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We survey the use of fixed-parameter algorithms in the field of phylogenetics, which is the study
of evolutionary relationships. The central problem in phylogenetics is the reconstruction of the
evolutionary history of biological species, but its methods also apply to linguistics, philology,
or architecture. A basic computational problem is the reconstruction of a likely phylogeny
(genealogical tree) for a set of species based on observed differences in the phenotype like color
or form of limbs, based on differences in the genotype like mutated nucleotide positions in the
DNA sequence, or based on given partial phylogenies. Ideally, one would like to construct so-
called perfect phylogenies, which arise from a very simple evolutionary model, but in practice one
must often be content with phylogenies whose “distance from perfection” is as small as possible.
The computation of phylogenies has applications in seemingly unrelated areas such as genomic
sequencing and finding and understanding genes. The numerous computational problems arising
in phylogenetics often are NP-complete, but for many natural parametrizations they can be solved
using fixed-parameter algorithms.
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1. INTRODUCTION Evolutionary processes are not restricted to biology as was
already noted by Charles Darwin himself in Chapter 14 of
On the Origin of SpecieR3]. In linguistics, languages —
The word phylogenycomes from Greelphylon meaning instead of species — evolve over time, resulting in a tree of
race, andgeneia meaning origin. In phylogenetics one languages. Nodes of the tree are labeled by languages and
studies how different species are related evolutionary. The bifurcations correspond to changes of words or grammar that
basic paradigm is that species spawn new species, forresultedin new dialects or languages. A small part of the tree
example when part of a species’ population adapts to aof languages is shown in Figure 1.
changing environment. Over time the set of extant species Building phylogenies is not an easy task. The problems
changes as new species emerge and other species beconstart with determining the set of taxa since neither for
extinct. The ancestral relationship between the species carbiological species nor for languages it is always clear where
be depicted by arranging them in a tree, callpthglogenetic we should draw the line. But suppose we have agreed on a
tree or phylogeny where the leaves are labeled with extant set of taxa and the task is to arrange them in a phylogeny.
species and where bifurcations correspond to events likeThen we only know which taxa there amew, but we do not
adaptations that lead to new species. Interior nodes areknow which taxa thereverein the past. In rare, fortunate
labeled with ancestral species or not at all when the ancestralcases we might have access to fossils or to text in dead
species are unknown or not of interest. A classical example languages, but normally the path evolution took will be
of a phylogeny is the tree of life, a small part of which is unknown to us.
shown on the left-hand side of Figure 1, though in the tree  Even when we know all taxa in the phylogeny, including
of life we seetaxainstead of species (a taxon is an arbitrary even possibly extinct early taxa, it is still often subject to
grouping of organisms while the terapeciesapplies only debate how they should be arranged. To solve this problem,
to the basic building blocks of biodiversity). one idea is to infer the phylogeny by looking at different
traits, better known asharacterdn the biological literature,
*Supported by a grant for therc projectOptimal solutions for hard ~ Of the taxa. Characters are attributes like the form of
problems in computational biologipPAL). the skeleton or, for languages, the way a certain word is

"Supported by a grant for therc project Complexity of haplotyping  spoken. Taxa for which the form of the skeleton is similar
problems

1.1. Phylogenetics
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The tree of life way of doing this is to declare those sets of taxa as “good
. solutions” that can be arranged in a phylogeny.
bacteria
? plants e . . .
1.2. Computational Problems in Phylogenetics
mammals ) )
{ birds The most_ fund_amental proble_m_s in phylogenetics are not
) computational in nature. Deciding what exactly counts as
{ dragonflies a taxon, choosing a set of characters, or deciding which
beetles states a taxon is in are not computational problems, but
require human experience and judgment. However, once
The tree of languages these decisi_ons have been made, numerous computational
problems arise that cannot be solved “by hand” when large
Hindi amounts of input data need to be processed, as is the case in
— Czech - - -
Savic phylogeny-based haplotyping, for instance. In the following
o Russian we give an overview of the computational problems that
Dutch we address in this survey; good starting points for further
L ow German coverage of computational issues in phylogenetics are [34,
L Femish 44, 63, 71].
English A fundamental computational problem in phylogenetics
- is the construction of a phylogeny for a given set of taxa
Frisian (detailed mathematical definitions are given later). We are
High German

also given a set of characters and we know for each character
and each taxon thetate of the taxon with respect to the
character. For example, when the taxa are elephants and
FIGURE 1. Excerpts of two important phylogenies. In the left mjce and the characters are size and color, elephants are in
phylogeny, taxa Iqbel only leaf nodes. The shown portion of the e state “big” with respect to the character size and “gray”
tree of languages is taken from taken from [55]. with respect to the character color, mice are in the states
“small” and “gray.” State information for taxa and characters
is typically arranged in matrices such as the ones shown in
or languages for which a word is spoken in a similar way Tables 1 and 2.
should be in the same subtree of the phylogeny. The joint One has to choose a model of evolution that says
information from many characters will often leave us with a which phylogenies are considered good explanations of
single phylogeny or at least few possible ones. In biology, the observed character-state matrix. A basic model is the
principal sources of characters are the phenotype of a taxonfollowing: All taxa sharing a state for some character are
which is roughly “the way the organisms of the taxon look,” descendants of the same taxon. For example, if some
but also genomic information like which genes are presentin mutation causes elephants to be the first “big” animals,
the organisms of a taxon. In linguistics, characters include this model insists that all other “big” animals must be
pronunciation, word order, and more generally grammatical descendants of elephants. One possible way of checking
structure. whether this model applies to a phylogeny is to check,
The construction and study of phylogenetic trees has whether for each character and each pair of states the path
many applications. First of all, a phylogeny allows us between any two taxa in the first state and the path between
a glimpse at how evolution works and can help us in any two taxa in the second state do not intersect. Such a
classifying organisms. Second, we can compare multiple phylogeny is callegerfect Naturally, the model is rather
phylogenies built for the same set. For example, one crude since, after all, not all large animals are related, and
can build two phylogenies of languages, the first based onthe model is regarded as overly simplifying by practitioners;
linguistic traits and the second based on the genetic traitsbut see the discussion after Definition 2.2 for a justification
of the speakers of the language. The resulting phylogenieswhy we focus on perfect phylogenies nevertheless.
will match in large parts, but the places where they do not A second set of computational problems arises when it
match may be especially interesting, indicating for instance is not possible to arrange taxa in a perfect phylogeny. We
that a population may have switched to another languagethen have several options: First, we can lower our standards
for some reason. A third, rather intriguing application of of what counts as a good phylogeny by allowing a small
phylogenies is their use as measures in other applicationsnumber of “backward mutations” in the tree. Second, we
One such application is theaplotype phase determination can still try to find a perfect phylogeny, but only for a subset
problem,presented in detail in Section 7.2. The output for of the taxa or for a subset of the characters. Third, we can
this problem is a set of taxa, but a large number of different claim that the data must be in error and try to find a way
sets of taxa are possible outpatspriori. The tricky part — as little disruptive as possible — to modify the data such
is not so muchfiltering out the biologically most likely that a perfect phylogeny can be obtained. While this is not
solution, butmeasuringhow likely a solution is. An elegant  advisable in general (we cannot simply claim that elephants
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TABLE 1. A character-state matrix for programming languages. The “taxa” are the
six programming languages on the left. The “characters” are the symbol used to start
a scope, the keyword used to start a module, the question of whether built-in for-
loops exist, and the question of whether it is permissible to reassign another value to a
variable. This matrix cannot be arranged in a perfect phylogeny, but if we remove the
“taxon” TgX, which did not inherit its syntax from another programming language,
the remaining rows can.

Language scope start module start for-statement variable reassignment

Pascal begin unit yes allowed
Modula begin module yes allowed
Haskell ( module no not allowed
C { - yes allowed
Java { package yes allowed
TeX { - no allowed

can fly, just to fit them into a perfect phylogeny), genomic and the running time of many algorithms is exponential in

data is often obtained through laboratory processes in whichthe number of states per character, but polynomial otherwise.

one cannot avoid a percentage of wrong entries. Next, the number of characters in input matrices is large
Phylogenies need not always be constructed “from in general (Smith lists 138 different characters for a set of

scratch” based on character state data. Rather, we ofterlice species [72]), but it is sometimes possible and necessary

have access tpartial phylogenies that are subtrees of the to partition the character set into small subsets and apply

phylogeny sought for. An example is the tree of life; We algorithms only to these small subsets.

do not wish to construct this tree based on an enormous In the course of the present paper we will see other

character database for millions of taxa. Rather, the problemexamples of parameters that are small in practice, allowing

is to merge many different small phylogenies from the us to construct efficient, exact algorithms for many

literature into one big phylogeny, appropriately called a computational problems arising in phylogenetics.

supertree. For a related problem we also do not construct

phylogenies from scratch, but we are given several complete1 4. Goals and Overview

candidate phylogenies obtained through external means and ) . o

our job is to compute biologically meaningfistances ~ T1he central goal of this survey is to highlight selected

between them — a difficult problem all by itself. fixed-parameter algorithms from the area of phylogenepcs.
New, even more difficult computational problems arise 1h€ chosen examples are intended fo illustrate the diver-

when our data is incomplete, which is often the case. For Sity Of computational problems for which fixed-para-

certain characters and taxa we simply might not know the Meter algorithms have been developed within the area of

state: we may not know the translation of a word into a Phylogenetics. _ _

certain language or the genomic sequencing process may. We _address this survey fco readers interested m_computa-

have failed to determine the base at a certain nucleotidetional issues and algorithmics and assume no detailed know-

position. In such cases we do not only need to find a good ledge ab_out biology. We try to give iIIustrat.ive examples and

phylogeny, but we must also fill in the missing entries in a explanations, as space permits, accessible to non-experts.

sensible manner. Needless to say that this often introduces #Ve assume that you are familiar with fixed-parameter al-
whole new level of complexity. gorithms, but most theorems can be understood without

knowledge about parametrized complexity classes — they
only come into play in the concluding summary. For an

introduction to fixed-parameter theory, see for example the
Most computational problems in phylogenetics turn out two monographs [27] and [61]. Except for the short proofs

the be NP-complete, forcing us to look for heuristics, of a few easy new results that we include for completeness,
approximation algorithms, or fixed-parameter algorithms. no detailed proofs are included in this survey, but we tried to
The fixed-parameter approach turns out to be especiallyat least sketch some proof ideas of theorems from the liter-
successful. ature.

The reason for this success is that a number of problem In Section 2 we introduce (one possible version of)
parameters are, indeed, small in realistic instances forthe formal problem of constructing a perfect phylogeny
phylogenetic problems — like the number of states per and study how the parametemsmber of taxanumber of
character, the number of characters, or our tolerance forcharacters and number of states per charactémfluence
errors. The number of states per character, for instance, is athe tractability of the problem. In Section 3 we study
most four (and in many cases even two) whenever genomicways of measuring the deviation of a given phylogeny
data is involved (nature kindly uses only four nucleobases) from “perfection.” Section 4 treats problems where the

1.3. Parametrization and Phylogenetics
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task is to find a phylogeny that is near to perfection with — Chelopistes guttatus (000)

respect to the introduced measures. In Section 5 we look

at problems where the task is to compute distances between (000)

phylogenies. In Section 6 the problem of merging several Osculotes macropoda (010)
partial phylogenies is treated. In Section 7 we consider (010)

applications in which the aim is not to construct a phylogeny e (000) L Oxylipeurus dentatus (111)
but where its construction is just a means to an end,

namely finding regulatory genomic elements, or determining —— Upupicola upupae (002)

haplotype phase. In the conclusion we summarize the (002)

complexity-theoretic results in a table and give an outlook. L Perineus nigrolimbatus (202)

2. CONSTRUCTION OF PERFECT PHYLOGENIES FIGURE 2. One possible perfect phylogeny for the character-state

matrix from Table 2. The labels assigned to the vertices of the

In this section we study how difficult it is to construct a ]
phylogeny are shown in parentheses.

perfect phylogeny. First, we define the problem(perfect
phylogeny) formally, and discuss possible variations. Then
we look at what happens when we fix one of the three ancestral taxa, which need not, but may, be part of the
central parametersumber of taxanumber of characters input.)

andnumber of states per character _ .
Be cautioned that phylogenetitees may not always

be the best way of describing evolutionary relationships,
because they do not account for so-calketizontal gene
Fix a setC of characters like size or color, and for each  transfersin which a gene is transfered between unrelated
characterc € C fix is a setZ; of states for this character, taxa by a “mixing” of the genetic material. In a study
like Zsize = {smallmediumbig}. Then the input for the  of conserved loci in bacterial pathogens Feil et al. [33]
perfect phylogeny problem is a sBtof taxa together with  conclude that for lineages within a species “over the long
one mapping for each taxae S each of which assigns an  term, the impact of relatively frequent recombination is to
element ofz; to each charactere C. obliterate the phylogenetic signal in gene trees such that
There are three natural parameters in such inputs: the relationships between major lineages of many bacterial
species should be depicted as a network rather than a tree.”
Indeed, comparisons of the different genomes that were
sequenced during the last decade show that such transfers
are quite frequent, threatening the very idea of trying to

For computational issues the names of the characters,eXplai” evolutionary history using trees, see the reviews [65]

of the states for each character, and even of the taxa areP! [79] for an overview and as literature starting points. In
not really important. Therefore, we can make the notation the Presentsurvey we restrict attention to phylogertegies
simpler by assuming that the s8tof taxa is {1,...,n} nevertheless, since we should try to understand these first,

the character set is {1,...,m}, and each state set% = before tackling the more difficult phylogenetietworks We
{0,....,r—1}. Itis cusiom’ary to start the states with 0 so €ome back to phylogenetic networks in the outlook at the end

that if there are just two states, then they are 0 and 1. TheOf this paper.

states of a taxon can now be described by a vector from Recall that in the evolutionary model behind perfect
the setSy x --- x Sm = {0,...,r — 1}™. Thus, then input phylogeny all taxa sharing a state for some character have

the same ancestor. This can be formalized as follows:

2.1. Formalization of the Perfect Phylogeny Problem

(i) The numben of taxa.
(i) The numbem of characters.
(i) The maximum numbaer of states a character can have.

taxa are described by length-vectors of numbers from

{0,...,r —1}. Another way to think about the inputis in DgriNITION 2.2 (FERFECT PHYLOGENY. A phylogeny

terms of an(n x m)-matrix with entries from{0,...,r —1}. s perfectif for every character c= C and every state

Be cautioned that in the biological literature these matrices j ¢ 5. = {0,....r — 1}, the graph induced by the set of

are sometimes presented in transposed form. nodes labeled by a state vect(s, ...,sm) With & = j is
Before we defingperfectphylogenies, let us first define  connected.

phylogenies

_ DEFINITION 2.3 (PERFECT PHYLOGENY. The input for
DEFINITION 2.1 (PHYLOGENY). Let A be a matrix  the problemPERFECT PHYLOGENY(abbreviatedpp) is a
describing n taxa. Aphylogeny for the matribA is a tree  character-state matrix A for n taxa. The task is to decide

T whose node set V is labeled using a labeling function whether there exists a perfect phylogeny for A.
[:V —{0,...,r —1}™such that: o ) ]
Some remarks on the definition are in order both with

() Every row of A, that is, each taxon’s state vector, is a respect to its biological relevance and to the chosen
label of some node in T. mathematical formalization.

(i) The labels of the leaves of T are rows of A. (By  Concerning the biological relevance, one can object that
comparison, the labels of inner nodes correspond to real biological character-state matrices rarely admit a perfect
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TABLE 2. Character-state matrix that is an instance pof Concerning the mathematical formalization of perfect
It is a submatrix of a much larger character-state matrix, Phylogenies, we chose a broad definition for this survey. We
compiled by Smith [72], that contains entries for 56 species allow an arbitrary tree topology, the input taxa can be found
and 138 characters. In the above matrix, the five rows are five both at the leaves and at inner nodes, and the same label may
different lice species from the suborder Ischnocera (Phthiraptera). pe found at different nodes. We only insist that there are no
These lice are permanent parasites of many birds and mammals sperfluous leaves, even though this condition is not strictly

throughout the world. The columns a}re three characters n_eferring necessary either. Other definitions in the literature impose
to the form of the head of adult lice. The numbers in the more structure on perfect phylogenies.

matrix encode the different states of the characters. For example,

for the charactemarginal carinathe O-entries mean that the e It is often required that the set of leaf labels equals
adult marginal carina “forms a complete thickened band running the set of rows of the input matrix, that is, it is not
anteriorly around the preantennal region of the head” and the 1- allowed to place a taxon only at inner nodes. A perfect
entries mean that it “forms a band which is interrupted laterally phylogeny in the sense of Definition 2.2 can be turned
(partially or completely), medially (dorsally and/or ventrally) or into a phylogeny with the input taxa at the leaves by
both” [72]. adding a pending leaf to all inner nodes that harbor an
Species hyaline marginal premarginal Input taxon. _
margin  carina carina e |t is often convenient to have more control over the

tree topology. It is particularly convenient to consider
binary trees, which are trees in which every node either
has degree one (leaves) or degree three (inner vertices).
This can also be achieved easily: Replace all nodes of
too high degree by small binary trees with all nodes
labeled by the original node’s label; and remove all
nodes of degree two while joining their adjacent nodes.
e It is sometimes useful to impose the quite natural
condition that all labels are distinct. This can be
accomplished by contracting subtrees whose nodes all
have the same label (and, indeed, sets of nodes that
are labeled identically must form a connected subtree
in a perfect phylogeny). However, this contraction

Chelopistes guttatus 0 0 0
Osculotes macropoda 0
Oxylipeurus dentatus 1
Upupicola upupae 0
Perineus nigrolimbatus 2

O Or Pk
NNPEFEO

phylogeny. For example, Table 2 displays a real-life instance
of PP and a perfect phylogeny for this matrix is shown
in Figure 2. However, this table just a small part of a
much larger matrix compiled by Smith [72] and the whole )
matrix does not admit a perfect phylogeny. Nevertheless, process may destroy the binary tree property and also

there are several reasons why we should still study perfect the property that input taxa must Iabe_l leaves.
phylogenies. In a perfect phylogeny there is no designated root node

and, in general, it may be debatable which taxon should be
considered the “root.” If, for whatever reason, a root node
has been chosen, the phylogeny is catledcted

Having defined (the decision version of) the perfect
phylogeny problem, the natural question is, how difficult is
this problem? Unfortunately, it iSP-complete.

e PP is in some sense the most basic computational
problem in phylogeny construction and we would like
to understand this problem well before we attack more
complicated settings.

e Even if data cannot be arranged in a perfect phylogeny,
we may still try to find a phylogeny that is “as perfect
as possible,” see Section 4. THEOREM2.1 ([15, 73]). PPis NP-complete.

e There are biological settings where the perfect
phylogeny model works quite well. Considsingle
nucleotide polymorphism sitésnP sites) for instance,

This result suggests that in order to tackle the problem
we must look at restricted versions. We do so by fixing the

; o < . different central parameters numberof taxa, humbem
which are specific base positions in the genome where .
of characters, and the maximum numbepf states per

we observe a variation across the population. The character
base (state) at such a position might have been adenine '
originally and a mutation caused it to change to
cytosine in part of the population. Such mutations are
rare — oftensNP sites are hundreds of bases apart. If The first restriction is to limit the number of taxa in the
SNPmutations occur randomly, it is extremely unlikely input. Intuitively, if there are just, say, four taxa, it should
that the same site will mutate more than once; and not be particularly hard to find out whether we can arrange
having at most one mutation per site exactly defines them in a perfect phylogeny — after all, there are only a fixed
the evolutionary model of perfect phylogenies. Note, number of tree topologies for them.

however, that this argument breaks down when the
chromosomal crossing over effect has to be taken into

2.2. Number of Taxa as the Parameter

THEOREM2.2. PPcan be solved in time @™n! - m).

account and the perfect phylogeny model fprs Proof. For a fixed binary tree topology and a one-to-one
works only when a small number NP sites are assignment of elements $and leaves ofT, it can be tested
considered. in time O(nm) whether the the inner nodes @f can be
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labeled in a way such thdt is a perfect phylogeny fog. For fixedm, both of the above time bounds are polynomial
The number of possible binary trees witkistinctly labeled in n andr. However, neither algorithm shows that the
leaves is known to be 13-5-...-(2n—5) < 2"(n—2)!. problem is fixed-parameter tractable as we still havén

Therefore, enumerating all binary trees &and testingeach  the exponent and another input parameter in the base. The
for being a perfect phylogeny f@yields the stated running  following theorem of Bodlaender et al. shows that it is
time. O unlikely that this can be remedied:

Theorem 2.2 shows that our intuition was correct and THEOREM 2.6 ([14]). For every t,ppwith parameter m
PPis (more or less trivially) fixed-parameter tractable with (number of characters) ig/Jt]-hard.
respect ton. The sketched algorithm is very simple and
cannot handle a numbar of taxa that is greater than
perhaps 10 — while in practical situations we typically
have over a hundred taxa. More clever exhaustive search
algorithms in phylogenetics push the maximum number of
taxa that can be handled to between 12 on desktop machine
and about 15 on workstations; but what we really would like The third natural parameter for the perfect phylogeny
to find is a fixed-parameter algorithm for the parameter problem is the number of states per character. Fixed-
based, ideally, on a kernelization algorithm followed by a parameter results for this number are especially important
search tree algorithm, yielding a running time as the one since it is, indeed, small in many applications. Consider
stated in the below open problem. for instance an input in which characters are nucleotide
positions in the genome and the possible states for each
character are the four bases adenine, cytosine, guanine, and
thymine. Then the number of states is four or, if we also take
alignment-induced gaps into account by adding a “no-data”
or “gap” state, five. Even better, in applications such as the
phylogeny-based haplotyping presented in Section 7.2, we
Returning to an arbitrary number of taxa, we now have may assume that at most one mutation per site occurs and,
a look at what happens when we fix the numiperof thus, there are only two different states for each character.
characters. This is justified in an important practical  The first fixed-parameter algorithm for the paramater
application. As argued by Gusfield in [45], the perfect was proposed by Agarwala and Familez-Baca. It has the
phylogeny model explains genomic variations well when following running time:
crossing over effects are not present. This implies that
for short genomic sequences, the perfect phylogeny model
applies, and for longer sequences, we can try to partition the o(2% - (m*n+n)).
sequence into short intervals and derive perfect phylogenies
for these small sets of characters.

Once more, the intuition is that it should be easy to finda  THEOREM2.8 ([51]). PPcan be solved in time
perfect phylogeny if there are only, say, three characters and, o
indeed, Morris, Warnow, and Wimer present an algorithm O(2 'mz”)'
with the following running time:

Sketch of proof ideadnterestingly, this hardness result is
also proved by exploiting the equivalence pP to the
problem of triangulating colored graphs. O

3.4. Number of States Per Character as the Parameter

OPENPROBLEM 2.3.Is there a fixed-parameter algorithm
for PPwith respect to the parametewwith a running time in
O(c"+ (mr)°W) for somec close to 17?

2.3. Number of Characters as the Parameter

THEOREM2.7 ([1]). pPcan be solved in time

This result was later improved by Kannan and Warnow.

An O(n?n) algorithm for the special case= 3 had

THEOREM2.4 ([56]). PPcan be solved in time already been achieved by Dress and Steel [29]. Kannan and
il 1 Warnow [50] give arO(mr?) algorithm forr = 4.
O(r™ ™ 4+ nn?). For the special case= 2 one can make use of a simple,
Sketch of proof ideasThe idea is to show thaPp is but powerful characterization of matrices that admit a perfect

polynomially equivalent to the problem of triangulating phylogeny. The pharacterization is i_n terms of_aforbidden
colored graphs. For this latter problem we are given a graph induced submatrix and has been re@scovered independently
G = (V,E) and a coloring:: V — C, and the task is to find b Several authors, amongst other in [31] and [57].

a supergrapl@’ of G that is properly colored bg and that THEOREM?2.9. Forr = 2, a matrix A of taxa has a perfect

is triangulated (every cycle of length at least four contains a phylogeny if and only if it does not contain the following
chord). The number of colors for the triangulated colored jnduced submatrix:

graphs problem corresponds to the number of characters 82)
in PP, O 19
Using a different approach, Agarwala and Ferdez- Employing this characterization, which will also play a
Baca arrive at the following running time: role in Section 4.2, Gusfield devised an algorithm running in
linear time.

THEOREM2.5 ([2]). pPpcan be solved in time
THEOREM 2.10 ([43]). For r = 2, PP can be solved in

O((r —n/m)™-rnm). time Q'mn).
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The results of this section can be summed up as follows: number of times that any given state arises in T, that is,
PP with respect to either of the parameterandr (number the maximum number, taken over all characters ¢ and all
of taxa and number of states per character) ism, but states j, of connected components in.TPhylogenies with
with respect to the parameter(number of characters) itis  phylogenetic numbefare called/-phylogenies.

in XP and hard fow|t] for all t, see also Table 3 on page 20. A 1-phylogeny is the same as a perfect phylogeny. Unlike

the penalty, which bounds thetal number of violations
of the basic evolutionary model, the parametatoes not
restrict the total number of violations, but violations may
In the previous section we studiggrfectphylogenies. In not “concentrate” at a single state.

practice, we often have to deal with imperfect phylogenies A third measure of a similar flavor is theumber of bad
since, in reality, input matrices only rarely admit a perfect states It is due to Moran and Snir [58] who study how to
phylogeny. In this case we may look for a phylogeny that get rid of bad states by a minimal number of recolorings,
is at least “near” to being perfect instead. For this, we need compare Definition 3.6 in the next subsection.

to measure how strongly a phylogeny deviates from being a
perfect phylogeny.

3. MEASURES OF DEVIATION FROM
PERFECTION OF PHYLOGENIES

DEFINITION 3.3 (NUMBER OF BAD STATES. Given a
phylogeny T and a character c, thgharacter's number
of bad statess number of states j for whichcT is not
connected. Theumber of bad statexf a phylogeny T is the
The basic assumption of the evolutionary model underlying maximum numbers of bad states taken over all characters.
perfect phylogenies is that mutations of a character to .

. Clearly, for a given phylogeny all of the above measures
some state happen only once. We start with two measures . s
L . .~ ““can be computed in polynomial time.
that count, in different ways, how often this assumption : : - .
C ; . One can easily define further measures of a similar spirit;
is violated. Note that the input for these problems is a

; . for instance, we could maximize over the number of bad
phylogeny not a matrix. In the closely related Section 4.1 . )
: i g states per character or sum over the number of times a given
we will treat, for each measure, the question of findingne

: ) L ) state arises ifT, and so on, leading to an abundance of
phylogeny for an input matrix that minimizes the distance to . : .
possible measures and only few hints as to which measure

3.1. Measures Based on Relaxed Evolutionary Models

perfection. might be most appropriate in a particular biological settin
The first measure is thpenaltyof a phylogeny, due to 9 pprop P g 9
Ferrandez-Baca and Lagergren [35]. OPEN PROBLEM 3.1.Do a comparative study of the

introduced and similar measures with respect to their

DEFINITION 3.1 (LENGTH AND PENALTY OF A PHYLO- : .
biological relevance.

GENY). For an edge of a phylogeny connecting nodes u
and v, we define thengthof the edge as the Hamming dis-
tance of u and v (the number of characters where the states
differ). Thelengthof a phylogenetic tree T is the sum of 3.2. Measures Based on the Modification of Input
lengths taken over all edges of the tree. Temaltyof a Phylogenies

phylogenetic ree T Is defined as We now introduce measures that are based on the idea that

penaltyT) = length(T) — ;(rc -1), if the input data does not admit a perfect phylogeny, the data
ce must be flawed. One then tries to modify or even remove
where g is the number of states of character c¢ that are the taxa of a given phylogeny until a perfect phylogeny is
present in the phylogeny. reached. Note, again, that the input iplaylogeny not a
matrix. The taxa are already arranged in a tree and we only
wish to know how the particular input phylogeny needs to
be modified to arrive at a perfect phylogeny. In Section 4.2
we study the related, but different, problem of modifying
a character-state input matrix so that the resulting matrix
admits a perfect phylogeny.
For the first measure of this type one tries to prune a
phylogeny until it becomes perfect.

The idea behind this measure is the following: The length
of an edgee connecting taxau and v is the number of
mutations that occurred betweenandv. For a perfect
phylogeny a new state is introduced by a mutation only once
and therefore every charactecontributes exactly. — 1 to
the length of the tree. Hence, the penalty of a tree counts
how often the assumption “each new state is introduced only
once by a mutation” is violated. Perfect phylogenies have

penalty 0. DEFINITION 3.4 (TREE PERFECTION BY TAXA RE

The second measure is thaylogenetic numbedue to MOVAL). The input forTREE PERFECTION BY TAXA RE
Goldberg et al. [39]. For a stafeand a charactes let Tg j MOVAL is a phylogeny T and a number k. The task is to
denote the subgraph of the phylogenetic ffemduced by decide whether we can turn the phylogeny T into a perfect
the set of nodes whose labels are in sidt# the charactet. phylogeny by repeatedly cutting away leaves such that at
Then the phylogenetic number is defined as follows: most k of the original leaves are removed.

DEFINITION 3.2 (PHYLOGENETIC NUMBER). The It is not straightforward how to minimize the number

phylogenetic numbeof a phylogeny T is the maximum of taxa removals since there are many ways to prune a
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phylogeny and, indeed, this problenNB-complete already  a state in some node label) needed to arrive at a perfect

for r = 2 as the following theorem shows. phylogeny.
THEOREM 3.2. For every r> 2, TREE PERFECTION BY DEFINITION 3.7 (TREE PERFECTION BY RECOLORIN&
TAXA REMOVAL is NP-complete. The input forTREE PERFECTION BY RECOLORINGre a

phylogeny T and a number k. The task is to decide whether

Proof. The problem clearly is ilNP. Hardness is shown by the recoloring number of T is at most k

reducingvERTEX COVERTto it. For a graplG = (V,E) with

[V| = n and|E| = m construct a star-shaped phylogehy Finding an optimal recoloring for one character is not
with one center node andeaves, one for each vertex V. influenced by recolorings necessary for another character,
The taxa havem charactersce, one for each edge € E. so we can compute the recoloring number for each character
Each character has two states 0 and 1. The center node iseparately. Hence, the problem reduces to the problem for
labeled @. The leaf inT corresponding to vertex in G a single character (calletboNVEX RECOLORING OF TREES

is labeled with the character-state vector that has state 1 forby Moran and Snir), which Moran and Snir show toNie
characterce if and only if v is an endpoint ok. Now, for complete. Indeed, Moran and Snir show something even

each edge there are two taxa (leaves) in the phylogeny forstronger.
which the state otg is 1. At least one of these taxa has to
THEOREM 3.5 ([58]). TREE PERFECTION BY RECOt
be removed to make the phylogeny perfect, because of the . . .
m ; “ N ORING is NP-complete, even if we allow only instances
0™ vector in the “center.” Therefore the vertex coverdf .
where the phylogeny forms a path and where there is only
correspond exactly to sets of leaves whose removalTlets ;
a single character.
become perfect. O
On the other hand, Moran and Snir present an algorithm
Slight modifications of this proof show that the problem for computing the recoloring number. Recall theis the
remains NP-complete for binary phylogenies, or if one number of bad states, see Definition 3.3, which are the states
defines phylogenies in a way such that only leaves are (or colors) for which some action needs to be taken.

labeled with taxa. THEOREM 3.6 ([58]). TREE PERFECTION BY RECOt

OPEN PROBLEM 3.3.ls TREE PERFECTION BY TAXA ORING can be solved in time
REMOVAL fixed-parameter tractable with respect to the b \b
parametek (number of removed taxa)? O((@) ‘bmn“).

A second measure counts how many characters must The above theorem shows that computing the recoloring
be removed (disregarded) so that the phylogeny becomesyymper is fixed-parameter tractable with respect to the

perfect. This number is much easier to compute. number of bad states.
DEFINITION 3.5 (TREE PERFECTION BY CHARACTER OPEN PROBLEM 3.7.With respect to which other
REMOVAL). The input forTREE PERFECTION BY CHAR parameters iSREE PERFECTION BY RECOLORINdixed-

ACTER REMOVAL are a phylogeny T and a number k. The parameter tractable?
task is to decide whether the phylogeny T can be turned into

a perfect phylogeny by disregarding k characters. 4. CONSTRUCTION OF GOOD PHYLOGENIES

THEOREM 3.4. TREE PERFECTION BY CHARACTER

. o In the present section we study algorithms that construct
REMOVAL can be solved in polynomial time.

phylogenies that are “almost” or “nearly” perfect. To define
Proof. A character is either “in error” (because there is a What counts as a good phylogeny, we use the measures
state such that the set of all taxa of this state for the characterintroduced in the previous section. Having fixed a measure,
is not connected, which can be checked in polynomial time) our objective is now to find a phylogeny of minimal measure

or the character is “clean.” Wustdisregard all erroneous ~ for a given input matrix. Intuitively, this is a much more
characters and this suffices. O difficult problem than the ones studied in the previous

section, where we just wanted to compute the measure of

A third measure, implicitly introduced by Moran and a single phylogeny — and often already this seems difficult.
Snir [58], is based on a more fine-grained analysis of the However, it is conceptually possible that it is hard to
erroneous characters. Instead of just disregarding thosecompute a measure for a given phylogeny, but still easy
characters that violate the connectedness condition, we tryto constructsomephylogeny of minimal measure for given
to “fix them” by changing the states at a minimal number input matrix.
of places. Such a change of state may also be regarded as
arecoloring since states correspond to colors in equivalent 4.1. Minimizing Penalty, Phylogenetic Number, and
formulations of the perfect phylogeny problem. Number of Bad States

DEFINITION 3.6 (RECOLORING NUMBER). Given a Let us start with algorithms that find phylogenies minimiz-
phylogeny T, theecoloring numbeis the minimal number  ing the penalty (number of excess mutations) from Defini-
of state changes (the number of times we need to changdion 3.1, the phylogenetic number (one plus the maximum
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of the number of excess mutations per state) from Defini- Since for the case = 2 we have a characterization of
tion 3.2, or the number of bad states (number of states for matrices that admit a perfect phylogeny by a forbidden
which an excess mutation has occurred) from Definition 3.3. submatrix, see Theorem 2.9, the following problem becomes

important forr = 2.
DEFINITION 4.1 (MEASURE MINIMIZATION PROB- P

LEMS). The input for the problemBHYLOGENETIC PEN DEFINITION 4.4 (ROW DELETION). For afixed matrix B,
ALTY MINIMIZATION , PHYLOGENETIC NUMBER MINIMIZ- the input for therRow DELETION(B) problem is a matrix A
ATION, and PHYLOGENETIC BAD STATES MINIMIZATION and a number k. The task is to remove at most k rows from

is a matrix A of taxa and a number p. The task is decide A such that the resulting matrix does not contain B as an
whether there exists a phylogeny for A of penalty at most p, induced submatrix.
with a phylogenetic number of at most p, or with at most p

bad states. Combining the results proved in [78] on the row deletion

problem and results on the fixed-parameter tractability of the

Ferrandez-Baca and Lagergren [35] call phylogenies hitting set problem, one gets the following results.
that minimize the penalty “near-perfect,” but we use
PHYLOGENETIC PENALTY MINIMIZATION for consistency.

All problems are generalizations @fe since when the
penalty is O (or 1, for the phylogenetic number), the task
is simply to decide whether a perfect phylogeny exists. This THEOREM4.5. Forr =2, PP BY TAXA REMOVAL can be
shows that we cannot hope for a fixed-parameter algorithm solved time @8.30¢+ n*) and also in time @©2.18n+ n%).
for any of these problems with respect to the parampter
alone. If we take the parameteralso into account, two
theorems are known about minimizing the penalty.

THEOREM 4.4. For every r> 2, both PP BY TAXA
REMOVAL and PP BY CHARACTER REMOVAL are NP-
complete.

THEOREM4.6. Forr =2, PP BY CHARACTER REMOVAL
can be solved in time .29 + n?).

Proof. For r = 2, the PP BY CHARACTER REMOVAL
problem is equivalent (by an exchange of the roles of rows
and columns) teow DELETION(§ 93 1). Again forr =2,
o(mO(p)20<pzr2) n). PP BY TAXA REMOVAL is the row deletion problem for the
transposed4 x 2)-matrix, but it can also be reduced o

. 01 .
instances ofRow DELETION(l o). In [78] Wernicke et

) al. establish a close relationship betwespw DELETION
O(ZO(p)_an). and thed-HITTING SET problem. The task in theal-
HITTING SET problem is to find a hitting set of size at
mostk for a family of sets of size at most. On the one
hand, this relation can be used to show thatBy TAXA
REMOVAL andPP BY CHARACTER REMOVALforr = 2 are
NP-complete. On the other hand, fixed-parameter algorithms
for the d-HITTING SET problem with respect t& at once
yield fixed-parameter algorithms forow DELETION(B)
OPEN PrROBLEM 4.3.For which parameters or para- with respect to the parametkifor matricesB with d rows.

THEOREM 4.1 ([35]). PHYLOGENETIC PENALTY MIN-
IMIZATION can be solved in time

THEOREM 4.2 ([12]). For r = 2, PHYLOGENETIC
PENALTY MINIMIZATION can be solved in time

Theorem 4.2 tells us that for the particularly interesting
case of only two states per character there is a fixed-
parameter algorithm for finding a good phylogeny with
respect to the parameter penalty.

Much less is known about minimizing the phylogenetic
number or the number of bad states.

meter pairs areeHYLOGENETIC NUMBER MINIMIZATION For 3HITTING SET, Fernau [36] gives an algorithm with
Oor PHYLOGENETIC BAD STATES MINIMIZATION fixed- running timeO(2.18¢+-n), for 4-HITTING SET Niedermeier
parameter tractable? and Rossmanith [62] give an algorithm with running time
O(3.30¢+-n). For the 2HITTING SET problem, which is the
4.2. Minimizing the Maodification of Input Data well known vertex cover problem, Chen, Kanj, and Jia [18]
The next measures that we considered were based on thé ' o algorithm with running time(1.29"+ kn). =

idea that one may modify the input to arrive at a perfect
phylogeny. Trying to minimize these measures leads to the
following problems: For largerr, where no characterization in terms of
forbidden submatrices is known, the complexity of the

DEFINITION 4.2 (PP BY TAXA REMOVAL). The input for .
removal problems is open.

PP BY TAXA REMOVAL is a matrix A of taxa and a number k.
The task is to remove at most k taxa (rows) from A such that OPEN PROBLEM 4.7.Are PP BY TAXA REMOVAL and
the resulting matrix admits a perfect phylogeny. PP BY CHARACTER REMOVAL with parameterk fixed-

DEFINITION 4.3 (PP BY CHARACTER REMOVAL). The parameter tractable for afe

input forPP BY CHARACTER REMOVALIS a matrix A of taxa DEFINITION 4.5 (PP BY RECOLORING. The inputforrp
and a number k. The task is to remove at most k charactersBy RECOLORING is a matrix A of n taxa and a number k.
(columns) from A such that the resulting matrix admits a The task is to decide whether A has a phylogeny with
perfect phylogeny. recoloring number of at most k.
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Recall that computing the recoloring number ofjigen Subtree prune. ..
phylogeny is fixed-parameter tractable with respect to the
parametetb (number of bad states), but nothing is known

for the problemPP BY RECOLORING E Staphylococcus aureus
Haemophilus influenzae

Escherichia coli

OPEN PROBLEM 4.8.How difficult is PP BY RECOLOR

ING? plants e

. —fis

—ut house mouse

5. COMPUTING DISTANCES BETWEEN vl C humans

PHYLOGENIES wild boar
In the present section we study how difficult it is to dragonfiies
compute the distance between phylogenies, which need not beetles
be perfect. Computing such distances is important when
several candidate phylogenies are given, obtained either ...and regraft
computationally by different methods or compiled from house Mouse
different literature sources. We discuss three classical, P humans
well-known editing distance measures as well as a recently w V¢ i
introduced distance measure based on planar embeddings of i wild boar
the involved trees. | Escherichia coli

One way to define a distance between phylogenies is to ¢ D e Staphylococcus aureus

count the number of modifications necessary to transform Haemophilus influenzae

one phylogeny into another. Possible modifications include
deletion and insertion of taxa or the movement of a fish
subtree of the phylogeny to another place. For different .
sets of allowed modifications, we get different notions of
distance. Three increasingly general modifications have
been studied extensively in the literature, see the book q i
- ragonflies

chapter of DasGupta et al. [24] for an entry point. Usually {
these operations are considered onlyumdirected, binary beetles
phylogenies in whicliaxa label only leaves

The first operation is th@earest neighbor interchange  FIGURE 3. Example of how the subtree prune and regraft
In a binary phylogeny, every internal edge has four subtreesoperation works. In the left phylogeny the edge betweandv is
attached to it (two at the one end of the edge and two at theCut and then the tree rooted\eis regrafted at a new position in the
other end) and the nearest neighbor interchange exchange&9nt phylogeny. The right phylogeny takes the presence or absence

. E c of the gene encodiny-acetylneuraminate lyase into account. This
two such subtrees. This means thaé the t 5 can be gene is present in vertebrates and bacteria but not in the other

changed intof>—<g or into p>—<§. taxa, suggesting that a horizontal gene transfer took place. The
The second operation is theubtree prune and regraft  announcement [54] iNaturethat humans may have acquired over
operation. Here we are allowed to cut an edge anywherea hundred genes directly from bacteria made newspaper headlines,
in the phylogeny and to reattach (regraft) the subtree that webut the twoSciencearticlesMicrobial genes in the human genome:
have cut away at some other place. In detail, starting with a Lateral transfer or gene lossf69] and Are there bugs in our
phylogeny, we consider some edge connecting two nades genome?[?] quickly challenged the findings and suggest other
andv. Let T, andT, be the two subtrees connected by the explanations, at least for most genes.
edge. Then the subtree prune and regraft operation allows
us to cut the edge betweermandv and to reattach the tree
Ty at some other place i,. To reattach the tre&,, we
split an edge il by adding a new node in the middle and the importance of horizontal gene transfer [38] Gogarten,
connect the nodeto that new node, see also Figure 3. The Doolittle, and Lawrence point out that “accumulating
nodeu, which now has degree two, is removed to make the prokaryotic gene and genome sequences reveal that the
tree binary again. While not quite obvious, it is not hard exchange of genetic information through both homology-
to see that nearest neighbor interchange is a special case alependent recombination and horizontal (lateral) gene
subtree prune and regratft. transfer @GT) is far more important, in quantity and
The subtree prune and regraft operation models aquality, than hitherto imagined. The traditional view,
horizontal gene transfemwhere a gene is transfered between that prokaryotic evolution can be understood primarily in
unrelated taxa by a mixing of their genetic material. As we terms of clonal divergence and periodic selection, must be
pointed out in the remark after Definition 2.1, we cannot augmented to embrace gene exchange as a creative force,
hope to fully understand evolutionary processes without itself responsible for much of the pattern of similarities and
taking horizontal gene transfer into account. In a survey of differences we see between prokaryotic microbes.”

plants
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The third operation is th#zee bisection and reconnection
operation. This operation is nearly the same as the subtree
prune and regraft operation, only we now allow to connect
an arbitrary node ifly to Ty, rather than only the node

Input trees for the kernelization algorithm

T

This operation is more general than the subtree prune and LENP: Ts T
regraft operation, but one can simulate a tree bisection and

reconnection operation by two subtree prune and regraft X’ ﬂiTiTi TY/
operations. T T, T T,

DEFINITION 5.1 (DISTANCE PROBLEMS. The input for
the three problemsNI DISTANCE, SPR DISTANCEand TBR ]
DISTANCE are two binary, undirected phylogenies with input Trees after second reduction step
taxa labels only at the leaves and a distance d. The task

is to decide whether d nearest neighbor interchanges, d X Y

subtree prune and regraft operations, or d tree bisection a b c

and reconnection operations suffice to transform the first
phylogeny into the second, respectively. N j—T—Ti Y/
Computing the distance between phylogenies turns out to a b c

be a hard job. It is known that computing the distance of

two phylogenies with respect to either the nearest neighborFIGURE 4 Th d reduct le in the kernelizati

interchange operation or the tree bisection and reconnection : - "€ second reduction rule in the kernelization
LS . algorithm forTBR DISTANCE. Each capital letter is a subtree, each

operation isNP-hard and it is strongly suspected that the

. . lowercase letter is a label.
same is true for the subtree prune and regraft operation.
THEOREMS5.1 ([25]). NNI DISTANCE is NP-complete.

Sketch of proof ideasThe hardness is shown by a rather
involved reduction from EXACT COVER BY 3-SETS
Interestingly, the hardness was open for a long time and
appeared as an open problem in numerous papers like"
[68, 77, 22], just to name the earlier ones. O

OPEN PROBLEM 5.5.Are  NNIDISTANCE or
SPR DISTANCE with parameterd (distance) also fixed-
arameter tractable?

We conclude this section with a distance measure that
was introduced in [37]. It deviates from the above ones
in that it is based on planar embeddings of the two trees
involved. Given a leaf-labeled tree, a linear ordering on its
leaves is callecsuitableif the tree can be embedded into
the plane such that its leaves are mapped to a straight line
in which the given order is maintained. Given two orderings
on the same label set, theiossing numbeis the number of
edge crossings when drawing the orderings onto two parallel
layers and connecting the corresponding labels by edges, see
Figure 5 for an example. We then obtain a definition of
distance for trees as follows:

OPEN PROBLEM 5.2.Is SPR DISTANCE also NP-
complete?

(An NP-completeness proof foBPR DISTANCE given
in [48] turns out to be incorrect as argued by Allen and
Steel [4], but it might be possible to fix the proof.)

THEOREMb5.3 ([4, 48]). TBR DISTANCEIiS NP-complete.

THEOREM 5.4 ([4]). TBR DISTANCE can be solved in
time O(d°@ +n*).

Sketch of proof ideasgNo exact time bound is given in [4];
the one stated above is a loose upper bound that we derived DEFINITION 5.2 (CROSSING DISTANCH. Given two
by generously bounding the running time of the algorithms leaf-labeled trees Tand  with the same leaf set, their
given in the paper. As the running time formula suggests, crossing distances the minimal crossing number between
the O(d°@ +n*) algorithm uses a kernelization algorithm ~ two suitable orderings, one with respect tpand one with
running in time O(n%) to reduce the original problem eSPecttod.
instance to an instance of size at m@gd). This reduced
instance can then be solved by brute force.

The kernelization is based on two easy reduction rules:

First, if a pendant subtree occurs identically in both trees, DEFINITION 5.3 (CROSSING DISTANCH. The input for
then in both trees we replace the subtree by a single leafCROSSING DISTANCEare two leaf-labeled trees;Tand b
that gets a unique new label. Second, if a chain of pendantW'th the same n element leaf set and a distance d. The task

subtrees occurs identically in both trees, the whole chain IS t0 check whether the crossing distance betwaeand b
can be replaced by a chain of three leafs labeled with three!S at mostd.
new labels, see Figure 4. The kernelization algorithm simply  The problem is calledwo-TREE CROSSING MINIMIZA-

Note that under this definition trees with different
topologies may have distance O.

applies these rules until neither rule can be applied any more.t|on by Fernau et al. [37]. They show that it&-complete,

The resulting trees will then have siggd). O

but fixed-parameter tractable with respect to paranteter
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Escherichia coli Escherichia coli
IE Staphylococcus aureus ———— Staphylococcus aureus j K
Haemophilus influenzae —————— Haemophilus influenzae
plants house mouse
house mouse humans Q
Lr humans wild boar —

L wild boar plants —
fish fish
dragonflies dragonflies

E beetles beetles 3

FIGURE 5. Visualization of the crossing number computation for the two phylogenies from Figure 3. The two phylogenies are drawn in
such a way that the taxa lie on two parallel lines. Three crossings result when identical taxa in the different phylogenies are connected.

THEOREM 5.6 ([37]). CROSSING DISTANCE iS NP- An obvious shortcoming of the supertree approach is that
complete. we expect phylogenies based on total evidence to be more
THEOREM 5.7 ([37]). CROSSING DISTANCE can be exac"t than phylogenies pased only on “second-hand, indirect

. 10d_~0(1) data” like tree topologies. To make matters worse, the
solved in time @2'™ . n°W)). . ) ’
supertree approach can yield phylogenies that are outright
Sketch of proof ideasThe problem can be solved by a contradictory to the primary data. Nevertheless, over the last
search tree algorithm that, recursively, identifies “conflict- years numerous papers have presented supertrees, motivated
ing” subsets of four leaf labels, that is, four labels for which by a number of arguments that count in favor of the supertree
no suitable orderings without crossing can be found. The approach:

algorithm branches recursively for each possible orderings, o The Jiterature contains thousands of phylogenetic

one in each tree, for identified leaves. In the case in which studies. When combining published phylogenetic trees
no size-four conflicting subset is found, a more complex to obtain larger trees, it is often hard or impossible to
branching into a fixed number of branches can be givén. revisit the underlying methods or data. For example,
Pisani et al. [66] use phylogenies from 124 different
Unfortunately, due to its high running time the above publications, some of which date back decades, to
result merely classifies the problem as fixed-parameter ~ constructa supertree for 277 Dinosauria genera.
tractable. ¢ In order to increase efficiency, one can try to compute
phylogenies in a two-phase process. In a first phase,
OPEN PROBLEM 5.8.Give a practical fixed-parameter one computes small trees based on a phylogenetic
algorithm for computing the crossing distance. method of choice. Because the trees are small, one
can use time-intensive methods. In a second phase, one
6. COMBINING PHYLOGENIES combines these trees into one phylogeny.
e Phylogenetic trees can be computed based on different
In this section we study approaches to combining several  character sets and the task is to combine the resulting
phylogenies into a single phylogeny.  Suppose two trees into a single supertree. Not all data may be

researchers have accumulated character data for two  gyailable for all taxa of interest, for instance genomic

partially overlapping sets of taxa and both have constructed sequences may be available only for a small set of
phylogenies based on their data, see Figure 6 foran example.  gpecies, making it hard or impossible to construct a
A natural question to ask is, How can we combine these two supermatrix for the primary character data.
phylogenies into a single phylogeny?

The first approach is to combine the character-state
matrices into asupermatrix(as it is called in [70]) and to
build a phylogeny based on this combingdmary dataor
total evidence(as it is called in [53]). Another approach,
which has gained momentum only in recent years, is to
ignore the primary data and to build a phylogeny based only
on thetopologies of the two phylogeniePhylogenies that
are based on the topology of other phylogenies rather than on
the underlying character-state data are callsdertrees.

The term “supertree” stems from the 1986 paper
Consensus supertrees: the synthesis of rooted trees
containing overlapping sets of labeled leaveg Allan
Gordon [40]. However, the strict consensus supertrees of
Gordon can only be build for conflict-free input phylogenies,
which are only rarely available. Today, the term is also used
for trees constructed using methods that handle conflicting
input phylogenies more gracefully.
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In Section 6.1 we investigate strict consensus supertrees
because it is helpful to understand the simple case of no
conflicts first before tackling more difficult settings, but also

because a strict consensus supertree, in the few cases it
The question whether such a
strict consensus supertree exists for given input phylogenies

exists, is of great interest.

is solvable in polynomial time [3] for directed trees, but is
NP-hard for undirected trees. This leads us to having a look
at the problem from a parametrized point of view.

There is more than one way to build a supertree from
conflicting input phylogenies. A first, rather straightforward
idea is to resolve conflicting input phylogenies by deleting
a minimal number of the conflicting input trees so that all
conflicts are resolved. In the second part of Section 6.1

we present such a fixed-parameter algorithm for the case in

which all input trees are unrooted and have four leaves.

Second, we can resolve conflicts by leaving out a bounded
number of input taxa from the analysis. In Section 6.2 we
consider a version of this problem in which the input trees
are rooted and share the same leaf set.

Third, we name a method calladatrix representation
with parsimony(MRP), which was proposed independently
by by Baum [8], Doyle [28], and Ragan [67]. This method
transforms the combination of directed input phylogenies
into a maximum parsimony problem on a binary character-
state matrix and then computes a maximum parsimony
tree for this matrix. One can compute a maximum
parsimony tree by applying the fixed-parameter algorithm
for PHYLOGENETIC PENALTY MINIMIZATION presented
in Section 4 where the parameter is the “deviation” from
being a perfect phylogeny. Beyond that, it seems that
parametrized algorithms tailored to the cas&gaf have not
been studied so far. But see [17] for a problem formulation
slightly changing the optimization goal efRp and a fixed-
parameter result for a constrained case.

For a more detailed discussion and critical appraisal of

, Phylogeny of Brez-Moreno et al. [64]

Dilophosaurus

— Ceratosaurus
®
L— carnotaurus

—t

Allosaurus
Tyrannosauridae

Phylogeny of Holtz [49]

Dilophosaurus

— Ceratosaurus
®
L Elaphrosaurus

Allosaurus

—t

Archeopteryx
Tyrannosauridae

Strict consensus supertree for the above phylogenies

Dilophosaurus
Ceratosaurus

— Elaphrosaurus

Carnotaurus

Allosaurus

— Archeopteryx
Tyrannosauridae

FIGURE 6. (Parts of) two phylogenies for Dinosauria from two
different publications and a strict consensus supertree for them.

the different supertree methods, we refer the reader to the Theorem 6.1 ([73]). cup is NP-complete, even if all

monograph edited by Bininda-Emonds [10].

6.1. Combining Phylogenies Using Strict Consensus
Supertrees

input trees have four leaves.

The corresponding problem falirectedtrees is solvable
in time O(n3) for n taxa using an algorithm of Aho et al. [3].
Steel [74] raised the question of whether the undirected

For every method, including the strict consensus supertreeyersion is fixed-parameter tractable with respect to the
method, the most basic problem is to decide whether anumbert of input trees. This parametrization is reasonable
supertree exists. For the next definitions recall that in a since the combination of a small number of possib|y |arge
binary phylogeny all nodes have degree one or three. trees is a realistic scenario. Bryant and Lagergren have

DEFINITION 6.1 (STRICT CONSENSUS SUPERTREE A recently answered Steel’s question positively.

phylogeny Tinducesa phylogeny Tif T’ can be obtained
from T by repeatedly deleting leaves and contracting edges.
A phylogeny T is astrict consensus supertrad trees

T, ..., kifeach Tisinduced by T.

DEFINITION 6.2 (COMPATIBLE UNDIRECTED PHYLO-
GENIES). The input for COMPATIBLE UNDIRECTED
PHYLOGENIES (abbreviatedcup) are binary phylogenies
Ti1, ..., k. The task is to decide whether there is a binary
strict consensus supertree for, T. ., T.

THEOREM®6.2 ([16]). cupcan be solved in time
O(f(t)-n°Y)
for some function f.

Sketch of proof ideadFirst, the input trees can be combined
to adisplay graphthat has tree-width, providedcup has a
solution. Second, the problegup can be described using

a monadic second-order formula on the constructed display
graph. Fixed-parameter tractability follows because of

Already this basic problem turns out to be hard. two classical results from parametrized complexity theory:
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determining whether a given input graph has tree-width

is fixed-parameter tractable with respect to parameter
see [13], and evaluating a monadic second-order formula on
graphs of tree-width is also fixed-parameter tractable with
respect to the parametersee [21]. O

Styracorsaurus > < Tyrannosaurus
Opistocelicaudia Therizinosaurus

FIGURE 7. A quartet for four Dinosauria genera.

Unfortunately, both theoretical results on which the fixed-
parameter algorithm fazuris based are, indeed, theoretical
and do not have efficient, practical implementations. No one
has yet bothered to determine an explicit upper bound on the
function f mentioned in the above theorem.

OPEN PROBLEM 6.3.Give an efficient and practical
parametrized algorithm with explicit running time bounds
for cup for the parameter (number of input trees).

Sketch of proof ideasThe main idea is to employ old results
by Bandelt and Dress that allow one to lead “global”
conflicts in the input set back to “local” conflicts of three
A parametrization ofcupP with respect to the maximum  quartet trees, and to determine that there are exactly four
size of the input trees does not even lead to a “theoretical” ways to resolve a local conflict. This results in a search tree
fixed-parameter algorithm by Theorem 6.1. On the other algorithm with the stated running time. O
hand, the problem is fixed-parameter tractable with respect

to the total number oh of input taxa since we can try all

possible tree topologies over the taxa, see also Theorem 2

and Open Problem 2.3.
In practice, multiple phylogenies can only rarely be

combined into a strict consensus supertree. Similar to the
case of input matrices that do not permit a perfect phylogeny,

we must now find ways of resolving the conflicts. The

perhaps simplest approach is to delete potentially erroneou
input trees until a solution can be found. Here the number of

deleted trees is a natural problem parameter.

DEFINITION 6.3 (CUP BY TREE REMOVAL). The input
for cuP BY TREE REMOVAL is the same as focuP plus a

number k. The task is to remove at most k trees from the

input such that the remaining trees are an instanceop.

Theorem 6.1 implies that the above problem N&-
complete fork = 0 even for the extreme case that all input
trees arequartettrees (binary trees with four leaves as in
Figure 7); so it is unlikely that we will make progress on
the fixed-parameter tractability afuP BY TREE REMOVAL

However, in one particular case there is, at least, still hope:

OPEN PROBLEM 6.4.1s CUP BY TREE REMOVAL with
parametek fixed-parameter tractable when we allow only

Note that the running time in Theorem 6.5 is linear in the

é'nput size since there a@n?) input quartets fon taxa. The

algorithm described in [41] also exhibits how search tree
algorithms can be complemented by heuristic strategies to
prune the search space beyond the running time guarantee.
Considering arbitrary (non-quartet) input trees, it is
neither clear how the notion of “denseness” should be
defined in order to get a result similar to Theorem 6.5, nor

ﬁwow the ideas of the algorithm faviNIMUM QUARTET

INCONSISTENCY, which are tailored to quartet trees, could
be adapted.

OPEN PROBLEM 6.6.Define an appropriate notion of
“denseness” for non-quartet trees. What is the parametrized
complexity of the resulting problem?

6.2. Combining Phylogenies Using Agreement
Subtrees

Combining phylogenies using strict consensus supertrees is
rarely possible in practice, batwaysbound to fail when

we wish to combine multiple phylogenies oviglentical

leaf sets — a situation that arises in important applications.
For example, common heuristic phylogeny reconstruction

methods that optimize a maximum parsimony criterion or

quartets as input and all of them share a common taxon?3 maximum likelihood criterion usually produce several
(Note that a set of quartets that share a common taxon carpptimal or near-optimal trees. Choosing one of the near-

be thought of as a set of directed triplets.)

optimal trees arbitrary is, well, arbitrary and a “consensus”

The situation is more favorable when we turn towards the Of the trees may be preferable. Ad-hoc methods for finding

following “dense” version of the problem:

DEFINITION 6.4 (MINIMUM QUARTET INCONSIST-
ENCY). The input for MINIMUM QUARTET INCONSIST-
ENCY is a set S of n taxa, a S€ containing a quartet tree

a consensus like the majority consensus tree method work in
polynomial time — the randomized algorithm presented in [5]
runs in linear time for instance — but they may yield poorly
resolved output trees. In the following we discuss a more
sophisticated version of the consensus problem.

for each four element subset of S, and a number k. The task For the rest of this section we consider omirected

is to remove k quartets fro@ so that the remaining quartets
have a binary supertree T.

THEOREMG.5 ([41]). MINIMUM QUARTET INCONSIST-
ENCY can be solved in time @%-n+n%).

phylogenies, which not longer need to be binary.

DEFINITION 6.5 (MAXIMUM AGREEMENT SUBTREE).
The input foMAXIMUM AGREEMENT SUBTREEIiS a set S of
n taxa, directed input treeg T..., T over S, and number k.
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The task is to find a subs€etS S of size n-k such that there picks up oxygen in the lungs and transports it through the
is a directed phylogeny T ovef Sich thateach of{T..., & body. Every protein is uniquely identified by the sequence
induces T. of amino acids that, chained together, form this protein;
for example, the sequence of hemoglobin starts with valine,
histide, leucine, threonine, proline, and contains a total of
146 amino acids. This sequence is encoded in the genome

Perhaps not surprisingly, this problem N&>-complete.
The following theorem shows that the situation is even

worse: .
using a sequence of codons (blocks of three bases) where

THEOREM®6.7 ([6]). MAXIMUM AGREEMENT SUBTREE each codon encodes one amino acidgekeis, in essence,

is NP-complete even for+ 3. just a sequence of codons in tbalA that tells the cell to

produce, say, hemoglobin. The human genome has tens of
thousands of genes for all the different proteins that need to
be produced.
The process of translating the base sequence of a gene
THEOREM 6.8 ([32]). MAXIMUM AGREEMENT SUB- into a protein is callediene expressionHowever, cells do
TREE can be solved in time @9 4 tn3). not simply express all genes in the genome at all times.
Once, say, the cell membrane has been constructed, the
expression of the protein(s) for the cell membrane needs
to be stopped (or, at least, reduced). For this reason, gene
expression isegulatedby other parts of the genome. Before
or after a gene there are base sequences in the genome

Concerning the maximum degrdeof nodes in the trees,
the following result is known, which places the problem at
least in the clasgP with respect to the parameter

For a more complete overview on agreement subtrees we
refer to [9]. For us, it is of particular interest thahXiMuM
AGREEMENT SUBTREEIs fixed-parameter tractable with
respect to paramet&rnumber of removed taxa):

THEOREM®6.9 ([9]). MAXIMUM AGREEMENT SUBTREE that are involved in the inhibition or promotion of gene
can be solved in time @.18¢+tn%) and also in time expression, depending on which other proteins are present.
O(3k-tn). These sequences in turn can again be regulated by other

regulatory elements in the genome, leading to a highly
complex regulatory network. Understanding this network is

one of the most challenging, interesting, and important tasks
of molecular biology.

Phylogenetic footprinting, first proposed by Tagle
et al. [75], is a method for predicting which regions of the
genome are regulatory (involved in the regulatory process).
The basic idea relies on the following observation: Supposed
we have identified a gene and we expect that there are reg-
ulatory elements before and after the gene, but we do not
know where they are exactly. Then we expect that regulatory
elements, which are as important as the genes themselves
for the survival of an individual, will not change (greatly) as
mutations occur throughout the genome. If a non-regulatory
part mutates, this does not change the chances of survival,
but when a mutation occurs inside a gene or a regulatory
area, then the individual may not survive. One says that the
regulatory elements amnender pressure of selectiomhile
7. APPLICATIONS OF PHYLOGENIES the surrounding parts of the genome are not. Thus, a pos-

In this final section before the conclusion we present Sible approach to predicting regulatory elements is to do a
two applications of phylogenetics that are not related to Sequence alignment of multiple genomic data and to search
taxonomy. In these applications we are not ultimately for parts of the genome that stay (relatively) stable over evol-
interested in a solution phylogeny. Rather, we use utionary time spans amid parts of the genome that vary.

a phylogeny or the phylogenetic model to determine In phylogenetic footprinting one attempts to improve
something seemingly unrelated. In the first application we the prediction by using a phylogenetic tree to judge how
use a phylogeny to help in the prediction of regulatory important a mutation is. If we see only, say, three
elements of the genome, in the second application we usedifferent sequences in a candidate regulatory region, but the

perfect phylogenies as a measure of the quality of haplotypeSeduences of closely related species vary strongly between
phase predictions. the three sequences, we are less likely to believe that the

region is regulatory than if related species all share the same
sequence inside the regulatory region.

The above ideas lead to a problem calledbstring
parsimony problemTo state it formally we first define the
The cells of the human body permanently need to produce parsimony score
different proteins like, for instance, hemoglobin, which

Sketch of proof ideaswWe can restrict attention to “local”
conflicts formed by three taxa, at least one of which has to be
removed. This allows us to redusAXIMUM AGREEMENT
SUBTREE to 3-HITTING SET. Applying the best known
fixed-parameter algorithm for B+TTING SET [36] yields

the first bound. Omitting the time-intensive reduction in the
beginning and searching one local conflict at a time yields a
O(3¢-tn) time algorithm. O

The result can be extended to the closely related
MAXIMUM COMPATIBILITY TREE problem [9]. For input
trees with non-identical leaf sets, Berry and Nicolas
show that the resulting problemAXIMUM AGREEMENT
SUPERTREEbecomesn[2]-hard, even when each input tree
has only three leaves. Consequently, a fixed-parameter
algorithm corresponding to Theorem 6.9 is out of reach.

7.1. Prediction of Regulatory Elements Using
Phylogenetic Footprinting

THE COMPUTERJOURNAL VoL. 00 No. 0, 2007




16 GRAMM et al.

DEFINITION 7.1 (FARSIMONY SCORE. Recall the no- the sum over the ages of the edges. The substring parsimony
tion of thelengthof a phylogenetic tree from Definition 3.1. problemwith lossescan now be defined as follows (the
Given apartially labeledphylogenetic tree T, thegarsimony below definition is slightly simplified compared to [11]).
scoreof the tree is the minimal length of a label completion

of T DEFINITION 7.3 (SUBSTRING PARSIMONY WITH

LOSSES. The input for theSUBSTRING PARSIMONY WITH
DEFINITION 7.2 (SUBSTRING PARSIMONY). The input LOSSESproblem is a partially labeled phylogenetic tree T
for SUBSTRING PARSIMONYis a partially labeled phylo- in which exactly the leaves are labeled, a labeling function
geny T in which exactly the leaves are labeled and two in- that assigns an age to each edge of T, two integers | and s,
tegers | and s. The task is to decide whether each leaf labeland a minimum age. The task is to decide whether one
can be replaced by a substring of length | such that the parsi- can prune the tree (remove leaves repeatedly) and replace
mony score of the resulting tree is at most s. each remaining leaf label by a substring of length | such
that the parsimony score of the resulting tree is at most s

The substrings of lengththat we choose from each leaf and the age of the tree is at least

are the predicted regulatory elements. Note that in the

substring parsimony problem the phylogenys fixed and Note that this problem is a generalizationafBSTRING

part of the input. The idea is that it is typically already PARSIMONY: Settinga to the age of the input tre@

available in the literature or can be computed using one of enforces that no pruning takes place.

the method presented in the previous sections.
Blanchette, Schwikowski, and Tompa prove the following

theorem:

THEOREM 7.2 ([11]). SUBSTRING PARSIMONY WITH
LossEscan be solved in time @r? +m)-In).

Sketch of proof ideasA similar dynamic programming ap-
proach can be used as for the basic version of the prob-
lem. O

THEOREM 7.1 ([11]). SUBSTRING PARSIMONYcan be
solved in time @(r? +m)-In).

Sketch of proof ideasThe problem can be solved using a
dynamic program, although the entries of its “table” are
attached to the nodes of the phylogeny and the “table” is
built from the leaves inward. The table entry for a nods

the phylogeny is a table once more, which stores a numberThe haplotype phase determination problemr just

for each for each state vector of lendttof which there are  haplotyping problermarises when one searches for genetic
r' many. The number stored for a state vector is the bestvariations of diploid organisms like humans. An example
parsimony score that can be achieved for the subtree rootebf important genetic variations arsingle nucleotide
atu, if uis labeled with the state vector. Building the initial polymorphismgsnpes), which we mentioned earlier. They
table entries for the leaves is easy (there, all numbers in aare variations across the population of a single nucleotide
table for a leaf are either O or infinity) and combining two in the genome. Thus, some people may hawaa string

7.2. Prediction of Haplotype Phase Using Perfect
Phylogenies

tables takes timé -r'. O where at a specific position on a chromosome the nucleobase
is adenine and some other people may have guanine at the
The theorem shows th&®UBSTRING PARSIMONYIS in same position, see Figure 8. Knowing which nucleobase is
FPTwith respect to the parameter péifl ). The parametar present can be important for the prediction of drug response
is 4 in practice, but even for this low value the dominating or susceptibility to diseases.
part of the running time ig? = 16, which grows too Suppose we wish to determine quickly and inexpensively

quickly. Therefore Blanchette et al. develop a number (for example, in a hospital during a study on drug response)
of improvements for the original algorithm and lower the the state of a specifisnpfor a person. This can be done, in
dominating term first to' and even further for typical inputs.  essence, by sampling cells from a drop of blood, extracting
In the same paper, Blanchette et al. also consider athe DNA, using a polymerase chain reaction to increase the
generalization ofSUBSTRING PARSIMONY Sometimes amount ofbNA present, and then mixing in two primers. The
regulatory elements may lose their significance when the primers can be thought of as two keys, one that will fit when
gene they regulate is no longer important or when another the nucleobase is adenine at the spesifiesite and one that
regulatory element takes over. In this case, there is selectivewill fit when the nucleobase is guanine. Then, depending on
pressure only in a subtree of the phylogenetic tree, while which primer reacted, the result will either glow, say, red
in the rest of the tree the parsimony score of the regulatory or green under fluorescent light (or, frustratingly, not at all,
element will be high. when one of the steps in the experiment was not executed
To handle these losses, Blanchette et al. propose to searcleorrectly).
for substrings that have a low parsimony score but still span  Humans are diploid organisms, which means that we have
a large part off . To determine the “size” of a subtree, we do two specimens of each chromosome, one inherited from the
not count the number of elements, but allow a more generalmother and one from the father. But, then, it is possible that
measure: We assign ageto each edge of (in [11] the we inherit onedDNA string with adenine at thenp site and
age is called théengthof the edge, but this term is defined anothemNA string with guanine. These twaNA strings are
differently in the present paper). Then thge of a subtrees called thehaplotypes The fact that we have two haplotypes
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Firstsample: ... CTTTGAAGGGAATTAAATAT ... 464 bases... CAATGGAATCCCTCTAGGAT ...
Second sample: ... CTTTGAAGGGGATTAAATAT ... 464 bases... CAATGGAATCGCTCTAGGAT ...
SNP site SNP site
base position 143,851,738 base position 143,852,221

FIGURE 8. Parts of two different samples of humana base sequences. These sequences are inside theryesg2, which is located

on the human chromosome 1 between base positions 145,093,309 and 145,110,753 in the reference haplotype of the Human Genome Projec
It is a regulatory subunit of protein kinase and is highly expressed in skeletal muscle and may have tissue-specific roles. Inside the gene, the
base sequences of any two samples are identical excepbaites. Two of them are shown, namely first rs6937 and then rs1047140 in the
nomenclature of the US National Center for Biotechnology Information [60], from whose genome map the data was obtained.

means that in the experiment the two primers may histt DEFINITION 7.4 (HAPLOTYPE, GENOTYPE). A haplo-
glow, which indicates théneterozygous state which we type is a state vector. The s&; of permissible states at
have inherited two haplotypes with different states, or only position i is typically (but need not be) a two element sub-
one may glow, which indicates one of the thhomozygous  set of{A,C,G,T}. A genotypes a sequence of sets, where
statesin which both haplotypes agree. the ith set is a subset of size one or twozpf Two hap-

A problem arises when we consider tvgolP sites. For lotypesexplaina genotype if the ith subset of the genotype
this, we do two experiments, each with two special primers. contains exactly the two states of the ith positions of the two
Suppose that we learn from the experiment that both sites arehaplotypes.
heterozygous. Then we know that, say, at the first position

. . : DEFINITION 7.5 (PP HAPLOTYPING. The input for the
there is adenine on one haplotype and guanine on the other . .
. ) . PP HAPLOTYPINGproblem is a set of genotypes. The task is
and at the second position there is, say, cytosine on one

A L2 o to decide whether there exists a set of haplotypes forming a
haplotype and guanine on the other. This information is also .
called thegenotypeof the person (for these psites). perfect phylogeny such that each genotype can be explained

What we donot know is whether the haplotype on which by two haplotypes in the set.

there is guanine at the first position is the same haplotype The PP HAPLOTYPINGproblem is at least as hard as the

as the one on which there is guanine at the second position.Pp problem since we can reduce to PP HAPLOTYPING

There might have been a “switch” from oselP site to the by turning each taxon into a “genotype” whosh set

other, better known as a phase shift. This effect is depictedcontains only theth state of the taxon. Then every set

in Figure 9. of “haplotypes” that explains the “genotypes” contains the
Determining the two haplotypes of a single genotype original set of taxa. This shows thap HAPLOTYPINGIS

is impossible, unless context information is available. If NP-complete.

there areh heterozygoussnp sites, then there areM2! The question arises which fixed-parameter results on the

pairs of haplotypes that explain the observed genotype PP problem carry over to the more general haplotyping

and each pair is equally likela priori. In order to problem. Not too much is known on this since research

determine the phase of the haplotypes, we must makehas almost entirely focused on the case 2. For this, the

assumptions about which haplotypes are more likely than following remarkable result is known:

others. For example, we might assume that haplotypes

change only rarely (they certainly do not change within a

few generations). Then if we are given the genotypes of

hundreds of persons of the same ethnic group, we can try OPEN PROBLEM 7.4.How difficult is PP HAPLOTYPING

to find a minimal set of haplotypes such that every observedfor r > 27?

has w0 haplotypes fom the amall set. Many staedoal " Precte, the perfect phyiogeny haplotyping problem

is, unfortunately, not quite the problem that we want to

me‘th"ds for haplotype phase determination are based on thlssolve. Genotype data that is obtained via the laboratory
parsimony assumption.

In a seminal paper, Gusfield [45] proposed a different process sketched earlier will always contain a certain amount

. ) . of missing datacaused by impurities or incorrect handling.
idea. Gusfield argues that haplotypes evolve according 2 . .

. . . 7Such missing data is commonly represented by question
to the evolutionary model underlying perfect phylogenies: o .

. . mark entries in the genotype input.

Mutations occur only rarely and there are no back-mutations.
Therefore, we should look for a set of haplotypes explaining  DEFINITION 7.6 (NCOMPLETE PP HAPLOTYPING. The
the genotypes that forms a perfect phylogeny (the taxa beinginput for INCOMPLETE PP HAPLOTYPINGis a set of
the haplotypes, theNP sites being the characters, and the genotypes that may contain question marks for certain
nucleobases being the states). The following definitions characters. The task is to decide whether the question mark
formalize the problem.

THEOREM 7.3 ([26]). Forr =2, PP HAPLOTYPINGCan
be solved in time Onn).
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Haplotype pair inherited from parents:
... CTTTGAAGGGAATTAAATAT ... CAATGGAATCCCTCTAGGAT ...
... CTTTGAAGGGGATTAAATAT ... CAATGGAATCGCTCTAGGAT ...

first explanation

Observed bases at rs6937: Aand G
Observed bases at rs1047140: c and G

second explanation

Haplotype pair inherited from parents:
... CTTTGAAGGGAATTAAATAT ... CAATGGAATCGCTCTAGGAT ...
... CTTTGAAGGGGATTAAATAT ... CAATGGAATCCCTCTAGGAT ...

FIGURE 9. The haplotype phase determination problem arises when we observe two heteraaygsitss in the genotype. In this case,
there are two different pairs of haplotypes that explain the observed genotype. The haplotype phase determination problem asks us to deci
which explanation is correct.

entries can be completed in such a way that the resulting set Unfortunately, the total numbeq of question marks

of genotypes is an instance pP HAPLOTYPING typically isnotsmall in practice. Because of this, a different
parameter was studied by Gramm et al. in [42], namely the
maximal number of question mark entrieger character

An analysis of publicly available genotype data shows that,
typically, this parameter is reasonably small. The second key
idea of the paper is to assume that phylogenies are directed
and that they arpaths(no branching occurs, except possibly
at the root). At first sight it may seem strange to consider
path phylogenies, but in the human genome for around three

The missing entries add yet another level of complexity.
This new problem, which is of great practical interest,
is (presumably) no longer fixed-parameter tractable with
respect to the central parameter Indeed, the problem
is (presumably) not even iKP as the following theorem
shows, which was proved independently by Kimmel and
Shamir and also by Gramm, Nierhoff, Sharan, and Tantau.

THEOREM7.5([52, 42]). Forevery r> 2, INCOMPLETE quarters of the genomic loci one finds genotypes where
PP HAPLOTYPINGIS NP-complete. all snp sites are heterozygous [80]. The only phylogenies
Sketch of proof ideasThe proof in [42] even shows some- tphhifloeg;(eprln?g; such highly heterozygous genotypes are path

thing considerably stronger: The incomplete perfect phylo-
geny haplotyping problem is stiNliP-complete forr = 2 if THEOREM 7.8 ([42]). Forr = 2, INCOMPLETE PP PATH
we impose a number of restrictions on the phylogeny, like HAPLOTYPING can be solved in time

being a path. The result is proved using a reductionfor-

ALL -EQUAL-3-SAT. O 0(30(* ) . 2B,

Because of the above result, already for 2 we have
to look for some new parametrizations if we wish to find
a fixed-parameter haplotyping algorithm that can deal with
missing data. An obvious parametrizations is to consider the
total numbeig of question mark entries in the data.

Sketch of proof ideasThe algorithm starts with a prepro-
cessing phase in which the input is simplified, quite similar
to the way a kernelization works. However, the result of the
preprocessing is not a problem kernel and its size still de-
pends on the input size rather than solely on the input para-
THEOREM7.6. Forr = 2, INCOMPLETE PP HAPLOTYP meter. Nevertheless, the preprocessing enables us to run a
ING can be solved in time @%- mn). dynamic program that is built in order of increasing so-called

. . . leaf count ranges O
Proof. There are onlyr + (5) ways in which a question g

mark can be completed at any given position (namely by
different singleton set; ar( ) dleerent twq-element se.ts of Currently, an effort is undertaken to implement the
states). So we can build glt + (5) )9 possible completions ) . .

2/ . algorithm from the above theorem in order to find out
and then test for each whether it is an instance for the perfect

: o whether the algorithm can be applied in practice (it is
phylogeny haplotyping problem. For= 2 we know how to expected that the algorithm will be more efficient than the

solve this in linear time. OJ .
worst-case analysis suggests).
OPEN PROBLEM 7.7.How difficult is INCOMPLETE PP OPEN PROBLEM 7.9.How difficult is INCOMPLETE PP
HAPLOTYPING forr > 2? PATH HAPLOTYPINGforr > 2?
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OPEN PrOBLEM 7.10.Find a fixed-parameter algorithm Fixed-parameter algorithms might be particularly useful
for INCOMPLETE PP HAPLOTYPINGfor the parametec in the study of these graphs since they are not arbitrary,
(maximum number of ?-entries per column). but “tree-like.” They deviate from trees only by a small

amount and we propose this extent of deviation (however
it is measured) as a natural problem parameter.

There are numerous ways in which we can define “tree-
Fixed-parameter algorithms are a valuable tool in phylogen- likeness”; we just highlight one particular extension of
etics. We have seen that phylogenetics abounds in compu-perfect phylogenies to networks. phylogenetic network
tational problems, many of which anP-complete. Hence is a directed acyclic graph whose nodes have in-degree 0
we do not expect that efficient exact algorithms will be avail- (the root node), in-degree 1 (“regular” inner nodes of
able for them in the near future, if ever. However, we also a phylogeny), or in-degree 2 (the recombination nodes)
saw that many of the computational problecas be solved together with a labeling function that assigns character-state
efficiently and exactly if some of the natural input paramet- vectors to the nodes. A “perfect” phylogenetic network is
ers are reasonably small. Table 3 summarizes how naturaldefined the same way as a perfect phylogeny, but with an
input parameters influence the (in)tractability of computa- additional rule for recombination nodes: We can split the
tional problems in phylogenetics. character-state vector label of recombination nodes into two

In addition to the concrete open problems that we pointed parts such that the first part is a prefix of the label of one of
out throughout this survey, in the following we sketch the parent nodes and the second part is a suffix of the label of
two broader, less concrete prospective directions of future the other parent node. The number of recombination nodes
research. is a measure of the network’s deviation from being a tree.
The computational problem is now to find a phylogenetic
network for a given set of taxa that minimizes the number
of recombination nodes. This problemNg-complete [76],
but it is open whether it is fixed-parameter tractable with
The results presented in this survey refer to problem formu- respect to the number of recombination nodes. A partial
lations for discrete input objects and discrete optimization answer was given by Gusfield et al. [47, 46] who show
criteria. In computational biology there is a general lack that the problem can be solved efficiently for 2 if we
of and a need for fixed-parameter results addressing non-restrict the phylogenetic networks to so-callgalled trees
discrete computational problems arising in stochastic ana-In another direction, the computational problem of finding
lyses. Examples include probabilistic sequence analysis [30]a phylogenetic network of maximum parsimony is studied

8. CONCLUSION

8.1. Future Research Field: From Discrete To
Stochastic Problems

and maximum likelihood analysis. in [59] and shown to be fixed-parameter tractable. Many
A concrete stochastic computational problem is the fol- of the problems addressed in this survey can be extended
lowing: The input for MAXIMUM LIKELIHOOD PHYLO - to phylogenetic networks, but almost all of the resulting

GENY is a character-state matrix and transition probabilities problems are open.

for the transitions between character states. The task is to

find a phylogeny with the input taxa at the leaves that has Concluding this paper, we invite the reader to dive into the
a maximal “likelihood” among all such phy|ogenies_ Intuit- presentEd f|6|d, to follow the pOinterS to ”terature, to ple
ively, the likelihood of a phylogeny is the sum of the likeli- UP open problems, and to come up with exciting new or
hoods that the character states at the leaves were generatdfnProved fixed-parameter algorithms.

given the labeling of the inner nodes. Computing this likeli-

hood is a non-trivial task itself, see for instance [20, 19, 30] REFERENCES

for details. Only recently it has been shown thatximum [1] Richa Agarwala and David Feandez-Baca. A polynomial-

LIKELIHOOD PHYLOGENY is NP-hard [20, 19]. _|t remains_ time algorithm for the perfect phylogeny problem when the
open to address this and related problems with appropriate number of character states is fixed.SIAM Journal on
fixed-parameter algorithms. Computing 23(6):1216-1224, 1994,

[2] Richa Agarwala and David Feandez-Baca. Simple

S . algorithms for perfect phylogeny and triangulating colored
8.2. Future Research Field: From Phylogenetic Trees graphs. International Journal of Foundations of Computer

to Networks Science7(1):11-21, 1996.
The basic assumption made in this survey, namely that [3 A'ffrfed V. Ah?l' Yehosm;a Sagiv, Tho”f‘as GII Szymansk, and
hypotheses on evolutionary history can be represented by ~ J&frey D. Ullman. lInferring a tree from lowest common

. . . . ancestors with an application to the optimization of relational

trees, is often inappropriate. Phylogenetic trees cannot : } .

: : - . expressions. SIAM Journal on Computingl0(3):405-421,
explain —among other biological effects — teeombination 1981
effect, where a genomic sequence 1S Comblned.from two [4] Benjamin L. Allen and Mike Steel. = Subtree transfer
source sequences by taking a prefix from the first and a = gperations and their induced metrics on evolutionary trees.
suffix from the second sequence. The resulting evolutionary Annals of Combinatorigs:1-13, 2001.

history can no longer be represented by a tree; rather, we [5] Nina Amenta, Frederick Clarke, and Katherine St. John. A
must use graphs. linear-time majority tree algorithm. IfProceedings of the
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TABLE 3. Summary of the results on the fixed-parameter tractability of the surveyed problems, sorted
according to parameters. The abbreviationstands forTREE PERFECTION The “(trivially)” indicates
that the problem can be solved in polynomial time, regardless of the parameter.

Parameter(s) Problem Complexity
number of taxarf) PP € FPT
charactersr() PP € XP and
WIt]-hard for allt
states per PP € FPT
charactern) PP BY TAXA REMOVAL ¢ XP, unless P= NP

TP BY TAXA REMOVAL

PP BY CHARACTER REMOVAL

TP BY CHARACTER REMOVAL

PP BY RECOLORING

TP BY RECOLORING

PHYLOGENETIC PENALTY MINIMIZATION
PHYLOGENETIC NUMBER MINIMIZATION
PHYLOGENETIC BAD STATES MINIMIZATION
PP HAPLOTYPING

INCOMPLETE PP HAPLOTYPING
INCOMPLETE PP PATH HAPLOTYPING

¢ XP, unless P=- NP
¢ XP, unless P= NP
€ FPT (trivially)
open

open

€ FPT for fixedp
open

open

open

¢ XP, unless P=- NP
¢ XP, unless P= NP

removals k) of taxa

of characters

of trees

PP BY TAXA REMOVAL
TP BY TAXA REMOVAL
MAXIMUM AGREEMENT SUBTREE

€ FPT forr =2
€ XP, otherwise open
e FPT

PP BY CHARACTER REMOVAL
TP BY CHARACTER REMOVAL

€ FPT forr =2
€ FPT (trivially)

CUP BY TREE REMOVAL
MINIMUM QUARTET INCONSISTENCY

¢ XP, unless P= NP
€ FPT

bad statesh)

TP BY RECOLORING

€FPT

state changek)

state changes andk,r)

TP BY RECOLORING
PP BY RECOLORING
PP BY RECOLORING

€ XP, otherwise open
open
€ XP, otherwise open

penalty {)

penalty and (p,r)

PHYLOGENETIC NUMBER MINIMIZATION
PHYLOGENETIC BAD STATES MINIMIZATION
PHYLOGENETIC PENALTY MINIMIZATION
PHYLOGENETIC PENALTY MINIMIZATION

¢ XP, unless P= NP
¢ XP, unless P= NP
¢ XP, unless P= NP
€ FPT forr=2

PHYLOGENETIC PENALTY MINIMIZATION

€ XP, otherwise open

distance §)

NNI DISTANCE
SPR DISTANCE
TBR DISTANCE
CROSSING DISTANCE

€ XP, otherwise open
€ XP, otherwise open
e FPT
€ FPT

number of treest]

CupP
MAXIMUM AGREEMENT SUBTREE

€ FPT
¢ XP, unless P= NP

maximum node degreel MAXIMUM AGREEMENT SUBTREE € FPT
substring length and(r,I)  SUBSTRING PARSIMONY € FPT
SUBSTRING PARSIMONY WITH LOSSES € FPT
?-entries in matriXq) INCOMPLETE PP HAPLOTYPING € FPT forr =2
?-entries per colum(c) INCOMPLETE PP PATH HAPLOTYPING € FPT forr =2
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