
Efficient Algorithms for
String-Based Negative Selection

Michael Elberfeld and Johannes Textor

Institut für Theoretische Informatik
Universität zu Lübeck, 23538 Lübeck, Germany
{elberfeld,textor}@tcs.uni-luebeck.de

Abstract. String-based negative selection is an immune-inspired classi-
fication scheme: Given a self-set S of strings, generate a set D of detectors
that do not match any element of S. Then, use these detectors to parti-
tion a monitor set M into self and non-self elements. Implementations of
this scheme are often impractical because they need exponential time in
the size of S to construct D. Here, we consider r-chunk and r-contiguous
detectors, two common implementations that suffer from this problem,
and show that compressed representations of D are constructible in poly-
nomial time for any given S and r. Since these representations can them-
selves be used to classify the elements in M , the worst-case running time
of r-chunk and r-contiguous detector based negative selection is reduced
from exponential to polynomial.

1 Introduction

The immune system protects us from many dangerous pathogens it has never
seen, and it does that by essentially playing dice: T cells are generated randomly
and in large numbers, in the hope that every pathogen that infects the host is
detected by at least some of these cells. However, the host must ensure that
no cells are generated that would turn against itself – many severe diseases
are caused by such autoimmune reactions. Hence, newborn T cells undergo the
process of negative selection. In a special organ, the thymus, they are shown
self proteins, which belong to the host. If a T cell detects any self protein, it is
destroyed.

When Forrest et al. [1, 2] analyzed the immune system as a source of inspi-
ration for computer security, they found that the problem faced by the immune
system is similar to one that today’s computer systems face: It is difficult to de-
fend a system against a previously unknown danger, such as an exploit of a new
security hole. The only reliable knowledge we have is the normal behavior of the
system – the equivalent of self. The idea of the negative selection classification
scheme is to mimic the T cells in the immune system: Generate a set of detec-
tors that do not match anything in self, then use these detectors to monitor the
system for unusual behavior. A more precise definition of the negative selection
algorithm is shown in Figure 1.

Algorithm Negative-Selection.
Input: A self-set S ⊆ U , a monitoring set M ⊆ U .
Output: For each element m ∈M , either self or non-self.
1 D ← Set of detectors that do not match any s ∈ S.
2 for each m ∈M do
3 if m matches any detector d ∈ D then
4 output “m is non-self”
5 else
6 output “m is self”

Fig. 1. The generic negative selection algorithm.

The generic scheme of negative selection is independent of the kind of ab-
straction used for self and non-self elements, which we call the universe U . For
instance, negative selection algorithms have been implemented for both con-
tinuous and real-valued universes. In this paper, we only consider the universe
U = ΣL = {0, 1}L, of binary strings of length L (larger alphabets can be en-
coded as binary). All existing negative selection algorithms based on the string
universe suffer from a worst-case exponential size of D in the total size of the
input [3]. This severely limits the practical applicability of negative selection [4].
We show here, however, that this is not an intrinsic problem of string-based
negative selection, at least not when r-chunk or r-contiguous detectors are used.

The structure of this paper is as follows: In the next section, we define r-
chunk and r-contiguous detectors and show that it is infeasible to enumerate all
of them. The subsequent two sections show that an exhaustive enumeration of
all detectors is not necessary: For both r-chunk and r-contiguous detectors, we
can generate compressed representations of the entire sets that are themselves
usable as detectors. In the last section, we summarize our findings and discuss
the implications for related work.

2 String-Based Detectors and Detector Sets

Throughout the paper, we use the following notation conventions: Let s ∈ ΣL

be a string. Then |s| = L is the length of s and s[i, . . . , j] is the substring of s
with length j − i + 1 that starts at position i. Let S ⊆ ΣL be a set of strings.
Then S = ΣL \ S is its complement.

Now we are ready to define what r-chunk and r-contiguous detectors are.

Definition 2.1 (Chunk detectors). An r-chunk detector (d, i) is a tuple of a
string d ∈ Σr and an integer i ∈ {1, . . . , L − r + 1}. It matches another string
s ∈ ΣL if s[i, . . . , i+ r − 1] = d.

Definition 2.2 (Contiguous detectors). An r-contiguous detector is a string
d ∈ ΣL. It matches another string s ∈ ΣL if there is an i ∈ {1, . . . , L − r + 1}
with d[i, . . . , i+ r − 1] = s[i, . . . , i+ r − 1].

Definition 2.3 (Detector sets). Given a self-set S ⊆ ΣL and an integer
r ∈ {1, . . . , L}, let ChunkD(S, r) be the set of r-chunk detectors that do not
match any string in S, and let ContD(S, r) be the set of r-contiguous detectors
that do not match any string in S.

Figure 2 shows an example of a self-set together with its r-chunk detectors
and r-contiguous detectors. This self-set is used several times as an example in
the present paper.

01011
01010
01101

Self-set S
with L = 5
and |S| = 3

(000,1)
(001,1)
(100,1)
(101,1)
(110,1)
(111,1)

(000,2)
(001,2)
(010,2)
(011,2)
(100,2)
(111,2)

(000,3)
(001,3)
(100,3)
(110,3)
(111,3)

The set of 3-chunk
detectors,
ChunkD(S, 3).

00000
00100
00110
00111
10000
10001

10100
10110
10111
11000
11001
11110
11111

The set of 3-contiguous
detectors, ContD(S, 3).

Fig. 2. An example self-set S ⊆ Σ5 together with the detector sets ChunkD(S, 3) and
ContD(S, 3).

All previous attempts to build efficient algorithms for generating all r-chunk
and r-contiguous detectors have resulted in a worst-case complexity that is ex-
ponential in the input size. For example, there is one algorithm for determining
the size of ContD(S, r) that runs linearly in |S|, but exponentially in r [5].

In fact, it is impossible to build an algorithm that generates all detectors
and is guaranteed to run in less than exponential time. Consider the worst-case
size of ChunkD(S, r) and ContD(S, r) in terms of the size of the input, that
is, |S| · L (the space needed for storing r is negligible). Fix r = L, and let S
contain only one arbitrary string s. That is, the input size is L. Now, the size
of both ChunkD(S, r) and ContD(S, r) is 2L − 1: any string d ∈ ΣL \ {s} is
both an r-contiguous detector, and an r-chunk detector at position 1. Hence,
any algorithm that completely enumerates ChunkD(S, r) or ContD(S, r) must
take exponential time in the worst case.

In principle, the infeasibility of generating all detectors might be due to some
intrinsic hardness of the problem – maybe, as argued by Timmis et al. [6], it could
be equivalent to an NP-hard problem. However, we show in this paper that this
is not the case. Instead, the problem is somewhat ill-posed. As an illustrating
analogy, consider the task of enumerating all strings s ∈ ΣL. This takes time 2L,
but it is certainly not very hard to do – the set of all strings of length L has a

trivial internal structure, which could be represented simply by the number L.
We will show in the next two sections that efficient representations for both
ChunkD(S, r) and ContD(S, r) can be constructed. The detection power of
these representations is equivalent to that of the entire set, but the time and
space required to construct them are guaranteed to be polynomial in the size of
the input.

3 Negative Selection with Chunk Detectors

Our algorithm for r-chunk detection uses patterns that describe sets of several
detectors at once. In the context of negative selection, the usage of patterns to
describe complement sets was first explored by Esponda [7]. Our contribution in
this section lies in applying this idea to r-chunk detection.

Definition 3.1 (Prefix patterns). A prefix pattern π is a string over the al-
phabet Σ ∪ {�} that has the form π = vw, where v is a string over Σ and w is
a string consisting only of �. A string s is described by π = vw if v is a prefix
of s and |π| = |s|. The set of all strings described by π is denoted by P (π).

For example, the pattern 01�� describes all binary strings of length 4 that
start with 01. Obviously every set of strings of length L can be described by
a set of prefix patterns, since every string is itself a prefix pattern. What we
are interested in is a minimal representation of a set of strings in terms of prefix
patterns. The following lemma, which is adopted from Esponda [7] with a slightly
modified proof, shows that such a representation can be constructed efficiently.

Lemma 3.2 (Minimal prefix patterns for the complement of S). Given
a set S ⊆ Σr, denote by MinPrefix(S) the smallest set of prefix patterns that
describe exactly the strings in S. MinPrefix(S) is uniquely defined, has at most
O(|S|r) elements and can be constructed in time O(|S|r2).

Proof. The set MinPrefix(S) is constructed by the algorithm Construct-
Minimal-Prefix-Patterns (Figure 3), which iterates over the set of all pre-
fixes of all strings in S (we ignore the trivial case that S is empty). For each
prefix, the last letter is flipped. If the resulting string pi is not a prefix of any
s ∈ S, then no prefix of pi other than pi itself has this property. Therefore,
the patterns in the resulting set D describe pairwise disjoint sets of strings, and
there is no pair (π1, π2) of two different patterns in D that could be replaced by
a single pattern π0 such that P (π1) ∪ P (π2) ⊆ P (π0) ⊆ S. Hence, there is no
pattern set smaller than D that describes the same strings.

To see that the entire set S is covered by the set D, fix an arbitrary string
ŝ ∈ S. Since ŝ is not a prefix of any s ∈ S, there must be a shortest prefix p̂ of
ŝ with the same property. Then the algorithm inserts p̂ � . . . �, which describes
ŝ, into the set D in line 6. Since there are |S|r prefixes of the strings in S, the
algorithm outputs at most |S|r patterns. Its time complexity depends on the
efficiency of the procedure used to check if the pi match any string in S. Using a

suffix tree data structure (which can be constructed in time O(|S|r) beforehand),
this can be achieved in time O(r) [8]. Hence, the resulting time complexity is
O(|S|r2). ut

For example, if S = {0101, 0011}, then algorithm Construct-Minimal-
Prefix-Patterns yields {1���, 011�, 0100, 000�, 0010}. This is indeed the min-
imal set of prefix patterns describing the complement of S: No pattern can be
removed from the set since some string in S would no longer be described, and
no two patterns can be merged because the resulting pattern would describe
strings that are not in S.

Algorithm Construct-Minimal-Prefix-Patterns.
Input: A nonempty set S ⊆ Σr.

Output: The set MinPrefix(S).
1 D ← ∅
2 for each s ∈ S do
3 for i = 1 to r do

4 pi ← s[1, . . . , i− 1]s[i]
5 if pi is not a prefix of any s ∈ S then
6 D ← D ∪ {pi � . . . �| {z }

r−i

}

7 output D

Fig. 3. Algorithm for constructing a minimal set of prefix patterns describing the
complement of S.

Now we are ready to apply the idea of minimal prefix patterns to r-chunk
detection. This is done by iterating over all positions i ∈ {1, . . . , L− r+ 1}, and
considering only the substrings of the strings in S of length r at these positions.
Let us denote this set by S[i, . . . , i+ r− 1], then the set of all r-chunk detectors
for position i is precisely the complement S[i, . . . , i+ r − 1]. By generalizing the
concept of r-chunk detectors to patterns, it is straightforward to construct an
efficient representation of the set of all r-chunk detectors and to use it for r-chunk
detection.

Definition 3.3 (Chunk patterns). An r-chunk pattern is a tuple (π, i) of
a prefix pattern π and an integer i. A string s ∈ ΣL is matched by (π, i) if
there exists a string d ∈ Σr described by π, such that the r-chunk detector (d, i)
matches s.

Algorithm Efficient-Chunk-Negative-Selection in Figure 5 provides
an efficient approach for negative selection with r-chunk detectors. In lines 1 to 4
a set of r-chunk patterns D that describe exactly the r-chunk detectors of a self-
set S is generated by using minimal prefix patterns. For the self-set from Figure 2,
these r-chunk patterns are shown in Figure 4.

(1��,1)
(00�,1)

D1

(100,2)
(111,2)
(0��,2)

D2

(00�,3)
(11�,3)
(100,3)

D3

Fig. 4. This figure shows the set of 3-chunk patterns D = D1 ∪ D2 ∪ D3 that the
algorithm Efficient-Chunk-Negative-Selection constructs for the self-set from
Figure 2. While the set of all r-chunk detectors can grow exponentially, the maximum
size of the equivalent set of r-chunk patterns is polynomially bounded.

In lines 5 to 9 the setD is used to classify the elements fromM . The algorithm
correctly outputs for each element of M either self or non-self, since the set of
r-chunk patterns is completely equivalent to the set of r-chunk detectors: If any
given string is matched by an r-chunk detector, it is also matched by the pattern
describing this detector; and if there is no r-chunk detector that matches a given
string, then none of the equivalent r-chunk patterns match it.

By Lemma 3.2, constructing each Di takes time O(|S|r2), and thus the time
to construct D is O(|S|r2(L − r + 1)). Checking if a string matches a pattern
takes exactly the same time as matching it against another string. Hence, we have
reduced both time complexity of detector generation and the time complexity of
detection itself from exponential to polynomial.

Algorithm Efficient-Chunk-Negative-Selection.
Input: A self-set S ⊆ ΣL, an integer r ∈ {1, . . . , L} and a monitor set M ⊆ ΣL.
Output: For each m ∈M , either self or non-self for r-chunk detection.

1 for i = 1 to L− r + 1 do
2 Si ← {s[i, . . . , i+ r − 1] | s ∈ S}
3 Di ← {(π, i) | π ∈MinPrefix(Si)}
4 D =

S
i Di

5 for each m ∈M do
6 if m matches any pattern p ∈ D then
7 output “m is non-self”
8 else
9 output “m is self”

Fig. 5. Our efficient algorithm for negative selection with r-chunk detectors.

In the next section we present an efficient algorithm for r-contiguous de-
tection using a slightly more complicated data structure that represents sets of
contiguous detectors.

4 Negative Selection with Contiguous Detectors

In the previous section we used r-chunk patterns to describe sets of r-chunk
detectors. In this section we introduce the r-pattern graph that is used to rep-
resent the r-contiguous detectors of a self-set S ⊆ ΣL. The idea behind this
data structure is that every r-contiguous detector can be constructed from a
set of “overlapping” r-chunk detectors. As shown in Figure 6, we can construct
a graph by linking every r-chunk detector to its overlapping neighbours. Now
every r-contiguous detector corresponds to a path through this graph of length
L− r + 1.

Of course, the simple procedure depicted in Figure 6 again suffers from an
exponential number of nodes in the graph. Again, we can use patterns to reduce
the number of nodes to polynomial. In the rest of this section, we prove that this
compression procedure does not break the correctness of the construction. Also,
it is not immediately obvious how the r-pattern graph can be used for self-nonself
classification. This question will be addressed at the end of this section.

Derivation of the contiguous
detector from the emphasized
path:

3-chunk detectors 000
from the path: 010

100

3-contiguous detector: 00100

(000,1)

(001,1)

(100,1)

(101,1)

(110,1)

(111,1)

(000,2)

(001,2)

(010,2)

(011,2)

(100,2)

(111,2)

(000,3)

(001,3)

(100,3)

(110,3)

(111,3)

Fig. 6. For the self-set from Figure 2 and r = 3, this figure shows how one can construct
r-contiguous detectors from overlapping r-chunk detectors. The r-chunk detectors are
arranged in levels and there is a directed edge from a detector d in level i to a detector
d′ in level i + 1 if d[2, . . . , r] = d′[1, . . . , r − 1]. Every path from the leftmost to the
rightmost level of the graph corresponds to an r-contiguous detector.

Our compressed data structure, the r-pattern graph, is organized in L−r+1
levels from left to right and the vertices are labeled by r-chunk patterns. Edges
are only drawn between vertices of consecutive levels. A path from the leftmost
to the rightmost level represents a set of r-contiguous detectors and two different
paths describe different sets of r-contiguous detectors.

Definition 4.1 (Pattern graphs). Let S ⊆ ΣL be a self-set. The r-pattern
graph for S is a directed graph with L− r + 1 levels and constructed as follows:

1. Let D = D1∪ . . .∪DL−r+1 be the set of r-chunk patterns for S, as generated
by the algorithm in Figure 5. For every level i, construct |Di| vertices and
label them bijectively with the patterns from Di.

2. For every level i from 1, . . . , L − r, insert an edge from a vertex with label
(π, i) to a vertex with label (π′, i+ 1) if P (π[2, . . . , r]) ⊇ P (π′[1, . . . , r − 1]).

3. Repeatedly do the following:
(a) Delete vertices from level 1 without outgoing edges.
(b) Delete vertices from levels 2, . . . , L − r without outgoing or incoming

edges.
(c) Delete vertices from level L− r + 1 without incoming edges.

The construction procedure for an r-pattern graph is directly given by its
definition. Given the set D beforehand, which is constructed by the algorithm
in Figure 5, the worst-case runtime for lines 1 and 2 is O(r|D|2) and O(|D|3) for
line 3. Figure 7 shows an example of an r-pattern graph.

level 1 level 2 level 3

(100,3)

(11�,3)

(00�,3)

(111,2)

(100,2)

(0��,2)

(00�,1)

(1��,1)

Fig. 7. The 3-pattern graph for the self-set S from Figure 2, which is a compressed
version of the graph shown in Figure 6.

Definition 4.2 (Pattern paths). Let S ∈ ΣL be a self-set and G its r-pattern
graph. A path from a vertex in level 1 to a vertex in level L − r + 1 is called a
pattern path. It describes a string d ∈ ΣL if for every r-chunk pattern (πi, i) on
the path, the pattern πi describes d[i, . . . , i+ r − 1].

The role of pattern paths for r-contiguous detectors is similar to the role of r-
chunk patterns for r-chunk detectors: (1) A pattern path describes r-contiguous
detectors. These detectors can be constructed by merging the r-chunk patterns
of the path according to their position and then filling up the � entries arbitrarily,
as shown in Figure 8. Since for every position i ∈ {1, . . . , L− r+ 1} there exists
an r-chunk pattern that matches the constructed string, it does not match any
string in S and is, therefore, an r-contiguous detector. (2) Two pattern paths
that differ in at least one vertex describe disjoint sets of r-contiguous detectors.
(3) The pattern paths cover all r-contiguous detectors, as stated in the following
lemma:

level 1 level 2 level 3

(100,3)

(11�,3)

(00�,3)

(111,2)

(100,2)

(0��,2)

(00�,1)

(1��,1)

Merge of prefix patterns from
the path:

Prefix patterns 1��
from the path: 0��

11�
Merged path patterns: 1011�
Described detectors: 10110

10111

Fig. 8. A pattern path in the 3-pattern graph from Figure 7 that describes two 3-
contiguous detectors.

Lemma 4.3 (Pattern paths describe contiguous detectors). Let S ⊆ ΣL

be a self-set and G its r-pattern graph. The set of strings described by the pattern
paths of G is exactly ContD(S, r).

Proof. We have discussed in the previous paragraph that every pattern path
corresponds to ab r-contiguous detector. It remains to show that there is a
pattern path for each d ∈ ContD(S, r). Let d ∈ ContD(S, r) be an r-contiguous
detector. For every position i ∈ {1, . . . , L− r+ 1}, the tuple (d[i, . . . , i+ r− 1, i)

is an r-chunk detector and, hence, described by some r-chunk pattern (πi, i) ∈
Di. We show that G contains the path (π1, 1), . . . , (πL−r+1, L − r + 1), which
describes s by definition. Note, that it suffices to show that this holds after
step 2 of the construction of the r-pattern graph in Definition 4.1. Consider the
two patterns (πi, i) and (πi+1, i + 1) with πi = viwi where vi is a string over
{0, 1} and wi consists only of � (similarly πi+1 = vi+1wi+1 for appropriate vi+1

and wi+1). If |vi+1| ≥ |vi| − 1, then after step 2 there is an edge from (πi, i) to
(πi+1, i+ 1). The case |vi+1| < |vi| − 1 cannot occur for the following reason: By
the construction of the r-chunk patterns in the algorithm in Figure 5, vi is not a
substring of any string from S at position i, but its prefix of length |vi| − 1 is a
substring of a string s ∈ S at position i. Therefore, vi+1 is a substring at position
i+ 1 in s, which contradicts the construction of the r-chunk patterns. ut

Similar to the fact that pattern paths describe r-contiguous detectors, sub-
paths of them describe substrings of r-contiguous detectors. Thus, if we want
to know whether a given string m matches an r-contiguous detector, it suffices
to look at subpaths that represent substrings of length r. We use the following
graph to look at possible paths for a string m and a position i:

Definition 4.4 (Restricted pattern graph). Let S ⊆ ΣL be a self-set, G its
r-pattern graph, m ∈ {0, 1}L, and i ∈ {1, . . . , L − r + 1}. The (m, i)-restricted
r-pattern graph for S is the induced graph of G that contains exactly the vertices
(π, j) with j ∈ {i, . . . , i+r−1} where π[1, . . . , r+i−j] describes m[j, . . . , i+r−1].

Given the r-pattern graph beforehand, a string m and an index i, the (m, i)-
restricted graph can be constructed as in the definition, which needs time at
most O(|D|r). Figure 9 shows an example for restricted pattern graphs.

Lemma 4.5 (Contiguous detection with pattern graphs). Let G′ be the
(m, i)-restricted r-pattern graph for a self-set S ⊆ {0, 1}L and m ∈ {0, 1}L.
The string m matches a detector d ∈ ContD(S, r) at position i if, and only
if, there is a path from the leftmost level (level i) to the rightmost level (level
min{i+ r − 1, L− r + 1}) in G′.

Proof. Let m match a detector d ∈ ContD(S, r) at position i. By Lemma 4.3
we know that there exists a pattern path (π1, 1), . . . , (πL−r+1, L − r + 1) in
the unrestricted r-pattern graph that describes d. Since m[i, . . . , i + r − 1] =
d[i, . . . , i + r − 1], we also know that for every j ∈ {i, . . . , i + r − 1}, the prefix
of length r + i− j of πj describes the substring of length r + i− j at position j
in m. Thus, there is a path from the leftmost to the rightmost level in G′.

For the other direction, consider a path from the leftmost to the rightmost
level in the restricted graph. It is part of a pattern path in the unrestricted
r-pattern graph. We choose an r-contiguous detector d from the set of detectors
described by the pattern path, such that the free entries between position i and
i+r−1 (the positions with only � entries in all r-chunk patterns) are filled like in
m. Then d matches m at position i since the construction of the restricted graph
assures that, whenever the considered pattern path forces a 0 (or 1) entry in a
position j ∈ {i, . . . , i+r−1}, m already has a 0 (or 1) entry at that position. ut

level 1 level 2 level 3

(100,3)

(11�,3)

(0��,2)

(1��,1)

Path describes a substring of length 3
of a detector:

Merged path patterns: 10100

Monitor string m: 10101

Matching detector: 10110

Fig. 9. The (10101, 1)-restricted 3-pattern graph for the self-set from Figure 2 with a
path from level 1 to 3.

Given an (m, i)-restricted r-pattern graph, the property of the last lemma
can be tested as follows: Assign to each vertex of level i the weight 1. Then
iterate through all of the remaining levels and set the weight of every vertex to
the maximal weight of a predecessor vertex plus one. There is a path from the
leftmost to the rightmost level if the weight of a vertex in the rightmost level
equal the number of levels in the restricted graph. This procedure takes time at
most O(|D|2r).

Bringing it all together, the algorithm in Figure 10 correctly detects for each
element of a monitor set M , whether it is self or non-self. The algorithm uses
time at most O(|S|Lr2) for the construction of the set D in line 1 and O(|S|Lr)
is an upper bound for the number of patterns in D. In line 2 the running time
for the construction of the r-pattern graph is at most O(|D|2r + |D|3). For the
detection of a single element m from the monitor set, the algorithm iterates
over all possible positions i ∈ {1, . . . , L− r+ 1}. For each position, it constructs
the (m, i)-restricted pattern graph and decides whether there is a path from
the leftmost to the rightmost level. Thus, the time for the detection of a single
element is at most O(|D|2Lr).

5 Discussion

We have seen that negative selection based on r-chunk and r-contiguous detector
is inefficient if all detectors are generated. However, the complete detector sets
are highly redundant. Our results show that equivalent, but significantly smaller
representations of these sets can be constructed. It is therefore unnecessary to

Algorithm Efficient-Contiguous-Negative-Selection.
Input: A self-set S ⊆ ΣL, an integer r ∈ {1, . . . , L} and a monitor set M ⊆ ΣL.
Output: For each m ∈M , either self or non-self for r-contiguous detection.
1 construct the set D of r-patterns
2 construct the r-pattern graph G from D
3 for each m ∈M do
4 for i = 1 to L− r + 1 do
5 construct the (m, i)-restricted r-pattern graph G′

6 if there is a path from the leftmost to the rightmost level in G′ then
7 output m is “non-self”
8 if m was not detected as “non-self” then
9 output m is “self”

Fig. 10. Our efficient algorithm for negative selection with r-contiguous detectors.

enumerate all detectors explicitly. In the case of r-chunk detectors, our construc-
tion is a straightforward continuation of Esponda’s results [7] and should not be
much harder to implement than the original procedure. On the other hand, the
construction for r-contiguous detectors is still a little more involved. We would
like to point out here that our main focus here was to show that r-contiguous de-
tection is principally feasible in polynomial time. For concrete implementations,
the algorithm developed in the previous section can still be streamlined.

It is important to put our work in context with the work carried out by Stibor
[3, 6, 9], who demonstrated that the problem of deciding if any r-contiguous
detector is generable for a given self-set can be expressed as an instance of the
k-CNF satisfiability problem (SAT), which is NP-complete. This result is not
a contradiction to our findings. Formally, Stibor showed that the generability
problem for r-contiguous detectors – let us denote it GenP – is polynomial-time
reducible to SAT, and this implies GenP ∈ NP. However, it does not imply
that GenP is NP-complete – to prove that, one needs additionally a reduction
in the opposite direction. In fact, our results imply GenP ∈ P: Given S and r,
construct the r-pattern graph G. Detectors are generable if, and only if, there
is a pattern path in the graph. This test takes polynomial time. Hence, it is
very unlikely that detector generability is complexity-wise equivalent to boolean
satisfiability, since this would now imply P = NP.

In summary, our work shows that string-based negative selection is a com-
putationally feasible approach. It remains to be seen if this finding leads to a
substantial improvement to the real-world performance of negative selection, or
even the desired “killer application” for AIS. However, since the negative se-
lection algorithm has been a source of inspiration for many in the past, maybe
there is now a little more hope.

References

1. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in
a computer. In: Proceedings of the IEEE Symposium on Research in Security and
Privacy. (1994) 202–212

2. Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer immunology. Communications
of the ACM 40 (1997) 88–96

3. Stibor, T.: Foundations of r-contiguous matching in negative selection for anomaly
detection. Natural Computing (2008)

4. Stibor, T.: On the Appropriateness of Negative Selection for Anomaly Detection
and Network Intrusion Detection. PhD thesis, Darmstadt University of Technology
(2006)

5. D’Haeseleer, P.: An immunological approach to change detection: theoretical results.
In: Proceedings of the 9th IEEE Computer Security Foundations Workshop. (1996)
18–26

6. Timmis, J., Hone, A., Stibor, T., Clark, E.: Theoretical advances in artificial immune
systems. Theoretical Computer Science 403 (2008) 11–32

7. Esponda, C.: Negative Representations of Information. PhD thesis, University of
New Mexico (2005)

8. Ukkonen, E.: On-line construction of suffix-trees. Algorithmica 14(3) (1995) 249–
260

9. Stibor, T.: Phase transition and the computational complexity of generating r-
contiguous detectors. In de Castro, L., von Zuben, F., Knidel, H., eds.: ICARIS
2007: 6th International Conference on Artificial Immune Systems. Volume 4628 of
Lecture Notes in Computer Science., Springer (2007) 142–155

