
t-Private and t-Secure Auctions

Markus Hinkelmann, Andreas Jakoby, and Peer Stechert

1Institut für Theoretische Informatik,
Universität zu Lübeck, Germany

2Fachgruppe Didaktik der Informatik und E-Learning,
Universität Siegen, Germany

{hinkelma, jakoby}@tcs.uni-luebeck.de
stechert@die.informatik.uni-siegen.de

SIIM-TR-A-08-01
Report Series of the Institutes for Computer Science and Mathematics,

Universität zu Lübeck

May 14, 2008

Abstract
In most of the used auction systems the values of bids are known to the

auctioneer. This allows him to manipulate the outcome of the auction. Hence,
one is interested in hiding these values. Some cryptographically secure pro-
tocols for electronic auctions have been presented in the last decade. Our
work extends these protocols in several ways. Based on garbled circuits, i.e.,
encrypted circuits, we present protocols for sealed-bid auctions that fulfill the
following requirements:

1. Protocols are information-theoretically t-private for honest but curious
parties.

2. The number of bits that can be learned by malicious adversaries is
bounded by the output length of the auction.

3. The computational requirements for participating parties are very low:
only random bit choices and bitwise computation of the XOR-function are
necessary.

Note that one can distinguish between the protocol that generates a gar-
bled circuit for an auction and the protocol to evaluate the auction. In this
paper we address both problems. We will present a t-private protocol for the
construction of a garbled circuit that reaches the lower bound of 2t + 1 par-
ties, and a more randomness efficient protocol for (t + 1)2 parties. Finally, we
address the problem of bid changes in an auction.

Keywords Multi-party private and secure computation, garbled circuits, private
auctions

1

1 Introduction

Traditional auctions involve an auctioneer and numerous bidders who want to sell or
buy an item, respectively. In a secure electronic auction system a bid has to remain
hidden for all other bidders and for the auctioneer if it is not a part of the output.
In particular, the auctioneer has to be prevented from learning the bids.
There exist numerous different auction types and models: The English or ascending
auction is the most common auction type. Here, in each round a bidder can increase
his previous bid. At the end, the highest bidder takes the item and pays the price
he has bid. Hence, the auctioneer learns the bids of all bidders. In a Dutch or
descending auction, the potential price decreases over time. The first person who
places a bid takes the item and has to pay the current price. Note that privacy of
other bidders’ bids remains preserved. In a sealed-bid auction, every player turns in
a secret bid. The auctioneer opens all bids and computes the winner. Again, the
auctioneer learns the bids of all bidders. Dealing with sealed-bids we distinguish
between first-price and second-price auctions. In a first-price auction, the highest
bidder takes the item and pays the price of his bid, i.e., the highest bid. In a second-
price auction also called Vickrey auction the highest bidder takes the item and pays
the second highest bid (see e.g., [10]).
In this paper, we present protocols for sealed-bid auctions, which keep the privacy of
the bidders’ bids, even if a collusion of parties tries to attack the protocol. Our work
relies on two concepts. First, it relies on the cryptographically privacy preserving
auction scheme of Naor et al. [24], using the garbled circuit (GC) construction,
i.e., encrypted Boolean circuits. Second, it relies on the concept of perfect privacy,
i.e., on the concept of privacy in the information-theoretic sense [2, 7]. Ishai and
Kushilevitz showed how to use the model of garbled circuits to compute a function
in a perfect private way [17]. We will generalize both concepts:

1. We present protocols to construct garbled circuits t-privately: The construction
does not leak more information to any collusion of up to t parties, than the
garbled circuit itself.

2. We generalize the concept of garbled circuits such that the garbled circuits
will be t-private according to the inputs of the circuit. This implies that any
collusion of up to t parties does not get more information about the inputs of
the circuit than the collusion can deduce from result of the circuit.

1.1 Related work concerning Electronic Auction Systems

In 1996, Franklin and Reiter [12] proposed the first auction scheme that has a privacy
contribution with regard to the bidders, whereas the auctioneer is allowed to learn
all bids. They also demand for a deposit of digital cash for each player to ensure
non-repudiation in their cryptographic auction scheme.
Sadeghi, Schunter, and Steinbrecher [28] presented a combinatorial auction, that
sells multiple interdependent items by proceeding multiple rounds. They consider
the German UMTS auction as an example, where every winner had to win at least

2

two licenses. In this model, public key cryptography is used to obtain verifiable
and private bidding. The possibility to repudiate a bid is mentioned, whereby the
involved bidder has to pay a fine.
Kikuchi, Harkavy, and Tygar [20] introduced a model based on Shamir’s secret
sharing scheme [26]. In each round, a bid-vector of k prices is distributed to the
players who can mark all prices they want to bid. Kikuchi et al. [15] also described
sealed-bid auctions via a verifiable secret sharing scheme [8, 2]. Their approach
deals with n bidders and m auctioneers and uses an error correcting code to share
the secrets. Accountability is reached with public key encryption.
Kurosawa and Ogata [22] dealt with a bit-slice auction circuit. Traditional tech-
niques to evaluate an auction compare the incoming bids one-by-one, but their
approach alternatively compares the bids bit-by-bit, beginning with the most sig-
nificant one. Additionally, they combine this approach with the mix and match
method of Jakobsson and Juels [18] that uses a homomorphic encryption scheme.
Omote and Miyaji [25] proposed a second-price sealed-bid auction that satisfies
public verifiability of the auction without revealing the highest bid. To achieve this,
they use a cryptographic primitive and two auction managers.
Brandt [4, 5] introduced a cryptographic auction protocol without a special trusted
party. Full privacy is achieved by distributing shares of every bid via Shamir’s secret
sharing scheme.
Cachin [6] presented a scheme based on homomorphic encryption. It involves an
auctioneer who wants to receive at least a certain price A for his item, and a bidder
who wants to pay at most B. To answer the question, whether the deal takes place,
an oblivious third party is introduced, that neither learns anything about both values
nor about the result, i.e., whether A > B.
Naor et al. [24] presented an electronic auction system based on garbled circuits.
Using pseudo-random generators these circuits allow to define a cryptographically
secure and verifiable electronic auction system. To construct the garbled circuits the
authors introduce a new party called auction issuer. They assume that the auction
issuer does not collude with the auctioneer or a bidder. Juels and Szydlo [19] relied
directly on the garbled circuit construction of Naor et al. [24]. The proxy oblivious
transfer of Naor et al. has the disadvantage that the correct input of a bidder is not
verifiable by other parties. Juels and Szydlo introduce a verifiable proxy oblivious
transfer resulting in less computation for the bidders.

1.2 Related work concerning Private Computation

Private computation was introduced by Yao [30]. He considered the problem under
cryptographic assumptions. Private Computation with unconditional, i.e., informa-
tion-theoretically, security has been introduced by Ben-Or et al. [2] and Chaum et
al. [7]. Kushilevitz et al. [23] proved that the class of Boolean functions, that have
linear size circuit, is exactly the class of functions, that can privately be computed
using a constant number of random bits.
Franklin and Yung [13] investigated the role of the connectivity of the underlying
network in private computations. Bläser et al. [3] completely characterized the class

3

of privately computable Boolean functions, if the underlying network is connected
but not 2-connected. In particular, no non-degenerate function can be computed
privately if the network consists of three or more blocks. On networks with two
blocks only a small class of functions can be computed privately. This result has
been generalized for non-Boolean functions by Beimel [1]. He has shown that only
functions with a restricted type of communication matrix can be computed on a
non-2-connected network. One can easily verify that most types of auctions do not
fulfill these restrictions of the function. Hence, the underlying network has to be
2-connected.
Chaum et al. [7] proved that any Boolean function can be computed privately, if at
most one third of the participating parties are dishonest. For this model, Ben-Or et
al. [2] proved that any n-ary Boolean function can be computed

⌊
n−1

2

⌋
-private, i.e.,

at most
⌊
n−1

2

⌋
players collude. Chor and Kushilevitz [9] showed that if a function

can be computed at least n
2
-privately, then it can be computed n-privately as well.

Randomizing polynomials are introduced by Ishai and Kushilevitz [16] as a new
algorithmic approach for round-efficient private computations with low error prob-
ability. In [17] they have shown that all functions can privately be computed in a
constant number of rounds and 0 error probability. Damg̊ard and Ishai presented
a constant-round protocol for general multiparty computation. It uses randomized
polynomials, black-box pseudo-random generators, and Shamir shares [11]. The
protocol uses multiplications and additions over a finite field F = GF(2k) with se-
curity parameter k for construction and evaluation of the polynomials. Damg̊ard
and Ishai distinguish between input players, output players, and servers, i.e., parties
which construct the randomized polynomials. Hence, this protocol can be used to
implement auctions. It is cryptographically secure against an malicious adversary
corrupting t < n/3 servers.

1.3 Our Contributions

For private electronic auction systems one has to find a concept and protocols for
evaluating auctions preserving the privacy of the bidders and the bids.
Our Concept: We generalize the concept of garbled circuits in order to evaluate a
circuit t-privately, i.e., no collusion of up to t parties can deduce any knowledge
about the inputs of the circuit, that cannot be deduced from the result of the circuit
and the input of the colluding parties. Focusing on electronic auction systems fulfills
the following requirements:

• In contrast to previous electronic auction systems our system is information-
theoretically t-private.

• Some protocols presented in the literature may fail with small probability.
Garbled circuits allow to evaluate an auction in a perfectly correct way.

In most papers cited above verification is only investigated regarding the bidders
and their secret inputs. In our electronic auction system it is possible that all par-
ties t-privately verify the correctness of the auction evaluation. Furthermore, our
auction scheme guarantees that the total number of bits of information revealed by

4

a collusion of up to t malicious parties is bounded by the number of output-bits of
the auction, even if the malicious parties try to stay undetected .

The Protocols:

1. We present information-theoretically t-private protocols to construct a garbled
circuit Γ(C) for a given circuit C. The first protocol requires (t + 1)2 parties
and uses a number of random bits that is polynomial in |Γ(C)| and t. The
second protocol is based on the first protocol and reaches the lower bound of
2t + 1 parties. In return the second protocol uses an exponential number of
additional random bits in t.

2. We present two information-theoretically t-private protocols for the bidding
process.

In our protocols there are four kinds of parties: (i) auctioneer who evaluates the auc-
tion, (ii) bidders, (iii) auction issuers who determine the encryption of the auction,
and (iv) slaves who perform the encryption. If the parties have access to a source
of random bits, the computation performed by auction issuers, bidders and slaves
can be implemented by circuits of depth O(log t), that consists of binary XOR-gates
and one level of gates to multiplex one bit out of two. Thus, the computational
requirements are very low.
Introducing some minor changes to these protocols, one can use them to translate
intermediate data of an evaluation process of a garbled circuit into intermediate
data of the evaluation process of another garbled circuit of the same circuit. Based
on this observation our protocols allow a dynamic sealed-bid auction, i.e., bidders
can change their bids at will or they can enter an auction that has already started
without further bidders involved in this procedure.
All protocols presented in this paper are information-theoretically t-private. In
return the garbled circuit requires a large number of random bits in the encryption of
the underlying circuit. But, the protocols for generating the garbled circuits might
be useful for generating garbled circuits that are cryptographically t-private. As
one can see in [24, 11] these encryptions are often more efficient than information-
theoretically private encryptions. Hence, this paper will be a first step towards
an efficient implementation of t-private electronic auction systems with very low
requirements for hardware. Our approach is based on [29].
This work is organized as follows: In Section 2 we present some basic definitions
and notations of private computation. We will redraw the privacy preserving cryp-
tographic auction of Naor et al. Furthermore, we discuss randomizing polynomials
that can be used as an evaluation technique for garbled circuits. Section 3 presents
information-theoretically t-private, static auction protocols. We dedicate Section
4 to the proofs of t-privacy. In Section 5 we analyze the security of our protocol
against active attacks. Section 6 deals with dynamic aspects of the electronic auction
system. The concluding Section 7 summarizes the results.

5

2 Notation and Preliminaries

In this section we refer to the literature and define our notations. In section 2.3,
garbled circuits are presented using a compact definition. Throughout this work,
we will use ⊕ to denote the (bit-wise) XOR-operation on Boolean values and binary
strings, as well as on vectors and matrices of binary strings.
Let x = x[1]x[2] . . . x[n] ∈ {0, 1}n be a binary string of length n. For a set J =
{j1, . . . , jk} where 1 ≤ j1 < j2 < . . . < jk ≤ n let x[J] = x[j1] . . . x[jk]. We extend
this notation to arbitrary sequences. Let C = (c1, . . . , cn). Then C[J] denotes the
subsequence (cj1 , . . . , cjk). The operator ◦ denotes the concatenation of strings. For
i, j ∈ N, let [i, j] := {i, . . . , j}. All logarithms in this paper are to the base 2.
An n-input l-output circuit Cln is described by a DAG G = (V,E). V contains 2n
nodes of in-degree 0, the inputs x1, x̄1, . . . , xn, x̄n. The remaining nodes have in-
degree 2 and are called gates. The gates g1, . . . , gm are labeled by either AND or OR.
G has l nodes with out-degree 0 called output-gates. For convenience we write C
instead of C1

n and we use the variables xi synonymously to the corresponding input
values. If the input of a circuit is fixed by the context, we denote the value of a gate
g by bg. The value be of a wire e is determined by the value of the gate g the wire
comes from resp., by the input xi if e is an input wire.

2.1 Privacy and Security

In this work we consider both, the model of honest but curious parties, and the
model of malicious parties. We do not want any party to learn more about the
inputs of other parties, than it can deduce from the result of the function and its
own input. We assume that every party has access to a random tape. Parties
can send messages to other parties via point-to-point communication using secure
channels. Computing a function f on the input x = (x1, . . . , xn) we assume that xi
is the private input of party Pi.

Definition 1 (t-Privacy) For a subset of parties U ⊆ V let CU resp., RU denote
the random variables of the communication string resp., of the random string seen
by parties of U . Let cU be a particular communication string. An n-party protocol
P for computing a function f : Σn → Σ is private with respect to the parties of U ,
if for every pair of input vectors x, y with f(x) = f(y) and x[U] = y[U], for every
sequence of random strings rU provided to the parties of U ,

Pr[CU = cU |RU = rU , x] = Pr[CU = cU |RU = rU , y]

where all parties follow protocol P. A protocol is t-private if it is private with respect
to any subset U of at most t parties. A protocol is called private if it is 1-private.

In other words, a protocol is called t-private, 1 ≤ t ≤ n−1, if no collusion of t parties
learns anything about the distributed secret that cannot be deduced from the result
and the input of the members of the collusion, while honestly participating in the
protocol. From [3, 1] we can conclude that most auction protocols cannot be run

6

privately on non-2-connected networks. Therefore, we demand a communication
network to be at least 2-connected.
Alternatively, one can define t-privacy by using conditional entropy. Shannon [27]
introduced the entropy function

H(X) = −
∑
x

Pr[X = x] · log(Pr[X = x]).

He proved that the functions of the class K · H(X) with K > 0 are the only
functions that satisfy his requirements for a measure of information generated by
a dicrete information source. The entropy can also be interpreted as a measure of
uncertainty about X. If H(X) = 0 for a discrete random variable X, then we have
full information about the outcome of the random experiment related to X. The
conditional mutual information

H(X |Y) = −
∑
y

∑
x

Pr[Y = y] Pr[X = x |Y = y] log(Pr[X = x |Y = y])

describes the uncertainty about X if we have knowledge about Y . The mutual
information

I(X ; Y |Z) = H(X |Z)− H(X |Y, Z)

measures the information gain about X knowing Z if we additionaly have knowledge
about Y . We cannot deduce information about X from Y if and only if I(X ; Y) = 0.
We define the leakage of information of a protocol with respect to U as the minimum
value τ such that it holds that

I(X ;CU |f(X), X[U], RU) ≤ τ .

A protocol is t-private if its leakage is 0 with respect to every subset U of at most t
parties. We call a protocol P (t, τ)-secure, if for every subset U of at most t parties
and for every protocol P ′, where the parties of U follow P ′ and the honest parties
in V \ U follow the protocol P , the leakage is bounded by τ . Note that malicious
parties may run an arbitrary attack.

2.2 The NPS Protocol

In this section, we discuss the cryptographic electronic auction system of Naor et
al. [24], that is based on Yao’s garbled circuits and pseudo-random generators
[31, 14]. Garbled circuits are encrypted versions of standard Boolean circuits where
the Boolean values are replaced by encrypted values. Knowing the encrypted input,
one can evaluate the circuit gate-by-gate. Then one can produce the garbled output
without learning anything about the original input and intermediary results. To
achieve privacy of an auction Naor et al. [24] introduce a third party: the auction
issuer AI. This party generates the garbled circuit and they assume that the auction
issuer does not conspire with any other party. To send the encrypted bids to the
auctioneer the bidders use a protocol realizing the proxy oblivious transfer. For one
bit bids the proxy oblivious transfer is defined as follows:

7

Each bidder has his private value xi ∈ {0, 1} and the auction issuer provides two
encryptions W 0,W 1 for the bit. The goal is to send W xi to the auctioneer such that
neither the bidder learns W 0 or W 1 nor the auction issuer learns xi. Furthermore,
the auctioneer does not learn anything about xi or W 1−xi . Using the garbled circuit,
the auctioneer can evaluate the auction. We will refer to this protocol as the NPS-
protocol.
The NPS-protocol provides 1-privacy, only. That means, a party cannot break the
secrets of the other parties. But if the auction issuer and the auctioneer collude,
both will gain knowledge about all bids.

2.3 Garbled Circuits

In this section, we shortly discuss garbled circuits. A garbled circuit consists of a
circuit of encrypted gates. To encrypt a gate g we XOR the truth table of g by a
randomly generated table Wg and permute their entries. To compute the result of
the encrypted gate we add to the result of predecessor gates the corresponding rows
resp., columns of some random tables such that XOR-ing these random values allows
us to compute exactly one entry of Wg. To keep track of the permutation of the
truth table of g, we XOR the results of the predecessor gates by a random bit. Note
that this allows us to encrypt the result of the predecessor gates, and simultaneously
to permute the truth table of g.
Let us now continue with a more formal description of garbled circuits. We use
random values of two types: For every wire e of a circuit C there exists a vector of
random strings We = (W 0

e ,W
1
e). For every gate g and every input bit xi there exists

a random bit rg resp., ri. The length of the strings W b
e is defined recursively from

top to bottom: For every b ∈ {0, 1}, every wire e and every gate g let |W b
e | = 0 if e

is an output wire, and |W b
e | = 2(1 +

∑
output wire e′ of g |W 0

e′ |) if e is an input wire of
gate g.
Each string W b

e = W b,0
e ◦ W b,1

e consists of two equally sized halves. In order to
encrypt a Boolean value xi ∈ {0, 1} on an input wire e, we use a random bit ri
and compute the polynomial W xi

e ◦ (xi ⊕ ri). Note that W xi
e can be written as

(xi ·W 1
e)⊕ ((1− xi) ·W 0

e).
Let g be a gate with input wires e1, e2, output wires o1, . . . , ok and gate function
g(b1, b2) where b1, b2 ∈ {0, 1}. We encrypt the values bgi by cgi = bgi ⊕ rgi where gi
denotes the predecessor of g with output wire ei. Hence, we use one additional ran-
dom bit rg for every gate g. Each random bit rgi induces a permutation of the rows
(resp., columns) of the garbled table in the succeeding gates. For each of the four
possible values cg1 , cg2 ∈ {0, 1} of the preceding gates of g, we define a corresponding
polynomial on strings of length 1 +

∑
1≤l≤k |W 0

ol
|. This polynomial defines the entry

of the garbled table indexed by (cg1 , cg2). Informally, these expressions encrypt the
values of the (permuted) truth table of g. The garbled table is given by

Qg =

(
Q0,0
g Q0,1

g

Q1,0
g Q1,1

g

)

8

with

Qa,b
g = W

a⊕rg1 ,b
e1 ⊕W b⊕rg2 ,a

e2 ⊕ (W
g(a⊕rg1 ,b⊕rg2)
g ◦ (rg ⊕ g(a⊕ rg1 , b⊕ rg2)))

and
W b
g = W b

o1
◦ . . . ◦W b

ok

where g1 denotes the left and g2 the right predecessor of g.

In every entry of the table, we store a string W
g(a⊕rg1 ,b⊕rg2)
g that is used as a key in

the table for the succeeding gate. To decrypt a table we use only one half of Wg1 ,
resp., Wg2 . Thus, the length of these strings grows exponentially in the depth of the
corresponding circuit. But if the circuit has logarithmic depth the total length of
the strings in the garbled circuits is only polynomial in these size of the circuit.

Knowing the encryption W
bg1
e1 ,W

bg2
e2 and cg1 , cg2 of the input of an gate g, one can

XOR each of the suitable halves of W
bg1
e1 ,W

bg2
e2 with the garbled table entry Q

cg1 ,cg2
g

and gets the encryption of bg and boi for all output wires oi of g without learning
anything about the hidden Boolean value. That is,

Q
cg1 ,cg2
g ⊕W bg1 ,cg2

e1 ⊕W bg2 ,cg1
e2

= W
g(cg1⊕rg1 ,cg2⊕rg2)
g ◦ (g(cg1 ⊕ rg1 , cg2 ⊕ rg2)⊕ rg).

(1)

Each expression W h
oi

for a Boolean variable h ∈ {0, 1} can be represented by (h ·
W 1
oi

)⊕ ((1− h) ·W 0
oi

). The output gates g of the circuit have the values rg ⊕ bg.
This construction is closely related to the construction of Ishai and Kushilevitz [17].
They presented a construction of garbled circuits based on Boolean formulas. Our
construction above is an extension of this approach to Boolean circuits. The proof
of correctness and privacy follows analogously to the case of Boolean formulas.
We will now present an alternative way to generate these garbled tables. This
strategy will be used in our protocol to generate garbled tables t-privately. For
r, r1, r2 ∈ {0, 1} and binary strings W 0

e1
,W 1

e1
,W 0

e2
,W 1

e2
,W 0

e ,W
1
e , A

0,0, A0,1, A1,0, A1,1

of equal length we define

(W 0
e1
,W 1

e1
)⊗ (W 0

e2
,W 1

e2
) =

(
W 0,0
e1
⊕W 0,0

e2
W 0,1
e1
⊕W 1,0

e2

W 1,0
e1
⊕W 0,1

e2
W 1,1
e1
⊕W 1,1

e2

)
Πr(W

0
e ,W

1
e) =

{
(W 0

e ,W
1
e) for r = 0

(W 1
e ,W

0
e) for r = 1

Πr1,r2

(
A0,0 A0,1

A1,0 A1,1

)
=

(
Ar1,r2 Ar1,r̄2

Ar̄1,r2 Ar̄1,r̄2

)
.

For every gate g and every wire e let Ŵe = (W 0
e ,W

1
e) and

Q̂g =

(
Q̂0,0
g Q̂0,1

g

Q̂1,0
g Q̂1,1

g

)
with Q̂a,b

g = W g(a,b)
g ◦ (rg ⊕ g(a, b)) .

Then, we have
Qg = (Πr1(Ŵe1)⊗ Πr2(Ŵe2))⊕ Πr1,r2(Q̂g) .

For a given circuit C a garbled circuit is denoted by ΓC. If C is known from the
context we will omit the index.

9

3 t-Private Garbled Circuit Construction

In this section we will present two protocols for generating a garbled auction circuit
Γ t-privately. We say that a protocol generates a garbled circuit t-privately if it
generates a garbled circuit Γ, and while constructing Γ no collusion U of up to t
parties can deduce any information about the chosen random values of Γ that cannot
be deduced from Γ directly.
Basically our protocol works as follows: For each gate of a circuit we independently
generate t + 1 collections of the random bits used in the construction of the cor-
responding garbled table — each random collection is generated by one separate
auction issuer. Instead of computing the garbled auction circuit by the auction is-
suers we proceed as follows: we introduce a field of (t+1)2 slaves that is divided into
t+1 columns, where the i-th column is used to permute all truth tables according to
the random permutation chosen by the i-th auction issuer. The truth tables and the
corresponding W -strings of each auction issuer and of each gate move through all
columns of the field. At the end the tables of all auction issuers are permuted by the
same permutation. XOR-ing all corresponding tables gives us the desired t-private
garbled circuit.
Our protocols are designed such that every party can simultaneously take part in
the construction of the garbled circuit, bidding and evaluation. Hence, every party
can simultaneously be the auctioneer, one auction issuer, one slave, as well as an
arbitrary number of bidders, without gaining additional knowledge about the bids
of the other bidders. Hence, if it is not necessary to distinguish between the different
entities we call them just parties.
In the following, we use the term a party P generates a `-share w1, . . . , w` of w to
denote that party P generates ` random strings w1, . . . , w` such that w = w1⊕ . . .⊕
w`.
Since most proofs of our theorems and lemmata are quite long and technical, we
will give the proofs in a separate section. In the following we will present our main
protocols.

3.1 Constructing Garbled Circuits

In the first strategy we will use a set of t+1 auction issuers AI k with k ∈ [1, t+1] and
a (t+ 1)× (t+ 1)-array of (t+ 1)2 sub-workers Si,j with i, j ∈ [1, t+ 1] called slaves.
Every auction issuer generates an independent garbled circuit Γk for a globally given
auction circuit C. The slaves are used to combine these garbled circuits. More
precisely:

• AI k generates two random strings W 0
k,e,W

1
k,e for every wire e,

• a random bit rk,g for every gate g, and a random bit rk,i for every input variable
xi. For easier notion, we associate to every wire e the random bit rk,g of the
gate g resp., rk,i of the input variable xi where the wire is coming from. Let
rk,e denote this random bit.

10

After generating the random values, all AI k put these random values together into
the ungarbled tables Q̂k,g of every gate g and the ungarbled vectors Ŵk,e of every
wire e of C:

Ŵk,e = (W 0
k,e,W

1
k,e) and Q̂k,g =

(
Q̂0,0
k,g Q̂0,1

k,g

Q̂1,0
k,g Q̂1,1

k,g

)
.

For technical reasons the auction issuers AI k choose the table entries as follows

Q̂a,b
k,g =

{
W

g(a,b)
1,g ◦ (r1,g ⊕ g(a, b)) for k = 1

W
g(a,b)
k,g ◦ rk,g for k > 1

where
W b
k,g = W b

k,o1
◦ . . . ◦W b

k,om

where o1, . . . , om denote the output wires of gate g.
Our goal is to construct Γ and thus all tables

Qg =
(

Πre1
(⊕t+1

k=1Ŵk,e1) ⊗ Πre2
(⊕t+1

k=1Ŵk,e2)
)
⊕ Πre1 ,re2

(⊕t+1
k=1Q̂k,g)

t-privately where re1 = ⊕t+1
k=1rk,e1 and re2 = ⊕t+1

k=1rk,e2 .
Before we present a protocol for constructing Γ we will show that Γ does not allow
to reveal information about the private choices of an action issuer.
Let Ri be the random string of AI i used in Γ, i.e., Ri consists of all Ŵi,e and ri,e.
Let R¬i = 〈Rj|i 6= j〉 be the collection of random strings of all AI j different from
AI i. Finally, let |Γ| denote the length of a binary description of Γ.

Lemma 2 For every shape Γ of the garbled circuit, every content R¬i of the random
values chosen by AI j 6= AI i, and every content ri,e of the permutation bits chosen
by AI i there exist µ = 2|Γ| different values of the content of Ri such that Ri ∪ R¬i
defines the same shape Γ of the garbled circuit.

Proof: Since all values ri,e are fixed, we have to count the different values of the
random strings W 0

i,e,W
1
i,e for all wires e that defines the same shape Γ of the garbled

circuit.
For each output gate o the strings W 0

i,o,W
1
i,o are empty. Thus, Q̂a,b

k,o consists of
(r1,g ⊕ o(a, b)) for k = 1 and rk,o for k > 1. Since for all wires e and all j the values
of rj,e are given, all values re are given, too. Hence, the different choices of the

content of Ŵi,e1 , Ŵi,e2 to construct a given table Qo can be reduced to the different

choices of the content of Ŵi,e1 , Ŵi,e2 to construct a given table

Q̃o = Πre1
(Ŵi,e1)⊗ Πre2

(Ŵi,e2) .

Thus, for every choice of the content of Ŵi,e1 there exists exactly one choice of the

content of Ŵi,e2 such that Q̃o has the desired shape, i.e., in total there are 2|
cWi,e1

|

different choices. To count all possible contents of all random variables W 0
i,e,W

1
i,e

11

in Ri we assume in the following, that the values of W 0
i,e1
,W 1

i,e1
,W 0

i,e2
,W 1

i,e2
of the

input wires of o are given.
Inductively, for all previous choices, there exists at least one gate g such that all
values Ŵi,e, Ŵi,e of the output wires of g are determined. Hence, Πre1 ,re2

(⊕t+1
k=1)Q̂k,g)

is known, where e1, e2 denote the input wires of g.
Since all permutation bits re1 , re2 are given, for every choice of the content of Ŵi,e1

there exists exactly one possibility content of Ŵi,e1 , such that the garbled table of g

has the shape as given in Γ. Hence, for each previous choice there are 2|
cWi,e1

| choices
for the random bits of gate g made by AIi such that the garbled table of g has the
desired shape.

Thus, there are
∏

e 2|
cWi,e| = 2|Γ| possible choices for the random values in Ri such

that Ri ∪R¬i result in a garbled circuit of the desired shape Γ. �
The first protocol to generate a garbled circuit performs the following steps for every
wire e and every gate g:

1. Distributing Phase

(a) Every AI k generates a t+ 1-share

rk,1,e, . . . , rk,t+1,e

of every random bit rk,e and sends rk,i,e to all slaves Sh,i with h ∈ [1, t+1],
i.e., to all slaves in column i of the array.
After receiving rk,i,e from every auction issuer every slave Sh,i of the ith
column computes

si,e = ⊕t+1
k=1rk,i,e .

(b) Every AI k generates t+ 1-shares

Ŵ 1
k,0,e, . . . , Ŵ

t+1
k,0,e and Q̂1

k,0,g, . . . , Q̂
t+1
k,0,g

of the random values Ŵk,e and Q̂k,g. Afterwards, he sends Ŵ i
k,0,e and

Q̂i
k,0,g to the slave Si,1.

2. Permuting Phase
After receiving the values Ŵ k

i,j−1,g and Q̂k
i,j−1,g for every i ∈ [1, t+ 1] slave Sk,j

computes for every gate g and every wire e

Ŵk,j,e = Πsj,e(⊕t+1
i=1Ŵ

k
i,j−1,e) and Q̂k,j,g = Πsj,e1 ,sj,e2

(⊕t+1
i=1Q̂

k
i,j−1,g)

where e1, e2 are the input wires of g.
If j < t+ 1, Sk,j generates t+ 1-shares

Ŵ 1
k,j,e, . . . , Ŵ

t+1
k,j,e and Q̂1

k,j,g, . . . , Q̂
t+1
k,j,g

of Ŵk,j,e and Q̂k,j,g and sends Ŵ i
k,j,e and Q̂i

k,j,g to slave Si,j+1.

3. Combination Phase

12

(a) The slaves Sk,t+1 in the last column compute for every gate g

Qk,g = (Ŵk,t+1,e1 ⊗ Ŵk,t+1,e2)⊕ Q̂k,t+1,g

where e1, e2 are the input wires of g and send Qk,g to the auctioneer A.

(b) Finally, A computes
Qg = ⊕t+1

k=1Qk,g .

We call this protocol the field-protocol. The field-protocol can be simulated on a
complete network of 2t+ 1 parties.

Theorem 3 The garbled circuit Γ of an auction circuit can be constructed t-privately
by using t + 1 auction issuers, (t + 1)2 slaves, and O(|Γ|t3) random bits where |Γ|
denotes the length of the binary representation of Γ.

3.2 A Slave-Efficient Protocol

We will now present a t-private protocol that generates the garbled circuit Γ by
using t+1 auction issuers and t slaves. Note that this number of parties matches the
number of parties that are needed to compute a function t-privately if the function
has an embedded OR-function [21], and therefore, it is optimal in the number of
parties.
To present our protocol we will proceed in two steps: In a first step we will present a
protocol for constructing a garbled circuit, where every slave receives messages only
from one corresponding slave. This protocol uses an exponential number of slaves.
In a second step we will show that this protocol can be simulated by 2t+ 1 parties.
The following protocol is closely related to the protocol discussed in the last section.
In the first step the t + 1 auction issuers AI k generate the tables Q̂k,g, the vectors

Ŵk,e, and the random bits rk,e as in the protocol above.
Our protocol starts by generating shares of

Π⊕t+1
k=1rk,e1 ,⊕

t+1
k=1rk,e1

(Q̂k,g) and Π⊕t+1
k=1rk,e

(Ŵk,e)

t-privately. This will be done by using t + 1 virtual t + 1-ary complete trees
T1, . . . , Tt+1 of depth t. Later, these virtual trees will represent ways of commu-
nication within a complete network of 2t+ 1 nodes. The nodes of a virtual tree will
be mapped to the complete network.
We denote the nodes of Tk by Sσk , where σ ∈ [1, t + 1]≤t denotes the path from
the root of Tk to Sσk . That means, Sλk = AI k (λ denotes the empty string) gives
the root of Tk, and for every internal node Sσk its direct successors are denoted by
Sσ,1k , . . . , Sσ,t+1

k . We will now describe the tree-protocol that runs on the trees Tk.
Afterwards we will show how to implement this protocol by using only 2t+1 parties
without losing t-privacy. The tree-protocol runs as follows:

1. Distributing Phase
All AI i generate for all random bits ri,e and every node Suk of Tk a random bit
rui,k,e such that

ri,e = ⊕u is a prefix of σ r
u
i,k,e

13

for every leaf Sσk . Then, the AI i sends rui,k,e to Suk and every node Suk computes

suk,e = ⊕t+1
i=1r

u
i,k,e .

2. Permuting Phase
Now, the tables Q̂k,g and the vectors Ŵk,e are shared and manipulated on

the trees as follows: Let Q̂u
k,g, Ŵ

u
k,e denote the values received by Suk . In the

case that u = λ we choose Q̂u
k,g = Q̂k,g and Ŵ u

k,e = Ŵk,e. For |u| < t Suk
computes t+1-shares Q̂u,1

k,g , . . . , Q̂
u,t+1
k,g and Ŵ u,1

k,e , . . . , Ŵ
u,t+1
k,e of Πsuk,e1

,suk,e2
(Q̂u

k,g)

and Πsuk,e
(Ŵ u

k,e). Finally, Suk sends Q̂u,i
k,g and Ŵ u,i

k,e to Su,ik .

3. Combination Phase

(a) For |σ| = t Sσk computes a t+ 1-share Qσ,1
k,g, . . . , Q

σ,t+1
k,g of

(Πsσk,e1
(Ŵ σ

k,e1
)⊗ Πsσk,e2

(Ŵ σ
k,e2

))⊕ Πsσk,e1
,sσk,e2

(Q̂σ
k,g)

and sends Qσ,i
k,g to AI i.

(b) AI i computes
Qi
g = ⊕σ∈[1,t+1]t ⊕k∈[1,t+1] Q

σ,i
k,g

and sends the resulting tables to A.

(c) Finally, A computes the garbled table

Qg = ⊕i∈[1,t+1]Q
i
g .

Note that we can run the tree-protocol for all the t + 1 virtual trees on (t+1)t+1−1
t

nodes.

Lemma 4 The tree-protocol gives a t-private construction of the garbled circuit Γ

using (t+1)t+1−1
t

parties.

In the following we will show that we can simulate the tree-protocol by a network
of 2t + 1 parties such that our protocol is still t-private. We will call the resulting
protocol the slave-efficient-protocol. To distinguish between the parties used in the
tree-protocol and the parties used in the slave-efficient-protocol we call the former
virtual parties and the latter real parties. In the simulation we will guarantee the
following properties:

1. no real party simulates two virtual parties on the same root-leaf path, i.e., for
every path σ ∈ [1, t + 1]≤t and all u 6= u′ that are prefixes of σ, it holds that
Suk and Su

′

k are simulated by different parties,

2. no real party simulates two virtual parties that are direct successor of the
same virtual party in a virtual tree, for all paths σ ∈ [1, t + 1]≤t−1 and all

q 6= q′ ∈ [1, t+ 1], Sσ,qk and Sσ,q
′

k are simulated by different parties, and

14

3. the roots of the virtual trees are simulated by different real parties.

The privacy proof of the slave-efficient-protocol will be based on these properties.
Recall that there are t + 1 trees. For k ∈ [1, t + 1] the auction issuer AI k = Sλk is
the root of the t+ 1-ary complete tree Tk.
Inductively, we show that 2t+ 1 parties are sufficient to realize a mapping from the
virtual parties to the real parties that fulfills the properties required above.

1. As mentioned above, the auction issuers AI k, k ∈ [1, t + 1], simulating the
roots Sλk of the trees Tk. Hence, we need t + 1 parties for these simulation
steps.

2. Assume that we can simulate the subtrees T `k of all Tk with nodes Suk with
u ∈ {1, . . . , t+ 1}≤` by t+ 1 + ` real parties such that our properties above are

fulfilled. Let us now consider the virtual parties Su
′,i

k with u′ ∈ {1, . . . , t+ 1}`
and i, k ∈ {1, . . . , t+1}. Since Su

′

k hat ` predecessors, our simulation uses `+1
real parties to simulate the computation of the virtual paths on the path from
the root Sλk to Su

′

k . Thus, we can use the remaining t parties of the already
used t+ 1 + ` real parties to simulate the computation of t direct successors of
Su

′

k . Hence, we need one additional new real party to simulate the computation
of the remaining direct successor of Su

′

k . Note that this leads to a protocol,
where t+ 1 + `+ 1 real parties are used for the simulation of the virtual nodes
of the subtrees T `+1

k of all Tk with nodes Suk with u ∈ {1, . . . , t+ 1}≤`+1.

3. Since the virtual trees Tk have depth t, our simulation uses 2t+ 1 real parties.
Furthermore, from the construction above it follows, that the simulation fulfills
the three properties from above.

From the three properties of our simulation it follows that:

Theorem 5 There is a t-private protocol to build Γ for 2t+ 1 parties using O((t+
1)t+3|Γ|) random bits.

Recall that the parameter t does not limit the number of users of the protocol. In
fact t denotes the number of untrusted parties within in the subset of parties that
generate the garbled circuit.

3.3 t-Private Bidding

Let xi,j denote the jth bit of the bid xi of bidder Bi and let e be a wire of the
circuit C connected to xi,j. Our protocol should give the auctioneer A access to
W

xi,j
e ◦ (re ⊕ xi,j) in a t-private way. To simplify our analysis we assume that A

publishes Γ and W
xi,j
e ◦ (re ⊕ xi,j). For the field-protocol we proceed as follows:

1. Bi computes a t+ 1-share x1
i,j, . . . , x

t+1
i,j of xi,j and sends xki,j to AI k.

2. AI k computes a t+ 1-share c1
k,e, . . . , c

t+1
k,e of xki,j ⊕ rk,e and sends cik,e to S1,i.

3. S1,i sends cie = ⊕t+1
k=1c

i
k,e to all slaves in the last row Sj,t+1.

15

4. All Sk,t+1 compute ce = ⊕t+1
i=1c

i
e and send Ŵ ce

k,t+1,e ◦ ce to A. Here, Ŵ ce
k,t+1,e

denotes the ceth half of the tuple Ŵk,t+1,e.

5. Finally, A computes W
xi,j
e ◦ ce = (⊕t+1

k=1Ŵ
ce
k,t+1,e) ◦ ce.

After the bidding the auctioneer can easily evaluate the garbled circuit and therefore
determine the value of this circuit. This can be done gate by gate using the formula
given in Equation (1). Note that this formula gives us the encrypted value of the
corresponding gate, and the keys to compute the encrypted values of the direct
successors of the gate.
Since the evaluation of the garbled circuit on the encrypted inputs gives an encrypted
output, the result of the auction remains hidden. To decrypted the output all auction
issuers AI i have to publish their random bits ri,g for every output gate g.

Theorem 6 There exists a t-private protocol for an electronic auction system with
t+ 1 auction issuers and (t+ 1)2 slaves using O(t3|Γ|) random bits.

The protocol for the bidding phase for our slave efficient protocol works analogously
to the bidding protocol presented above.

1. Bi computes a t+ 1-share x1
i,j, . . . , x

t+1
i,j of xi,j and sends xki,j to AI k.

2. AI k computes a t+ 1-share c1
k,e, . . . , c

t+1
k,e of xki,j ⊕ rk,e and sends cik,e to AI i.

3. AI i sends cie = ⊕t+1
k=1c

i
k,e to all leaves Sσk with σ ∈ {1, . . . , t + 1}t of all virtual

trees Tk.

4. Every leaf Sσk compute ce = ⊕t+1
i=1c

i
e and send Ŵ σ,ce

k,t+1,e ◦ ce to A.

5. Finally, A computes W
xi,j
e ◦ ce = (⊕t+1

k=1 ⊕σ∈{1,...,t+1}t Ŵ
σ,ce
k,t+1,e) ◦ ce.

To evaluate the garbled circuit we can again use the formula given in Equation (1).

Theorem 7 There exists a t-private protocol for an electronic auction system with
t+ 1 auction issuers and t slaves using O((t+ 1)t+3|Γ|) random bits.

4 Proofs of Privacy of our Protocols

In this section we will prove our theorems presented in the previous section. The
proofs of t-privacy are based on some structural properties:

Definition 8 Let U be a collusion of at most t parties. There exists a trusted
skeleton of the field-protocol according to U , if there exists i, j ∈ {1, . . . , t+ 1} such
that the auction issuer AI i, all slaves in column S1,i, . . . , St+1,i, and all slaves in row
Sj,1, . . . , Sj,t+1 are honest.

Lemma 9 For every collusion of at most t parties there exists a trusted skeleton
for the field-protocol.

16

Proof: By the pigeon hole principle it follows that there exists i ∈ {1, . . . , t + 1}
such that the auction issuer AI i and all slaves in column S1,i, . . . , St+1,i are honest,
i.e., they are not members of the collusion. Analogously, there exists j ∈ {1, . . . , t+
1} such that all slaves in row Sj,1, . . . , Sj,t+1 are honest. �

Definition 10 Let U be a collusion of at most t parties. Then, a trusted skeleton
(TS) of the field-protocol consists of the honest auction issuer AI i, the honest slaves
in S·,i and Sj,·, and all honest bidders. The extended collusion (EC) consists of the
auctioneer and the remaining auction issuers, slaves, and bidders that are not in
trusted skeleton. The sets

[TS] ⊆ TS× TS, [EC] ⊆ EC× EC,
[χ] ⊆ (TS× EC \ {A}) ∪ (EC \ {A} × TS),

[SA] = {(Sj,t+1, A)}, and [AIA] = {(AI i, A), (A,AI i)}

consist of all (sender, receiver)-pairs from the corresponding domains that exchange
messages in the field-protocol.

[TS] describes the communication channels between all members in the trusted skele-
ton, [EC] between all members in the extended collusion, [χ] between members of
trusted skeleton and extended collusion without the auctioneer, [SA] between the
honest slave in the last column and the auctioneer, and [AIA] between the honest
auction issuer AI i and the auctioneer A.
Due to arguments of symmetry, we can permute the numbering of rows and auction
issuer such that row i does not belong to the collusion.
We will now define the trusted skeleton of the slave-efficient protocol.

Definition 11 Let U be a collusion of at most t parties. There exists a trusted
skeleton of the slave-efficient protocol according to U , if

• there exists i ∈ {1, . . . , t+1} such that the root of Ti is simulated by the honest
real party,

• for every k ∈ {1, . . . , t+ 1} and every root-leaf path in the virtual tree Tk there
exists a virtual party on this path that is simulated by the honest real party and

• for every virtual tree Ti and every node u of Ti that is simulated by the honest
real party there exists a u-leaf path in Ti such that every virtual party on this
path will be simulated by the honest real party.

Lemma 12 For every collusion of at most t parties there exists a trusted skeleton
for the slave-efficient-protocol.

Proof: Recall, that our simulation follows the following properties:

1. no real party simulates two virtual parties on the same root-leaf path, i.e., for
every path σ ∈ [1, t + 1]≤t and all u 6= u′ that are prefixes of σ it holds that
Suk and Su

′

k are simulated by different parties,

17

2. no real party simulates two virtual parties that are direct successor of the
same virtual party in a virtual tree, for all paths σ ∈ [1, t + 1]≤t−1 and all

q 6= q′ ∈ [1, t+ 1], Sσ,qk and Sσ,q
′

k are simulated by different parties, and

3. the roots of the virtual trees are simulated by different real parties.

Hence, by the pigeon hole principle it follows, that for every virtual non-leaf node of
every virtual tree there exists a direct successor that is simulated by an honest real
party. Moreover, since all roots are simulated by different real parties, there exists
at least one root Sλi = AI i that is simulated by an honest real party. From the
former observation it follows, that there exists a root-leaf path in the virtual tree Ti
where every virtual party on this path will be simulated by the honest real party.
Analogously, it follows that for every virtual tree Ti and every node u of Ti that is
simulated by the honest real party, there exists a path from u to a leaf of Ti such
that every virtual party on this path will be simulated by the honest real party.
Since there are t+ 1 virtual parties on each root-leaf-path of every virtual tree and
these virtual parties are simulated by t + 1 real parties, at least one of these real
parties is honest. �

Definition 13 Let U be a collusion of at most t parties. Then, a trusted skeleton
(TS) of the slave-efficient protocol consists of all honest bidders and of t+ 1 honest
parties (auction issuers and slaves), such that

• there exists i ∈ {1, . . . , t + 1} such that there exists a root-leaf path in the
virtual tree Ti where every virtual party on this path will be simulated by a
party in TS and

• for every k ∈ {1, . . . , t+ 1} and every root-leaf path in the virtual tree Tk there
exists a virtual party on this path that simulated by a party in TS.

The extended collusion (EC) consists of the auctioneer and the remaining auction
issuers, slaves, and bidders that are not in trusted skeleton. The sets

[TS] ⊆ TS× TS, [EC] ⊆ EC× EC,
[χ] ⊆ (TS× EC \ {A}) ∪ (EC \ {A} × TS),

and [AIA] = {(TS, A), (A,TS)}

consist of all (sender, receiver)-pairs from the corresponding domains that exchange
messages in the field-protocol.

4.1 t-Privacy of the Auction Protocols

Our privacy proofs are based on the following idea: We analyze the random variable
C describing the communication between the trusted skeleton and the extended
collusion. Assume that an adversary controlling the extended collusion can generate
a random variable S, that is indistinguishable from C only by knowing the garbled
circuit and the random bits chosen by the parties of the extended collusion. Then,

18

the adversary cannot deduce any knowledge from the C and Γ that cannot be
deduced from Γ.
Let Ri be a discrete random variable describing the sequence of the random vari-
ables Ŵi,e and ri,e for all wires e of the auction issuer AI i of the trusted skeleton.

Analogously, let R¬i describe the sequence of the random variables Ŵi,e and ri,e for
all wires e of the auction issuer of the extended collusion. Furthermore, we interpret
Γ as a discrete random variable for the generated garbled circuit. Let REC resp.,
RTS be the discrete random variables describing all other random bits uniformly
chosen by the extended collusion resp., the trusted skeleton. Let U be a uniformly
distributed discrete random variable over binary strings of an adequate length. Let
C(Ri, R¬i, RTS, REC ,Γ) be a binary description of the communication between the
extended collusion and the trusted skeleton generated by a run of the field-protocol.
The random choices of the parties are given by Ri, R¬i, RTS, REC and the generated
garbled circuit is given by Γ. Finally, let Sim(U,R¬i, REC ,Γ) be a binary description
of a communication string generated by a simulator that works as follows:

• The simulator performs the same operations as the auction issuers and slaves
of the extended collusion. During this simulation the random choices of the
parties in the extended collusion are taken from R¬i and REC .

• We divide the strings given by U into disjoint blocks of adequate length. Any
message sent through [χ] from a party of the trusted skeleton to a party of the
extended collusion is given by a separate block of U , i.e., these messages are
independent and uniformly chosen.

• Any message sent through [χ] from a party P of the extended collusion to a
party of the trusted skeleton is computed by the simulation described above,
i.e., we simulate the operations performed by P on the messages received by
P in the simulation and on the random choices of P given by R¬i and REC .

• All messages sent through [SA] are deterministically determined by Γ, Ri and
the previous choices for the communication through the channels of [χ].

Lemma 14 For all given garbled circuits γ, all given strings ri, rec, r¬i, and all given
communication strings c it holds that

Pr(Sim(U,R¬i, REC ,Γ) = c | Γ = γ, R¬i = r¬i, Ri = ri, REC = rec)
= Pr(C(Ri, R¬i, RTS, REC ,Γ) = c | Γ = γ, R¬i = r¬i, Ri = ri, REC = rec).

Proof: We fix any message sent through [χ] from a party in the trusted skeleton
to a party of the extended collusion. Recall that this message must be an element
of a (t+ 1)-share such that at least one element sh of this (t+ 1)-share is only sent
to a member of the trusted skeleton. sh is determined by RTS. The t elements
of the (t + 1)-share sent from a party in the trusted skeleton to a party of the
extended collusion are are independently and uniformly chosen. That means, a
certain message sent from a party in the trusted skeleton to a party of the extended
collusion is chosen with probability 1/2|sh|.

19

In both settings – using the simulator resp., using the real protocol – all messages
sent from a party of the extended collusion to a party of the trusted skeleton through
[χ] are determined by the messages sent from a party of the trusted skeleton to a
party of the extended collusion through [χ] and by U resp., REC . Note that both U
and REC are independently and uniformly distributed.
The simulator and the protocol compute the messages from all auction issuers AI j
of the extended collusion deterministically using r¬i and rec. Since all strings are
uniformly distributed those messages are equally distributed.
Furthermore, in both settings the messages sent from the slaves S·,t+1 in the last
column are fully determined by Γ, REC , and the messages previously received by the
slaves S·,t+1. As seen above these messages only depend on U resp., REC . Thus, the
messages sent from the slaves S·,t+1 to the auctioneer A are uniformly distributed
in both settings.
Hence,

Pr(Sim(U,R¬i, REC ,Γ) = c | Γ = γ, R¬i = r¬i, Ri = ri, REC = rec)
= Pr(C(Ri, R¬i, RTS, REC ,Γ) = c | Γ = γ, R¬i = r¬i, Ri = ri, REC = rec) .

�
Proof of Theorem 3: For the t-privacy we show that

I(Ri;C | Γ, REC , R¬i) = I(C;Ri | Γ, REC , R¬i) = 0 .

That means, the communication string seen by the extended collusion (here de-
scribed by C for short) gives no additional knowledge about the content of Ri cho-
sen by AI i for the garbled circuit, if an adversary controlling the extended collusion
knows the generated garbled circuit Γ and the random values chosen by the parties
of the extended collusion.

I(C;Ri | Γ, REC , R¬i) = H(C(Ri, R¬i, RTS, REC ,Γ) | Γ, REC , R¬i)
− H(C(Ri, R¬i, RTS, REC ,Γ) | Ri,Γ, REC , R¬i).

Using Lemma 14 it holds that

H(C(Ri, R¬i, RTS, REC ,Γ) | Ri,Γ, REC , R¬i)
= H(Sim(U,R¬i, REC ,Γ) | Ri,Γ, REC , R¬i)

and
H(C(Ri, R¬i, RTS, REC ,Γ) | Γ, REC , R¬i)

= H(Sim(U,R¬i, REC ,Γ) | Γ, REC , R¬i) .

Since U and Ri are uniformly distributed and independent from each other, it holds
that

H(Sim(U,R¬i, REC ,Γ) | Ri,Γ, REC , R¬i)
= H(Sim(U,R¬i, REC ,Γ) | Γ, REC , R¬i) .

Hence,

I(C;Ri | Γ, REC , R¬i) = H(Sim(U,R¬i, REC ,Γ) | Γ, REC , R¬i)
−H(Sim(U,R¬i, REC ,Γ) | Ri,Γ, REC , R¬i) = 0 .

20

Since REC and R¬i are independently chosen from Ri they do not provide any
information about Ri. Thus, the adversary controlling the extended collusion can
only deduce information about Ri from the garbled circuit Γ (resp., from the shares
of Γ that are sent from Si,t+1 to the auctioneer). By construction Γ (resp., the
shares of Γ from Si,t+1) is a garbled circuit and gives no information about the
values chosen from AI i. As no further communication takes place, the construction
of Γ is t-private.
Finally, let us denote that the number of participating parties and the number of
used random bits directly follows from the protocol. �
Proof of Lemma 4: Since each tree Tk is a t+ 1-ary tree of depth t, Tk consists

of (t+1)t+1−1
t

nodes. Thus, we can set up each tree such that each party controls at
least one node in Tk.
Let U be a collusion of at most t parties. We say there exists a trusted skeleton (TS)
of the tree-protocol according to U , if

• there exists i ∈ {1, . . . , t+ 1} such that the root of Ti is not in U .

• for every k ∈ {1, . . . , t+1} and every root-leaf path in Tk there exists a honest
party on this path.

• for every tree Ti and every honest node u of Ti there exists a u-leaf path in Ti
such that every party on this path is honest. This also follows from the fact
that each internal node must have at least one honest successor.

It is easy to verify that a trusted skeleton of the tree-protocol according to a collusion
of at most t parties always exists.
Let V denote a trusted skeleton then we call the remaining parties the extended
collusion (EC). We denote the set of communication channels between the parties of
the trusted skeleton and the parties of the extended collusion except of the auctioneer
as [χ].
Similar to the proof of Theorem 3 we can introduce a simulator that uniformly
chooses random strings for the messages sent through the channels of [χ]. Further-
more, the messages sent to the auctioneer A deterministically depend on Γ, the
random bits of the extended collusion, and the messages sent through [χ].
Since for each (t+1)-share that is computed in the tree-protocol at least one element
is send to a member of the trusted skeleton, we can prove a result analogously to
Lemma 14 for the tree-protocol. Thus, the communication does not provide any
information about the choices for ri,e, Ŵi,e, Q̂i,g for all wires e and gates g. �
Proof of Theorem 5: Let us consider a trusted skeleton for the slave-efficient pro-
tocol. If we take the inverse of the mapping of the virtual parties of the tree-protocol
to the real parties of the slave-efficient protocol as defined in Section 3.2, one can
see that we get a trusted skeleton for the tree-protocol as defined in Lemma 4. Since
an adversary that controls the extended collusion of the tree-protocol receives the
same messages as an adversary that controls the corresponding extended collusion
of the slave-efficient protocol, both adversaries can deduce the same information.
For Lemma 4 we can deduce that our protocol gives a t-private construction of Γ by
using 2t+ 1 parties. �

21

4.2 t-Private Bidding

Proof of Theorem 6: In the bidding process there exist (at least) one auction
issuer AIi and two slaves S1,i, Sj,t+1 that are members of the trusted skeleton of the
field-protocol. We fix Γ and all random strings of the extended collusion. Using
the simulator argument, we can see that all communication seen by the extended
collusion does neither give any information about the random strings of the trusted
skeleton nor of the honest bidders: In steps (1) and (2) the bidders, resp., the
auction issuers, generate t + 1-shares. One element of each t + 1-share is sent to a
member of the trusted skeleton. Thus, the other shares are only random strings (see

Lemma 14). In steps (3) and (4) ce is computed and Ŵ ce
k,t+1,e ◦ ce is published.

Assuming that the adversary knows Γ and Ŵ ce
k,t+1,e ◦ ce for all input bits xi,j of the

bids, we can show a lemma simular to Lemma 2:

Lemma 15 For every shape Γ of the garbled circuit, every value of the strings
Ŵ ce
k,t+1,e ◦ ce of the input bits of the circuit, every content R¬i of the random values

chosen by AI j 6= AI i, and every value of the input bits xi,j of the bids of the bidders
of the trusted skeleton, there exist µ = 2|Γ|/4 different values of the content of Ri

such that Ri ∪ R¬i defines the same shape Γ of the garbled circuit and the same
values Ŵ ce

k,t+1,e ◦ ce of the encrypted input bits xi,j.

Proof: The proof follows analogously to the proof of Lemma 2. It is based on
counting the number of different values for the random variables Ri of the auction
issuer in the trusted skeleton, such that Ri ∪ R¬i defines the same shape Γ of the
garbled circuit and the same values Ŵ ce

k,t+1,e ◦ ce of the encrypted input bits xi,j.
In a first step we evaluate the garbled circuit. One can see that this evaluation
determines exactly one of the four entries of each garbled table. Since, our goal is to
find a fixed but arbitrary garbled table, the value of the determined entry is fixed.
Since the corresponding value of W

g(a,b)
i,g and ri,g are chosen by the trusted auction

issuer, this entry can be chosen to have the desired shape. In the following we use
value of W

1−g(a,b)
i,g to show that the garbled tables of the direct successors of g can

be generated to have the desired shape.
Let us continue now with the possible shapes of the remaining three entries of the
garbled table of g. Since we have to choose W

1−g(a,b)
i,g such that all possible shapes of

the garbled tables of the direct successors of g are admissible, we can assume that
this value is fixed in the construction of the garbled table of g by the shape of the
garbled tables of its direct successors. Note that two of the remaining three entries
of the garbled table of g are only encrypted by one half of the so far undetermined
strings W 1−a

i,e1
and W 1−b

i,e2
. Hence these values are fixed by the desired shape of the

garbled table of g. For the last entry it follows that for every value the remaining
half of W 1−a

i,e1
we can choose one value of the remaining half of W 1−b

i,e2
such that we get

the desired shape of the garbled table of g. Summarizing there are 2|Qg |/4 different
values for the random variable in Ri that we can use to get the desired shape of
Qg. Taking the product over all gates gives us the number of different values for the
random variable in Ri such that Ri ∪ R¬i defines the same shape Γ of the garbled

22

circuit and the same values Ŵ ce
k,t+1,e ◦ ce of the encrypted input bits xi,j. It holds

that ∏
g

2|Qg |/4 = 2
P
g |Qg |/4 = 2|Γ|/4 .

�
From the Lemma above we can conclude that we cannot deduce any additional
knowledge about the unknown input bits of the bidders in the trusted skeleton from
the garbled circuit Γ and the encrypted input bits Ŵ ce

k,t+1,e ◦ ce.
Since the communication in the bidding process is independent from the commu-
nication in the field-protocol if the garbled circuit is given, the bidding and the
evaluation processes do not provide any further information about the input bids of
the trusted skeleton.
The correctness of the bidding process follows from the fact that

⊕t+1
k=1Ŵ

ce
k,e = Π⊕t+1

k=1rk,e
(W xi,j

e) where ce = xi,j ⊕⊕t+1
k=1rk,e .

Finally, for all output gates o the permutation bits ri,o are sent to the auctioneer
at the end of the auction. Then, the auctioneer is able to reveal the result of
the auction. Thus, the auction system provides only the same information to the
extended collusion as the collusion can deduce from the result of the auction. �
For the tree-protocol and the slave-efficient-protocol the bidding process runs anal-
ogously to our protocol for (t+ 1)2 slaves, if we replace the slaves S1,i and Si,t+1 by
AI i.
Proof of Theorem 7: As in the bidding process of the field-protocol at least
one auction issuer AIi and one leaf Sσj belongs to the trusted skeleton of the slave-
efficient protocol. Furthermore, there are only 2t+1 parties that are involved in the
bidding process of the field-protocol. Due to the t-privacy slave-efficient protocol,
this claim follows analogously to the proof of Theorem 6. �

5 Security against Active Attacks

If a node is malicious (Byzantine), then it does not need to follow the instructions
of the protocol. It can arbitrarily drop, add or change messages. We define an
active collusion as a collusion of t malicious nodes that are under control of a single
active adversary. Thus, the active adversary knows all information gathered by the
colluding nodes and he can arbitrarily instruct these nodes.
One can think of different aims the adversary tries to achieve when attacking our
field protocol:

1. The adversary may try to change the outcome of the auction systematically.

2. The adversary is destructive, i.e., he tries to sabotage the execution or changes
the result of the computation at random.

To make our field protocol resistant against these types of attacks we can construct
the garbled circuit redundantly.

23

3. The aim of the third kind of adversary is to collect as much of information
about the inputs as possible by manipulating messages.

In the following we focus on an upper bound for the leakage for the field-protocol for
every kind of adversaries. We will show that the following theorem holds even in the
case that the adversary controls all parties in the extended collusion (Definition 10).

Theorem 16 Let l be the number of output bits of C. Then, an active adversary
does not get more than l bits of information about the input bits of the bidders of
the trusted skeleton, i.e., the protocol is (t, l)-secure.

Assume that an adversary does not want to change the result of an auction, but
tries to gain some additional information. Then, the theorem above gives us even
more:

Corollary 17 An active adversary that controls at most t parties without changing
the output of an auction does not get any information about the bids of the honest
bidders that cannot be deduced by a passive adversary controlling the same parties.

Consequently, if the adversaries do not want to change the output of the auction
our field protocol is secure against active adversaries.

5.1 Proof of Theorem 16

To prove Theorem 16 we will investigate the communication between a trusted
skeleton of the parties in the network and all remaining parties. To simplify our
proof, we will make the following changes of the distributing phase at the field-
protocol.

For every h, i, e, after a slave Sh,i has computed si,e he sends sh,i to all
slaves Sj,i in column i. After he has received all values si,e from the
slaves in column i, he verifies that all of these values are equal.

Note that such a verification is not necessary if we consider only passive adversaries.
Analyzing our field-protocols for generating a garbled circuit and for the bidding,
one can see that one can simulate an active adversary by using only one party that
deviates from the presented protocols. All remaining deviations from the protocols
can be simulated by XOR-ing some strings with the resulting garbled circuit or with
the strings sent by the single party that deviates from the presented protocols. Note
that a malicious bidder can be simulated by an honest bidder by changing its bid.
Summarizing we get:

Fact 18 Assume that all slaves Sj,i of row i are members of the trusted skeleton.
Then, every attack of an active adversary can be simulated by a passive adversary
using the same extended collusion where only Si−1,i−1, resp., AI 2 if i = 1, deviates
from the given protocols.

24

In the following we will assume that all parties except of the party Si−1,i−1, resp.,
AI 2, emphasized in Fact 18 follow the protocol. We will call this party the malicious
party. Note that all remaining parties expect the malicious party to send a fixed
number of bits that are assumed to be shares of the permuted vectors

Ŵe = (W 0
e ,W

1
e)

and of the permuted tables

Q̂g =

(
Q̂0,0
g Q̂0,1

g

Q̂1,0
g Q̂1,1

g

)
with Q̂a,b

g = W g(a,b)
g ◦ (rg ⊕ g(a, b)) .

The attack of the malicious party can be interpreted as an XOR of these values with
some binary strings

W e = (W
0

e,W
1

e) and Qg =

(
Q

0,0

g Q
0,1

g

Q
1,0

g Q
1,1

g

)
.

On the other hand, if we assume that one of the auction issuers of the extended
collusion generates the vector Ŵe ⊕W e instead of Ŵe, we can also assume to have
the same communication between the extended collusion and the trusted skeleton.
So we can assume that W

0

e,W
1

e ∈ 0∗. Therefore, in the following we assume that

the malicious party only modifies the shares of the permuted tables Q̂g.
We divide the communication between the extended collusion and the trusted skele-
ton into three parts:

• the messages sent in the construction of the garbled circuit and the bidding by
a party that is not a slave of the last column (through [χ]), i.e., all messages
except of the messages sent by Si,t+1 ∈ TS,

• the messages sent in for the construction of the garbled circuit and the bidding
by Si,t+1 ∈ TS (through [SA]), and

• the messages sent by the action issuer AI i ∈ TS to decrypt the result of the
garbled circuit (through [AIA]), i.e., the random bits ri,o for all output gates
o.

We will denote these parts of the communication by C1, C2, and C3. Note that
C1 only consists of independent randomly chosen binary strings. Hence, it is not
possible that any adversary can deduce any information from C1. For a circuit of `
output gates C3 consists of ` bits, hence, an adversary can deduce at most ` bits of
information from these ` bits. In the remaining part of these section we will show
that an adversary cannot deduce any information from C1 and C2.
After finishing C1 and C2 the adversary receives

(Π⊕krk,e1 (⊕kŴk,e1)⊗ Π⊕krk,e2 (⊕kŴk,e2))⊕ Π⊕krk,e1 ,⊕krk,e1 ((⊕kQ̂k,g)⊕Qg)

= (Π⊕krk,e1 (⊕kŴk,e1)⊗ Π⊕krk,e2 (⊕kŴk,e2))⊕ Π⊕krk,e1 ,⊕krk,e1 (⊕kQ̂k,g)

⊕Π⊕krk,e1 ,⊕krk,e1 (Qg)

25

and
W xi,j
e ◦ ce = (⊕t+1

k=1Ŵ
ce
k,t+1,e) ◦ ce

for every input wire e with input bit xi,j. From the construction of the garbled
circuit it follows that every combination of binary strings of adequate length may
occur for

(Π⊕krk,e1 (⊕kŴk,e1)⊗ Π⊕krk,e2 (⊕kŴk,e2))⊕ Π⊕krk,e1 ,⊕krk,e1 (⊕kQ̂k,g)

and for
(⊕t+1

k=1Ŵ
ce
k,t+1,e) ◦ ce

for every input x1, x2, . . . with the same probability. As we have seen in Section 4
this even holds if the content of the random values of the parties in the extended
collusion is given. Thus, even every combination of binary strings of adequate length
may occur for

(Π⊕krk,e1 (⊕kŴk,e1)⊗ Π⊕krk,e2 (⊕kŴk,e2))⊕ Π⊕krk,e1 ,⊕krk,e1 (⊕kQ̂k,g)

and for
(⊕t+1

k=1Ŵ
ce
k,t+1,e) ◦ ce

for every input x1, x2, . . . with the same probability. It even holds if the content of the
random values of the parties in the extended collusion and if Π⊕krk,e1 ,⊕krk,e1 (⊕kQ̂k,g)
are given. Hence, the adversary cannot deduce any information from C1 and C2.
Since C3 consists of ` bits Theorem 16 follows directly.

6 Dynamic t-Private Auctions

We call an electronic auction system dynamic if it allows a bidder to change his bid
and if bidders can join a running auction. Introducing dynamism into a electronic
auction system may lead to two scenarios:

1. A bidder gets feedback whether his bid changes the result of the auction.
Hence, he gets additional information about the bids of the other bidders.

2. A bidder does not get any feedback. Then, dynamism can be reduced to the
static case where only the last bid of each bidder is used.

Talking about a dynamic secure electronic auction system, we assume that the
system works as follows:

1. The system generates an algorithm that allows to evaluate the auction with-
out revealing any information about the bids. Our system will compute an
encrypted result.

2. The bidders can deposit their bids in such a way that no party gets any
information about the values of the bids (at this moment).

3. If a bidder changes his bid all other bidders can stay inactive.

26

4. If a bidder is paying some fee, he will get the information whether he is the
winner of the auction at this moment.

5. A bidder can withdraw or change his bid such that no party gets any informa-
tion about the value of his bid (at this moment).

Note that combining the last two requirements results in some leakage (one bit) of
information about the bids of the remaining bidders. But, one can assume that the
fee makes this bit of information very expensive.
Let us first investigate whether we can recycle a garbled table of a gate for evaluating
a circuit on two different inputs. In general, we have to give a negative answer. For
a Boolean circuit C and two binary inputs x, x′ ∈ {0, 1}n of C with C(x) = C(x′) let
∆(x, x′) be the set of input variables with different values in x and x′. Furthermore,
for a subset of input variables X let ΛC(x,X) be the set of gates g such that for
some x, x′ with C(x) = C(x′) and ∆(x, x′) ⊆ X the value of g is different on x and
x′.

Observation 19 Let Γ and Γ′ be two garbled circuits and X be a subset of input
variables that may change their values. For every input pair x, x′ ∈ {0, 1}n with
C(x) = C(x′) and ∆(x, x′) ⊆ X the random strings W 0

g ,W
1
g , rg of all g ∈ ΛC(x,X)

have to be chosen independently in Γ and Γ′ to preserve privacy when evaluating Γ
on x and Γ′ on x′.

If the random strings W 0
g ,W

1
g , rg are not chosen independently in Γ and in Γ′ for all

gates g ∈ ΛC(x,X), then one can observe whether the value of g changes from x to
x′.
Let Bi be a bidder that has announced to change his bid, i.e., X = {xi,1, xi,2, . . .}.
Our goal is to find a protocol that allows all bidders Bj 6= Bi to stay inactive. Let
Γ be the garbled circuits used on the old bids, and let Γ′ be the garbled circuits
used on the changed bids. From our observation above one can conclude that all
random values W 0

g ,W
1
g , rg in Γ and in Γ′ with g ∈

⋃
x∈{0,1}n ΛC(x,X) have to be

chosen independently. Hence, we can run our protocols for all gates g ∈ ΛC(X) =⋃
x∈{0,1}n ΛC(x,X) and all wires leaving these gates. Since the values of the gates

g′ 6∈ ΛC(X) do not change their values for every input x and x′ with ∆(x, x′) ∈ X
we can recycle the random values W 0

g′ ,W 1
g′ , rg′ from Γ in Γ′. Note that for these

garbled circuits Γ and Γ′ the intermediary strings W be
e ◦ (be ⊕ re) on the wires that

are leaving gates g′ 6∈ ΛC(X) are the same for every pair of input x and x′ with
∆(x, x′) ∈ X. Hence, we only have to reevaluate the gates in ΛC(X). This can be
done by running a new bidding process for Bi and running a new evaluation process
of Γ′ by the auctioneer A.

Theorem 20 There exists a t-private protocol for a dynamic electronic auction
system for (t + 1)2 or more parties using O(dt3|Γ|) random bits, and a t-private
protocol for 2t + 1 or more parties using O(d(t + 1)t+3|Γ|) random bits where d
denotes the number of bid-changes.

27

Proof: Assume that there are d bid changes that occur successively. In the
following we fix the bid change. Let X` be the set of input gates that may change
their values in the `th bid change. Since for every input x and x′ with ∆(x, x′) ∈ X`

the values of the gates g′ 6∈ ΛC(x,X`) do not change their values, we can recycle
the random values W 0

g′ ,W 1
g′ , rg′ from Γ in the modified circuit Γ′. For all gates

g ∈ ΛC(x,X`) new garbled tables have to be constructed t–privately with respect
to the recently generated strings W ′

e and permutation bits r′k,e. To reevaluate the
circuit the bidders transfer their changed bids using the t–private bidding protocol.
The tree-protocol and the slave-efficient-protocol can be modified in a similar way.
Note that those bidders who do not change their bids remain inactive whenever a
bid changes. The t-privacy of the protocols for bidding and for the construction of
the modified garbled circuits (see Theorem 3, 5, 6, and 7) implies the t-privacy of
the protocols for bid-changes.
We have to reconstruct O(

∑d
`=1 |Λ(x,X`)|) gates. In the worst case this results in

O(dt3|Γ|) random bits for the field-protocol, respectively O(d(t+ 1)t+3|Γ|) random
bits for the tree-protocol and for the slave-efficient-protocol. �
We can use a similar protocol to extend a garbled circuit for an auction from n
to n + 1 bidders, if the comparison of the bids can be described by an associative
operator with a neutral element. In this case, we generate in the beginning a garbled
circuit for the auction system with at least one dummy bidder that gives a neutral
bid. If a new bidder joins the auction, we can simply add a subcircuit to the existing
one for the new bidder and a new dummy bidder that replaces the an old dummy
bidder with his neutral bid. To generate a resulting garbled circuit, one can run a
protocol simular to our protocol for changing a bid of an existing bidder.
Note that if changing bids goes along with a change of the circuit, e.g., the new
bid may require more bits than the old one, then our strategy above fails. In this
case we have to construct a completely new garbled circuit Γ′. To translate the
encrypted bids of the passive bidders Bj 6= Bi from the previous encryption of Γ
we can run a protocol similar to the bidding protocol. Then, for an input gate g of
Bj the auctioneer (additionally) performs the role of the bidder. Furthermore, the
auctioneer uses rg ⊕ bg instead of the input xi,j. The bits rk,g of the auction issuers

AI k are replaced by rk,g ⊕ r′k,g. So, we can translate the string W
bg
g ◦ (bg ⊕ rg) of Γ

to the string W ′bg
g ◦ (bg ⊕ r′g) of Γ′. This strategy can also be used to extend a given

garbled circuit from n to n+ 1 bidders.
The t-privacy of the protocols for bidding and for the construction of the modified
garbled circuits (see Theorem 3, 5, 6, and 7) implies the t-privacy of the protocols
for bid-changes and for extending a given garbled circuit. This implies:

Theorem 21 There exists a t-private protocol for a dynamic electronic auction
system for (t + 1)2 or more parties using O(dt3H) random bits and a t-private
protocol for (2t + 1) or more parties using O(d(t + 1)t+3H) random bits where d is
the number of bid-changes and H is the size of the final garbled circuit.

28

7 Conclusions

In this paper we present a t-private protocol for 2t + 1 parties and a more ran-
domness efficient t-private protocol for O(t2) parties for sealed bid auctions. Our
protocols are based on garbled circuits for evaluating the auction, and on strategies
for constructing such a circuit in a distributed way. Usually, the bidder-to-auctioneer
connection is the bottleneck of an electronic auction system, e.g., the bidder has a
limited bandwidth or he is not always available. Thus, we postulate that bidders
have to be involved as infrequently as possible. In our system a bidder must only
be online to bid and can stay passive during the remaining time. This feature
also holds for dynamic auctions where bids are changed or bidders join a running
auction. Finally, we analyze the information gain of Byzantine attackers on our
electronic auction system. We present a strategy for introducing dynamism into
such an electronic auction system.

References

[1] A. Beimel, On Private Computation in Incomplete Networks, 12th SIROCCO, pp.
18–33, 2005.

[2] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation, 20th STOC, pp. 1–10, 1988.

[3] M. Bläser, A. Jakoby, M. Lískiewicz, B. Siebert, Private Computation – k-Connected
versus 1-Connected Networks, 22nd CRYPTO, pp. 194–209, 2002.

[4] F. Brandt, Secure and Private Auctions without Auctioneers, Technical Report FKI-
245-02, Institut für Informatik, Technische Universität München, 2002.

[5] F. Brandt, Fully Private Auctions in a Constant Number of Rounds, 7th Annual
Conference on Financial Cryptography (FC), pp. 223–238, 2003.

[6] C. Cachin, Efficient Private Bidding and Auctions with an Oblivious Third Party,
6th ACM Conference on Computer and Communications Security, pp. 120–127,
1999.

[7] D. Chaum, C. Crépeau, I. Damg̊ard, Multiparty unconditionally secure protocols,
20th STOC, pp. 11–19, 1988.

[8] B. Chor, S. Goldwasser, S. Micali, B. Awerbuch, Verifiable secret sharing and achiev-
ing simultaneity in the presence of faults, 26th FOCS, pp. 383–395, 1985.

[9] B. Chor, E. Kushilevitz, A zero-one law for boolean privacy, SIAM J. Disc. Math.,
4(1):36–47, 1991.

[10] K. Chui, R. Zwick, Auction on the Internet - A Preliminary Study, Manuscript,
Technical report, Hong Kong University of Science and Technology, Department of
Marketing, 1999.

[11] I. Damg̊ard, Y. Ishai, Constant-Round Multiparty Computation Using a Black-Box
Pseudorandom Generator, 25th CRYPTO, pp. 378–394, 2005.

29

[12] M. Franklin, M. Reiter, The Design and Implementation of a Secure Auction Service,
IEEE Transactions on Software Engineering 22(5), pp. 302–312, 1996.

[13] M. Franklin, M. Yung, Secure hypergraphs: Privacy from partial broadcast, 27th
STOC, pp. 36–44, 1995.

[14] O. Goldreich, S. Micali, A. Widgerson, How to play any mental game or a complete-
ness theorem for protocols with honest majority, 19th STOC, pp. 218–229, 1987.

[15] M. Harkavy, H. Kikuchi, J. Tygar, Electronic Auctions with Private Bids, 3rd
USENIX Workshop on Electronic Commerce, pp. 61–74, 1998.

[16] Y. Ishai, E. Kushilevitz, Randomizing Polynomials: A New Representation with
Application to Round-Efficient Secure Computation, 41st FOCS, pp. 294–304, 2000.

[17] Y. Ishai, E. Kushilevitz, Perfect Constant-Round Secure Computation via Perfect
Randomizing Polynomials, 29th ICALP, pp. 244–256, 2002.

[18] M. Jakobsson, A. Juels, Mix and Match: Secure Function evaluation via Ciphertexts,
6th ASIACRYPT, pp. 162–177, 2000.

[19] A. Juels, M. Szydlo, A Two-Server, Sealed-Bid Auction Protocol, 6th Annual Con-
ference on Financial Cryptography (FC), pp. 72–86, 2002.

[20] H. Kikuchi, M. Harkavy, J. Tygar, Multi-round Anonymous Auction Protocols, 1st
IEEE Workshop on Dependable and Real-Time E-Commerce Systems, pp. 62–69,
1998.

[21] E. Kushilevitz, S. Micali, R. Ostrovsky, Reducibility and Completeness In Multi-
Party Private Computations, 35th FOCS, pp. 478–489, 1994.

[22] K. Kurosawa, W. Ogata, Bit-Slice Auction Circuit, 7th ESORICS, pp. 24–38, 2002.

[23] E. Kushilevitz, R. Ostrovsky, A. Rosén, Characterizing linear size circuits in terms
of privacy, JCSS, 58(1):129–136, 1999.

[24] M. Naor, B. Pinkas, R. Sumner, Privacy Preserving Auctions and Mechanism De-
sign, 1st ACM Conference on Electronic Commerce, pp. 129–139, 1999.

[25] K. Omote, A. Miyaji, A Second-price Sealed-bid Auction with Verifiable Discrimi-
nant of p0-th Root, 6th Financial Cryptography Conference (FC), pp. 57–71, 2002.

[26] A. Shamir, How to Share a Secret, Communic. of the ACM 22(11), pp. 612–613,
1979.

[27] A Mathematical Theory of Communication, The Bell System Technical Journal, Vol.
27, pp. 379-423, 1948

[28] A. Sadeghi, M. Schunter, S. Steinbrecher, Private Auctions with Multiple Rounds
and Multiple Items, 13th IEEE DEXA, pp. 423–427, 2002.

[29] P. Stechert, Dynamic Private Auctions, Diplomarbeit, Institut für Theoretische In-
fomatik, Universität zu Lübeck, Germany, January 2005.

[30] A. C. Yao, Protocols for secure computations, 23rd FOCS, pp. 160–164, 1982.

[31] A. C. Yao, How to generate and exchange secrets, 27th FOCS, pp. 162–167, 1986.

30

