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We survey the use of fixed-parameter algorithms in the field of phylogenetics, which is the study
of evolutionary relationships. The central problem in phylogenetics is the reconstruction of the
evolutionary history of biological species, but its methods also apply to linguistics, philology,
or architecture. A basic computational problem is the reconstruction of a likely phylogeny
(genealogical tree) for a set of species based on observed differences in the phenotype like color
or form of limbs, based on differences in the genotype like mutated nucleotide positions in the
DNA sequence, or based on given partial phylogenies. Ideally, one would like to construct so-
called perfect phylogenies, which arise from a very simple evolutionary model, but in practice one
must often be content with phylogenies whose “distance from perfection” is as small as possible.
The computation of phylogenies has applications in seemingly unrelated areas such as genomic
sequencing and finding and understanding genes. The numerous computational problems arising
in phylogenetics often are NP-complete, but for many natural parametrizations they can be solved

using fixed-parameter algorithms.

Received 00 Month 2004; revised 00 Month 2004

1. INTRODUCTION

1.1. Phylogenetics

The wordphylogenycomes from Greekphylon, meaning
race, andgeneia, meaning origin. In phylogenetics one
studies how different species are related evolutionary. The
basic paradigm is that species spawn new species, for
example when part of a species’ population adapts to a
changing environment. Over time the set of extant species
changes as new species emerge and other species become
extinct. The ancestral relationship between the species can
be depicted by arranging them in a tree, called aphylogenetic
tree or phylogeny, where the leaves are labeled with extant
species and where bifurcations correspond to events like
adaptations that lead to new species. Interior nodes are
labeled with ancestral species or not at all when the ancestral
species are unknown or not of interest. A classical example
of a phylogeny is the tree of life, a small part of which is
shown on the left-hand side of Figure 1, though in the tree
of life we seetaxa instead of species (a taxon is an arbitrary
grouping of organisms while the termspeciesapplies only
to the basic building blocks of biodiversity).

∗Supported by a grant for theDFG projectOptimal solutions for hard
problems in computational biology(OPAL).

†Supported by a grant for theDFG project Complexity of haplotyping
problems.

Evolutionary processes are not restricted to biology as was
already noted by Charles Darwin himself in Chapter 14 of
On the Origin of Species[23]. In linguistics, languages –
instead of species – evolve over time, resulting in a tree of
languages. Nodes of the tree are labeled by languages and
bifurcations correspond to changes of words or grammar that
resulted in new dialects or languages. A small part of the tree
of languages is shown in Figure 1.

Building phylogenies is not an easy task. The problems
start with determining the set of taxa since neither for
biological species nor for languages it is always clear where
we should draw the line. But suppose we have agreed on a
set of taxa and the task is to arrange them in a phylogeny.
Then we only know which taxa there arenow, but we do not
know which taxa therewere in the past. In rare, fortunate
cases we might have access to fossils or to text in dead
languages, but normally the path evolution took will be
unknown to us.

Even when we know all taxa in the phylogeny, including
even possibly extinct early taxa, it is still often subject to
debate how they should be arranged. To solve this problem,
one idea is to infer the phylogeny by looking at different
traits, better known ascharactersin the biological literature,
of the taxa. Characters are attributes like the form of
the skeleton or, for languages, the way a certain word is
spoken. Taxa for which the form of the skeleton is similar
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FIGURE 1. Excerpts of two important phylogenies. In the left
phylogeny, taxa label only leaf nodes. The shown portion of the
tree of languages is taken from taken from [55].

or languages for which a word is spoken in a similar way
should be in the same subtree of the phylogeny. The joint
information from many characters will often leave us with a
single phylogeny or at least few possible ones. In biology,
principal sources of characters are the phenotype of a taxon,
which is roughly “the way the organisms of the taxon look,”
but also genomic information like which genes are present in
the organisms of a taxon. In linguistics, characters include
pronunciation, word order, and more generally grammatical
structure.

The construction and study of phylogenetic trees has
many applications. First of all, a phylogeny allows us
a glimpse at how evolution works and can help us in
classifying organisms. Second, we can compare multiple
phylogenies built for the same set. For example, one
can build two phylogenies of languages, the first based on
linguistic traits and the second based on the genetic traits
of the speakers of the language. The resulting phylogenies
will match in large parts, but the places where they do not
match may be especially interesting, indicating for instance
that a population may have switched to another language
for some reason. A third, rather intriguing application of
phylogenies is their use as measures in other applications.
One such application is thehaplotype phase determination
problem,presented in detail in Section 7.2. The output for
this problem is a set of taxa, but a large number of different
sets of taxa are possible outputsa priori. The tricky part
is not so muchfiltering out the biologically most likely
solution, butmeasuringhow likely a solution is. An elegant

way of doing this is to declare those sets of taxa as “good
solutions” that can be arranged in a phylogeny.

1.2. Computational Problems in Phylogenetics

The most fundamental problems in phylogenetics are not
computational in nature. Deciding what exactly counts as
a taxon, choosing a set of characters, or deciding which
states a taxon is in are not computational problems, but
require human experience and judgment. However, once
these decisions have been made, numerous computational
problems arise that cannot be solved “by hand” when large
amounts of input data need to be processed, as is the case in
phylogeny-based haplotyping, for instance. In the following
we give an overview of the computational problems that
we address in this survey; good starting points for further
coverage of computational issues in phylogenetics are [34,
44, 63, 71].

A fundamental computational problem in phylogenetics
is the construction of a phylogeny for a given set of taxa
(detailed mathematical definitions are given later). We are
also given a set of characters and we know for each character
and each taxon thestateof the taxon with respect to the
character. For example, when the taxa are elephants and
mice and the characters are size and color, elephants are in
the state “big” with respect to the character size and “gray”
with respect to the character color, mice are in the states
“small” and “gray.” State information for taxa and characters
is typically arranged in matrices such as the ones shown in
Tables 1 and 2.

One has to choose a model of evolution that says
which phylogenies are considered good explanations of
the observed character-state matrix. A basic model is the
following: All taxa sharing a state for some character are
descendants of the same taxon. For example, if some
mutation causes elephants to be the first “big” animals,
this model insists that all other “big” animals must be
descendants of elephants. One possible way of checking
whether this model applies to a phylogeny is to check,
whether for each character and each pair of states the path
between any two taxa in the first state and the path between
any two taxa in the second state do not intersect. Such a
phylogeny is calledperfect. Naturally, the model is rather
crude since, after all, not all large animals are related, and
the model is regarded as overly simplifying by practitioners;
but see the discussion after Definition 2.2 for a justification
why we focus on perfect phylogenies nevertheless.

A second set of computational problems arises when it
is not possible to arrange taxa in a perfect phylogeny. We
then have several options: First, we can lower our standards
of what counts as a good phylogeny by allowing a small
number of “backward mutations” in the tree. Second, we
can still try to find a perfect phylogeny, but only for a subset
of the taxa or for a subset of the characters. Third, we can
claim that the data must be in error and try to find a way
– as little disruptive as possible – to modify the data such
that a perfect phylogeny can be obtained. While this is not
advisable in general (we cannot simply claim that elephants

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2007



FIXED-PARAMETER ALGORITHMS IN PHYLOGENETICS 3

TABLE 1. A character-state matrix for programming languages. The “taxa” are the
six programming languages on the left. The “characters” are the symbol used to start
a scope, the keyword used to start a module, the question of whether built-in for-
loops exist, and the question of whether it is permissible to reassign another value to a
variable. This matrix cannot be arranged in a perfect phylogeny, but if we remove the
“taxon” TEX, which did not inherit its syntax from another programming language,
the remaining rows can.

Language scope start module start for-statement variable reassignment

Pascal begin unit yes allowed
Modula begin module yes allowed
Haskell ( module no not allowed
C { – yes allowed
Java { package yes allowed
TEX { – no allowed

can fly, just to fit them into a perfect phylogeny), genomic
data is often obtained through laboratory processes in which
one cannot avoid a percentage of wrong entries.

Phylogenies need not always be constructed “from
scratch” based on character state data. Rather, we often
have access topartial phylogenies that are subtrees of the
phylogeny sought for. An example is the tree of life: We
do not wish to construct this tree based on an enormous
character database for millions of taxa. Rather, the problem
is to merge many different small phylogenies from the
literature into one big phylogeny, appropriately called a
supertree. For a related problem we also do not construct
phylogenies from scratch, but we are given several complete
candidate phylogenies obtained through external means and
our job is to compute biologically meaningfuldistances
between them – a difficult problem all by itself.

New, even more difficult computational problems arise
when our data is incomplete, which is often the case. For
certain characters and taxa we simply might not know the
state: we may not know the translation of a word into a
certain language or the genomic sequencing process may
have failed to determine the base at a certain nucleotide
position. In such cases we do not only need to find a good
phylogeny, but we must also fill in the missing entries in a
sensible manner. Needless to say that this often introduces a
whole new level of complexity.

1.3. Parametrization and Phylogenetics

Most computational problems in phylogenetics turn out
the be NP-complete, forcing us to look for heuristics,
approximation algorithms, or fixed-parameter algorithms.
The fixed-parameter approach turns out to be especially
successful.

The reason for this success is that a number of problem
parameters are, indeed, small in realistic instances for
phylogenetic problems – like the number of states per
character, the number of characters, or our tolerance for
errors. The number of states per character, for instance, is at
most four (and in many cases even two) whenever genomic
data is involved (nature kindly uses only four nucleobases)

and the running time of many algorithms is exponential in
the number of states per character, but polynomial otherwise.
Next, the number of characters in input matrices is large
in general (Smith lists 138 different characters for a set of
lice species [72]), but it is sometimes possible and necessary
to partition the character set into small subsets and apply
algorithms only to these small subsets.

In the course of the present paper we will see other
examples of parameters that are small in practice, allowing
us to construct efficient, exact algorithms for many
computational problems arising in phylogenetics.

1.4. Goals and Overview

The central goal of this survey is to highlight selected
fixed-parameter algorithms from the area of phylogenetics.
The chosen examples are intended to illustrate the diver-
sity of computational problems for which fixed-para-
meter algorithms have been developed within the area of
phylogenetics.

We address this survey to readers interested in computa-
tional issues and algorithmics and assume no detailed know-
ledge about biology. We try to give illustrative examples and
explanations, as space permits, accessible to non-experts.
We assume that you are familiar with fixed-parameter al-
gorithms, but most theorems can be understood without
knowledge about parametrized complexity classes – they
only come into play in the concluding summary. For an
introduction to fixed-parameter theory, see for example the
two monographs [27] and [61]. Except for the short proofs
of a few easy new results that we include for completeness,
no detailed proofs are included in this survey, but we tried to
at least sketch some proof ideas of theorems from the liter-
ature.

In Section 2 we introduce (one possible version of)
the formal problem of constructing a perfect phylogeny
and study how the parametersnumber of taxa, number of
characters, and number of states per characterinfluence
the tractability of the problem. In Section 3 we study
ways of measuring the deviation of a given phylogeny
from “perfection.” Section 4 treats problems where the

THE COMPUTERJOURNAL VOL. 00 NO. 0, 2007



4 GRAMM et al.

task is to find a phylogeny that is near to perfection with
respect to the introduced measures. In Section 5 we look
at problems where the task is to compute distances between
phylogenies. In Section 6 the problem of merging several
partial phylogenies is treated. In Section 7 we consider
applications in which the aim is not to construct a phylogeny
but where its construction is just a means to an end,
namely finding regulatory genomic elements, or determining
haplotype phase. In the conclusion we summarize the
complexity-theoretic results in a table and give an outlook.

2. CONSTRUCTION OF PERFECT PHYLOGENIES

In this section we study how difficult it is to construct a
perfect phylogeny. First, we define the problemPP (perfect
phylogeny) formally, and discuss possible variations. Then
we look at what happens when we fix one of the three
central parametersnumber of taxa, number of characters,
andnumber of states per character.

2.1. Formalization of the Perfect Phylogeny Problem

Fix a setC of characters, like size or color, and for each
characterc ∈ C fix is a setΣc of states for this character,
like Σsize = {small,medium,big}. Then the input for the
perfect phylogeny problem is a setS of taxa together with
one mapping for each taxons∈ S, each of which assigns an
element ofΣc to each characterc∈C.

There are three natural parameters in such inputs:

(i) The numbern of taxa.
(ii) The numberm of characters.

(iii) The maximum numberr of states a character can have.

For computational issues the names of the characters,
of the states for each character, and even of the taxa are
not really important. Therefore, we can make the notation
simpler by assuming that the setS of taxa is {1, . . . ,n},
the character setC is {1, . . . ,m}, and each state set isΣi =
{0, . . . , r − 1}. It is customary to start the states with 0 so
that if there are just two states, then they are 0 and 1. The
states of a taxon can now be described by a vector from
the setΣ1× ·· · × Σm = {0, . . . , r − 1}m. Thus, then input
taxa are described by length-m vectors of numbers from
{0, . . . , r − 1}. Another way to think about the input is in
terms of an(n×m)-matrix with entries from{0, . . . , r −1}.
Be cautioned that in the biological literature these matrices
are sometimes presented in transposed form.

Before we defineperfectphylogenies, let us first define
phylogenies.

DEFINITION 2.1 (PHYLOGENY). Let A be a matrix
describing n taxa. Aphylogeny for the matrixA is a tree
T whose node set V is labeled using a labeling function
l : V →{0, . . . , r−1}m such that:

(i) Every row of A, that is, each taxon’s state vector, is a
label of some node in T .

(ii) The labels of the leaves of T are rows of A. (By
comparison, the labels of inner nodes correspond to

Chelopistes guttatus (000)

Osculotes macropoda (010)

Oxylipeurus dentatus (111)

Upupicola upupae (002)

Perineus nigrolimbatus (202)

(000)

(000)

(010)

(002)

FIGURE 2. One possible perfect phylogeny for the character-state
matrix from Table 2. The labels assigned to the vertices of the
phylogeny are shown in parentheses.

ancestral taxa, which need not, but may, be part of the
input.)

Be cautioned that phylogenetictrees may not always
be the best way of describing evolutionary relationships,
because they do not account for so-calledhorizontal gene
transfersin which a gene is transfered between unrelated
taxa by a “mixing” of the genetic material. In a study
of conserved loci in bacterial pathogens Feil et al. [33]
conclude that for lineages within a species “over the long
term, the impact of relatively frequent recombination is to
obliterate the phylogenetic signal in gene trees such that
the relationships between major lineages of many bacterial
species should be depicted as a network rather than a tree.”
Indeed, comparisons of the different genomes that were
sequenced during the last decade show that such transfers
are quite frequent, threatening the very idea of trying to
explain evolutionary history using trees, see the reviews [65]
or [79] for an overview and as literature starting points. In
the present survey we restrict attention to phylogenetictrees,
nevertheless, since we should try to understand these first,
before tackling the more difficult phylogeneticnetworks. We
come back to phylogenetic networks in the outlook at the end
of this paper.

Recall that in the evolutionary model behind perfect
phylogeny all taxa sharing a state for some character have
the same ancestor. This can be formalized as follows:

DEFINITION 2.2 (PERFECT PHYLOGENY). A phylogeny
is perfect if for every character c∈ C and every state
j ∈ Σc = {0, . . . , r − 1}, the graph induced by the set of
nodes labeled by a state vector(s1, . . . ,sm) with sc = j is
connected.

DEFINITION 2.3 (PERFECT PHYLOGENY). The input for
the problemPERFECT PHYLOGENY(abbreviatedPP) is a
character-state matrix A for n taxa. The task is to decide
whether there exists a perfect phylogeny for A.

Some remarks on the definition are in order both with
respect to its biological relevance and to the chosen
mathematical formalization.

Concerning the biological relevance, one can object that
real biological character-state matrices rarely admit a perfect
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TABLE 2. Character-state matrix that is an instance ofPP.
It is a submatrix of a much larger character-state matrix,
compiled by Smith [72], that contains entries for 56 species
and 138 characters. In the above matrix, the five rows are five
different lice species from the suborder Ischnocera (Phthiraptera).
These lice are permanent parasites of many birds and mammals
throughout the world. The columns are three characters referring
to the form of the head of adult lice. The numbers in the
matrix encode the different states of the characters. For example,
for the charactermarginal carina the 0-entries mean that the
adult marginal carina “forms a complete thickened band running
anteriorly around the preantennal region of the head” and the 1-
entries mean that it “forms a band which is interrupted laterally
(partially or completely), medially (dorsally and/or ventrally) or
both” [72].

Species hyaline marginal premarginal
margin carina carina

Chelopistes guttatus 0 0 0
Osculotes macropoda 0 1 0
Oxylipeurus dentatus 1 1 1
Upupicola upupae 0 0 2
Perineus nigrolimbatus 2 0 2

phylogeny. For example, Table 2 displays a real-life instance
of PP and a perfect phylogeny for this matrix is shown
in Figure 2. However, this table just a small part of a
much larger matrix compiled by Smith [72] and the whole
matrix does not admit a perfect phylogeny. Nevertheless,
there are several reasons why we should still study perfect
phylogenies.

• PP is in some sense the most basic computational
problem in phylogeny construction and we would like
to understand this problem well before we attack more
complicated settings.

• Even if data cannot be arranged in a perfect phylogeny,
we may still try to find a phylogeny that is “as perfect
as possible,” see Section 4.

• There are biological settings where the perfect
phylogeny model works quite well. Considersingle
nucleotide polymorphism sites(SNPsites) for instance,
which are specific base positions in the genome where
we observe a variation across the population. The
base (state) at such a position might have been adenine
originally and a mutation caused it to change to
cytosine in part of the population. Such mutations are
rare – oftenSNP sites are hundreds of bases apart. If
SNPmutations occur randomly, it is extremely unlikely
that the same site will mutate more than once; and
having at most one mutation per site exactly defines
the evolutionary model of perfect phylogenies. Note,
however, that this argument breaks down when the
chromosomal crossing over effect has to be taken into
account and the perfect phylogeny model forSNPs
works only when a small number ofSNP sites are
considered.

Concerning the mathematical formalization of perfect
phylogenies, we chose a broad definition for this survey. We
allow an arbitrary tree topology, the input taxa can be found
both at the leaves and at inner nodes, and the same label may
be found at different nodes. We only insist that there are no
superfluous leaves, even though this condition is not strictly
necessary either. Other definitions in the literature impose
more structure on perfect phylogenies.

• It is often required that the set of leaf labels equals
the set of rows of the input matrix, that is, it is not
allowed to place a taxon only at inner nodes. A perfect
phylogeny in the sense of Definition 2.2 can be turned
into a phylogeny with the input taxa at the leaves by
adding a pending leaf to all inner nodes that harbor an
input taxon.

• It is often convenient to have more control over the
tree topology. It is particularly convenient to consider
binary trees, which are trees in which every node either
has degree one (leaves) or degree three (inner vertices).
This can also be achieved easily: Replace all nodes of
too high degree by small binary trees with all nodes
labeled by the original node’s label; and remove all
nodes of degree two while joining their adjacent nodes.

• It is sometimes useful to impose the quite natural
condition that all labels are distinct. This can be
accomplished by contracting subtrees whose nodes all
have the same label (and, indeed, sets of nodes that
are labeled identically must form a connected subtree
in a perfect phylogeny). However, this contraction
process may destroy the binary tree property and also
the property that input taxa must label leaves.

In a perfect phylogeny there is no designated root node
and, in general, it may be debatable which taxon should be
considered the “root.” If, for whatever reason, a root node
has been chosen, the phylogeny is calleddirected.

Having defined (the decision version of) the perfect
phylogeny problem, the natural question is, how difficult is
this problem? Unfortunately, it isNP-complete.

THEOREM 2.1 ([15, 73]). PP is NP-complete.

This result suggests that in order to tackle the problem
we must look at restricted versions. We do so by fixing the
different central parameters numbern of taxa, numberm
of characters, and the maximum numberr of states per
character.

2.2. Number of Taxa as the Parameter

The first restriction is to limit the numbern of taxa in the
input. Intuitively, if there are just, say, four taxa, it should
not be particularly hard to find out whether we can arrange
them in a perfect phylogeny – after all, there are only a fixed
number of tree topologies for them.

THEOREM 2.2. PPcan be solved in time O(2nn! ·m).

Proof. For a fixed binary tree topologyT and a one-to-one
assignment of elements inSand leaves ofT, it can be tested
in time O(nm) whether the the inner nodes ofT can be
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labeled in a way such thatT is a perfect phylogeny forS.
The number of possible binary trees withn distinctly labeled
leaves is known to be 1· 3 · 5 · . . . · (2n− 5) ≤ 2n(n− 2)!.
Therefore, enumerating all binary trees forSand testing each
for being a perfect phylogeny forSyields the stated running
time.

Theorem 2.2 shows that our intuition was correct and
PP is (more or less trivially) fixed-parameter tractable with
respect ton. The sketched algorithm is very simple and
cannot handle a numbern of taxa that is greater than
perhaps 10 – while in practical situations we typically
have over a hundred taxa. More clever exhaustive search
algorithms in phylogenetics push the maximum number of
taxa that can be handled to between 12 on desktop machines
and about 15 on workstations; but what we really would like
to find is a fixed-parameter algorithm for the parametern
based, ideally, on a kernelization algorithm followed by a
search tree algorithm, yielding a running time as the one
stated in the below open problem.

OPENPROBLEM 2.3. Is there a fixed-parameter algorithm
for PPwith respect to the parametern with a running time in
O

(
cn +(mr)O(1)) for somec close to 1?

2.3. Number of Characters as the Parameter

Returning to an arbitrary number of taxa, we now have
a look at what happens when we fix the numberm of
characters. This is justified in an important practical
application. As argued by Gusfield in [45], the perfect
phylogeny model explains genomic variations well when
crossing over effects are not present. This implies that
for short genomic sequences, the perfect phylogeny model
applies, and for longer sequences, we can try to partition the
sequence into short intervals and derive perfect phylogenies
for these small sets of characters.

Once more, the intuition is that it should be easy to find a
perfect phylogeny if there are only, say, three characters and,
indeed, Morris, Warnow, and Wimer present an algorithm
with the following running time:

THEOREM 2.4 ([56]). PPcan be solved in time

O(rm+1mm+1 +nm2).

Sketch of proof ideas.The idea is to show thatPP is
polynomially equivalent to the problem of triangulating
colored graphs. For this latter problem we are given a graph
G = (V,E) and a coloringc: V →C, and the task is to find
a supergraphG′ of G that is properly colored byc and that
is triangulated (every cycle of length at least four contains a
chord). The number of colors for the triangulated colored
graphs problem corresponds to the number of characters
in PP.

Using a different approach, Agarwala and Fernández-
Baca arrive at the following running time:

THEOREM 2.5 ([2]). PPcan be solved in time

O
(
(r−n/m)m · rnm

)
.

For fixedm, both of the above time bounds are polynomial
in n and r. However, neither algorithm shows that the
problem is fixed-parameter tractable as we still havem in
the exponent and another input parameter in the base. The
following theorem of Bodlaender et al. shows that it is
unlikely that this can be remedied:

THEOREM 2.6 ([14]). For every t,PP with parameter m
(number of characters) isW[t]-hard.

Sketch of proof ideas.Interestingly, this hardness result is
also proved by exploiting the equivalence ofPP to the
problem of triangulating colored graphs.

2.4. Number of States Per Character as the Parameter

The third natural parameter for the perfect phylogeny
problem is the number of states per character. Fixed-
parameter results for this number are especially important
since it is, indeed, small in many applications. Consider
for instance an input in which characters are nucleotide
positions in the genome and the possible states for each
character are the four bases adenine, cytosine, guanine, and
thymine. Then the number of states is four or, if we also take
alignment-induced gaps into account by adding a “no-data”
or “gap” state, five. Even better, in applications such as the
phylogeny-based haplotyping presented in Section 7.2, we
may assume that at most one mutation per site occurs and,
thus, there are only two different states for each character.

The first fixed-parameter algorithm for the parameterr
was proposed by Agarwala and Fernández-Baca. It has the
following running time:

THEOREM 2.7 ([1]). PPcan be solved in time

O
(
23r · (m3n+m4)

)
.

This result was later improved by Kannan and Warnow.

THEOREM 2.8 ([51]). PPcan be solved in time

O(22r ·m2n).

An O(m2n) algorithm for the special caser = 3 had
already been achieved by Dress and Steel [29]. Kannan and
Warnow [50] give anO(mn2) algorithm forr = 4.

For the special caser = 2 one can make use of a simple,
but powerful characterization of matrices that admit a perfect
phylogeny. The characterization is in terms of a forbidden
induced submatrix and has been rediscovered independently
by several authors, amongst other in [31] and [57].

THEOREM2.9. For r = 2, a matrix A of taxa has a perfect
phylogeny if and only if it does not contain the following
induced submatrix: (

0 0
0 1
1 0
1 1

)
.

Employing this characterization, which will also play a
role in Section 4.2, Gusfield devised an algorithm running in
linear time.

THEOREM 2.10 ([43]). For r = 2, PP can be solved in
time O(mn).
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The results of this section can be summed up as follows:
PP with respect to either of the parametersn andr (number
of taxa and number of states per character) is inFPT, but
with respect to the parameterm (number of characters) it is
in XP and hard forW[t] for all t, see also Table 3 on page 20.

3. MEASURES OF DEVIATION FROM
PERFECTION OF PHYLOGENIES

In the previous section we studiedperfectphylogenies. In
practice, we often have to deal with imperfect phylogenies
since, in reality, input matrices only rarely admit a perfect
phylogeny. In this case we may look for a phylogeny that
is at least “near” to being perfect instead. For this, we need
to measure how strongly a phylogeny deviates from being a
perfect phylogeny.

3.1. Measures Based on Relaxed Evolutionary Models

The basic assumption of the evolutionary model underlying
perfect phylogenies is that mutations of a character to
some state happen only once. We start with two measures
that count, in different ways, how often this assumption
is violated. Note that the input for these problems is a
phylogeny, not a matrix. In the closely related Section 4.1
we will treat, for each measure, the question of findingsome
phylogeny for an input matrix that minimizes the distance to
perfection.

The first measure is thepenaltyof a phylogeny, due to
Ferńandez-Baca and Lagergren [35].

DEFINITION 3.1 (LENGTH AND PENALTY OF A PHYLO-
GENY). For an edge of a phylogeny connecting nodes u
and v, we define thelengthof the edge as the Hamming dis-
tance of u and v (the number of characters where the states
differ). Thelength of a phylogenetic tree T is the sum of
lengths taken over all edges of the tree. Thepenaltyof a
phylogenetic tree T is defined as

penalty(T) = length(T)− ∑
c∈C

(rc−1),

where rc is the number of states of character c that are
present in the phylogeny.

The idea behind this measure is the following: The length
of an edgee connecting taxau and v is the number of
mutations that occurred betweenu and v. For a perfect
phylogeny a new state is introduced by a mutation only once
and therefore every characterc contributes exactlyrc−1 to
the length of the tree. Hence, the penalty of a tree counts
how often the assumption “each new state is introduced only
once by a mutation” is violated. Perfect phylogenies have
penalty 0.

The second measure is thephylogenetic number, due to
Goldberg et al. [39]. For a statej and a characterc let Tc, j

denote the subgraph of the phylogenetic treeT induced by
the set of nodes whose labels are in statej for the characterc.
Then the phylogenetic number is defined as follows:

DEFINITION 3.2 (PHYLOGENETIC NUMBER). The
phylogenetic numberof a phylogeny T is the maximum

number of times that any given state arises in T , that is,
the maximum number, taken over all characters c and all
states j, of connected components in Tc, j . Phylogenies with
phylogenetic number̀are called`-phylogenies.

A 1-phylogeny is the same as a perfect phylogeny. Unlike
the penalty, which bounds thetotal number of violations
of the basic evolutionary model, the parameter` does not
restrict the total number of violations, but violations may
not “concentrate” at a single state.

A third measure of a similar flavor is thenumber of bad
states. It is due to Moran and Snir [58] who study how to
get rid of bad states by a minimal number of recolorings,
compare Definition 3.6 in the next subsection.

DEFINITION 3.3 (NUMBER OF BAD STATES). Given a
phylogeny T and a character c, thecharacter’s number
of bad statesis number of states j for which Tc, j is not
connected. Thenumber of bad statesof a phylogeny T is the
maximum numbers of bad states taken over all characters.

Clearly, for a given phylogeny all of the above measures
can be computed in polynomial time.

One can easily define further measures of a similar spirit;
for instance, we could maximize over the number of bad
states per character or sum over the number of times a given
state arises inT, and so on, leading to an abundance of
possible measures and only few hints as to which measure
might be most appropriate in a particular biological setting.

OPEN PROBLEM 3.1.Do a comparative study of the
introduced and similar measures with respect to their
biological relevance.

3.2. Measures Based on the Modification of Input
Phylogenies

We now introduce measures that are based on the idea that
if the input data does not admit a perfect phylogeny, the data
must be flawed. One then tries to modify or even remove
the taxa of a given phylogeny until a perfect phylogeny is
reached. Note, again, that the input is aphylogeny, not a
matrix. The taxa are already arranged in a tree and we only
wish to know how the particular input phylogeny needs to
be modified to arrive at a perfect phylogeny. In Section 4.2
we study the related, but different, problem of modifying
a character-state input matrix so that the resulting matrix
admits a perfect phylogeny.

For the first measure of this type one tries to prune a
phylogeny until it becomes perfect.

DEFINITION 3.4 (TREE PERFECTION BY TAXA RE-
MOVAL ). The input forTREE PERFECTION BY TAXA RE-
MOVAL is a phylogeny T and a number k. The task is to
decide whether we can turn the phylogeny T into a perfect
phylogeny by repeatedly cutting away leaves such that at
most k of the original leaves are removed.

It is not straightforward how to minimize the number
of taxa removals since there are many ways to prune a
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phylogeny and, indeed, this problem isNP-complete already
for r = 2 as the following theorem shows.

THEOREM 3.2. For every r≥ 2, TREE PERFECTION BY

TAXA REMOVAL is NP-complete.

Proof. The problem clearly is inNP. Hardness is shown by
reducingVERTEX COVER to it. For a graphG = (V,E) with
|V| = n and |E| = m construct a star-shaped phylogenyT
with one center node andn leaves, one for each vertexv∈V.
The taxa havem charactersce, one for each edgee∈ E.
Each character has two states 0 and 1. The center node is
labeled 0m. The leaf inT corresponding to vertexv in G
is labeled with the character-state vector that has state 1 for
characterce if and only if v is an endpoint ofe. Now, for
each edge there are two taxa (leaves) in the phylogeny for
which the state ofce is 1. At least one of these taxa has to
be removed to make the phylogeny perfect, because of the
0m vector in the “center.” Therefore the vertex covers ofG
correspond exactly to sets of leaves whose removal letsT
become perfect.

Slight modifications of this proof show that the problem
remains NP-complete for binary phylogenies, or if one
defines phylogenies in a way such that only leaves are
labeled with taxa.

OPEN PROBLEM 3.3. Is TREE PERFECTION BY TAXA

REMOVAL fixed-parameter tractable with respect to the
parameterk (number of removed taxa)?

A second measure counts how many characters must
be removed (disregarded) so that the phylogeny becomes
perfect. This number is much easier to compute.

DEFINITION 3.5 (TREE PERFECTION BY CHARACTER

REMOVAL). The input forTREE PERFECTION BY CHAR-
ACTER REMOVAL are a phylogeny T and a number k. The
task is to decide whether the phylogeny T can be turned into
a perfect phylogeny by disregarding k characters.

THEOREM 3.4. TREE PERFECTION BY CHARACTER

REMOVAL can be solved in polynomial time.

Proof. A character is either “in error” (because there is a
state such that the set of all taxa of this state for the character
is not connected, which can be checked in polynomial time)
or the character is “clean.” Wemustdisregard all erroneous
characters and this suffices.

A third measure, implicitly introduced by Moran and
Snir [58], is based on a more fine-grained analysis of the
erroneous characters. Instead of just disregarding those
characters that violate the connectedness condition, we try
to “fix them” by changing the states at a minimal number
of places. Such a change of state may also be regarded as
a recoloring since states correspond to colors in equivalent
formulations of the perfect phylogeny problem.

DEFINITION 3.6 (RECOLORING NUMBER). Given a
phylogeny T , therecoloring numberis the minimal number
of state changes (the number of times we need to change

a state in some node label) needed to arrive at a perfect
phylogeny.

DEFINITION 3.7 (TREE PERFECTION BY RECOLORING).
The input forTREE PERFECTION BY RECOLORINGare a
phylogeny T and a number k. The task is to decide whether
the recoloring number of T is at most k.

Finding an optimal recoloring for one character is not
influenced by recolorings necessary for another character,
so we can compute the recoloring number for each character
separately. Hence, the problem reduces to the problem for
a single character (calledCONVEX RECOLORING OF TREES

by Moran and Snir), which Moran and Snir show to beNP-
complete. Indeed, Moran and Snir show something even
stronger.

THEOREM 3.5 ([58]). TREE PERFECTION BY RECOL-
ORING is NP-complete, even if we allow only instances
where the phylogeny forms a path and where there is only
a single character.

On the other hand, Moran and Snir present an algorithm
for computing the recoloring number. Recall thatb is the
number of bad states, see Definition 3.3, which are the states
(or colors) for which some action needs to be taken.

THEOREM 3.6 ([58]). TREE PERFECTION BY RECOL-
ORING can be solved in time

O
((

b
logb

)
b ·bmn4

)
.

The above theorem shows that computing the recoloring
number is fixed-parameter tractable with respect to the
number of bad states.

OPEN PROBLEM 3.7.With respect to which other
parameters isTREE PERFECTION BY RECOLORINGfixed-
parameter tractable?

4. CONSTRUCTION OF GOOD PHYLOGENIES

In the present section we study algorithms that construct
phylogenies that are “almost” or “nearly” perfect. To define
what counts as a good phylogeny, we use the measures
introduced in the previous section. Having fixed a measure,
our objective is now to find a phylogeny of minimal measure
for a given input matrix. Intuitively, this is a much more
difficult problem than the ones studied in the previous
section, where we just wanted to compute the measure of
a single phylogeny – and often already this seems difficult.
However, it is conceptually possible that it is hard to
compute a measure for a given phylogeny, but still easy
to constructsomephylogeny of minimal measure for given
input matrix.

4.1. Minimizing Penalty, Phylogenetic Number, and
Number of Bad States

Let us start with algorithms that find phylogenies minimiz-
ing the penalty (number of excess mutations) from Defini-
tion 3.1, the phylogenetic number (one plus the maximum
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of the number of excess mutations per state) from Defini-
tion 3.2, or the number of bad states (number of states for
which an excess mutation has occurred) from Definition 3.3.

DEFINITION 4.1 (MEASURE MINIMIZATION PROB-
LEMS). The input for the problemsPHYLOGENETIC PEN-
ALTY MINIMIZATION , PHYLOGENETIC NUMBER MINIMIZ-
ATION, and PHYLOGENETIC BAD STATES MINIMIZATION

is a matrix A of taxa and a number p. The task is decide
whether there exists a phylogeny for A of penalty at most p,
with a phylogenetic number of at most p, or with at most p
bad states.

Ferńandez-Baca and Lagergren [35] call phylogenies
that minimize the penalty “near-perfect,” but we use
PHYLOGENETIC PENALTY MINIMIZATION for consistency.

All problems are generalizations ofPP since when the
penalty is 0 (or 1, for the phylogenetic number), the task
is simply to decide whether a perfect phylogeny exists. This
shows that we cannot hope for a fixed-parameter algorithm
for any of these problems with respect to the parameterp
alone. If we take the parameterr also into account, two
theorems are known about minimizing the penalty.

THEOREM 4.1 ([35]). PHYLOGENETIC PENALTY MIN-
IMIZATION can be solved in time

O
(
mO(p)2O(p2r2) ·n

)
.

THEOREM 4.2 ([12]). For r = 2, PHYLOGENETIC

PENALTY MINIMIZATION can be solved in time

O
(
2O(p2) ·nm2).

Theorem 4.2 tells us that for the particularly interesting
case of only two states per character there is a fixed-
parameter algorithm for finding a good phylogeny with
respect to the parameter penalty.

Much less is known about minimizing the phylogenetic
number or the number of bad states.

OPEN PROBLEM 4.3.For which parameters or para-
meter pairs arePHYLOGENETIC NUMBER MINIMIZATION

or PHYLOGENETIC BAD STATES MINIMIZATION fixed-
parameter tractable?

4.2. Minimizing the Modification of Input Data

The next measures that we considered were based on the
idea that one may modify the input to arrive at a perfect
phylogeny. Trying to minimize these measures leads to the
following problems:

DEFINITION 4.2 (PP BY TAXA REMOVAL). The input for
PP BY TAXA REMOVAL is a matrix A of taxa and a number k.
The task is to remove at most k taxa (rows) from A such that
the resulting matrix admits a perfect phylogeny.

DEFINITION 4.3 (PP BY CHARACTER REMOVAL). The
input for PP BY CHARACTER REMOVALis a matrix A of taxa
and a number k. The task is to remove at most k characters
(columns) from A such that the resulting matrix admits a
perfect phylogeny.

Since for the caser = 2 we have a characterization of
matrices that admit a perfect phylogeny by a forbidden
submatrix, see Theorem 2.9, the following problem becomes
important forr = 2.

DEFINITION 4.4 (ROW DELETION). For a fixed matrix B,
the input for theROW DELETION(B) problem is a matrix A
and a number k. The task is to remove at most k rows from
A such that the resulting matrix does not contain B as an
induced submatrix.

Combining the results proved in [78] on the row deletion
problem and results on the fixed-parameter tractability of the
hitting set problem, one gets the following results.

THEOREM 4.4. For every r≥ 2, both PP BY TAXA

REMOVAL and PP BY CHARACTER REMOVAL are NP-
complete.

THEOREM4.5. For r = 2, PP BY TAXA REMOVAL can be
solved time O(3.30k +n4) and also in time O(2.18kn+n4).

THEOREM4.6. For r = 2, PP BY CHARACTER REMOVAL

can be solved in time O(1.29k +m2).

Proof. For r = 2, the PP BY CHARACTER REMOVAL

problem is equivalent (by an exchange of the roles of rows
and columns) toROW DELETION

(
0 0 1 1
0 1 0 1

)
. Again for r = 2,

PP BY TAXA REMOVAL is the row deletion problem for the
transposed(4× 2)-matrix, but it can also be reduced ton

instances ofROW DELETION
(

0 1
1 0
1 1

)
. In [78] Wernicke et

al. establish a close relationship betweenROW DELETION

and the d-HITTING SET problem. The task in thed-
HITTING SET problem is to find a hitting set of size at
mostk for a family of sets of size at mostd. On the one
hand, this relation can be used to show thatPP BY TAXA

REMOVAL andPP BY CHARACTER REMOVALfor r = 2 are
NP-complete. On the other hand, fixed-parameter algorithms
for the d-HITTING SET problem with respect tok at once
yield fixed-parameter algorithms forROW DELETION(B)
with respect to the parameterk for matricesB with d rows.
For 3-HITTING SET, Fernau [36] gives an algorithm with
running timeO(2.18k +n), for 4-HITTING SET Niedermeier
and Rossmanith [62] give an algorithm with running time
O(3.30k +n). For the 2-HITTING SET problem, which is the
well known vertex cover problem, Chen, Kanj, and Jia [18]
give an algorithm with running timeO(1.29k +kn).

For larger r, where no characterization in terms of
forbidden submatrices is known, the complexity of the
removal problems is open.

OPEN PROBLEM 4.7.Are PP BY TAXA REMOVAL and
PP BY CHARACTER REMOVAL with parameterk fixed-
parameter tractable for allr?

DEFINITION 4.5 (PP BY RECOLORING). The input forPP

BY RECOLORING is a matrix A of n taxa and a number k.
The task is to decide whether A has a phylogeny with
recoloring number of at most k.
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Recall that computing the recoloring number of agiven
phylogeny is fixed-parameter tractable with respect to the
parameterb (number of bad states), but nothing is known
for the problemPP BY RECOLORING.

OPEN PROBLEM 4.8.How difficult is PP BY RECOLOR-
ING?

5. COMPUTING DISTANCES BETWEEN
PHYLOGENIES

In the present section we study how difficult it is to
compute the distance between phylogenies, which need not
be perfect. Computing such distances is important when
several candidate phylogenies are given, obtained either
computationally by different methods or compiled from
different literature sources. We discuss three classical,
well-known editing distance measures as well as a recently
introduced distance measure based on planar embeddings of
the involved trees.

One way to define a distance between phylogenies is to
count the number of modifications necessary to transform
one phylogeny into another. Possible modifications include
deletion and insertion of taxa or the movement of a
subtree of the phylogeny to another place. For different
sets of allowed modifications, we get different notions of
distance. Three increasingly general modifications have
been studied extensively in the literature, see the book
chapter of DasGupta et al. [24] for an entry point. Usually
these operations are considered only onundirected, binary
phylogenies in whichtaxa label only leaves.

The first operation is thenearest neighbor interchange.
In a binary phylogeny, every internal edge has four subtrees
attached to it (two at the one end of the edge and two at the
other end) and the nearest neighbor interchange exchanges
two such subtrees. This means that the treeA

B
C
D can be

changed intoA
C

B
D or into A

D
C
B .

The second operation is thesubtree prune and regraft
operation. Here we are allowed to cut an edge anywhere
in the phylogeny and to reattach (regraft) the subtree that we
have cut away at some other place. In detail, starting with a
phylogeny, we consider some edge connecting two nodesu
andv. Let Tu andTv be the two subtrees connected by the
edge. Then the subtree prune and regraft operation allows
us to cut the edge betweenu andv and to reattach the tree
Tv at some other place inTu. To reattach the treeTv, we
split an edge inTu by adding a new node in the middle and
connect the nodev to that new node, see also Figure 3. The
nodeu, which now has degree two, is removed to make the
tree binary again. While not quite obvious, it is not hard
to see that nearest neighbor interchange is a special case of
subtree prune and regraft.

The subtree prune and regraft operation models a
horizontal gene transfer, where a gene is transfered between
unrelated taxa by a mixing of their genetic material. As we
pointed out in the remark after Definition 2.1, we cannot
hope to fully understand evolutionary processes without
taking horizontal gene transfer into account. In a survey of

Subtree prune. . .

Escherichia coli

Staphylococcus aureus

Haemophilus influenzae

plants
fish

house mouse

humans

wild boar

dragonflies

beetles

u

v

. . . and regraft

Escherichia coli

Staphylococcus aureus

Haemophilus influenzae

plants
fish

dragonflies

beetles

house mouse

humans

wild boar

v

FIGURE 3. Example of how the subtree prune and regraft
operation works. In the left phylogeny the edge betweenu andv is
cut and then the tree rooted atv is regrafted at a new position in the
right phylogeny. The right phylogeny takes the presence or absence
of the gene encodingN-acetylneuraminate lyase into account. This
gene is present in vertebrates and bacteria but not in the other
taxa, suggesting that a horizontal gene transfer took place. The
announcement [54] inNaturethat humans may have acquired over
a hundred genes directly from bacteria made newspaper headlines,
but the twoSciencearticlesMicrobial genes in the human genome:
Lateral transfer or gene loss?[69] and Are there bugs in our
genome?[7] quickly challenged the findings and suggest other
explanations, at least for most genes.

the importance of horizontal gene transfer [38] Gogarten,
Doolittle, and Lawrence point out that “accumulating
prokaryotic gene and genome sequences reveal that the
exchange of genetic information through both homology-
dependent recombination and horizontal (lateral) gene
transfer (HGT) is far more important, in quantity and
quality, than hitherto imagined. The traditional view,
that prokaryotic evolution can be understood primarily in
terms of clonal divergence and periodic selection, must be
augmented to embrace gene exchange as a creative force,
itself responsible for much of the pattern of similarities and
differences we see between prokaryotic microbes.”
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The third operation is thetree bisection and reconnection
operation. This operation is nearly the same as the subtree
prune and regraft operation, only we now allow to connect
an arbitrary node inTv to Tu, rather than only the nodev.
This operation is more general than the subtree prune and
regraft operation, but one can simulate a tree bisection and
reconnection operation by two subtree prune and regraft
operations.

DEFINITION 5.1 (DISTANCE PROBLEMS). The input for
the three problemsNNI DISTANCE, SPR DISTANCEandTBR

DISTANCE are two binary, undirected phylogenies with input
taxa labels only at the leaves and a distance d. The task
is to decide whether d nearest neighbor interchanges, d
subtree prune and regraft operations, or d tree bisection
and reconnection operations suffice to transform the first
phylogeny into the second, respectively.

Computing the distance between phylogenies turns out to
be a hard job. It is known that computing the distance of
two phylogenies with respect to either the nearest neighbor
interchange operation or the tree bisection and reconnection
operation isNP-hard and it is strongly suspected that the
same is true for the subtree prune and regraft operation.

THEOREM 5.1 ([25]). NNI DISTANCE is NP-complete.

Sketch of proof ideas.The hardness is shown by a rather
involved reduction from EXACT COVER BY 3-SETS.
Interestingly, the hardness was open for a long time and
appeared as an open problem in numerous papers like
[68, 77, 22], just to name the earlier ones.

OPEN PROBLEM 5.2. Is SPR DISTANCE also NP-
complete?

(An NP-completeness proof forSPR DISTANCE given
in [48] turns out to be incorrect as argued by Allen and
Steel [4], but it might be possible to fix the proof.)

THEOREM5.3 ([4, 48]). TBR DISTANCE is NP-complete.

THEOREM 5.4 ([4]). TBR DISTANCE can be solved in
time O

(
dO(d) +n4

)
.

Sketch of proof ideas.No exact time bound is given in [4];
the one stated above is a loose upper bound that we derived
by generously bounding the running time of the algorithms
given in the paper. As the running time formula suggests,
the O

(
dO(d) + n4

)
algorithm uses a kernelization algorithm

running in time O(n4) to reduce the original problem
instance to an instance of size at mostO(d). This reduced
instance can then be solved by brute force.

The kernelization is based on two easy reduction rules:
First, if a pendant subtree occurs identically in both trees,
then in both trees we replace the subtree by a single leaf
that gets a unique new label. Second, if a chain of pendant
subtrees occurs identically in both trees, the whole chain
can be replaced by a chain of three leafs labeled with three
new labels, see Figure 4. The kernelization algorithm simply
applies these rules until neither rule can be applied any more.
The resulting trees will then have sizeO(d).

Input trees for the kernelization algorithm

X

T1 T2 T3

. . .

Tz

Y

X ′

T1 T2 T3

. . .

Tz

Y ′

Trees after second reduction step

X

a b c

Y

X ′

a b c

Y ′

FIGURE 4. The second reduction rule in the kernelization
algorithm forTBR DISTANCE. Each capital letter is a subtree, each
lowercase letter is a label.

OPEN PROBLEM 5.5.Are NNI DISTANCE or
SPR DISTANCE with parameterd (distance) also fixed-
parameter tractable?

We conclude this section with a distance measure that
was introduced in [37]. It deviates from the above ones
in that it is based on planar embeddings of the two trees
involved. Given a leaf-labeled tree, a linear ordering on its
leaves is calledsuitable if the tree can be embedded into
the plane such that its leaves are mapped to a straight line
in which the given order is maintained. Given two orderings
on the same label set, theircrossing numberis the number of
edge crossings when drawing the orderings onto two parallel
layers and connecting the corresponding labels by edges, see
Figure 5 for an example. We then obtain a definition of
distance for trees as follows:

DEFINITION 5.2 (CROSSING DISTANCE). Given two
leaf-labeled trees T1 and T2 with the same leaf set, their
crossing distanceis the minimal crossing number between
two suitable orderings, one with respect to T1 and one with
respect to T2.

Note that under this definition trees with different
topologies may have distance 0.

DEFINITION 5.3 (CROSSING DISTANCE). The input for
CROSSING DISTANCEare two leaf-labeled trees T1 and T2
with the same n element leaf set and a distance d. The task
is to check whether the crossing distance between T1 and T2
is at most d.

The problem is calledTWO-TREE CROSSING MINIMIZA-
TION by Fernau et al. [37]. They show that it isNP-complete,
but fixed-parameter tractable with respect to parameterd.
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Escherichia coli

Staphylococcus aureus

Haemophilus influenzae

plants

house mouse

humans

wild boar

fish

dragonflies

beetles

Escherichia coli

Staphylococcus aureus

Haemophilus influenzae

house mouse

humans

wild boar

plants

fish

dragonflies

beetles

FIGURE 5. Visualization of the crossing number computation for the two phylogenies from Figure 3. The two phylogenies are drawn in
such a way that the taxa lie on two parallel lines. Three crossings result when identical taxa in the different phylogenies are connected.

THEOREM 5.6 ([37]). CROSSING DISTANCE is NP-
complete.

THEOREM 5.7 ([37]). CROSSING DISTANCE can be
solved in time O

(
210d ·nO(1)).

Sketch of proof ideas.The problem can be solved by a
search tree algorithm that, recursively, identifies “conflict-
ing” subsets of four leaf labels, that is, four labels for which
no suitable orderings without crossing can be found. The
algorithm branches recursively for each possible orderings,
one in each tree, for identified leaves. In the case in which
no size-four conflicting subset is found, a more complex
branching into a fixed number of branches can be given.

Unfortunately, due to its high running time the above
result merely classifies the problem as fixed-parameter
tractable.

OPEN PROBLEM 5.8.Give a practical fixed-parameter
algorithm for computing the crossing distance.

6. COMBINING PHYLOGENIES

In this section we study approaches to combining several
phylogenies into a single phylogeny. Suppose two
researchers have accumulated character data for two
partially overlapping sets of taxa and both have constructed
phylogenies based on their data, see Figure 6 for an example.
A natural question to ask is, How can we combine these two
phylogenies into a single phylogeny?

The first approach is to combine the character-state
matrices into asupermatrix(as it is called in [70]) and to
build a phylogeny based on this combinedprimary dataor
total evidence(as it is called in [53]). Another approach,
which has gained momentum only in recent years, is to
ignore the primary data and to build a phylogeny based only
on thetopologies of the two phylogenies.Phylogenies that
are based on the topology of other phylogenies rather than on
the underlying character-state data are called asupertrees.

An obvious shortcoming of the supertree approach is that
we expect phylogenies based on total evidence to be more
exact than phylogenies based only on “second-hand, indirect
data” like tree topologies. To make matters worse, the
supertree approach can yield phylogenies that are outright
contradictory to the primary data. Nevertheless, over the last
years numerous papers have presented supertrees, motivated
by a number of arguments that count in favor of the supertree
approach:

• The literature contains thousands of phylogenetic
studies. When combining published phylogenetic trees
to obtain larger trees, it is often hard or impossible to
revisit the underlying methods or data. For example,
Pisani et al. [66] use phylogenies from 124 different
publications, some of which date back decades, to
construct a supertree for 277 Dinosauria genera.

• In order to increase efficiency, one can try to compute
phylogenies in a two-phase process. In a first phase,
one computes small trees based on a phylogenetic
method of choice. Because the trees are small, one
can use time-intensive methods. In a second phase, one
combines these trees into one phylogeny.

• Phylogenetic trees can be computed based on different
character sets and the task is to combine the resulting
trees into a single supertree. Not all data may be
available for all taxa of interest, for instance genomic
sequences may be available only for a small set of
species, making it hard or impossible to construct a
supermatrix for the primary character data.

The term “supertree” stems from the 1986 paper
Consensus supertrees: the synthesis of rooted trees
containing overlapping sets of labeled leavesby Allan
Gordon [40]. However, the strict consensus supertrees of
Gordon can only be build for conflict-free input phylogenies,
which are only rarely available. Today, the term is also used
for trees constructed using methods that handle conflicting
input phylogenies more gracefully.
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In Section 6.1 we investigate strict consensus supertrees,
because it is helpful to understand the simple case of no
conflicts first before tackling more difficult settings, but also
because a strict consensus supertree, in the few cases it
exists, is of great interest. The question whether such a
strict consensus supertree exists for given input phylogenies
is solvable in polynomial time [3] for directed trees, but is
NP-hard for undirected trees. This leads us to having a look
at the problem from a parametrized point of view.

There is more than one way to build a supertree from
conflicting input phylogenies. A first, rather straightforward
idea is to resolve conflicting input phylogenies by deleting
a minimal number of the conflicting input trees so that all
conflicts are resolved. In the second part of Section 6.1
we present such a fixed-parameter algorithm for the case in
which all input trees are unrooted and have four leaves.

Second, we can resolve conflicts by leaving out a bounded
number of input taxa from the analysis. In Section 6.2 we
consider a version of this problem in which the input trees
are rooted and share the same leaf set.

Third, we name a method calledmatrix representation
with parsimony(MRP), which was proposed independently
by by Baum [8], Doyle [28], and Ragan [67]. This method
transforms the combination of directed input phylogenies
into a maximum parsimony problem on a binary character-
state matrix and then computes a maximum parsimony
tree for this matrix. One can compute a maximum
parsimony tree by applying the fixed-parameter algorithm
for PHYLOGENETIC PENALTY MINIMIZATION presented
in Section 4 where the parameter is the “deviation” from
being a perfect phylogeny. Beyond that, it seems that
parametrized algorithms tailored to the case ofMRP have not
been studied so far. But see [17] for a problem formulation
slightly changing the optimization goal ofMRP and a fixed-
parameter result for a constrained case.

For a more detailed discussion and critical appraisal of
the different supertree methods, we refer the reader to the
monograph edited by Bininda-Emonds [10].

6.1. Combining Phylogenies Using Strict Consensus
Supertrees

For every method, including the strict consensus supertree
method, the most basic problem is to decide whether a
supertree exists. For the next definitions recall that in a
binary phylogeny all nodes have degree one or three.

DEFINITION 6.1 (STRICT CONSENSUS SUPERTREE). A
phylogeny Tinducesa phylogeny T′ if T ′ can be obtained
from T by repeatedly deleting leaves and contracting edges.
A phylogeny T is astrict consensus supertreeof trees
T1, . . . , Tt if each Ti is induced by T .

DEFINITION 6.2 (COMPATIBLE UNDIRECTED PHYLO-
GENIES). The input for COMPATIBLE UNDIRECTED

PHYLOGENIES (abbreviatedCUP) are binary phylogenies
T1, . . . , Tt . The task is to decide whether there is a binary
strict consensus supertree for T1, . . . , Tt .

Already this basic problem turns out to be hard.

Phylogeny of Ṕerez-Moreno et al. [64]

Dilophosaurus

Ceratosaurus

Carnotaurus

Allosaurus

Tyrannosauridae

Phylogeny of Holtz [49]

Dilophosaurus

Ceratosaurus

Elaphrosaurus

Allosaurus

Archeopteryx

Tyrannosauridae

Strict consensus supertree for the above phylogenies

Dilophosaurus
Ceratosaurus

Elaphrosaurus

Carnotaurus

Allosaurus

Archeopteryx

Tyrannosauridae

FIGURE 6. (Parts of) two phylogenies for Dinosauria from two
different publications and a strict consensus supertree for them.

THEOREM 6.1 ([73]). CUP is NP-complete, even if all
input trees have four leaves.

The corresponding problem fordirectedtrees is solvable
in timeO(n3) for n taxa using an algorithm of Aho et al. [3].
Steel [74] raised the question of whether the undirected
version is fixed-parameter tractable with respect to the
numbert of input trees. This parametrization is reasonable
since the combination of a small number of possibly large
trees is a realistic scenario. Bryant and Lagergren have
recently answered Steel’s question positively.

THEOREM 6.2 ([16]). CUP can be solved in time

O
(

f (t) ·nO(1))
for some function f .

Sketch of proof ideas.First, the input trees can be combined
to adisplay graphthat has tree-widtht, providedCUP has a
solution. Second, the problemCUP can be described using
a monadic second-order formula on the constructed display
graph. Fixed-parameter tractability follows because of
two classical results from parametrized complexity theory:
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determining whether a given input graph has tree-widtht
is fixed-parameter tractable with respect to parametert,
see [13], and evaluating a monadic second-order formula on
graphs of tree-widtht is also fixed-parameter tractable with
respect to the parametert, see [21].

Unfortunately, both theoretical results on which the fixed-
parameter algorithm forCUP is based are, indeed, theoretical
and do not have efficient, practical implementations. No one
has yet bothered to determine an explicit upper bound on the
function f mentioned in the above theorem.

OPEN PROBLEM 6.3.Give an efficient and practical
parametrized algorithm with explicit running time bounds
for CUP for the parametert (number of input trees).

A parametrization ofCUP with respect to the maximum
size of the input trees does not even lead to a “theoretical”
fixed-parameter algorithm by Theorem 6.1. On the other
hand, the problem is fixed-parameter tractable with respect
to the total number ofn of input taxa since we can try all
possible tree topologies over the taxa, see also Theorem 2.2
and Open Problem 2.3.

In practice, multiple phylogenies can only rarely be
combined into a strict consensus supertree. Similar to the
case of input matrices that do not permit a perfect phylogeny,
we must now find ways of resolving the conflicts. The
perhaps simplest approach is to delete potentially erroneous
input trees until a solution can be found. Here the number of
deleted trees is a natural problem parameter.

DEFINITION 6.3 (CUP BY TREE REMOVAL). The input
for CUP BY TREE REMOVAL is the same as forCUP plus a
number k. The task is to remove at most k trees from the
input such that the remaining trees are an instance ofCUP.

Theorem 6.1 implies that the above problem isNP-
complete fork = 0 even for the extreme case that all input
trees arequartet trees (binary trees with four leaves as in
Figure 7); so it is unlikely that we will make progress on
the fixed-parameter tractability ofCUP BY TREE REMOVAL.
However, in one particular case there is, at least, still hope:

OPEN PROBLEM 6.4. Is CUP BY TREE REMOVAL with
parameterk fixed-parameter tractable when we allow only
quartets as input and all of them share a common taxon?
(Note that a set of quartets that share a common taxon can
be thought of as a set of directed triplets.)

The situation is more favorable when we turn towards the
following “dense” version of the problem:

DEFINITION 6.4 (MINIMUM QUARTET INCONSIST-
ENCY). The input for MINIMUM QUARTET INCONSIST-
ENCY is a set S of n taxa, a setQ containing a quartet tree
for each four element subset of S, and a number k. The task
is to remove k quartets fromQ so that the remaining quartets
have a binary supertree T .

THEOREM6.5 ([41]). MINIMUM QUARTET INCONSIST-
ENCY can be solved in time O(4k ·n+n4).

Styracorsaurus

Opistocelicaudia

Tyrannosaurus

Therizinosaurus

FIGURE 7. A quartet for four Dinosauria genera.

Sketch of proof ideas.The main idea is to employ old results
by Bandelt and Dress that allow one to lead “global”
conflicts in the input set back to “local” conflicts of three
quartet trees, and to determine that there are exactly four
ways to resolve a local conflict. This results in a search tree
algorithm with the stated running time.

Note that the running time in Theorem 6.5 is linear in the
input size since there areO(n4) input quartets forn taxa. The
algorithm described in [41] also exhibits how search tree
algorithms can be complemented by heuristic strategies to
prune the search space beyond the running time guarantee.

Considering arbitrary (non-quartet) input trees, it is
neither clear how the notion of “denseness” should be
defined in order to get a result similar to Theorem 6.5, nor
how the ideas of the algorithm forMINIMUM QUARTET

INCONSISTENCY, which are tailored to quartet trees, could
be adapted.

OPEN PROBLEM 6.6.Define an appropriate notion of
“denseness” for non-quartet trees. What is the parametrized
complexity of the resulting problem?

6.2. Combining Phylogenies Using Agreement
Subtrees

Combining phylogenies using strict consensus supertrees is
rarely possible in practice, butalwaysbound to fail when
we wish to combine multiple phylogenies overidentical
leaf sets – a situation that arises in important applications.
For example, common heuristic phylogeny reconstruction
methods that optimize a maximum parsimony criterion or
a maximum likelihood criterion usually produce several
optimal or near-optimal trees. Choosing one of the near-
optimal trees arbitrary is, well, arbitrary and a “consensus”
of the trees may be preferable. Ad-hoc methods for finding
a consensus like the majority consensus tree method work in
polynomial time – the randomized algorithm presented in [5]
runs in linear time for instance – but they may yield poorly
resolved output trees. In the following we discuss a more
sophisticated version of the consensus problem.

For the rest of this section we consider onlydirected
phylogenies, which not longer need to be binary.

DEFINITION 6.5 (MAXIMUM AGREEMENT SUBTREE).
The input forMAXIMUM AGREEMENT SUBTREE is a set S of
n taxa, directed input trees T1, . . . , Tt over S, and number k.
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The task is to find a subset S′ ⊆S of size n−k such that there
is a directed phylogeny T over S′ such that each of T1, . . . , Tt
induces T .

Perhaps not surprisingly, this problem isNP-complete.
The following theorem shows that the situation is even
worse:

THEOREM6.7 ([6]). MAXIMUM AGREEMENT SUBTREE

is NP-complete even for t= 3.

Concerning the maximum degreed of nodes in the trees,
the following result is known, which places the problem at
least in the classXP with respect to the parameterd.

THEOREM 6.8 ([32]). MAXIMUM AGREEMENT SUB-
TREE can be solved in time O(nd + tn3).

For a more complete overview on agreement subtrees we
refer to [9]. For us, it is of particular interest thatMAXIMUM

AGREEMENT SUBTREE is fixed-parameter tractable with
respect to parameterk (number of removed taxa):

THEOREM6.9 ([9]). MAXIMUM AGREEMENT SUBTREE

can be solved in time O(2.18k + tn3) and also in time
O(3k · tn).

Sketch of proof ideas.We can restrict attention to “local”
conflicts formed by three taxa, at least one of which has to be
removed. This allows us to reduceMAXIMUM AGREEMENT

SUBTREE to 3-HITTING SET. Applying the best known
fixed-parameter algorithm for 3-HITTING SET [36] yields
the first bound. Omitting the time-intensive reduction in the
beginning and searching one local conflict at a time yields a
O(3k · tn) time algorithm.

The result can be extended to the closely related
MAXIMUM COMPATIBILITY TREE problem [9]. For input
trees with non-identical leaf sets, Berry and Nicolas
show that the resulting problemMAXIMUM AGREEMENT

SUPERTREEbecomesW[2]-hard, even when each input tree
has only three leaves. Consequently, a fixed-parameter
algorithm corresponding to Theorem 6.9 is out of reach.

7. APPLICATIONS OF PHYLOGENIES

In this final section before the conclusion we present
two applications of phylogenetics that are not related to
taxonomy. In these applications we are not ultimately
interested in a solution phylogeny. Rather, we use
a phylogeny or the phylogenetic model to determine
something seemingly unrelated. In the first application we
use a phylogeny to help in the prediction of regulatory
elements of the genome, in the second application we use
perfect phylogenies as a measure of the quality of haplotype
phase predictions.

7.1. Prediction of Regulatory Elements Using
Phylogenetic Footprinting

The cells of the human body permanently need to produce
different proteins like, for instance, hemoglobin, which

picks up oxygen in the lungs and transports it through the
body. Every protein is uniquely identified by the sequence
of amino acids that, chained together, form this protein;
for example, the sequence of hemoglobin starts with valine,
histide, leucine, threonine, proline, and contains a total of
146 amino acids. This sequence is encoded in the genome
using a sequence of codons (blocks of three bases) where
each codon encodes one amino acid. Ageneis, in essence,
just a sequence of codons in theDNA that tells the cell to
produce, say, hemoglobin. The human genome has tens of
thousands of genes for all the different proteins that need to
be produced.

The process of translating the base sequence of a gene
into a protein is calledgene expression. However, cells do
not simply express all genes in the genome at all times.
Once, say, the cell membrane has been constructed, the
expression of the protein(s) for the cell membrane needs
to be stopped (or, at least, reduced). For this reason, gene
expression isregulatedby other parts of the genome. Before
or after a gene there are base sequences in the genome
that are involved in the inhibition or promotion of gene
expression, depending on which other proteins are present.
These sequences in turn can again be regulated by other
regulatory elements in the genome, leading to a highly
complex regulatory network. Understanding this network is
one of the most challenging, interesting, and important tasks
of molecular biology.

Phylogenetic footprinting, first proposed by Tagle
et al. [75], is a method for predicting which regions of the
genome are regulatory (involved in the regulatory process).
The basic idea relies on the following observation: Supposed
we have identified a gene and we expect that there are reg-
ulatory elements before and after the gene, but we do not
know where they are exactly. Then we expect that regulatory
elements, which are as important as the genes themselves
for the survival of an individual, will not change (greatly) as
mutations occur throughout the genome. If a non-regulatory
part mutates, this does not change the chances of survival,
but when a mutation occurs inside a gene or a regulatory
area, then the individual may not survive. One says that the
regulatory elements areunder pressure of selection,while
the surrounding parts of the genome are not. Thus, a pos-
sible approach to predicting regulatory elements is to do a
sequence alignment of multiple genomic data and to search
for parts of the genome that stay (relatively) stable over evol-
utionary time spans amid parts of the genome that vary.

In phylogenetic footprinting one attempts to improve
the prediction by using a phylogenetic tree to judge how
important a mutation is. If we see only, say, three
different sequences in a candidate regulatory region, but the
sequences of closely related species vary strongly between
the three sequences, we are less likely to believe that the
region is regulatory than if related species all share the same
sequence inside the regulatory region.

The above ideas lead to a problem calledsubstring
parsimony problem. To state it formally we first define the
parsimony score.
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DEFINITION 7.1 (PARSIMONY SCORE). Recall the no-
tion of thelengthof a phylogenetic tree from Definition 3.1.
Given apartially labeledphylogenetic tree T , theparsimony
scoreof the tree is the minimal length of a label completion
of T .

DEFINITION 7.2 (SUBSTRING PARSIMONY). The input
for SUBSTRING PARSIMONY is a partially labeled phylo-
geny T in which exactly the leaves are labeled and two in-
tegers l and s. The task is to decide whether each leaf label
can be replaced by a substring of length l such that the parsi-
mony score of the resulting tree is at most s.

The substrings of lengthl that we choose from each leaf
are the predicted regulatory elements. Note that in the
substring parsimony problem the phylogenyT is fixed and
part of the input. The idea is that it is typically already
available in the literature or can be computed using one of
the method presented in the previous sections.

Blanchette, Schwikowski, and Tompa prove the following
theorem:

THEOREM 7.1 ([11]). SUBSTRING PARSIMONYcan be
solved in time O

(
(r2l +m) · ln

)
.

Sketch of proof ideas.The problem can be solved using a
dynamic program, although the entries of its “table” are
attached to the nodes of the phylogeny and the “table” is
built from the leaves inward. The table entry for a nodeu of
the phylogeny is a table once more, which stores a number
for each for each state vector of lengthl , of which there are
r l many. The number stored for a state vector is the best
parsimony score that can be achieved for the subtree rooted
at u, if u is labeled with the state vector. Building the initial
table entries for the leaves is easy (there, all numbers in a
table for a leaf are either 0 or infinity) and combining two
tables takes timer l · r l .

The theorem shows thatSUBSTRING PARSIMONY is in
FPTwith respect to the parameter pair(r, l). The parameterr
is 4 in practice, but even for this low value the dominating
part of the running time isr2l = 16l , which grows too
quickly. Therefore Blanchette et al. develop a number
of improvements for the original algorithm and lower the
dominating term first tor l and even further for typical inputs.

In the same paper, Blanchette et al. also consider a
generalization ofSUBSTRING PARSIMONY. Sometimes
regulatory elements may lose their significance when the
gene they regulate is no longer important or when another
regulatory element takes over. In this case, there is selective
pressure only in a subtree of the phylogenetic tree, while
in the rest of the tree the parsimony score of the regulatory
element will be high.

To handle these losses, Blanchette et al. propose to search
for substrings that have a low parsimony score but still span
a large part ofT. To determine the “size” of a subtree, we do
not count the number of elements, but allow a more general
measure: We assign anage to each edge ofT (in [11] the
age is called thelengthof the edge, but this term is defined
differently in the present paper). Then theage of a subtreeis

the sum over the ages of the edges. The substring parsimony
problem with lossescan now be defined as follows (the
below definition is slightly simplified compared to [11]).

DEFINITION 7.3 (SUBSTRING PARSIMONY WITH

LOSSES). The input for theSUBSTRING PARSIMONY WITH

LOSSESproblem is a partially labeled phylogenetic tree T
in which exactly the leaves are labeled, a labeling function
that assigns an age to each edge of T , two integers l and s,
and a minimum ageα. The task is to decide whether one
can prune the tree (remove leaves repeatedly) and replace
each remaining leaf label by a substring of length l such
that the parsimony score of the resulting tree is at most s
and the age of the tree is at leastα.

Note that this problem is a generalization ofSUBSTRING

PARSIMONY: Setting α to the age of the input treeT
enforces that no pruning takes place.

THEOREM 7.2 ([11]). SUBSTRING PARSIMONY WITH

LOSSEScan be solved in time O
(
(r2l +m) · ln

)
.

Sketch of proof ideas.A similar dynamic programming ap-
proach can be used as for the basic version of the prob-
lem.

7.2. Prediction of Haplotype Phase Using Perfect
Phylogenies

The haplotype phase determination problemor just
haplotyping problemarises when one searches for genetic
variations of diploid organisms like humans. An example
of important genetic variations aresingle nucleotide
polymorphisms(SNPs), which we mentioned earlier. They
are variations across the population of a single nucleotide
in the genome. Thus, some people may have aDNA string
where at a specific position on a chromosome the nucleobase
is adenine and some other people may have guanine at the
same position, see Figure 8. Knowing which nucleobase is
present can be important for the prediction of drug response
or susceptibility to diseases.

Suppose we wish to determine quickly and inexpensively
(for example, in a hospital during a study on drug response)
the state of a specificSNP for a person. This can be done, in
essence, by sampling cells from a drop of blood, extracting
the DNA, using a polymerase chain reaction to increase the
amount ofDNA present, and then mixing in two primers. The
primers can be thought of as two keys, one that will fit when
the nucleobase is adenine at the specificSNPsite and one that
will fit when the nucleobase is guanine. Then, depending on
which primer reacted, the result will either glow, say, red
or green under fluorescent light (or, frustratingly, not at all,
when one of the steps in the experiment was not executed
correctly).

Humans are diploid organisms, which means that we have
two specimens of each chromosome, one inherited from the
mother and one from the father. But, then, it is possible that
we inherit oneDNA string with adenine at theSNP site and
anotherDNA string with guanine. These twoDNA strings are
called thehaplotypes. The fact that we have two haplotypes
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First sample:

Second sample:

. . . CTTTGAAGGGAATTAAATAT . . . 464 bases . . . CAATGGAATCCCTCTAGGAT . . .

. . . CTTTGAAGGGGATTAAATAT . . . 464 bases . . . CAATGGAATCGCTCTAGGAT . . .

SNP site

base position 143,851,738

SNP site

base position 143,852,221

FIGURE 8. Parts of two different samples of humanDNA base sequences. These sequences are inside the genePRKAB2, which is located
on the human chromosome 1 between base positions 145,093,309 and 145,110,753 in the reference haplotype of the Human Genome Project.
It is a regulatory subunit of protein kinase and is highly expressed in skeletal muscle and may have tissue-specific roles. Inside the gene, the
base sequences of any two samples are identical except atSNPsites. Two of them are shown, namely first rs6937 and then rs1047140 in the
nomenclature of the US National Center for Biotechnology Information [60], from whose genome map the data was obtained.

means that in the experiment the two primers may alsoboth
glow, which indicates theheterozygous statein which we
have inherited two haplotypes with different states, or only
one may glow, which indicates one of the twohomozygous
statesin which both haplotypes agree.

A problem arises when we consider twoSNP sites. For
this, we do two experiments, each with two special primers.
Suppose that we learn from the experiment that both sites are
heterozygous. Then we know that, say, at the first position
there is adenine on one haplotype and guanine on the other
and at the second position there is, say, cytosine on one
haplotype and guanine on the other. This information is also
called thegenotypeof the person (for these twoSNP sites).
What we donot know is whether the haplotype on which
there is guanine at the first position is the same haplotype
as the one on which there is guanine at the second position.
There might have been a “switch” from oneSNP site to the
other, better known as a phase shift. This effect is depicted
in Figure 9.

Determining the two haplotypes of a single genotype
is impossible, unless context information is available. If
there areh heterozygousSNP sites, then there are 2h−1

pairs of haplotypes that explain the observed genotype
and each pair is equally likelya priori. In order to
determine the phase of the haplotypes, we must make
assumptions about which haplotypes are more likely than
others. For example, we might assume that haplotypes
change only rarely (they certainly do not change within a
few generations). Then if we are given the genotypes of
hundreds of persons of the same ethnic group, we can try
to find a minimal set of haplotypes such that every observed
genotype can be explained by assuming that the person
has two haplotypes from the small set. Many statistical
methods for haplotype phase determination are based on this
parsimony assumption.

In a seminal paper, Gusfield [45] proposed a different
idea. Gusfield argues that haplotypes evolve according
to the evolutionary model underlying perfect phylogenies:
Mutations occur only rarely and there are no back-mutations.
Therefore, we should look for a set of haplotypes explaining
the genotypes that forms a perfect phylogeny (the taxa being
the haplotypes, theSNP sites being the characters, and the
nucleobases being the states). The following definitions
formalize the problem.

DEFINITION 7.4 (HAPLOTYPE, GENOTYPE). A haplo-
type is a state vector. The setΣi of permissible states at
position i is typically (but need not be) a two element sub-
set of{A,C,G,T}. A genotypeis a sequence of sets, where
the ith set is a subset of size one or two ofΣi . Two hap-
lotypesexplaina genotype if the ith subset of the genotype
contains exactly the two states of the ith positions of the two
haplotypes.

DEFINITION 7.5 (PP HAPLOTYPING). The input for the
PP HAPLOTYPINGproblem is a set of genotypes. The task is
to decide whether there exists a set of haplotypes forming a
perfect phylogeny such that each genotype can be explained
by two haplotypes in the set.

The PP HAPLOTYPINGproblem is at least as hard as the
PP problem since we can reducePP to PP HAPLOTYPING

by turning each taxon into a “genotype” whoseith set
contains only theith state of the taxon. Then every set
of “haplotypes” that explains the “genotypes” contains the
original set of taxa. This shows thatPP HAPLOTYPING is
NP-complete.

The question arises which fixed-parameter results on the
PP problem carry over to the more general haplotyping
problem. Not too much is known on this since research
has almost entirely focused on the caser = 2. For this, the
following remarkable result is known:

THEOREM 7.3 ([26]). For r = 2, PP HAPLOTYPINGcan
be solved in time O(mn).

OPEN PROBLEM 7.4.How difficult is PP HAPLOTYPING

for r > 2?

In practice, the perfect phylogeny haplotyping problem
is, unfortunately, not quite the problem that we want to
solve. Genotype data that is obtained via the laboratory
process sketched earlier will always contain a certain amount
of missing datacaused by impurities or incorrect handling.
Such missing data is commonly represented by question
mark entries in the genotype input.

DEFINITION 7.6 (INCOMPLETE PP HAPLOTYPING). The
input for INCOMPLETE PP HAPLOTYPING is a set of
genotypes that may contain question marks for certain
characters. The task is to decide whether the question mark
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Observed bases at rs6937: A and G

Observed bases at rs1047140: C and G

Haplotype pair inherited from parents:

. . . CTTTGAAGGGAATTAAATAT . . . CAATGGAATCCCTCTAGGAT . . .

. . . CTTTGAAGGGGATTAAATAT . . . CAATGGAATCGCTCTAGGAT . . .

Haplotype pair inherited from parents:

. . . CTTTGAAGGGAATTAAATAT . . . CAATGGAATCGCTCTAGGAT . . .

. . . CTTTGAAGGGGATTAAATAT . . . CAATGGAATCCCTCTAGGAT . . .

first explanation

second explanation

FIGURE 9. The haplotype phase determination problem arises when we observe two heterozygousSNPsites in the genotype. In this case,
there are two different pairs of haplotypes that explain the observed genotype. The haplotype phase determination problem asks us to decide
which explanation is correct.

entries can be completed in such a way that the resulting set
of genotypes is an instance ofPP HAPLOTYPING.

The missing entries add yet another level of complexity.
This new problem, which is of great practical interest,
is (presumably) no longer fixed-parameter tractable with
respect to the central parameterr. Indeed, the problem
is (presumably) not even inXP as the following theorem
shows, which was proved independently by Kimmel and
Shamir and also by Gramm, Nierhoff, Sharan, and Tantau.

THEOREM7.5 ([52, 42]). For every r≥ 2, INCOMPLETE

PP HAPLOTYPINGis NP-complete.

Sketch of proof ideas.The proof in [42] even shows some-
thing considerably stronger: The incomplete perfect phylo-
geny haplotyping problem is stillNP-complete forr = 2 if
we impose a number of restrictions on the phylogeny, like
being a path. The result is proved using a reduction forNOT-
ALL -EQUAL-3-SAT.

Because of the above result, already forr = 2 we have
to look for some new parametrizations if we wish to find
a fixed-parameter haplotyping algorithm that can deal with
missing data. An obvious parametrizations is to consider the
total numberq of question mark entries in the data.

THEOREM 7.6. For r = 2, INCOMPLETE PP HAPLOTYP-
ING can be solved in time O(3q ·mn).

Proof. There are onlyr +
(r

2

)
ways in which a question

mark can be completed at any given position (namely byr
different singleton sets and

(r
2

)
different two-element sets of

states). So we can build all
(
r +

(r
2

))
q possible completions

and then test for each whether it is an instance for the perfect
phylogeny haplotyping problem. Forr = 2 we know how to
solve this in linear time.

OPEN PROBLEM 7.7.How difficult is INCOMPLETE PP

HAPLOTYPING for r > 2?

Unfortunately, the total numberq of question marks
typically isnot small in practice. Because of this, a different
parameter was studied by Gramm et al. in [42], namely the
maximal numberc of question mark entriesper character.
An analysis of publicly available genotype data shows that,
typically, this parameter is reasonably small. The second key
idea of the paper is to assume that phylogenies are directed
and that they arepaths(no branching occurs, except possibly
at the root). At first sight it may seem strange to consider
path phylogenies, but in the human genome for around three
quarters of the genomic loci one finds genotypes where
all SNP sites are heterozygous [80]. The only phylogenies
that explain such highly heterozygous genotypes are path
phylogenies.

THEOREM 7.8 ([42]). For r = 2, INCOMPLETE PP PATH

HAPLOTYPING can be solved in time

O
(
3O(c2·6c·c!) ·n2m3).

Sketch of proof ideas.The algorithm starts with a prepro-
cessing phase in which the input is simplified, quite similar
to the way a kernelization works. However, the result of the
preprocessing is not a problem kernel and its size still de-
pends on the input size rather than solely on the input para-
meter. Nevertheless, the preprocessing enables us to run a
dynamic program that is built in order of increasing so-called
leaf count ranges.

Currently, an effort is undertaken to implement the
algorithm from the above theorem in order to find out
whether the algorithm can be applied in practice (it is
expected that the algorithm will be more efficient than the
worst-case analysis suggests).

OPEN PROBLEM 7.9.How difficult is INCOMPLETE PP

PATH HAPLOTYPING for r > 2?
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OPEN PROBLEM 7.10.Find a fixed-parameter algorithm
for INCOMPLETE PP HAPLOTYPING for the parameterc
(maximum number of ?-entries per column).

8. CONCLUSION

Fixed-parameter algorithms are a valuable tool in phylogen-
etics. We have seen that phylogenetics abounds in compu-
tational problems, many of which areNP-complete. Hence
we do not expect that efficient exact algorithms will be avail-
able for them in the near future, if ever. However, we also
saw that many of the computational problemscanbe solved
efficiently and exactly if some of the natural input paramet-
ers are reasonably small. Table 3 summarizes how natural
input parameters influence the (in)tractability of computa-
tional problems in phylogenetics.

In addition to the concrete open problems that we pointed
out throughout this survey, in the following we sketch
two broader, less concrete prospective directions of future
research.

8.1. Future Research Field: From Discrete To
Stochastic Problems

The results presented in this survey refer to problem formu-
lations for discrete input objects and discrete optimization
criteria. In computational biology there is a general lack
of and a need for fixed-parameter results addressing non-
discrete computational problems arising in stochastic ana-
lyses. Examples include probabilistic sequence analysis [30]
and maximum likelihood analysis.

A concrete stochastic computational problem is the fol-
lowing: The input for MAXIMUM LIKELIHOOD PHYLO -
GENY is a character-state matrix and transition probabilities
for the transitions between character states. The task is to
find a phylogeny with the input taxa at the leaves that has
a maximal “likelihood” among all such phylogenies. Intuit-
ively, the likelihood of a phylogeny is the sum of the likeli-
hoods that the character states at the leaves were generated
given the labeling of the inner nodes. Computing this likeli-
hood is a non-trivial task itself, see for instance [20, 19, 30]
for details. Only recently it has been shown thatMAXIMUM

LIKELIHOOD PHYLOGENY is NP-hard [20, 19]. It remains
open to address this and related problems with appropriate
fixed-parameter algorithms.

8.2. Future Research Field: From Phylogenetic Trees
to Networks

The basic assumption made in this survey, namely that
hypotheses on evolutionary history can be represented by
trees, is often inappropriate. Phylogenetic trees cannot
explain – among other biological effects – therecombination
effect, where a genomic sequence is combined from two
source sequences by taking a prefix from the first and a
suffix from the second sequence. The resulting evolutionary
history can no longer be represented by a tree; rather, we
must use graphs.

Fixed-parameter algorithms might be particularly useful
in the study of these graphs since they are not arbitrary,
but “tree-like.” They deviate from trees only by a small
amount and we propose this extent of deviation (however
it is measured) as a natural problem parameter.

There are numerous ways in which we can define “tree-
likeness”; we just highlight one particular extension of
perfect phylogenies to networks. Aphylogenetic network
is a directed acyclic graph whose nodes have in-degree 0
(the root node), in-degree 1 (“regular” inner nodes of
a phylogeny), or in-degree 2 (the recombination nodes)
together with a labeling function that assigns character-state
vectors to the nodes. A “perfect” phylogenetic network is
defined the same way as a perfect phylogeny, but with an
additional rule for recombination nodes: We can split the
character-state vector label of recombination nodes into two
parts such that the first part is a prefix of the label of one of
the parent nodes and the second part is a suffix of the label of
the other parent node. The number of recombination nodes
is a measure of the network’s deviation from being a tree.
The computational problem is now to find a phylogenetic
network for a given set of taxa that minimizes the number
of recombination nodes. This problem isNP-complete [76],
but it is open whether it is fixed-parameter tractable with
respect to the number of recombination nodes. A partial
answer was given by Gusfield et al. [47, 46] who show
that the problem can be solved efficiently forr = 2 if we
restrict the phylogenetic networks to so-calledgalled trees.
In another direction, the computational problem of finding
a phylogenetic network of maximum parsimony is studied
in [59] and shown to be fixed-parameter tractable. Many
of the problems addressed in this survey can be extended
to phylogenetic networks, but almost all of the resulting
problems are open.

Concluding this paper, we invite the reader to dive into the
presented field, to follow the pointers to literature, to pick
up open problems, and to come up with exciting new or
improved fixed-parameter algorithms.
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