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Abstract

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely hap-
lotypes based on genotype data. One fast haplotyping method is based on an evolutionary model
where a perfect phylogenetic tree is sought that explains the observed data. Unfortunately, when
data entries are missing, which is often the case in laboratory data, the resulting formal problem
IPPH, which stands for incomplete perfect phylogeny haplotyping, is NP-complete and no theoreti-
cal results are known concerning its approximability, fixed-parameter tractability, or exact algorithms
for it. Even radically simplified versions, such as the restriction to phylogenetic trees consisting of
just two directed paths from a given root, are still NP-complete; but here, at least, a fixed-parameter
algorithm is known. We show that such drastic and ad hoc simplifications are not necessary to make
IPPH fixed-parameter tractable: we present the first theoretical analysis of an algorithm, which we
develop in the course of the paper, that works for arbitrary instances of IPPH. On the negative side we
show that restricting the topology of perfect phylogenies does not always reduce the computational
complexity: while the incomplete directed perfect phylogeny problem is well-known to be solvable
in polynomial time, we show that the same problem restricted to path topologies is NP-complete.

Classification: computational biology, computational complexity, fixed-parameter algorithms

1 Introduction

Haplotype phase prediction is an important preprocessing step in genomic disease and medical condition
association studies. In these studies two groups of people are considered, where one group has a certain
disease or medical condition while the other has not, and one tries to find correlations between group
membership and the genomic data of the individuals in the groups. The genomic data typically consists
of information about which bases are present in an individual’s DNA at so-called SNP sites (single nu-
cleotide polymorphism sites). While the DNA sequences of different individuals are mostly identical, at
SNP sites there may be variations. Low-priced methods for large-scale inference of genomic data can
read out, separately for each SNP site, the bases present, of which there can be two since we inherit
one chromosome from our father and one from our mother. However, since the bases at different sites
are determined independently, we have no information on which chromosome a base belongs to. For
homozygous sites, where the same base is present on both chromosomes, this is not a problem, but for
heterozygous sites this information, called the phase of an SNP site, is needed for accurate correlations.
The idea behind haplotype phase prediction or just haplotyping is to computationally predict likely
phases based on the laboratory data (which misses this information). For an individual, the genomic
input data without phase information is called the genotype while the two predicted chromosomes are
called haplotypes.
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From a mathematical point of view, haplotypes can be conveniently coded as strings over the alpha-
bet {0,1}, where for a given site 0 stands for one of the bases that can be observed in practice, while 1
encodes a second base that can also be observed. (The case that three bases are observed happens so
seldom that it can be ignored.) A genotype g is, conceptually, a sequence of sets that arises from two
haplotypes h1 and h2 as follows: The ith set in the sequence g is {h1[i],h2[i]}. However, it is customary
to encode the set {0} as 0, to encode {1} as 1, and {0,1} as 2, so that a genotype is actually a string over
the alphabet {0,1,2}. For example, the two haplotypes 0110 and 0101 give rise to (we also say explain)
the genotype 0122; and so do 0100 and 0111.

Since different haplotype pairs can explain the same genotype and any single haplotype is equally
likely a priori, haplotyping is not possible if only a single genotype is given. However, if a whole
set of genotypes from a larger group of different individuals is given, certain sets of haplotypes that
explain these genotypes are more likely than others. For instance, a small set of explaining haplotypes
is more likely than a large set since haplotypes mutate only rarely. It is customary to formalize sets of
genotypes as matrices (each row is a genotype) and also sets of explaining haplotypes (each row contains
a haplotype and rows 2i−1 and 2i of the haplotype matrix explain exactly the genotype in row i of the
genotype matrix).

One important method of haplotyping is based on the perfect phylogeny approach proposed by
Gusfield [13]. The idea is to seek a haplotype matrix that explains the genotype matrix and whose rows
(which are the haplotypes) can be arranged in a perfect phylogenetic tree. This means the following: A
haplotype matrix B admits a perfect phylogeny if there exists a tree (an undirected, connected, acyclic
graph) TB such that:

1. Each column of B labels exactly one edge of TB and each edge is labeled by at least one column.
2. Each row of B labels exactly one node of TB.
3. For every two rows h1 and h2 of B and every column i, we have h1[i] 6= h2[i] if, and only if, i lies

on the path from h1 to h2 in TB.

The intuition behind these properties is as follows. The nodes of the tree TB correspond to haplotypes.
The edges between the nodes correspond to mutation events: When we move from one node to another
node along a single edge, the label(s) of the edge name exactly those columns in which the node labels
differ. This means that when we remove an edge labeled by a column c, the two resulting components
have the property that all nodes in one component have a 0 in column c and all nodes in the other
component have a 1 in that column.

When a haplotype matrix B admits a perfect phylogeny TB and, at the same time, explains a genotype
matrix A, we also say that A admits a perfect phylogeny. In this case, it is useful to define a tree TA as
follows: Its topology is the same as TB’s and so are the node labels, but the edges are labeled by the
columns of A (which may contain 2-entries) instead of the columns of B (where each 2-entry is replaced
by a 0-entry and a 1-entry). We call TA a perfect phylogeny for A. The formal perfect phylogeny
haplotyping problem (PPH) is the set of all genotype matrices that admit a perfect phylogeny.

Gusfield [13] showed that PPH is solvable in polynomial time. However, in practice, laboratory data
is never perfect and some entries may be missing in the input genotype matrices. In this case, the input
matrices may contain ?-entries in addition to the 0-, 1-, and 2-entries. The objective is then to replace
the missing entries by normal entries such that the resulting matrix is in PPH. This problem is known as
IPPH, where the I stands for incomplete (in the following, when we prefix a problem with the letter I, we
mean that the input matrix may contain ?-entries and the objective is to fill them up so that the resulting
matrix is an instance of the problem without the I). Unfortunately, IPPH is NP-complete [20]. A heuristic
is known for solving it [19], but no guarantees can be made concerning its runtime.

In order to tackle the problem, one can try to exploit properties of typical input data that may make
the problem easier to solve. The first simplification is the notion of directedness. In real data, some geno-
type is typically completely known and is completely homozygous, which means that one haplotype of
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the sought haplotype matrix is already known. Since the roles of 0-entries and 1-entries can be ex-
changed individually for each column, we may assume that the known haplotype is the all-0-haplotype.
This problem variant is called “directed” because the position of the all-0-haplotype in the phylogenetic
tree singles out a node, which is then regarded as the root of the tree and gives an orientation to the tree.
The resulting problem is called IDPPH, with D standing for “directed.” It is still NP-complete [15].

A second, rather radical simplification (which is nevertheless often backed by the data) was proposed
by Gramm, Nierhoff, Sharan and the third author [11]: In addition to being directed, we required that the
(undirected) phylogenetic tree must form a simple path. The resulting problem was called incomplete
directed perfect path phylogeny haplotyping. It is still NP-complete, but in [11] we presented a fixed-
parameter algorithm for it, where the parameter is the maximum number of ?-entries per column.

Another radical simplification is to study matrices in which no heterozygous sites are found. This
is the same as getting already phased haplotypes as input and the question is just whether they can be
arranged in a perfect phylogeny: for the problem IPP (note the missing H, since no haplotyping needs
to be done) we get an incomplete haplotype matrix and must decide whether the missing entries can
be filled up with 0-entries and 1-entries so that the completed matrix admits a perfect phylogeny. This
problem is still NP-complete [20], but the directed variant IDPP is solvable in polynomial time [2, 17].

In the present paper we further the study of the computational complexity of IPPH and the above
variants. We are especially interested in the following question: How do restrictions on the tree topology
influence the complexity of the problem? In other words, what is the complexity of IPPHleafs≤l , where
the explaining phylogenetic tree may have at most l leafs. As stated above, the best known result is that
IDPPHleafs≤2 is NP-complete, but lies in FPT.

Let us summarize the notation: For the basic problem PP we get a (complete) haplotype matrix as
input and the question is whether it admits a perfect phylogeny. We add the prefix D to indicate that
one of the nodes in the phylogeny must be labeled with a given root haplotype and, since the roles of 0-
and 1-entries are interchangeable, we insist that it must be the all-0-haplotype. We append H to indicate
that the input is a genotype matrix and an explaining haplotype matrix admitting a perfect phylogeny
must be found. We add the prefix I to indicate that ?-entries may be present in the input. We add the
index “leafs≤ l” to indicate that only perfect phylogenies having at most l leafs are allowed (a leaf is a
degree 1 node in the undirected graph underlying the perfect phylogeny).

Our Contributions. Our first main result, Theorem 2.1 presented in Section 2, is the following hard-
ness result: IDPPleafs≤l is NP-complete for every l ≥ 2. In sharp contrast, IDPP ∈ P. As detailed in
the section on related work, past experience has indicated that restricting the topology of perfect phy-
logenies makes haplotyping problems easier, not harder. Theorem 2.1 shows that IDPP is a notable
exception. Naturally, there are other examples of such exceptions: Finding a spanning tree for a graph
is easy, finding a spanning path is hard.

The problem IDPPleafs≤l reduces to many other problems. It is easy to see (but not trivial) that
a problem where the input matrix consists of (possibly incomplete) haplotypes reduces to the same
problem for (possibly incomplete) genotype matrices via the identity mapping. Thus, the first result
implies that IDPPHleafs≤l is also NP-complete, which was previously proved by Gramm et al. [11] for
l = 2. It is also easy to see that any directed problem reduces to the undirected version by adding an
all-0-row. Thus, IPPleafs≤l is also NP-complete. Indeed, all previously known NP-completeness results
for variants of IPPH follow from Theorem 2.1, except for the NP-completeness of IPP.

Our second main contribution, presented in Section 3, is an algorithm for solving IPPH that allows
a rigorous runtime analysis. In detail, we present an algorithm that on input of a number l and an
incomplete n×m genotype matrix A with at most k many ?-entries per column correctly outputs:

1. Either “A /∈ IPPHleafs≤l” or
2. a completion of A and a perfect phylogeny for this completion with at most l leafs.
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The algorithm’s runtime is f (k, l)n2mO(l), where f is some function. (We only present a decision pro-
cedure for IPPHleafs≤ j in the present paper, but using standard dynamic programming techniques it can
easily be modified to also output the desired phylogeny.)

This algorithm allows us to make formal statements about the fixed-parameter tractability of IPPH.
First, IPPH lies in the class XP for the parameter pair (k, l). Second and more importantly, for each fixed
l ≥ 2 the problem IPPHleafs≤l is fixed-parameter tractable with respect to the number of unknown entries
per column, see Theorem 3.1. This settles the central problem that we had to leave open in [11], namely
whether the result that IDPPHleafs≤2 is fixed-parameter tractable also holds for the undirected case and
for larger number of leafs. On both accounts, we answer this question affirmatively.

Due to lack of space, we only sketch proofs in the main text, see the appendix for detailed proofs.

Related Work. Haplotyping methods can be split into two groups: Statistical, see [9] for a literature
starting point, and combinatorial. There are two main combinatorial methods: Maximum parsimony
haplotyping [4, 12] and the more recent perfect phylogeny approach that was introduced by Gusfield [13]
and later explored by numerous authors [1, 3, 5, 8, 16, 18].

The idea of considering restricted tree topologies to speed up haplotyping is due to Gramm et al. [11]
and was recently also investigated in the context of finding block partitions [10]. A different approach
to deal with the NP-completeness of IPPH is due to Halperin and Karp [14]. They present a polynomial-
time algorithm for IPPH that works for special instances satisfying the so-called “rich data hypothesis.”

For complete data, numerous results on the complexity of PPH and its variants are known. Gusfield
showed that the problem can be solved in polynomial time [13], further papers first presented simpler
polynomial-time algorithms [1, 8] and later even linear-time algorithms [3, 5, 16, 18]. In [7] we have
shown that PPH is hard for logarithmic space and lies in NC2.

The influence of restricting the tree topology on the complexity of haplotyping problems has, prior
to the present paper, always been benign: In [11] it is shown that IDPPHleafs≤2 has a fixed-parameter
algorithm, which is not known to be the case for IPPH. In [10] it is shown that partitioning a com-
plete genotype matrix into a minimal number of column sets such that each set admits a perfect path
phylogeny is equivalent, in complexity theoretic terms, to finding maximal matchings; while the same
problem for arbitrary perfect phylogenies is NP-hard and even very hard to approximate. Finally, in [7]
it is shown that DPPHleafs≤2 lies in AC0, while DPPH is L-hard.

2 Hardness Result

In the present section we prove our first main result:

Theorem 2.1. IDPPleafs≤l is NP-complete for every l ≥ 2.

Since IDPP ∈ P, this is a first example of a perfect path phylogeny problem being harder than the
corresponding problem for general perfect phylogenies. Our proof is based on a reduction from the NP-
complete problem MONOTONE NAE3SAT and is similar to the reduction presented in [11], which starts,
however, from NAE3SAT. By starting our reduction from a (conceptually) simpler problem we are able
to prove a stronger result than the one presented in [11].

Sketch of proof. Fix an l ≥ 2. We reduce MONOTONE NAE3SAT to IDPPleafs≤l . The input for the reduc-
tion is a propositional formula φ in conjunctive normal form with three positive literals per clause and
the question is whether there is a variable assignment such that not all literals of a clause share the same
truth value. (The problem MONOTONE NAE3SAT is NP-hard by a reduction from NAE3SAT: replace
each negated variable xi by a new variable yi and append the clause yi∨ xi∨ xi.)

Let φ have n variables v1, . . . ,vn and m clauses C1, . . . ,Cm. We construct an incomplete (n + 3m +
l− 2)× (3m + l− 2) haplotype matrix B. The first n rows, which we call variable rows, are identified
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with the variables of φ . The next 3m rows and the first 3m columns are called literal rows and literal
columns, respectively. The remaining l−2 columns are marked by b1, . . . , bl−2. First, we describe the
non-?-entries of the upper left (n+3m)×(3m) submatrix: Let C j be a clause of φ with literals {l1

j , l
2
j , l

3
j}.

For each literal lk
j and its corresponding variable vi, we put a 1-entry in row vi and column lk

j . Then we

put the submatrix
[

1 0 ?
? 1 0
0 ? 1

]
in columns l1

j , l2
j and l3

j and rows l1
j , l2

j and l3
j . Finally, we set the lower right

(l− 2)× (l− 2) submatrix to the identity matrix and all entries in the upper right (n + 3m)× (l− 2)
submatrix and the lower left (l− 2)× 3m submatrix to 0. An example of this construction for l = 4 is
depicted in Figure 1.

φ = C1∧C2∧C3 with

C1 = ( v1︸︷︷︸
l1
1

∨ v2︸︷︷︸
l2
1

∨ v3︸︷︷︸
l3
1

),

C2 = ( v2︸︷︷︸
l1
2

∨ v3︸︷︷︸
l2
2

∨ v4︸︷︷︸
l3
2

),

C3 = ( v2︸︷︷︸
l1
3

∨ v4︸︷︷︸
l2
3

∨ v5︸︷︷︸
l3
3

)

is mapped to

l1
1 l2

1 l3
1 l1

2 l2
2 l3

2 l1
3 l2

3 l3
3 b1 b2

v1 1
v2 1 1 1
v3 1 1
v4 1 1
v5 1

l1
1 1 0 ?
l2
1 ? 1 0 ? 0
l3
1 0 ? 1

l1
2 1 0 ?
l2
2 ? 1 0
l3
2 0 ? 1

l1
3 1 0 ?
l2
3 ? ? 1 0
l3
3 0 ? 1

1 00 0 1

Figure 1: Example of the reduction from MONOTONE NAE3SAT to IDPPleafs≤4.

It remains to prove that φ ∈ MONOTONE NAE3SAT if, and only if, B ∈ IDPPleafs≤l . To obtain a
not-all-equal assignment for φ from a perfect phylogeny for B, one argues that the literal columns are
distributed on exactly two paths and the literals on one of these paths can be set to true, the others to
false. For the other direction, a not-all-equal assignment is turned into a phylogenetic tree by placing all
literal columns set to true on one path and the other literals on a second path.

As mentioned in the introduction, IDPPleafs≤l can easily be reduced to many other problems, includ-
ing IPPleafs≤l , IDPPHleafs≤l , IPPHleafs≤l , IDPPH, and IPPH. Thus, as was already known for l = 2, all of
these problems are also NP-complete.

3 Fixed Parameter Tractability Result

In this section we show that, for every fixed l ≥ 2, the problem IPPHleafs≤l is fixed-parameter tractable
with respect to the maximal number of missing entries per column:

Theorem 3.1. For each l ≥ 2, the problem IPPHleafs≤l is fixed-parameter tractable with respect to the
maximal number of ?-entries per column.

The theorem generalizes the result from [11] by Gramm, Nierhoff, Sharan and the third author
that IDPPHleafs≤2 is fixed-parameter tractable. The algorithm from [11] relies strongly on Gusfield’s
characterization [13]: Given a genotype matrix A, a directed perfect phylogeny T for it, and any genotype
g of A, the 1-entries of g label a path from the root to some node v of T and the 2-entries of g label a
path containing v. Most algorithms for PPH and its variants from the literature exploit this property as
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follows: They first reduce the problem to the directed version DPPH and then build the phylogeny by
placing columns with many 1-entries and 2-entries near to the root and columns with fewer such entries
far from the root. The notions “should be placed near to the root” and “should be placed far from the
root” can be quantified more precisely using Gusfield’s notion of the leaf count of a column [13].

When the data is incomplete and question marks are present, no reduction from the undirected to the
directed case is known. (Indeed, IPP is NP-complete while IDPP ∈ P.) To solve the undirected problem
variant IPPHleafs≤l we need a replacement for the notion of leaf counts and a new characterization of
genotype matrices admitting undirected perfect phylogenies. We present such a replacement, which we
call the light component size, and also a new characterization in terms of the new notion of mutation
trees. This characterization allows us to construct phylogenies in a stepwise fashion from the “outside”
(columns far removed from the root, having a small light component size) to the “inside” (columns near
to the root, having a large light component size). In each step, we only need to remember the inner part
of the partial phylogeny constructed so far, making a dynamic program feasible.

In the following two sections, we first introduce the new notion and characterization and then show
how they can be used in an algorithm.

3.1 A Characterization of Undirected Perfect Phylogeny Haplotyping

A major tool in the development of efficient algorithms for the DPPH problem has been the leaf count of
a column, which is twice the number of 1-entries plus the number of 2-entries. The name “leaf count”
stems from the following observation: In a perfect phylogeny for a genotype matrix A, the number of
haplotypes (which are typically attached to leafs) below the edge labeled by a column equals exactly its
leaf count. This means that if two columns occur on a path from the root (recall that this is always the
all-0-haplotype in a directed perfect phylogeny) to a leaf, the column with a greater leaf count is located
nearer to the root.

For undirected perfect phylogenies the leaf count is no longer meaningful since there is no distin-
guished root node that is known in advance. To tackle this problem, we introduce the new notion of light
component sizes. For a column c and x ∈ {0,1,2} let nx(c) denote the number of x-entries in c.

Definition 3.2. For a column c of a genotype matrix A its light component size and heavy component
size are defined as follows:

lcs(c) := n2(c)+2 ·min{n0(c),n1(c)},
hcs(c) := n2(c)+2 ·max{n0(c),n1(c)}.

The key observation is that when we remove an edge labeled by a column c from a perfect phy-
logeny TA, then two components result and the number of node labels in one of these components will
be lcs(c) and we call the component the light component, the other will contain hcs(c) labels and we
call it the heavy component. (In case lcs(c) = hcs(c), the choice is arbitrary.) To see this, recall from
the introduction that in one component all node labels have a 0 in column c (and a 1 in the other com-
ponent). Each of the n0(c) many 0-entries of c contributes two nodes labels to this component, while
each 2-entry contributes one node label, which means that the number of node labels in this component
is either lcs(c) or hcs(c). The argument is similar for the other component and for 1-entries.

We have just seen that the value in column c of all node labels of the light component is the same. Let
us call this value the light component value lcv(c). Clearly, lcv(c) = 0 if n0(c) < n1(c) and lcv(c) = 1 if
n0(c) > n1(c). For n0(c) = n1(c) we remarked earlier that the light component can be chosen arbitrarily;
at this point we implicitly fix that choice by setting lcv(c) = 1. Symmetrically, the value in column c of
the node labels of the heavy component are all the same and equal to hcv(c) = 1− lcv(c).

Our next aim is to define a quasi-ordering � on columns that tells us something about how columns
can possibly be arranged in a perfect phylogeny. Suppose that for two columns c and d we know that
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the light component of d is a superset of the light component of c. Consider a node label l and suppose
the value of l at the position of column c happens to be the light component value of c. Then we
know that l must lie in the light component of c and, thus, also in the light component of d, which
in turn means that at position d in l we must have the light component value of d. Phrased more
succinctly: for every i ∈ {1, . . . ,n} we have c[i] = lcv(c) =⇒ d[i] = lcv(d) and, by a similar argument,
also d[i] = hcv(d) =⇒ c[i] = hcv(c). Let us write c � d whenever these two implications hold for
every i. Then c� d is a necessary, but not a sufficient, condition for c’s light component being contained
in d’s light component. We remark that c� d implies lcs(c)≤ lcs(d).

The ordering � tells us something about containment of light components. We can similarly say
something about columns whose light components are disjoint: then for every i ∈ {1, . . . ,n} we have
c[i] = lcv(c) =⇒ d[i] = hcv(d) and d[i] = lcv(d) =⇒ c[i] = hcv(c). We write c ⊥ d whenever these
two implications hold for every i.

Our algorithm is only concerned with building a tree whose edges are labeled with columns of the
input genotype matrix; the nodes of the tree are not labeled and the rows of the explaining haplotype
matrix B are irrelevant to the algorithm. Since edge labels correspond to mutation events, we call the
tree that is constructed by the algorithm a mutation tree.

Definition 3.3. Let A be a genotype matrix. A mutation tree T for A is an undirected tree whose edges
are bijectively labeled by A’s columns and which has a distinguished root node r such that:

1. Ordering condition: For every path originating at the root with edge labels c1, c2, . . . , ck we have
c1 � c2 � ·· · � ck.

2. Compatibility condition: For every two columns c and d that are incident to a common node v and
that do not lie on the path from r to v we have c⊥ d.

3. Two-path condition: For every three columns c, d, and e that are incident to the same node, there
is no i ∈ {1, . . . ,n} such that c[i] = d[i] = e[i] = 2.

Note that a mutation tree has a distinguished root, but unlike for directed perfect phylogenies this
root is typically not known in advance and does not need to be labeled by the all-0-haplotype (indeed,
nodes are not labeled at all in a mutation tree). The proof of the following characterization can be found
in the appendix.

Lemma 3.4. A genotype matrix A admits a perfect phylogeny with l leafs if, and only, if, there exists a
mutation tree for A with l leafs.

3.2 The Fixed-Parameter Algorithm

Our fixed-parameter algorithm for IPPHleafs≤l works in two stages. The first stage is a preprocessing of
the input matrix. After the preprocessing the maximal number of columns with the same light component
size is bounded by a function in k and l. The basic idea is that if there are many different columns with
the same light component size, they must lie on many different paths and, thus, at some point it is no
longer possible to arrange them in a perfect phylogeny with only l leafs. The following lemma states the
effect of the preprocessing precisely.

Lemma 3.5. There is an algorithm PREPROCESSING that gets an incomplete n×m genotype matrix A
with at most k many ?-entries per column as input and outputs, in time O(k4km3n), a genotype matrix A′

such that:

1. A ∈ IPPHleafs≤l if, and only if, A′ ∈ IPPHleafs≤l .
2. There are no duplicate columns in A′ and no columns that can be completed to a constant column.
3. For every i there are at most (2k +1)l(3l)kk! columns in A′ with light component size i.
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Proof. The algorithm and proof are straightforward generalizations of those given by Gramm et al. [11]
for l = 2. For a detailed presentation of the algorithm and the proof we refer the interested reader to the
technical report version of the present paper [6].

The second stage is the main part of the algorithm. By Lemma 3.4, in order to decide whether the
preprocessed version A has the property A ∈ IPPHleafs≤l , it suffices to test whether A can be completed
in such a way that it admits a mutation tree with at most l leafs.

For the presentation of our algorithm we need some additional terminology: Given a set of columns A
or a matrix A, let A|lcs=i, A|lcs≤i, and A|lcs>i denote the set of all columns c of A with lcs(c) = i, lcs(c)≤ i,
and lcs(c) > i, respectively. A completion of a set of columns with ?-entries is obtained by replacing
all ?-entries by 0-, 1-, or 2-entries. Note that a completion of a column with light component size i can
have a light component size between i and i + 2k, where k is, as always, the number of ?-entries in the
column. The inner part of a mutation tree T is the set inner(T ) of edges that are incident to the root
of T .

The mutation tree construction algorithm works in iterations i = 1,2, . . . ,n. In iteration i it processes
all completions of the set A|lcs=i. The algorithm keeps track of what it has already found out about
completions of A|lcs<i in previous iterations in what we call tree records (I,λ ,U). Such a record consists
of an inner part I, a number λ ∈ {0, . . . , l} of leafs, and a set of unprocessed columns U . The following
definition formalizes the properties that tree records should have:

Definition 3.6. Let A be an incomplete n×m genotype matrix and let i ∈ {1, . . . ,n}. A tree record
(I,λ ,U) is good for A and i if there exists a completion Si of A|lcs≤i such that (a) I = inner(Ti) for some
mutation tree Ti for Si|lcs≤i, (b) λ is the number of leafs of Ti, and (c) U = Si|lcs>i.

The job of the algorithm is to compute in each iteration i the set Ri of all good tree records for A
and i. Clearly, if Rn is nonempty after the last iteration, there exists a completion for A and a mutation
tree with at most l leafs; and otherwise no such completion exists. Figure 2 shows the pseudo-code of
the algorithm, Figure 3 shows an example of the algorithm in action.

Algorithm SOLVE-IPPHleafs≤l .
Input: An n×m genotype matrix A with at most k missing entries per column.
1 A← PREPROCESS(A)
2 R0←{( /0,0, /0)}
3 for increasing light component sizes i← 1,2, . . . ,n do
4 Ri← /0
5 for each completion C of A|lcs=i do
6 for each tree record (I,λ ,U) ∈ Ri−1 do
7 for each mutation tree T for I∪C|lcs=i∪U |lcs=i

with λ ′−λ + |I| leafs for some λ ′ ≤ l
where all columns from I are incident to leafs of T do

8 Ri← Ri∪
{
(inner(T ),λ ′,C|lcs>i∪U |lcs>i)

}
9 if Rn is nonempty then output “A ∈ IPPHleafs≤l” else output “A /∈ IPPHleafs≤l”

Figure 2: Our decision algorithm for IPPHleafs≤l .

The following two lemmas imply that the algorithm is correct and that it is a fixed-parameter algo-
rithm for IPPHleafs≤l . Together, they prove Theorem 3.1.

Lemma 3.7. After each iteration i of algorithm SOLVE-IPPHleafs≤l , the set Ri contains exactly the good
tree records for A and i.
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Input matrix:

A =
( a

2
b
?

c
1

d
0

e
2

f
2

1 2 ? 0 ? 2
? 0 2 2 2 ?
? 0 ? 2 ? 2

)

Iteration:
(picked in line 3)
i← 3

Completion:
(picked in line 5)

C←
{ f ′

2
2
0
2

}

A|lcs=1

A|lcs=2

A|lcs=3

Tree record from R2:
(picked in line 6)

({b′
0
2
0
0
,

d′
0
0
2
2
,

e′
2
1
2
1

}
,3,

{ c′
1
2
2
2

})

This is a tree record for
the following tree T2 and
completion S2 of A|lcs≤2:

T2: r

b′
0
2
0
0

d′
0
0
2
2

a′
2
1
1
1

e′
2
1
2
1

S2 =
{ a′

2
1
1
1
,

b′
0
2
0
0
,

c′
1
2
2
2
,

d′
0
0
2
2
,

e′
2
1
2
1

}

Mutation tree T :
(picked in line 7)

T : r

f ′
2
2
0
2

e′
2
1
2
1

b′
0
2
0
0

d′
0
0
2
2

c′
1
2
2
2

Tree record added to R3:
(added in line 8)({ c′

1
2
2
2
,

e′
2
1
2
1
,

f ′
2
2
0
2

}
,4, /0

)
This is a tree record for
the following tree T3 and
completion S3 of A|lcs≤3:

T3 : r

f ′
2
2
0
2

a′
2
1
1
1

e′
2
1
2
1

b′
0
2
0
0

d′
0
0
2
2

c′
1
2
2
2

S3 =
{ a′

2
1
1
1
,

b′
0
2
0
0
,

c′
1
2
2
2
,

d′
0
0
2
2
,

e′
2
1
2
1
,

f ′
2
2
0
2

}

Figure 3: Example of the third iteration of SOLVE-IPPHleafs≤l for the indicated input matrix A. We depict
a set of possible values for the loop variables for which a new tree record is added to R3.

Sketch of proof. We prove the claim by induction over i. For i = 0 the initialization R0 = {( /0,0, /0)} is
correct because the preprocessing ensures that A|lcs=0 = /0. For the inductive step from i− 1 to i, we
first argue that the algorithm adds only good tree records to Ri. Suppose the algorithm adds some tree
record (I′,λ ′,U ′) to Ri. Then there exists a completion C of A|lcs=i and some tree record (I,λ ,U) ∈ Ri−1
such that there is a mutation tree T passing the test from line 7. By the inductive hypothesis, (I,λ ,U) is
good as witnessed by some Ti−1 and Si−1. The key observation is that Ti−1 and T can be combined to a
mutation tree Ti for all of Si|lcs≤i = Si−1|lcs≤i−1∪C|lcs=i∪U |lcs=i. This combination is possible, because
the algorithm considers only tree combinations where the columns from I label edges incident to leafs.

In order to prove that all good tree records (I′,λ ′,U ′) are added to Ri, let Si and Ti witness that the
tree record is good. In the tree Ti, columns c with lcs(c) = i are nearest to the root. By removing them
and contracting edges, we get a tree Ti−1 to which we can apply the induction hypothesis and get a tree
record (I,λ ,U)∈ Ri−1. By considering the inner part of Ti, we get a tree T passing the test of line 7.

Lemma 3.8. Algorithm SOLVE-IPPHleafs≤l runs in time O( f (k)mln2).

Sketch of proof. By Lemma 3.5 the preprocessing takes time O(k4km3n). In each of the n iterations of
the algorithm all completions of A|lcs=i are considered, of which there are at most 3k(2k+1)l(3l)kk! many
(recall that Lemma 3.5 limits the size of A|lcs=i). The algorithm then iterates over all tree records, of
which there can be at most 3k|A|i−2k≤lcs≤i−1| many. For the runtime of the inner loop, just note that the size
of I∪C|lcs=i∪U |lcs=i depends only on l and k.

4 Conclusion

We have shown that restrictions on the topologies of perfect phylogenies can greatly influence the com-
plexity of IPPH and its variants. While restrictions can make the complexity jump from P to NP-complete
(as for IDPP), we showed that tree topologies provide the first parameter for which a theoretical analysis
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is possible of an algorithm that works on arbitrary instances of the IPPH problem. Our new notions
of mutation trees and light and heavy component sizes have turned out to be useful in the study of
undirected perfect phylogenies; we suggest trying to apply them to other problem versions as well.

The first main open problem is to improve the runtime of the fixed-parameter algorithm since the
runtime is the range of 3O(k!), which is not feasible even for small values like k = 5 that are common
in practice. One could argue that, in practice, the algorithm will be much quicker because the bound
is only a rather pessimistic worst-case bound, but a faster fixed-parameter algorithm would be a much
better alternative. The second main open question is whether IPPH is fixed-parameter tractable with
respect to the maximal number of ?-entries per column.
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A Technical Appendix

Proof of Theorem 2.1. We claim that φ ∈ MONOTONE NAE3SAT if, and only if, B ∈ IDPPleafs≤l , where
B is the matrix described in the sketch of proof.

First, let B′ be a completion of B that admits a directed perfect phylogeny T with at most l leafs. Our
first claim is that the columns b1, . . . , bl−2 lie on l− 2 different branches, each of which contains only
this one column bi. To see this, just note that for any column bi, no other column of B′ can lie on the same
root-to-leaf path as bi since these columns contain the submatrix

[
1 0
0 1

]
. The remaining columns, which

are the literal columns, must then lie on at most two further branches T0 and T1 (recall that T has at most
l leafs). Both branches must be nonempty since B contains the submatrix

[
1 0 ?
? 1 0
0 ? 1

]
in literal columns and

each completion of this matrix contains the submatrix
[

0 1
1 0

]
, which forces columns to lie on different

branches. The first n rows assure that all literal columns that correspond to the same variable lie on the
same path: they contain 1-entries in the same row. The next 3m rows enforce that the literal columns
of any given clause do not all lie on the same root-to-leaf path. We can now construct the desired truth
assignment τ for the variables of φ that witnesses φ ∈ MONOTONE NAE3SAT: For a variable vi, we set
τ(vi) = 0, if the corresponding literal columns lie on T0 and τ(vi) = 1, if they lie on T1.

For the other direction let τ : {v1, . . . ,vn} → {0,1} be an assignment of the variables of φ such that
the literals of a clause do not all share the same truth value. We describe, simultaneously, a completion B′

for B and a directed perfect phylogeny T with at most l leafs for B′. First, T contains l−2 branches each
of which contains exactly one column bi. The leafs at the ends of these branched are labeled with one
of the lower l−2 rows of B. Next, there are two further paths T0 and T1 in T and these paths contain the
completions of all of the remaining columns.

The path T0 contains all literal columns whose corresponding variables are set to 0 by τ . The ordering
of the columns on the path in root-to-leaf order is as follows: First, all literal columns for a clause Ci

come earlier than all literal columns for clause Ci+1. For the literals inside a single clause Ci, we only
need to explain what happens when there are exactly two literals lk

i and lp
i inside Ci with τ(lk

i ) = τ(lp
i ) =

0. In this case, we may assume that p ≡ k + 1 (mod 3) holds (otherwise exchange the meanings of k
and p). Then lk

1 comes before lp
1 on the path T0. Each edge on the path T0 is now labeled with some

column lk
i . We label the node following this column by the row lk

i ; note that this positioning implicitly
yields a completion for this row. The branch T1 is constructed in the same way, only we now consider
only literals with τ(lk

i ) = 1. The last node on the path T0 is labeled by all variable rows vi with τ(vi) = 0,
similarly for T1 and variables with τ(vi) = 1. Again, the positioning implicitly assigns completions to
these rows. This completes the construction of the completion B′ and of the sought directed perfect
phylogeny with at most l leafs.

Proof of Lemma 3.4. For the first direction let A be a genotype matrix, TA a perfect phylogeny for A,
and B an explaining haplotype matrix. We may assume that each edge of TA is labeled exactly once,
otherwise replace edges with multiple labels by paths of appropriate lengths in which each edge has a
unique label. We argue that TA with an appropriate root and without node labels (and, in some cases,
some minor additional changes) is a mutation tree for A.

Let {d1, . . . ,ds} be the set of all columns with maximal light component size. Then this set forms
a connected component in TA and lcs(d1) = · · · = lcs(ds). We distinguish two cases. First, if lcs(d1) <
hcs(d1), there are no two columns di and d j such that di belongs to the light component of d j and
vice versa. This assures the existence of a column c ∈ {d1, . . . ,ds} that lies in the heavy component of
every other column di. Second, if lcs(d1) = hcs(d1), assume there are di, d j, and dk with maximal light
component size such that all three of them are incident to a common node v. Then the component of di

that contains v also contains the components of d j and dk that do not contain v. So lcs(di) ≥ lcs(d j)+
lcs(dk), which contradicts lcs(di) = lcs(d j) = lcs(dk). Thus, the di’s form a path and no haplotypes label
its inner nodes. Hence, the columns on this path can be rearranged so that one of the columns, call
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it c, lies in the heavy component of every other column. In both cases let r be the node incident to c
in its heavy component. Then r lies in the heavy component of each column di. For columns d with
lcs(d) < lcs(c) the light component of d contains neither the light component nor the heavy component
of c. Thus, regardless of whether d lies in the light component or heavy component of c, the node r lies
in the heavy component of d.

We show that TA (with the edges di possibly rearranged as described earlier) with root r is a mutation
tree when we disregard the labeling of its nodes. To show that the ordering condition is satisfied, consider
two columns c1 and c2 where c1 lies on the path from r to c2. Since r lies in the heavy component
of each column, the heavy component of c1 is a subtree of the heavy component of c2 and the light
component of c2 is a subtree of the light component of c1, which implies c1 � c2. For the compatibility
condition consider two edges c and d that are incident to a node v and that do not lie on a path from r
to v. Then the light component sides of c and d are disjoint and, thus, c ⊥ d. Finally, for the two-path
condition recall that by Gusfield’s characterization [13] the path between the explaining haplotypes for a
genotype g contains exactly the columns where the genotype has 2-entries. Thus, these columns cannot
be distributed among more than two branches.

To prove the other direction, let T be a mutation tree with root r. We show that the following node
labeling makes T a perfect phylogeny for A: For each column c and node v, we set the label of v in
column c to lcv(c) whenever c lies on the path between r and v and to hcv(c), otherwise. It suffices to
show that for every genotype g ∈ A there are two labels explaining it. Let g be a genotype from A and let
Alcv

g := {c | c is column of A, g[c] = lcv(c)} and A2
g := {c | c is column of A, g[c] = 2}. In the following

we show that (a) there is a node v that is connected to r via a path labeled exactly by the columns in Alcv
g ,

(b) there are two nodes w and w′ connected by a path that goes through v and is labeled exactly by the
columns in A2

g, and (c) the labels of w and w′ explain g.
Since T satisfies the ordering condition, the columns from Alcv

g form a connected component in T
that contains r. The compatibility condition ensures that this component is a single path from r to some
node v. Thus, (a) is true. Let Tv be the subtree of T rooted at v. Assume there is a c ∈ A2

g that labels an
edge not belonging to Tv. Let v′ be the least common ancestor of c and v. Let d1 and d2 be the columns
connected to v′ such that d1 starts the path from v′ to v and d2 starts the path from v′ to c. Then, due
to the compatibility condition, it holds d1 ⊥ d2 and therefore g[d2] = hcv(d2). The ordering condition
gives d2 � c, which implies g[c] = hcv(c), a contradiction to the choice of c. So, all columns in A2

g
are in Tv. With the property that all columns from Tv have a heavy component value or a 2-entry in g,
the columns in A2

g form a connected component in Tv that contains v. The two-path condition implies
that this component is a path, so (b) holds. Finally, to prove (c) let w and w′ be the two vertices that
are connected by this A2

g-path. The path from r to v contains exactly the columns with light component
value in g, so the labels both have a light component value in these columns. The columns from c ∈ A2

g
are distributed among the paths from v to w and v to w′. Therefore one label has lcv(c) and the other
hcv(c) in column c. All columns not belonging to Alcv

g or A2
g do not appear in either path, thus the labels

contain heavy component values in these columns. Hence, the labels of w and w′ explain g.

Proof of Lemma 3.7. We prove the claim by induction over i. For i = 0 the initialization R0 = {( /0,0, /0)}
is correct because the preprocessing ensures that A|lcs=0 = /0, see the second property of Lemma 3.5.

For the inductive step from i− 1 to i, we first argue that the algorithm adds only good tree records
to Ri. Suppose the algorithm adds some tree record (I′,λ ′,U ′) to Ri. Then there exists a completion C
of A|lcs=i and some tree record (I,λ ,U) ∈ Ri−1, such that there is a mutation tree T passing the test from
line 7. By the inductive hypothesis, (I,λ ,U) is good as witnessed by some Ti−1 and Si−1. Our objective
is to combine Ti−1 and T into a a mutation tree Ti for all of Si|lcs≤i = Si−1|lcs≤i−1∪C|lcs=i∪U |lcs=i. First,
we split Ti−1 at the root, which leads to | inner(Ti−1)| many subtrees. We then identify the top edges of
these subtrees with the edges that are labeled by columns from inner(Ti−1) in T . Remember that these
columns label edges that are incident to leafs. Figure 4 shows the construction of Ti from T and Ti−1.
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The tree Ti is a mutation tree since the local properties at incident edges and edges around nodes are
satisfied by construction. Since T has λ ′−λ + |I| ≤ l−λ + |I| leafs and Ti−1 has λ leafs, Ti has λ ′ ≤ l
leafs.

Ti−1 :
r

λ leafs

T :
r

λ ′−λ + |I| leafs

Ti :
r

λ ′ leafs

Figure 4: Example of the construction of Ti from T and Ti−1. In line 7, the algorithm combines edges
that are labeled with columns inner(Ti−1) (thin lines) and edges that are labeled with columns in C|lcs≤i∪
U |lcs≤i (thick lines) to construct a mutation tree T for them, such that the columns from inner(Ti−1) label
edges that are incident to leafs. Since the ordering, compatibility and two-path conditions are satisfied
locally in trees Ti−1 and T , there exists the depicted combined mutation tree Ti for Si−1|lcs≤i−1∪C|lcs=i∪
U |lcs=i. We also know that Ti has λ ′ ≤ l leafs since Ti−1 has λ leafs and T has λ ′−λ + |I| ≤ l−λ + |I|
leafs.

It remains to argue that all good tree records (I′,λ ′,U ′) are added to Ri. Let Si and Ti witness that
the tree record is good for A and i. Partition Si into two sets Si−1 and C, such that Si−1 is a completion of
A|lcs≤i−1 and C is a completion of A|lcs=i. Let Ti−1 be obtained from Ti by contracting all edges labeled
by columns with light component size i.

We claim that Ti−1 is a mutation tree for the columns from Si−1|lcs≤i−1. To prove this, we show that
for every mutation tree T ′ and every edge {v,w} labeled d, where v lies on the path from the root to w, if
we contract the edge {v,w}, the resulting tree T ′′ still satisfies the ordering, compatibility, and two-path
conditions:

1. T ′′ clearly still satisfies the ordering condition.
2. For the compatibility condition, let u be a node of T ′′. If u is neither v nor w, the compatibility

condition is still true at u. Otherwise, u = v = w. Suppose for sake of contradiction, that u is
incident to two columns c and c′ that are not on the path to the root and where c ⊥ c′ does not
hold. Without loss of generality, we may assume c[g] = lcv(c) and c′[g] 6= hcv(c′) for a genotype g.
Since the compatibility condition holds for T ′, we know that neither v nor w is incident to both
c and c′ in T ′. First, consider the case that v is incident to c and w is incident to c′. Since
c[g] = lcv(c), we have d[g] = hcv(d). Together with the ordering condition it follows that c′ must
have a heavy component value in genotype g, a contradiction. Second, assume that v is incident to
c′ and w is incident to c. From the ordering condition we can deduce that d has a light component
value in genotype g. Thus, c′ and d at node v in T ′ contradict the compatibility condition.

3. For the two-path condition, let u be a node of T ′′. Again, if u is neither v nor w, the two-path
condition is still satisfied at u, so assume u = v = w. For the sake of contradiction, assume that
u is incident to three columns c, c′ and c′′ with c[g] = c′[g] = c′′[g] = 2 for a genotype g. Since
the two-path condition holds in T ′, the nodes v and also w are incident to at least one of these
columns. First, we assume that v is incident to c and w is incident to c′ and c′′. The ordering
condition implies that d has either a 2-entry or a light component value in g. If d has a 2-entry
in g, the two-path condition is not satisfied at node w. If d has a light component value in g, we
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distinguish the cases that c labels the path between v and the root in T ′ and that c does not label
this path. In the first case, the ordering condition is not satisfied for c and d, and in the second
case the compatibility condition is not satisfied at node v. If we assume that two columns c and c′

are incident to v and one column c′′ is incident to w, we can analogously deduce a contradiction.
Thus, the two-path condition holds for every node of T ′′.

We have now proved that Ti−1 is a mutation tree for Si−1|lcs≤i−1. By the inductive assumption, there
must be good tree record (inner(Ti−1),λ ,Si−1|lcs>i−1) ∈ Ri−1 for Ti−1 and Si−1. Since light component
sizes only increase as we near the root, in Ti there can be no column c with lcs(c) ≤ i− 1 that labels
an edge between the root and a column c′ with lcs(c′) = i. With this property in mind, we combine
inner(Ti−1) and the columns with light component size exactly i from Si to a tree T with inner(T ) =
inner(Ti) that has λ ′−λ + | inner(Ti−1)| ≤ l−λ + | inner(Ti−1)| leafs. This construction is the converse
of the construction in Figure 4. Then T will pass the test of line 7 and (inner(Ti),λ ′,U ′) will, indeed, be
inserted into Ri.

Proof of Lemma 3.8. By Lemma 3.5 the preprocessing takes time O(k4km3n). The number of comple-
tions of A|lcs=i considered in round i is bounded by 3k(2k+1)l(3l)kk! since Lemma 3.5 limits the size of
A|lcs=i by (2k+1)l(3l)kk!. We now argue that the number of good tree records over which the algorithm
iterates can be at most 3k|A|i−2k≤lcs≤i−1|. A tree record consists of a set I of at most l complete columns
for which there are at most ml3kl possibilities, a value λ ≤ l, and a set U of unprocessed completions.
The set U contains complete columns from the preceding iterations that have light component size at
least i. When we complete a column, its light component size can only increase by at most 2k and, thus,
a complete column corresponds to an incomplete column from the last 2k rounds. Thus there are at most
3k|A|i−2k≤lcs≤i−1| possibilities, which is also bounded by a function in k and l. Finally, for the runtime of
the inner loop, just note that the size of I∪C|lcs=i∪U |lcs=i depends only on l and k.
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