k-center of the graph, from which
there are paths of length at most r to all other vertices. (A k-center is also known as a k-king
in the literature, but that terminology is less natural for the present paper.) It is possible for
a graph to have a radius of ∞. The radius and the diameter of a graph are related by the
inequalities r ≤ d ≤ 2r.

A language L is in Πp
2 if and only if there exist a polynomial p and a polynomial-time

decidable relation R ⊆ Σ∗ × Σ∗ × Σ∗ such that for all words x ∈ Σ∗ we have

x ∈ L ⇐⇒ (∀y ∈ Σp(|x|))(∃z ∈ Σp(|x|))[R(x, y, z)]. (1)

Similarly, L ∈ Σp
2 means that there exists an R with the property

x ∈ L ⇐⇒ (∃y ∈ Σp(|x|))(∀z ∈ Σp(|x|))[R(x, y, z)]. (2)

A language L is in Σp
3 if and only if there exist a polynomial p and a polynomial-time

decidable relation R ⊆ Σ∗ × Σ∗ × Σ∗ × Σ∗ such that for all words x ∈ Σ∗ we have

x ∈ L ⇐⇒ (∃w ∈ Σp(|x|))(∀y ∈ Σp(|x|))(∃z ∈ Σp(|x|))[R(x, w, y, z)]. (3)

By circuit we refer to combinatorial circuits containing input-, output-, negation-, and-, and
or-gates. The fan-in of each gate is at most 2. Fan-out is not restricted. For a circuit C with
n input gates and m output gates, we also use C : {0, 1}n → {0, 1}m to denote the function
computed by the circuit C. Let code(C) denote some standard binary encoding of the circuit C.

We use circuits to define undirected graphs succinctly as follows. For positive integers n,
given an 2n-input, 1-output circuit C, we say that it specifies the graph G whose vertex set
is V = Σn and whose edge set is defined as follows: There is an edge {x, y} ∈ E iff C(xy) =
1 ∨ C(yx) = 1. We say that C is a succinct representation of G.

We next formalize the radius and diameter problems for succinctly specified graphs. Let k
be a fixed positive integer.

succinct-undirected-k-radius

= {code(C) | the undirected graph specified by C has radius at most k}.
succinct-undirected-k-diameter

= {code(C) | the undirected graph specified by C has diameter at most k}.

3 The Diameter Problem

For k = 1, the succinct-undirected-1-diameter problem is the same as asking whether the
graph specified by a circuit is a clique. This, in turn, is the same question as asking whether the
encoding circuit always outputs 1 either for xy or for yx. This, finally, is clearly a coNP-complete
problem.
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Theorem 3.1. succinct-undirected-1-diameter is complete for Πp
1 = coNP.

The more challenging cases are k ≥ 2.

Theorem 3.2. For every k ≥ 2, the problem succinct-undirected-k-diameter is complete
for Πp

2.

Proof. Clearly, succinct-undirected-k-diameter ∈ Πp
2 since on input of a circuit C we only

have to check whether for all x, y ∈ Σn there exist l ≤ k−1 intermediate vertices v1, . . . , vl ∈ Σn

such that x→ v1 → · · · → vl → y.
To prove completeness, let any problem L ∈ Πp

2 be given and let L be characterized by the
relation R as in equation (1). Let us write m for p(|x|). We present a reduction that maps any
word x ∈ Σ∗ to a circuit C such that x ∈ L iff the undirected graph G specified by the circuit C
has diameter at most k. As a matter of fact, if x ∈ L, then the graph will have diameter 2, and
if x /∈ L, then the graph will have diameter ∞. This means that the same reduction will work
for all k ≥ 2.

We start with the core idea of the construction of the graph, the idea will need to be modified
slightly later on. The graph is a split graph, which means that it consists of an independent
set I and a clique K with some additional edges between these two sets. The independent
set I is just Σm and contains 2m many vertices, the clique is the set Σm × Σm and contains
2m · 2m many vertices. There is an edge between a vertex y ∈ I and a vertex (z1, z2) ∈ K iff
R(x, y, z1) ∨R(x, y, z2).

We claim that the resulting graph has diameter 2 for x ∈ L and diameter ∞ for x /∈ L. To
see this, first assume x /∈ L. Then there exists a y ∈ Σm such that for all z ∈ Σm we have
¬R(x, y, z). But, then, the vertex y in the independent set I is isolated and, thus, the diameter
is infinite. Now, second, assume x ∈ L. Then every vertex y ∈ I is connected to at least one
vertex in the clique, which means that from any y ∈ I we can reach all vertices in the clique
in at most two steps (one step to reach the clique and another step to reach the desired vertex
in the clique). Vice versa, from the clique we can reach all other vertices in the clique in one
step and also all y ∈ I in, possibly, one more step. The most interesting, final, case are two
vertices y1, y2 ∈ I. For them there exist witnesses z1, z2 ∈ Σm such that both R(x, y1, z1) and
R(x, y2, z2) hold. Then y1 → (z1, z2)→ y2 is a path.

It remains to argue that we can encode the graph succinctly as a (small) circuit. Due to the
fact that the graph is highly structured, this is not difficult, in principle. However, a problem
arises because the size of the vertex set is not a power of 2 and this problem can not be fixed by
just adding a sufficient number of independent vertices (they would always cause the diameter
to become infinite). Instead, we take an arbitrary vertex and expand it to a clique whose size
is chosen in such a way that the total number of vertices becomes a power of 2. This will not
change the diameter of the graph.

4 The Radius Problem

We start with k = 1.

Theorem 4.1. succinct-undirected-1-radius is complete for Σ2
p.

Proof. The problem is in Σ2
p because we must check whether there exists a vertex such that all

vertices are directly connected to it.
To prove completeness, let L ∈ Σ2

p be given and let R be a predicate from equation 2. For
the reduction, let x ∈ Σ∗ be given. We map it to a circuit encoding the following graph: It
is, once more, a split graph. This time, both the independent set and the clique have size 2m.
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There is an edge between a vertex z in the independent set and a vertex y in the clique iff
R(x, y, z) holds. Clearly, this graph can easily be encoded using a circuit (note that its size is,
indeed, a power of 2).

To prove correctness, first let x ∈ L and let y be a witness for this. Then from the vertex y
of the clique we can reach all vertices in the clique in one step and we can also reach all elements
of the independent set in one step. Now assume that the radius of the graph is 1 and let c be
a center. Then c must be a member of the clique, because from vertices in the independent set
we cannot reach other members of the independent set in one step. But, then, there must be
an edge between y = c and every member z of the independent set, which means that y is a
witness for x ∈ L.

The more difficult case is k ≥ 2.

Theorem 4.2. For every k ≥ 2, the problem succinct-undirected-k-radius is complete
for Πp

3.

Proof. As before, membership of succinct-undirected-k-radius in Πp
3 is easy to see, so we

describe only the reduction from an arbitrary language L ∈ Πp
3. On input x ∈ Σ∗ we must

construct a circuit encoding a graph G whose radius is at most k iff x ∈ L. This graph will be
described in the following.

We start with the description of graphs Gw, one for each possible witness w ∈ Σm. Each
graph starts with a simple path of length k − 2 (it is just a single vertex in case k = 2). Let us
call the first vertex on this path the potential center and let us introduce the name pw for it.
Next, Gw contains two independent sets, each of size 2m. The elements of the first set will be
denoted zw, with z ∈ Σm, the element of the second set will be denoted yw, with y ∈ Σm. These
sets are connected as follows: There is an edge between the last vertex of the simple path and
every vertex of the first independent set. There is an edge between zw and yw iff R(x, w, y, z)
holds. Observe that we can reach all vertices in Gw from the potential center pw in at most k
steps iff (∀y ∈ Σm)(∃z ∈ Σm)[R(x, w, y, z)].

The above construction ensures that x ∈ L holds if, and only if, one of the potential centers
is a k-center of its Gw. We will now extend the construction to ensure that (a) only potential
centers can be, indeed, be k-centers of the whole graph and (b) that whenever a potential center
is a k-center of some Gw, it is automatically a potential center of the whole graph G.

For these extensions, we first take the disjoint union of the graphs Gw. Then, we add one
additional simple path of length k − 1, let us call it S, and connect all potential centers to one
end of this simple path. We claim that the resulting graph, let us call it G′, has the following
property: Given any w, no vertex in all of G′ other than possibly the potential center pw has
the property that all vertices Gw and also in the additional simple path can be reached in k
steps. The reason for this is that vertices inside a Gw other than pw cannot reach the end of
the additional simple path in k steps, while vertices on the additional simple path cannot reach
any yw in k steps.

It remains to ensure that from the potential centers we can always reach all vertices in all
other Gw′

in at most k steps. For this, we extend G′ as follows, resulting in the final graph G:
First, we add a clique of size 2m, called the W -clique in the following, whose elements will be
denoted w ∈ Σm. Each vertex w in this clique is directly connected to the potential center pw.
Additionally, for each vertex w in the clique and for every vertex v ∈ Gw′

with w′ 6= w, we add
an additional simple path from w to v whose length is exactly k − 1 (the path contains k − 2
vertices in addition to w and v). Let us call this path the tube from w to v. This means that
from w we can now reach all vertices in all other Gw′

in at most k − 1 steps.
We claim that G has radius k iff x ∈ L. First, assume x ∈ L. Then there exists a witness

w ∈ Σ∗ for this. By construction of the graph G, the potential center pw is a k-center of the
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graph: We showed already that we can reach all vertices in Gw in k steps from pw; we can
reach all vertices on the path S in k steps; we can reach all vertices of the W -clique in at most
2 steps; we can reach all vertices of all other Gw′

in k steps via the tube from w to this vertex;
and we can reach all vertices in any of the tubes in k steps by investing two steps to get to the
start vertex w′ of the tube and then investing the remaining k − 2 steps to reach all vertices
inside the tube.

For the other direction, assume that c is a k-center of G. First, it holds that c must be one
of the potential centers: As we argued already for the graph G′ we can reach the end of the
path S only from these potential centers and the addition of the W -clique did not change this.
Also, the vertices on the path S themselves also cannot be centers because from them we still
cannot reach any yw; the W -clique does not change this either. Second, if pw is a k-center of
all of G, then it must also be a k-center of Gw. For this, it suffices to argue that no path of
length k starting at pw that contains a vertex outside of Gw can end at any yw. However, this
is easy to see: Any such path would need to go through the W -clique. The shortest path from
any member w′ 6= w of the W -clique to yw has length k − 1 (namely an appropriate tube) and
the distance from pc to any such w′ is 2.

Although the construction of the graph is a bit involved, it can clearly the described suc-
cinctly using an appropriate circuit. As for the diameter problem, we face the problem that the
vertex set is not readily a power of 2, but this can be fixed in the same way by “blowing up”
any vertex to a clique until the next power of 2 has been reached.
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