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September 18, 2008

Abstract

The retention of communication data has recently attracted much public in-
terest, mostly because of the possibility of its misuse. In this paper, we present
protocols that address the privacy concerns of the communication partners. Our
data retention protocols store streams of encrypted data items, some of which may
be flagged as critical (representing misbehavior). The frequent occurrence of critical
data items justifies the self-decryption of all recently stored data items, critical or
not. Our first protocol allows the party gathering the retained data to decrypt all
data items collected within, say, the last half year whenever the number of criti-
cal data items reaches some threshold within, say, the last month. The protocol
ensures that the senders of data remain anonymous but may reveal that different
critical data items came from the same sender. We call this the affiliation of critical
data. Our second, computationally more complex scheme obscures the affiliation of
critical data with high probability.

1 Introduction

Recently, governments all over the world have increased their surveillance efforts. In
2006 the European Union adopted directive 2006/24/EC [10], on “the retention of data
generated or processed in connection with the provision of publicly available electronic
communications services or of public communications networks”. Member states have
to implement the directive by 2009 as national law. By then, communication service
providers must retain data that identify the source and the destination of communi-
cation, its type, date and duration for at least six months. Additionally, information
about the location of mobile communication equipment has to be recorded. Officials
want to use retained data to detect and investigate critical activities.

There already exist several data retention applications outside the realm of communi-
cation data, e. g., the tracking of traffic offenses. If a traffic participant misconducts,
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the incident is recorded. If too many incidents occur, a driver loses her or his license.
After some amount of time this data should be deleted.

Certainly, these issues mean a conflict between investigational interests and preserving
the sphere of personal privacy. A simple solution may be as follows: The communication
providers encrypt the retained data of an user. If some suspicious facts justify a judicial
order to open the stored data, the private decryption key is disclosed to the officials.
Thus, the provider has always access to the retained data, at least to decryption keys of
the users. The goal of this paper is to present protocols that implement such encryption
and decryption processes and feature advanced properties. Our protocols allow the self-
decryption of retained data if a threshold of critical activities is passed. Encrypted data
that are stored before a prescribed period cannot be decrypted. We also care about
the anonymity of users, i.e. the stored data are only related to the encrypted identity
of a user. Furthermore, the provider is not responsible to store any user related data
except for data needed for the encryption and classification of the actual message. I.e.
the provider is not responsible to retain any information about the users’ behaviors.
For enhanced data privacy third parties (the providers) should not be allowed to store
private data longer than necessary. This includes the knowledge about the number of
critical activities of a user, too.
Additionally, we propose techniques that data can only be associated with user if it has
been retained in the prescribed period and that critical activities cannot be traced for a
longer period of time. Up to our knowledge our protocols are the first that ensure this
kind of privacy.

Related Work: With the introduction of the Internet data retention, surveillance and
privacy have drawn a lot of attention in the fields of sociology and computer science.
Marx [19] identified four conditions under that data retention raises ethical concerns:
Collecting data involves physical or psychological harm, produce invalid results, crosses
a personal boundary without notice, or violates trust. Having access to the data the
temptation to misusing them is great. Thus, one should stay alert and minimize this
risk. Blanchette and Johnson [4] argue that the important value of social forgetfulness
is slipping away since the introduction of electronic data retention. Cryptography pro-
vides some hope to counter this threat, e.g. by introducing digital pseudonyms [7, 8].
Nevertheless, electronic wiretapping means an architectured security breach and it is
necessary to limit its use to appropriate scenarios [18]. Several papers deal with the
technical implementation of data retention [1, 25, 21]. But to our knowledge no scheme
proposes solutions for an increased level of privacy in data retention.

Our scheme has the feature that the retained data automatically allow their decryp-
tion if a threshold of misbehavior is reached. Therefore, secret sharing will be one
important tool. Shamir [24] and Blakley [3] independently introduced secret sharing
schemes. These schemes use threshold functions as access structures. Subsequently
several schemes using general access structures have been presented (e.g. [2, 15]). Since
the original shares are as large as the secret, one might ask to reduce the size of the
shares. Czimraz [9] showed that this is not possible for every access structure. Using
an information dispersal algorithm [22] and cryptographic encryption Krawczyk [17]
proposes a scheme to reduce the share size.
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Using Shamir shares our protocols allow that a secret can be decrypted only if a threshold
is reached within a determined period of time. If the messages are too old they become
useless for the decryption. Rivest et al. [23] introduced the notion of time-release crypto.
They propose to use computational puzzles as time-locks to schedule the first point in
time when it is possible to decrypt data. In a similar way timed commitments and
signatures are implemented by Boneh and Naor [6]. Another aspect of the relationship
between time and cryptography are cryptographical timestamps. Haber and Stornetta
[13] presented protocols for timestamping that ensure the privacy of the data and deny
attacks to change the timestamp.

As second technique, we use pseudorandom number generators (PRNG) to create keys
and identification information. Blum and Micali [5], and Yao [26] introduced the notion
for cryptographically robust PRNG. Goldreich et al. [12] proved that a PRNG can be
used to generate a pseudorandom collection of functions. One may also use a PRNG
to implement bit commitment schemes [20]. Given any one-way function H̊astad et al.
[14] showed that a PRNG can be constructed. Furthermore, they proved that PRNG
exist if and only if one-way functions exist.

In Sections 3 and 4 we describe the scenario and present basic protocols. We discuss
these protocols and identify a new problem type: the so called history of messages. Our
main scheme, presented in section 5, obscures the message history of the users with high
probability (w.h.p.). Throughout this work, obvious proofs are omitted, others can be
found in the appendix.

2 Preliminaries

Let X be a discrete random variable that takes values from the set of real numbers or
strings over the alphabet Σ. If X is uniformly distributed, we also write X ∈R Σ∗.
Using a function symbol f we write Pr[f(X) = y] for

∑
x : f(x)=y Pr[X = x].

Pseudorandom Number Generators: Pseudorandom number generators (PRNG)
are functions having special properties which make them very suitable for cryptography.
If the input (the so called seed) of a PRNG is unknown, the output is indistinguishable
from random strings for computationally bounded adversaries. On the other hand,
PRNGs are deterministic functions. Thus, if the seed is known, we are able to reproduce
the output of a PRNG.

Definition 1 Let h : N→ N be a polynomial stretch function such that h(`) > ` for all
`. Let S and Y be uniformly distributed discrete random variables taking values in Σ`

and Σh(`), respectively. We call a function G : Σ` → Σh(`) a PRNG if for all probabilistic
polynomial-time bounded algorithms A, for all polynomials p and for all sufficiently large
` it holds that

|Pr[A(Y ) = 1]− Pr[A(G(S)) = 1]| < 1
p(`)

The following proposition describes how to stretch the output of a pseudorandom num-
ber generator. It appears in [14] and is due to an observation made by Goldreich and
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Micali. For a string w = w1 . . . w` and 1 ≤ a ≤ b ≤ ` let w{a,...,b} be the substring
wa . . . wb. The operator ◦ denotes the concatenation of strings.

Proposition 2 Let G : {0, 1}` → {0, 1}`+1 be a PRNG. We define G(1)(S) = G(S),
and inductively, for all i ≥ 1,

G(i+1)(S) = G(G(i)(S){1,...,`}) ◦G(i)(S){`+1,...,`+i}.

Then, for every polynomial q and sufficiently large ` it holds that

G(q(`)) : {0, 1}` → {0, 1}`+q(`)

is a PRNG.

Thus, for every polynomial h the function Ĝ = G(h(l)) is a PRNG. As seen above, we
inductively define the PRNGs Ĝ(1)(S) = Ĝ(S) and

Ĝ(i+1)(S) = Ĝ(Ĝ(i)(S){1,...,`}) ◦ Ĝ(i)(S){`+1,...,`+i·h(`)}

for i ≤ q(`).

Definition 3 Let S ∈R {0, 1}` be a random string and i ∈ N. We define the seed
generating function seed(i) : {0, 1}` → {0, 1}` and the pseudorandom string function
rand(i) : {0, 1}` → {0, 1}h(`) such that seed(0)(S) = S, and for i ≥ 1 it holds that

seed(i)(S) = Ĝ(i)(S){1,...,`} and rand(i−1)(S) = Ĝ(i)(S){`+1,...,`+h(`)}.

The following observation is straightforward and we omit its proof.

Observation 4 For i ∈ N we can use seed(i)(S) to calculate the values seed(i+1)(S)
and rand(i)(S) by

Ĝ(seed(i)(S)) = seed(i+1)(S) ◦ rand(i)(S).

Starting with a seed S we can generate sequences {seed(i)(S)}τi=0 and {rand(i)(S)}τi=0

efficiently. For a time step t we will use rand(t)(S) to encrypt some data.

Note that if τ gets large, the probability to distinguish between random strings and
pseudorandom strings increases. To work against this we may increase `. But to inhibit
this threat we can additionally substitute such a seed seed(t)(S) by a new random string
from time to time. In the following we will focus only on the way how we use the two
sequences.

Although we can efficiently compute seed(j)(S) and rand(j)(S) for j ≥ i on input
seed(i)(S), no probabilistic polynomial time algorithm on input seed(i)(S) or rand(i)(S)
is able to deduce more than negligible information about the strings seed(k)(S) and
rand(k−1)(S) for k < i due to the cryptographical robustness of the PRNG G. For
further information about PRNGs we refer the interested reader to [11].

Shamir’s Secret Sharing: Let F be a field with more than n elements. In [24] Shamir
presented a threshold scheme to divide some data D ∈ F into n shares D1, . . . Dn such
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that D can only be reconstructed if one knows at least k shares Di. I.e. let p be a
random polynomial over the field F of degree k − 1 with p(0) = D. For 1 ≤ i ≤ n we
can choose Di := p(i). Having access to k shares we can compute the polynomial p by
Lagrange interpolation. If we have obtained less than k shares, then for each value D′

we can generate a polynomial p′ with p′(0) = D′ that is consistent with the obtained
shares. Thus, this scheme provides information-theoretical privacy.

Anonymity: Let subj(M) be the decrypted subject of interest about a message M .
For example, this may be the information about its sender, receiver, or contents. We
assume that subj(M) is encrypted in the message.

Since our protocols are randomized we regard subj(M) as a discrete random variable.
The set SU = {subj(M ′) |M ′ is a possible message} describes the set of all possible
subjects of interest from all messages.

Definition 5 Let I be a uniformly distributed discrete random variable that takes values
from SU . For a message M we call the information about a message subj(M) anony-
mous for a party A if for all probabilistic polynomial-time bounded algorithms A, for
every polynomial p, for all communication strings c and any content r of the random
string of A, for all sufficiently large security parameters k for encryption of subj(M) it
holds that

|Pr[A(subj(M),M, c, r) = 1]− Pr[A(I,M, c, r) = 1]| ≤ 1
p(k)

.

In the following we usually encrypt the subject of a message using a bitwise XOR with
a pseudorandom string. Then, we regard the security parameter k as the length of the
seed for the PRNG.

3 Basic Structure and Types of Messages

We divide the parties that participate in the process of communication into three groups.

1. Users interact with a system, e.g. surfing in the Internet or sending emails. They
want to use these services privately. We also refer to users as senders or receivers.

2. Communication service providers offer and control access to the system. Providers
are corporations that want to maximize their profit and minimize their costs and
responsibilities.

3. The officials (government, administration, police, . . .) ensure that other parties
respect the law. In the context of data retention we call them gathering party.

To control the senders some governments have already prescribed data retention. I. e.
providers are responsible for collection and storage of information about the communi-
cation of the senders. If the officials lawfully demand the retained data for a certain
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user, the providers have to disclose them. This approach of data retention rises severe
concerns about privacy and massively increasing storage costs of the providers [27].

In the following we present protocols that ensures the privacy of the senders, liberates
the providers from storing the retained data items and allows officials to inspect all data
items from a predetermined period if a party has recently committed too many critical
actions. A critical interaction might occur if a user sends an email to a party that is
already a subject of investigation. Depending on the type of interaction we distinguish
between critical and non-critical interactions and, thus, between critical and non-critical
messages.

The gathering party supplies the provider with a blacklist of critical actions. Whenever
a sender interacts with the system the provider classifies this action as critical or non-
critical. The provider prepares an encrypted data retention message for this interaction
and sends the message to the gathering party.

We will investigate the problem of permitting a gathering party the decryption of
recorded messages only if it has received enough critical messages within a predeter-
mined period of time. This means the number of messages for a sender has passed a
threshold. We assume that transmissions of critical and non-critical messages occur
independently. To simplify the following analysis we assume that in each round there
exists at most one message (critical or non-critical) initiated by the same sender.

Basically a message M can be described as a four tuple

M = 〈time, id, share, load〉 .

time(M) denotes the initiating time (the time the message was sent), id(M) denotes
some kind of message ID or sender pseudonym, and share(M) denotes the shares corre-
sponding to that message. load(M) consists of further information associated with M ,
in the following we assume that this part of a message includes the subject subj(M) of
the message. If M is non-critical we choose id(M) = share(M) = 0.

The sequence of messages belonging to the same sender may reveal information about his
(critical) activities if the sender can be identified. We denote the sequence of messages
belonging to the same sender as the history of the sender. Given a message M we also
call the sequence of messages M ′ belonging to the sender of M and with time(M) >
time(M ′) the history of M .

3.1 Encryption of the Load

We assume there are n different senders. The identity of a sender is a unique code word of
a binary blockcode I with Hamming distance δ and more than n code words. If a sender
Ii commits an activity, the gathering party wants to retain data corresponding to that
activity. Depending on the type of the activity, critical or not, the provider prepares
a message M , critical or not, including the encrypted retained data (the encrypted
subject) in load(M). Then, the provider sends the message to the gathering party. The
gathering party stores all retained data in a pool of messages. If we have obtained
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a decryption key from critical messages, we must identify the messages that can be
decrypted with this key. Therefore, we introduce an indicator string R, a pseudorandom
seed L, and the (encrypted) fingerprint fpR,L(Ii) that corresponds to the identity of the
sender. The implementation of the fingerprint is based on Naor’s commitment scheme
[20]. The structure of load(M) is

load(M) = 〈R, fpR,L(Ii), encK(subj(M))〉 .

Let t be the time step when M is sent. For the random string S ∈ {0, 1}` we generate
the keys K and L ∈ {0, 1}` from seed(t)(S) by rand(t)(S) = K ◦ L. Let G′ : {0, 1}` →
{0, 1}|subj(M)| be a PRNG. Then, we define the encryption function as follows

encK(subj(M)) = G′(K)⊕ subj(M)

where ⊕ is the bitwise XOR. Note that this crypto-system is symmetric with decryption
function decK = encK . Instead of using XORing we may also use any other symmetric
crypto-system like DES or AES.

Let m ∈ N be the security parameter for the fingerprint and G′′ : {0, 1}` → {0, 1}m·|Ii| be
a PRNG. Let G′′(L) = B1◦ . . .◦B|Ii| where Bj ∈ {0, 1}m. Next, let R = R1◦ . . .◦R|Ii| ∈
{0, 1}m·|Ii| where each block Ri ∈R {0, 1}m is a random string containing at least one
1. We call R the indicator string of the fingerprint. Then we define

fpR,L(Ii) = B̃1 ◦ . . . ◦ B̃|Ii|

as follows: If the jth bit bj of Ii is 0 then we choose B̃j := Bj . Otherwise, if bj = 1
choose B̃j := Bj ⊕Rj , i.e. we negate the bits of Bj where the corresponding bits in Rj
are 1.

Having access to the message M and the keys K and L, in particular by expanding
the correct seed(t)(S), we can decrypt Ii and check whether it matches a fingerprint
fpR,L(Ii). Recall that the values S are chosen independently for each sender. Let K ′

and L′ denote two keys generated by a different seed seed(t)(S′) with S 6= S′, then,
fpK,L(Ii) should be different to fpK′,L′(Ij) for every different identity Ij ∈ I. Note
that otherwise we would possibly associate M with the wrong sender. If the unwanted
case happens, i.e. we associate the message M to the wrong identity Ij , we say that a
collision occurs. We will now analyze the probability of such a collision.

As described before we assume that each sender initiates at most one message per round.
Furthermore, we assume that with probability (1− q) all strings K and G′(K), L, and
G′′(L), respectively, are different for all messages. We can ensure that q is very small
by increasing the seed length.

Lemma 6 If for the security parameter it holds that m ≥ `+ 1, then that the collision
probability is at most q + (1− q) · 2−(δ−1)`.

Proof: [Lemma 6] Let M be a message that is initiated by Ii at time step t, and
load(M) is encrypted using seed(t)(S) and rand(t)(S) = K ◦ L. Then, it holds that
load(M) = 〈R, fpR,L(Ii), encK(subj(M))〉. Recall that with probability q we have a
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collision of K or L and we can decrypt subj(M) or obtain Ii even in the case that the
gathering party knows a seed S′ different from S.

The remaining part of the proof follows proof for the non-cheating property of the bit
commitment protocol in [20]. Now, we assume that the gathering party has access to
K ′ 6= K and L′ 6= L obtained from a seed seed(t)(S′). Let G′′(L) = B1 ◦ . . . ◦ B|I| and
G′′(L′) = B′1 ◦ . . . ◦ B′|I|. We will estimate the probability of collision in this case, i.e.,
that M is associated with any (possibly wrong) identity.

Since the code I has got a Hamming distance δ, for all pairs of code words Ii 6= Ij there
exist at least δ positions κ = {k1, . . . , kδ} where these two code words are different.
There only exists a collision if for all k ∈ κ it holds that B̃k = B̃′k and therefore
Bk = Rk⊕B′k. Note that the bits from Bk and B′k differs exactly at the positions where
Rk is 1 and they have to be identical at all remaining positions. Hence, if we had chosen
a different value for Rk this collision had been prevented.

Since any pseudorandom string L is dependent on the original seed S there are at most
2` different choices for L′. For each Rk with k ∈ κ there are 2m − 1 > 2m−1 possible
strings. Thus, there are more than 2δ(m−1) different choices for Rk1 , . . . , Rkδ .

Consequently, the probability that there exists a collision is at most q + (1− q) 2`

2δ(m−1) .
For m ≥ `+ 1 it holds that the probability for a collision is at most q+ (1− q)2−(δ−1)`.

Hence, it is very unlikely that a message M is associated with the wrong sender. Next,
we analyze the information about Ii and subj(M) that can be deduced from load(M).

Lemma 7 For any probabilistic polynomial algorithm A, all polynomials p and for all
sufficiently large ` it holds that

1. Pr[A(load(M)) = Ii] <
1
n

+
1
p(`)

and

2. Pr[A(load(M)) = subj(M)] <
1
|SU|

+
1
p(`)

.

Proof: The first inequality follows analogously to Naor [20]: R and fpR,L(Ii) do not
reveal more than negligible information about Ii.

From Proposition 2 it follows that K and G′(F ) are pseudorandom. Thus, also G′(K)⊕
subj(M) = encK(subj(M)) is pseudorandom. Otherwise, if we were able to deduce
non-negligible information about subj(M) from load(M), then we would be able to
construct a polynomial algorithm that distinguishes between pseudorandom and truly
random strings. The second inequality follows directly.

If we do not have any information about the decryption keysK and L then the advantage
to guess Ii and subj(M) for a message M is negligible.
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3.2 Allocation and Generation of the Keys

We choose the length of discrete time steps such that every sender commits at most one
critical activity in every time step. We denote the time steps as natural numbers.

Usually, if the gathering party wants to decrypt the retained data, it may apply for a
judicial order. If the petition is justified, the decryption key is disclosed by a trusted
party. We propose that critical messages themselves contribute to obtaining the decryp-
tion key if a sender commits too many misbehaviors within a specific period of time.
Let Ti ⊂ N with i ∈ N denote the ith period. Note that several periods may overlap. We
assume that Ti consists of ∆ consecutive time steps. Note that with some modification
to our schemes we may also allow arbitrary sets of natural numbers for Ti. Let Πt be
the set of all periods i such that t ∈ Ti and let tmin(Ti) = mint∈Ti t.

To implement the wanted behavior of self decryption we will assign a Shamir shares
[24] of the key to each message: For each sender and each period Ti we generate a
random polynomial p of degree d − 1 over a field F that is sufficiently large such that
p(0) = seed(tmin(Ti))(S). If we send a critical message M in time step t ∈ Ti, then we
attach the share p(t− tmin(Ti) + 1) to M . Note that 1 ≤ t− tmin(Ti) + 1 ≤ ∆.

Thus, if we receive d messages within Ti, we can reconstruct seed(tmin(Ti))(S) by Lagrange
interpolation. Afterwards, we can generate the sequence of seed(t)(S) and rand(t)(S) for
all t ∈ Ti. According to the used encryption of the load of a message we can identify
those (critical and non-critical) messages where we can correctly decrypt the fingerprint
fpR,L(Ii). For each of these identified messages M we can also decrypt subj(M).

4 A Threshold Scheme for Critical Data

In this section we present a scheme to construct critical messages.

Scheme Initialization:

• The gathering party supplies the provider with a blacklist of critical activities.

• For each user i the provider performs the following steps: The provider generates
an initial seed S and a unique random number u. For each period Tj we choose a
random polynomial pj with pj(0) = seed(tmin(Tj))(S).

Sending a critical message: Assume that a user i performs a critical activity at
round t. In order to identify a critical activity, the provider checks his blacklist. Using
the user-specific seed S and random number u the provider generates the message M
with time(M) = t, id(M) = u, share(M) = 〈pj1(xj1), pj2(xj2), . . . , pj`(xj`)〉 where Πt =
{j1, . . . , j`} and xj = t − tmin(Tj) + 1, and load(M) = 〈R, fpR,L(Ii), encK(subj(M))〉.
Then, the provider sends M to the gathering party.

Identification and Decryption: If the gathering party has received d critical mes-
sages with the same id u within Tj it reconstructs seed(tmin(Tj))(S) by Lagrange in-
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terpolation. Note that this reconstruction can be done efficiently if the critical mes-
sages are sorted according to their id(M). Afterwards, it can generate all subsequent
values seed(t)(S) and rand(t)(S). Using these values the gathering party is able to
identify all (critical and non-critical) messages where it can correctly decrypt the finger-
print fpR,L(Ii). For each of these identified messages M the gathering party decrypts
subj(M).

Let IUunident be the set of all identities that the gathering party has not been able
to identify, i.e., for any Ii ∈ IUunident and all periods Tj the gathering party has not
received d critical messages associated with Ii within period Tj .

Theorem 8 Let M be a message that is associated with Ii ∈ IUunident. Then, M is
anonymous to the gathering party with respect to IUunident.

Proof: If Ii ∈ IUunident, then seed(t)(S) cannot be deduced from share(M). Fur-
thermore, for all messages M ′ (even for M = M ′)the values time(M ′), id(M ′), and
share(M ′) are independently chosen from subj(M) and seed(t)(S). Thus, we cannot
get access to seed(t)(S) and the keys K and L of M from all received values time(M ′),
id(M ′), and share(M ′). Hence, for all probabilistic polynomial algorithms A there exists
a probabilistic polynomial algorithm B such that for all communication strings c and
contents r of the random strings it holds that

Q = |Pr[A(subj(M),M, c, r) = 1]− Pr[A(I,M, c, r) = 1]|
= |Pr[B(subj(M), load(M), c, r) = 1]− Pr[B(I, load(M), c, r) = 1]| .

Since Ii ∈ IUunident, Lemma 7 implies that load(M) is pseudorandom. Moreover, c
consists of sequence of messages that are independent from M except of M itself. Thus,
for all polynomials p and all sufficiently large ` it holds that

Q = |Pr[C(subj(M), load(M), r) = 1]− Pr[C(I, load(M), r) = 1]| ≤ 1
p(`)

for every probabilistic polynomial algorithm C. Thus, M fulfills the requirement of
anonymity.

If we restrict ourselves to use only one period Ti = T0, then we can also use the protocols
proposed by Jarecki and Shmatikov [16] since they may only encrypt a constant number
of messages of a tag (user). If the messages can be decrypted, all messages with the
same tag can be decrypted. A PRNG as key generator allows us to encrypt a polynomial
number of messages with the same tag and also prevents the decryption of messages
with the same tag that were encrypted long ago.

Privacy of the Message History: Now, we are going to analyze the situation where
the gathering party has received d or more critical messages with the same id u. Let t′

be the earliest time step such that we can recover a seed seed(t′)(S) from these messages.
Then, we can decrypt the identity Ii and all messages from the corresponding sender
that are initiated at time step t ≥ t′. In addition, we are able to identify the complete
history of critical messages since all critical message have the same id u. Therefore, we
can also determine partial knowledge about the history of the identified sender. Recall
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that even for an identified user one of our goals is to ensure the anonymity of messages
initiated at steps t < t′. We can guarantee this for non-critical messages since we cannot
compute seed(t)(S) for t < t′ by construction. But the history of critical messages is
still disclosed. In the following we present two approaches that can be used to obscure
the history of critical messages.

First approach: Recall that the sharing information share(M) of a message consists of `
shares of the ` polynomials that are valid for the round t where the critical activity have
been performed. To obscure the history the provider may generate individual messages
for the shares and sends them in an arbitrary order mixed with the shares of other users.
In more detail the scheme looks as follows: For each period Tj and each individual with
identity Ii we assign a unique random number ui,j to the polynomial pj . Furthermore,
we divide the sharing information share(M) into the parts associated with the different
polynomials pj . For all Tj with t ∈ Tj we send a message 〈t, ui,j , pj(xj), load(M)j〉 in
place of the original message M where every load load(M)j is encrypted with a different
key. This strategy obscures the history if the number of messages that occur at each
round is huge. If the gathering party receives a small number of messages for some
rounds, it will be able to collect information about the relationship of numbers ui,j of
the same sender and, thus, about the message history.

Second approach: We allow that every user can use a fixed number α of different ids.
Hence, it is possible that a user can choose one of his IDs to be used in a message. If
we assume that each id is only valid for a fixed period of time and if the user performs
only a small number of critical activities he can hide the history that is associated with
a specific id. Hence, in the worst case, the sender might be able to send (2α+ 1)(d− 1)
critical messages within ∆ time steps such that he cannot be identified. However, in
most cases it is desirable that a sender of critical messages is identified whenever the
threshold d of critical messages is reached.

5 A Protocol for Obscuring the History

In the previous section we have presented a protocol that allows an observer to gain
some knowledge on the history of the parties. This knowledge includes the appearance
of critical data even if the content of the critical data remains decrypted. If the ID
of a party is discovered the observer can assign such an history to the found ID. In
the following protocol we will change the way how critical messages are generated. This
allows us to mix and thereby obscure the histories of the critical messages. This protocol
does not change the generation of non-critical messages.

More precise, we will replace the polynomial or pseudo sender ID of every critical mes-
sage by an ambiguous randomly chosen message ID idact ∈R {1, . . . , N}, i.e. by an
ID that may appear for several messages of several senders. To connect consecutive
messages of the same sender we will include the message ID idpre ∈ {1, . . . , N} of the
preceding message (or a randomly chosen message ID if the actual message is the first
message of the sender) in the actual message. Hence, we modify the structure of a
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message M as follows:

M = 〈time, idact, idpre, share, load〉 .

Recall, that we assume that the IDs are chosen randomly and are not unique, i.e.
within a certain period of time several messages with the same ID will be used with a
non negligible probability.

Let M[t] denote the set of all messages collected by the gathering party until step t.
Then, we can draw a message graph G[t] := (M[t], E[t]) where for M1,M2 ∈M[t]

(M1,M2) ∈ E[t] ⇐⇒ time(M1) > time(M2) and idpre(M1) = idact(M2) .

Note that a directed path from a source in G[t] to a sink denotes the possible sequence
of all messages of a sender. Hence, we have to describe an algorithm that detects a
correct sequence if the threshold of critical messages is reached.

Analogously to the identification mechanism, we add the encrypted sender ID to the
load of each critical message and we assume that, as in the previous protocols, share(M)
gives us a share of the seed of a pseudorandom number generator. Having the desired
number of d consecutive critical messages M1, . . . ,Md we can compute a corresponding
seed and by using this seed we can determine (decrypt) a value for the sender ID of
every message idi on this sequence. If all values idi are equal, then we assume that
these messages were initiated by the sender with ID idi. Note that if such a sequence
is initiated by one sender the ID of this sender will be detected. On the other hand,
following our analysis to identify the sender of non-critical data it follows that the
probability of a false positive, i.e. that we claim that a sequence is initiated by the
wrong sender, is negligible.

Lemma 9 Let ` be the length of S and m be the block length of indicator string. If the
security parameter m ≥ `+ 1 then probability of a false positive is at most q + (1− q) ·
2−(δ−1)` where (1 − q) is the probability that all seeds and pseudo-random strings used
for encrypting and fingerprinting are different.

Now, we investigate the efficiency of our algorithm to detect a sequence of consecutive
critical messages M1, . . . ,Md that are initiated by the same sender within a time period
Ti of length ∆. Let mt denote the number of messages M with timestamp t = time(M),
let mmax := maxtmt and let mmin := mintmt. If we assume that at every round every
party initiate a critical message with probability pcm, then by some standard calculations
one can show that Pr[mt ≤ 2

3 · pcmn] ≤ e−2pcmn/9 and Pr[mt ≥ 4
3 · pcmn] ≤ e−4pcmn/3

where n denotes the number of participating parties. Hence, if we choose N such that
N ∈ 2o(pcmn) then with probability 1 − N−z we have 2

3pcmn ≤ mt ≤ 4
3pcmn for every

constant z. Hence, we can assume that mmin and mmax only deviate form each other by
a factor of 2. In the following we assume that mmax = N ε for some appropriate chosen
values ε < 1.

Lemma 10 With probability 1 − (e · ∆ · N ε−1)−(k−1)·∆ for every constant k > 1 the
number of different sequences of d consecutive critical messages ending with message M
within a period of length ∆ is bounded by (e ·∆ ·N ε−1)d.
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Proof: Let us first investigate the number of messages M ′ that may occur within
h = ∆ − d + 1 consecutive rounds with a given ID. Recall that we need a sequence
of d consecutive critical messages to decrypt the secret that appear within a period of
length ∆. Let Xid be a discrete random variable describing the number of messages M ′

with idact(M ′) = id that occur within h consecutive rounds t, . . . , t + h− 1 for a given
t. If Xid ≤ c w.h.p. for some moderate values c, then the number of sequences of d
consecutive critical messages ending with M within a period of length ∆ is bounded by
cd w.h.p.

Our goal is to estimate the probability for Xid ≤ c and c = (1 + ε1) · ∆·mmax
N for ε1 > 0.

Recall that mt
N denotes the expected number of messages with the same ID in round t.

Using Chernoff bounds we get

Pr[Xid ≥ c] = Pr[Xid ≥ (1 + ε1)
∆ ·mmax

N
] ≤

(
e−ε1

(1 + ε1)1+ε1

)∆·mmax/N

.

Our goal is to find values for ε1 such that this probability is smaller than c−k·∆ for some
appropriate chosen values k ∈ N. If we choose ε1 = e− 1 then one can show that

Pr[Xid ≥ c] ≤ c−k∆ ⇐⇒ mmax ≥
1 + ln ∆− (1− ε) lnN

2e− 1
· kN

where mmax = N ε for ε < 1. Note that the latter holds if 1 + ln ∆ − (1 − ε) lnN < 0
and thus if N > e

1+ln ∆
1−ε .

Thus, with probability 1− c−(k−1)·∆ we have that the number of sequences of d consec-
utive critical messages ending with message M within a period of length ∆ is bounded
by

cd = (e ·∆ ·N ε−1)d .

If we have ε = 1
2 , then mmax =

√
N ∈ ω(lnN) and cd = (e · ∆/

√
N)d where the

polynomial degree d is a constant given by the system.

Note that whenever a new message arrives at the gathering party, it has to search in
the message graph whether there exists a sequence of d consecutive critical messages in
the actual period that ends with the recently received message. Thus, the lemma above
gives us a time bound for our algorithm for detecting such a sequence.

Lemma 11 With high probability our algorithm determines whether there exists a se-
quences of d consecutive critical messages ending with a given message M within a
period of length ∆ in time O((e ·∆ ·N ε−1)d).

Let us now focus on the question whether we can determine the history of critical
messages of a sender i of a message M if non of his messages M ′ with time(M) >
time(M ′) can be used to determine the ID of i, i.e. for every period Tj that ends before
time step time(M) sender i has initiated less than d critical messages.

Let m̃t denote the number of messages M with timestamp t = time(M) that do not
belong to a sequence of d consecutive critical messages within a period of length ∆. Let
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M̃[t] denote the corresponding set of all of these messages with timestamp t ≤ time(M)
and let G̃[t] denotes the subgraph of G[t] induced by the set M̃[t]. Define m̃min :=
mint m̃t.

Note that, if for a message M ∈ M̃[t] there exists two or more messages M1,M2, . . . ∈
M̃[t] with t = time(M) and idpre(M) = idact(M1) = idact(M2) = . . ., then the pre-
decessor of the message M within a message history of M cannot be uniquely deter-
mined. With high probability there exist at least two of these messages Mi,Mj with
idpre(Mi) 6= idpre(Mj). Hence, one can see that the message history of M gets more and
more diffused. In the following we investigate the degree of diffusion as a function over
the time. Let

I(t′,M) := {idpre(M ′) | M ′ ∈ M̃[t] with time(M ′) ≥ t′ and M ′ is reachable from M in
G̃[t] where the time distance of any two consecutive messages
on at least one path from M to M ′ is at least ∆/(d− 1)} .

The set I(t′,M) denotes a subset of IDs of messages that belong to potential predecessors
M in the message history. In the following we analyze the cardinality of I(t′,M).
Our goal is to prove an upper bound for t′ such that with high probability we have
|I(t′,M)| = N . If this is true, then we can assume that all messages that are initiated
before time t′ are potential members of the message history of M . Note that

I(time(M),M) = { idpre(M) } and ∀t′ > time(M) : I(t′,M) = ∅ .

Furthermore, for all t ≤ time(M)−∆/(d− 1) it holds that id ∈ I(t,M) \ I(t+ 1,M) iff
there exists at least one message M ′ ∈ M̃[t] such that id = idpre(M ′) and idact(M ′) ∈
I(t+ ∆/(d− 1),M).

Lemma 12 Let

ζ(k) := k · N
2 log2N

N − m̃min
+

∆
d− 1

For any M , k > 1, and t ≤ time(M) − ζ(k), it holds that |I(t,M)| > m̃min with
probability 1−N−(k−1).

Proof: Let c := ∆/(d − 1). For ` ∈ N we investigate the rounds r ∈ {time(M) −
c, . . . , time(M) − c − `}. Let Mr,1, . . . ,Mr,m̃min denote a sequence of m̃min messages
with time(Mr,i) = r. Finally let M•,i := Mr,i|r∈{time(M)−c,...,time(M)−c−`} denote the
sequence of the i-th messages of these sequences. Our goal is to determine ` such that
with high probability we can find in each sequence M•,i one message Mi such that all of
these messages have the same ID idact(Mi) = idpre(M) and they have different values
idpre(Mi) with idpre(Mi) 6= idpre(M).

Note that the probability that we have search the first j1 elements of M•,1 before we
find an adequate message M1 with idact(Mi) = idpre(M) and idpre(Mi) 6= idpre(M) is

N − 1
N2

·
(

1− N − 1
N2

)j1−1

.
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We analyze the sequences M•,i one after another. Assume that we have already de-
termined M1, . . . ,Mi−1. Let Ji denote the random variable for the event that we
have search the first Ji elements of M•,i before we find an adequate message Mi with
idact(Mi) = idpre(M), idpre(Mi) 6= idpre(M) and idpre(Mi) 6∈ {idpre(M1), . . . , idpre(Mi−1)}
then for every ji ∈ N we have

Pr[Ji = ji] =
N − i
N2

·
(

1− N − i
N2

)ji−1

and Pr[Ji > ji] =
(

i

N2
+
N − 1
N

)ji
.

Note that for every value j ∈ N the probabilities for Pr[Ji > j] increase with i. Hence, it
suffices to find a value for jm̃min such that Pr[Jm̃min > jm̃min ] is sufficiently small. Note
that

Pr[Ji > ji] =
(

1− N − i
N2

)ji
≤ 2−

N−i
N2 ji .

Hence, if we choose ` = k · N
2·log2 N

N−m̃min
for any i, then we get Pr[Ji > `] ≤ N−k. Hence with

probability 1− N
Nk we have added at least m̃min IDs to I(time(M),M) in `+ ∆

d−1 = ζ(k)
rounds.

We generalize the this lemma in the following. Assume that N > mmin.

Lemma 13 Let

ξ(k) := k · N2 · log2N

mN −m2 − m̃minm+m
+

∆
d− 1

.

For any M , k > 1, s,m ∈ N, and t ≤ s − ξ(k), it holds that if |I(s,M)| ≥ m and
m+mmin ≤ N then |I(t,M)| ≥ m+ m̃min with probability 1−N−(k−1).

Proof: Let c := ∆/(d − 1) and let us assume that m = |I(s,M)|. For ` ∈ N we
investigate the rounds r ∈ {s−c, . . . , s−c−`}. Let Mr,1, . . . ,Mr,m̃min denote a sequence
of m̃min messages with time(Mr,i) = r. Finally let M•,i := Mr,i|r∈{s−c,...,s−c−`} denote
the sequence of the i-th messages of these sequences. Our goal is to determine ` such
that with high probability we can find in each sequence M•,i one message Mi such for
all of these messages Mi we have idact(Mi) ∈ I(s,M) and all of the predecessor IDs
idpre(Mi) are different and it holds that idpre(Mi) 6∈ I(s,M).

Note that the probability that we have search the first j1 elements of M•,1 before we
find an adequate message M1 with idact(Mi) ∈ I(s,M) and idpre(Mi) 6∈ I(s,M) is

mN −m2

N2
·
(

1− mN −m2

N2

)j1−1

.

We analyze the sequences M•,i one after another. Assume that we have already de-
termined M1, . . . ,Mi−1. Let Ji denote the random variable for the event that we
have search the first Ji elements of M•,i before we find an adequate message Mi with
idact(Mi) ∈ I(s,M), idpre(Mi) 6∈ I(s,M), and idpre(Mi) 6∈ {idpre(M1), . . . , idpre(Mi−1)}
then for every ji ∈ N we have

Pr[Ji = ji] =
m(N − i−m+ 1)

N2
·
(

1− m(N − i−m+ 1)
N2

)ji−1
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and

Pr[Ji > ji] =
(
m(m+ i− 1)

N2
+
N −m
N

)ji
.

For every value j ∈ N the probabilities for Pr[Ji > j] increases with i. Hence, it suffice
to find a value for jm̃min such that Pr[Jm̃min > jm̃min ] is sufficiently small. Note that

Pr[Ji > ji] =
(

1− mN −m2 −mi+m

N2

)ji
≤ 2−

mN−m2−mi+m
N2 ji .

Hence, if we choose ` = k · N2·log2N
mN−m2−m̃minm+m

for any i, then we get Pr[Ji > `] ≤ N−k.
Hence, with probability 1− N

Nk we have added at least m̃min IDs to I(s,M) in `+ ∆
d−1 =

ξ(k) rounds.

From the lemma above we can conclude that the size of I(t,M) increases by m̃min with
high probability in every ξ(k) rounds. Hence, we need O( N

m̃min
) iterations of this strategy

before we reach a set I(t,M) that includes a constant fraction of all IDs {1, . . . , N}.
Note that m̃min might be small. The time needed by such an iteration depends on the
size m of the corresponding set I(s,M), i.e. the required time is ξ(k).

Note that m has to be from the range m ∈ {1, . . . , N−mmin} and the bound for |I(t,M)|
has its maximum value for m = 1 and m = N−m̃min. For these values of m the required
time is

t := ζ(k) = k · N
2 · log2N

N − m̃min
+

∆
d− 1

.

The following two lemmata follow directly from our observations above.

Lemma 14 For any M , k > 2, and

t ≤ time(M)− N

m̃min
· ζ(k)

it holds that
|I(t,M)| = N with probability 1−N−(k−2) .

Lemma 15 For any sufficiently large time step T , k > 3, and

t ≤ T − N

m̃min
· ζ(k)

it holds simultaneously for every message M with T ≤ time(M) that

|I(t,M)| = N with probability 1−N−(k−3) .

We can conclude:

Theorem 16 For every k > 3 and every message M with probability 1 − N−(k−3) we
cannot deduce any information about the history of M if we investigate messages that
are initiated in a round

t ≤ time(M)− N

m̃min
· ζ(k) .
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If many senders have been identified, then the value of m̃min is small. The number of
iterations needed to reach |I(t,M)| = N increases. Thus, it is desirable to have a value
m̃min that is close to mmin. If we combine several rounds in our analysis, then we get
a higher value for m̃min and slightly better bounds. Asymptotically, the time needed
until |I(t,M)| = N is in O(N2 log(N)/min{m̃min, N − m̃min}). Hence, if m̃min = ε ·N
for ε < 1, then the required time is in O(N log(N)).

6 Conclusions

In this paper we presented a scheme for data retention that allows self-decryption if the
number of critical messages reaches a threshold. As long as the messages cannot be
decrypted the sender is anonymous to the gathering party. Furthermore, we introduced
the history of messages as subject of privacy. Our scheme ensures the privacy of the his-
tory of non-critical messages. For critical messages we propose a protocol that obscures
the history. The runtime of this protocol is polynomial in the parameters N ε−1 and ∆
but exponential in d. Since most nodes inM[t] have degree at least 2, there is little hope
to reduce the exponential behavior in d. But it is left open whether we can improve the
runtime for the other parameters. In the protocols presented in this paper all messages
of a user are encrypted by the same provider. An interesting question is whether we
can extend our protocols such that one user can user several different providers that do
not share information about their customers. Such a multi-provider protocol requires
that the users have to encrypt their messages themselves and that the providers have
to verify the correctness of the used encryption keys.
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