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Abstract

The immune system is of central interest for theedciences, but its high complexity makes it
a challenging system to study. Computational moaditee immune system can help to
improve our understanding of its fundamental pptes. In this paper, we analyze and extend
the Celada-Seiden model, a simple and elegant-dbgsetd model of the entire immune
response, which, however, lacks biophysically sasintulation methodology. We extend the
stochastic model to a stochastic-deterministic loyland link the deterministic version to
continuous physical and chemical laws. This givegige meanings to all simulation
processes, and helps to increase performance.norgirate an application for the model,

we implement and study two different hypothesesiabacell-mediated immune memory.

Introduction

Researchers who want to find the cure for an autotdne disease — say, diabetes — would not
start right away to experiment on humans. They experiment on mice first, and this may
give them insight that leads to an idea for a newgdHowever, the drug will ultimately need

to be tested on human volunteers, and it might dutrthat what worked for the mouse does

not work for the human — which is why biologistgak of the “mouse model”. This work is



about going one step beyond the mouse, and creatimgdel of the immune system in a
computer.
The immune system is highly interesting for reslears in medicine and pharmacology, since
immunological discoveries often lead to the develept of new drugs and vaccines. It is also
a source of inspiration for engineers becausesdiilt-tolerance, adaptability, and learning
capabilities (Stepney et al., 2005). Computationatiels can contribute in two ways to our
understanding of the immune system:

1. Developing hypothes@sd concepts that are not mature enough to bedtbgt

experiment, or not testable for technical reasons.

2. Making predictionghat can be verified of falsified by experiment.
Agent-based models of the immune system have beshio both ways (Forrest and
Beauchemin, 2007). To make quantitative predictiomsdels need to achieve a high level of
detail, which is difficult because there are bigg& our knowledge about how the immune
system works in detail. These gaps have to balfiblemaking assumptions that can
compromise the accuracy of the predictions (Sal.e2003).
The model that we study in this paper falls inte finst category. It is a model of the entire
immune response, from the first contact with theeifgn intruder until the formation of
immune memory. However, it is not is a detailed faithful reproduction of how all these
processes work in reality. Even if it were posstbl®uild such a detailed model, it would
perhaps be too complex to be of any use. Thus we toeallow for abstractions and
simplifications, and we must be aware that ourltesull always need to be validated by
“real” experiments — just like a drug for humansarmat be developed solely by experimenting
on mice. Still there are good applications for sachodel, and we demonstrate one at the end
of this paper.
Our work does not start from scratch, but is bdeeallarge extent on theéelada-Seiden

model(Seiden and Celada, 1992; Puzone et al., 2002¢r&8legroups have implemented and



used this model, and continue to use it until to@@astiglione et al, 2004, 2007). It covers
many important aspects of the immune system inrsimgly simple ways, and we see this
simplicity as one of its main strengths. Our gsabi improve its methodological foundation:
Based on a precise characterization of its simarladrchitecture, we will identify ways to
improve the realism and performance of the modt#aut sacrificing its simplicity.

But before we go on to explain the contributionshié work in more detail, one essential
guestion needs to be answered: Why do we use at-bgsed approach, rather than, for
instance, a continuous partial differential equa(lBDE) model? Our choice is based on two
key aspects of immunity, which lend themselvesdnétt agent-based modelling:

1. Diversity: To keep up with the huge, continuously evolvingiemment of pathogens
that the immune system is challenged with, itssde#lve evolved sophisticated
mechanisms to generate diversity. Immune cells/caaeptors that are generated
randomly by recombination of DNA fragments and &ddally fine-tuned by point
mutations of the coding sequence. Such highly dezand dynamic properties are
difficult to describe in a PDE system of tractasize, but they can be implemented
straightforwardly in an agent-based model.

2. RandomnessAs a consequence of the high diversity of immurkreeeptors, the
number of cells that can detect a previously ungagimogen is very low — Blattmann
et al. (2002) estimated that a given antigen iy oetognized by 1 in 200 000 T cells.
Thus, stochastic factors like the spatial distifrubf immune cells at the time of
infection can influence the entire infection’s ceeir This fact can be accurately
represented in agent-based models using Monte Sianidation, while continuous
models usually assume that stochastic effects tiplag any role because of the large
size of the system.

However, agent-based simulations of large bioldggatems are computationally

demanding. In immune system simulations, perforreassues typically arise in the late



phase of an immune response, when cells that heteetdd the antigen create thousands of
clones of themselves, which in turn secrete miliohidentical antibody molecules.
Stochastic effects are no longer important atgtage, and it is no longer necessary to treat
each cell and molecule separately. Deterministidet®are both more efficient and more
descriptive in such situations. The strengths @élsastic and deterministic methods can be
combined by dybrid approach: Treat agents as individuals when nurndrerbow and
diversity is high (early phase of the immune reggynand treat them in bulk when numbers
of agents are large, but the number of differeenétypesis low (late phase of the immune
response).

Most implementations of the Celada-Seiden modeichvis entirely stochastic, use some
hybrid elements for performance reasons. For exantipére is an algorithm that iterates
through all agents at a given position and movehl agent to a random location in the
neighbourhood. Most implementations only actuatithis if the number of agents is low.
Otherwise, the agents are divided evenly amongéighbouring locations. We will see in
the next section that this process is nothing Hutite difference version of the continuous
diffusion equationHence, through the extension the stochastic iggorto a stochastic and
deterministichybrid, a link to acontinuousphysical law is established, which gives us adbett
understanding of what the stochastic algorithm ddééswill show that this does not apply to
the other simulation algorithms in the Celada-Seihedel: Either the expected outcome is
not known, or the corresponding continuous modaebismeaningful. In these cases, we will
supply new algorithms, so that the whole simulatian run in stochastic (individual) and in
deterministic (bulk) mode, where the latter isumta discrete approximation to a set of
underlying continuous models.

To demonstrate this link works, we will apply olg@ithms to a bistable chemical system
that is structurally simple but has interestingayics. This system was studied in the

literature using both continuous models and discs&tichastic simulations. We will test if our



stochastic simulation framework can reproduce #teliour predicted by the system’s
continuous description. Then we discuss our impleat®n of the humoral immune
response, analyzing in particular the impact oftthlerid mode.

Finally, we will demonstrate a concrete applicationour model: A new hypothesis about
the mechanisms behind immune memory has recerdly pestulated (Bell and Westermann,
2008). We implement this hypothesis and compatethie textbook theory. The paper

concludes with an evaluation of our results andpectives for future research.

Immunological foundations of the Celada-Seiden model

We can’t cover all the immunological details of thelada-Seiden model (CS model) in this
paper, but it is important to convey the basic idehow the immune system can be modelled
in a computer. We start with a view of the immuwpstem as a classifying system, which
helps to understand the functions of the three mapbtypes of cells: T cells, B cells, and
antigen presenting cells (APC). The second paitiiefsection defines specificity and affinity,
and explains the important role of randomness, Wwisiclosely related to these concepts.
Note that the facts presented here are stylizedsemplified — we present the immunology of
the CS model, which is a simplification of realifjhe model is based on the standard,
“textbook” view of the immune system. There areeottiheories about the governing
principles of immunity, and these are also stuthedomputational modellers (Aickelin and

Greensmith, 2007).

The Immune System as a Classifying System

Borrowing concepts from engineering, we can desditie immune system as a classifying
system that tells apaself (molecules and cells belonging to the organismnfnonself
(anything else). While self is tolerated, detectedself is attacked, which indirectly achieves

the desired effect of clearing pathogens and athegerous substances. However, as a side



effect, benign intruders (like transplanted orgars)neither tolerated by the immune system.
Anything that provokes an immune response is calteghtigen

Antibodyis an effective and highly specific defence medraragainst antigen. It is a family
of molecules that are specifically produced to hmthe surface of a target antigen. Once an
antigen has been tagged by antibody, non-specificenger cells can localize and attack it
efficiently. The subsystem of the immune systent pinaduces antibody is called themoral
immune responsé his subsystem is the focus of the Celada-Seiuaahel.

To perform the classification of substances intba®d nonself, the immune system employs
two complementary sets of detectoBcellsandT cells(Figure 1). While B cells detect
structures on the antigsnirface T cells are mainly concerned with structuresdethe
antigen. But since T cells cannot reach insiderdig@n, they need the help of so-called
antigen presenting cellAPC), which phagocyte antigen and present diggséets of it on
their surface, where T cells can access it. Intamdio dedicated APCs, B cells themselves
can also present antigen.

During the early phase of a humoral immune respandg a few T and B cells react to the
antigen. To initiate a large-scale reaction, thedls have to meet and exchange signals that
stimulate them to divide (costimulation). Througiveral cell division cycles, a large number
of cell clones bearing antigen-matching receptoesganerated. Finally, antibody is produced

by secretion of B cell receptors. Antigen-secretingells are also callgglasma cells.

Specificity, Affinity, and Randomness

Since antigen can have just about any shape aagdisezimmune system must employ a huge
number of different receptors to cover the antigieape space. It would be impossible to
encode all these receptors directly into the DNistéad, they are generated randomly by a

process involving DNA recombination and mutatiocérding to Janeway et al. (2005), this



process can generate aba0t different B cell receptors. The tespecificityrefers to this
covering of the antigen shape space with a largeten of specific receptors.

This leads to a high sensitivity of the immune mesge to random effects: the number of cells
that can detect a pathogen is often so low thalottedization of these cells in the organism at
the time of infection can determine whether a sssfte response is mounted or not. Hence, B
and T cells are highly motile and continuously giate through the organism, a fact that is
reflected in the CS model by letting the agentsateearandom walkthrough the simulation
space.

The ability of an antibody (B cell receptor) or &dll receptor to bind to a given antigen is
calledaffinity. The binding strength is determined by the shapesceptor and target (lock-
and-key-principle), but also by electrical and cieahforces. A sound representation of the
concepts of specificity and affinity is an essdmat of any model of the immune system. In
the CS model, this is achieved using a simple butgoful concept: Antigen and receptor

shapes are modeled fais strings(Figure 2).
Formally, the affinity between two bit strings 1{01}" is calculated as follows using a

functiona of their hamming distancd = zi s Ot :

0 d<d,,
O’(d) = amin d = dmin (1)
. d
min|La. a(d -1)——— d>d..
(:L Inc ( ) N _d +1j min

Hence,sandt must have a hamming distance of at lehst for nonzero affinity. The
affinity then increases with each additional compatary by a factor proportionaldg,.,

and reaches its maximum whenis the bit-wise complement tf
In this bit string model, it is straightforward itaplement random receptor generation and

receptor mutations. The size of the shape spatetésmined byN . At N = 27 bits, we

obtain a size that is comparable to the human Begértoire (approximatehyd® ).



The Simulation Environment

A model of the immunological processes describexvalwill contain cells and molecules
that move around, get in contact to each otheretiams ingest each other, and create new
cells and molecules by cell division and secretiorthis section, we leave the immunology
aside and focus on how these processes are ordahkizeinstance, can cells move around as
they please, or do we restrict their movement? ldowe decide which cell meets which,
and which is allowed to ingest the other? Whaeifesal cells wish to clone themselves, but
there is not enough room available? The task o$ithelationenvironments to resolve such
conflicts, and generally to orchestrate the movdpaations, and interactions of agents.
This means that our model has a central point ofrof which implies a rather weak notion
of an agent. In fact, the CS model is also somedtiraterred to as a “generalized” cellular
automaton and not as an agent-based model (Seide@edada, 1992). However, this
characterization is misleading: cellular automatkIthe notion of autonomously acting
individuals. In the CS model, there is a clear emtigal difference between actors and
environment. The constraints imposed by the enunemt are a necessary reflection of
physical reality, but the actual immunology is moplemented in the environment, but in the
concrete actions and interactions of the agents. Wil be illustrated in the next section,
where we use our simulation environment to modebaess that has nothing to do with
immunology; in the subsequent section, we retuimtounology and the actions and
interactions between agents in our immune systamlation. The regulation function of the
environment in agent-based modelling in generaliigently being investigated (Schumacher
and Ossowski, 2006; Bandini and Vizzari, 2007).

In the following subsections, we analyze and mothgyalgorithms that organize agent
motility, interactions, and cell division in the @®del. Our requirements to such algorithms

are (1) that both a stochastic and a determimstide is available, and (2) that the



deterministic mode corresponds to a meaningfulicaatis model. Some of the analyzed
algorithms do not meet these requirements, and Weaplace them with our own versions.
To distinguish the original CS model algorithmsnfrour replacements, we mark the former
with a suffix: NTcsis the CS model’s interaction algorithm, anadMA is our replacement
(the suffix MA is explained later). Our primary soe is the informal description of the
model as published by Celada and Seiden (1992}hlsusource does not contain all details.
Hence, we use the most recent and complete impkatn@m of the CS model, CImmSim
version 6.3 (Castiglione et al., 1997; Bernasclailt2001), for additional reference.

The CS model is lattice-based, and we adopt itsdiwveensional hexagonal lattice with wrap-
around boundary conditions, although an extensidhree dimensions might be useful in the
future. The properties of agents can be visibletb@r agents (such as receptors), or internal
(age). The simulation alternates betweemeion phasein which agents can perform actions
and interact with other agents on the same sitkaaiffusion phasgin which agents are
moved to neighbouring lattice sites.

The complete information that defines an agen#test.e. both external and internal
properties, are called itgpe T . All algorithms treat agents grouped by their typepairs of
agents grouped by pairs of types. There are a nuaiflgdobal parameters and utility

functions, which all algorithms may use (TableQ@)these, the paramete@;_,, S; and D,

do not exist in the original CS model, but are rataxtensions to represent an object’s size
and diffusivity more explicitly. The orginal CS meldloes not make type-dependent
distinctions §; and D; are constants independentiof, and the capacity of each site is

unlimited.

Motility of Cells and Molecules

Agents in the CS model cannot move around theéttutonomously, but are moved to

random neigbouring sites during the diffusion phdses is implemented using algorithm



DiFrcs (Figure 3). The link between the discrete randaskwarried out by the agents on the
lattice and the continuous notion of diffusion ssablished by considering the expected
outcome of algorithm Brcs. Let N(s) denote the set of neighbours of the lattice site
which has 6 elements on a hexagonal 2D latticeav@nage, executingiBEFcs changes the

number of agent€; (s,t) as follows:

C,; (s+At,s)-C, (s,t) = At

D, ,
609 D%:,?T (s,t) Cr(sit) )

The expression on the right hand side is well knawithe discrete Laplacian operator.

Dividing by At and lettingAt,As - Q we obtain

_aCT = &DZC

T 4 T @)

where C; is now a continuous function in space and timéngitheconcentratiorof agents

with type T . This equation is identical to the physical lawddfusion. Thus, algorithm

DiFrcsis in fact a discrete stochastic realization dfffusion process.

Interactions between Cells and Molecules

The interactions between agents and their outc@meegery diverse — for example, one of the
interacting agents could start a complex intermatgss, while the other one is killed
(phagocytosis). The only common feature of allratéons is that the agents need to be co-
located. Obviously, it is not possible to let ajkats at a lattice site interact with all others at
the same time. Algorithnnires (Figure 4) choses pairs of agents for interaatising the
following simple procedure: For each pair of agemtsa given lattice site, a coin is thrown.
On success, the current pair of agents is set &sigerform the interaction, and is not eligible
for further interactions. Despite the simplicitylafrcs, it is surprisingly difficult to determine

the expected number of interactions. The problethaseach iteration of the inner loop



depends on the outcomes of all previous iteratiom$il now, we were unable to derive a
closed formula for the expected outcomenaick.

In addition to this difficulty, the algorithm is wgmlistic because it is not aware of the number
of agents located at the current site. One woujekeixthe rate of actions that require
collocation of two entities to increase with thencentration of these entities. The chemical
law of mass actiostates that the rate of interactions is propodii¢ém each of the interacting
species’ concentration. This law is often usedontimuous models of the immune system
(Carneiro, 2005).

The law of mass action is implemented as a disstethastic version by AlgorithritMA
(Figure 5). It is easy to see that the expectedbaurof calls to the interaction procedure is

equal tol; ;. [C; [C,. and thus proportional to the concentrations ofiikeracting agent

types. In addition to the number of agents, theative sizes and the spatial model resolution

are taken into account.

Cell Population Growth

Cell division occurs in the CS model when immunisaget activated. The normal
homeostatic turnover of cells does not involve delision —new are inserted and existing
cells deleted at constant rates, defined by ay@#l dependent half-life parameter. The
antigen, on the other hand, divides at a constdat r

In the CS model, proliferation of activated ceiompletely unlimited, and each lattice site
can contain an arbitrary number of cells, whichasrealistic. In CiImmSim, the growth rate
of cells is damped using a Gaussian kernel to pimhferation down as lattice sites become
more populated, but there is no mechanism thatvemoeells when a site becomes
overpopulated.

Murray (2002) discusses several continuous modelsdnstrained growth of populations.

Algorithm ProLIFLOG (Figure 6) is a discrete stochastic version ofidlgéstic equation:
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This way, RRoLIFLOG imposes a capacity lim(€, ., on the number of cells per site. Temporal

overpopulation of a site is still possible by d#fon from neighbouring sites, but in this case
cells are killed at a rate proportional to the antaf overpopulation until the maximum
capacity is no longer exceeded. This is importanttir diffusion and interaction algorithms

to provide meaningful results.

Switching between Stochastic and Deterministic Mode

We have argued above that randomness is an imppdarof the model’s design. However,
the computational cost is high: For instance, allgor INTcsneedsO(n® yandom numbers,

wheren is the number of agents. It is thus desirablesethese stochastic algorithms only
when the number of agents are low, and replace theeguivalent deterministic versions
when numbers are large. This can be done for g@itims DFFcs, INTMA, PROLIFcs, and
PROLIFLOG, since we know their expected outcomes. The swigcis technically realized as
follows: If the number of agents of all types tezhby the algorithm exceeds a user-controlled
threshold, then the deterministic version is usesteiad of the stochastic one. The
deterministic version of each algorithm directlpguces the expected outcome of its
stochastic counterpart; however, since agent nusrdrerstill discrete, a small part of the
agents may still have to be treated stochastifailg consistent result. Figure 7 shows the

deterministic version of algorithmitMA to illustrate this procedure.

Simulating a Bistable Chemical System

The simulation environment can now be implemented stochastic and deterministic
hybrid, but it remains entirely discrete, and tbarmection to the underlying continuous

models is not explicit. Thus, it remains to shoatthis connection actually works. In this



section, we take a simple system for which botbrgtinuous description in terms of
differential equations and a discrete descriptroterms of interacting particles exist, and
simulate this system with our model. Our goal ishiow that our discrete stochastic
algorithms reproduce the behaviour predicted bystfstem’s continuous description. Such a
test cannot be done with our simulation of the immaystem itself, since we can't entirely
describe this simulation with PDEs. The bistablersital system we use was introduced by
Malevanets and Kapral (1997), who studied it usifdonte Carlo simulation that is

structurally very similar to our model.

The System

We consider four hypothetical chemical specied\’,B and B" and the chemical reactions

between them (Figure 8). The spedieand A" can be seen as two alternative states of one

species. BothA and A" contribute to their own enrichmer# convertsA™ to A and vice
versa. Without additional reactions, the systemld/oot be very interesting — from any
initial state, eithe”A or A" would ultimately become extinct, and the systenud@nd up in

a trivial state. The speci@sand B" are coupled withA and A" in a cyclic manner, and thus
remove these dead ends from the system. Be&arséB* diffuse faster thartA and A", the
system attains the ability to forlocally stable states, which can form interesting spatial
patterns.

A continuous description of these chemical reastisrderived by applying the law of mass
action to the reaction equations and adding difiuserms, as discussed by Malevanets and
Kapral (1997). This results in a nice “sandbox” relathat is well suited to study the interplay
between molecular interactions and diffusion. Nb# in contrast to our simulation
framework, the one used by Malevanets and Kapissgned to allow a rigorous

mathematical analysis, but is computationally maemanding. For instance, at most one



particle per lattice site is allowed to move pdfudiion phase and at most one pair or triple of

particles is allowed to interact during an actitrage.

Experiments and Results

Since the reactions betweeénand A" involve triples rather than pairs of agents, wedeel
to create a variant of algorithreMA that works with three types of agents (Figure 8).
can be converted té even if only one agent of typA is present, but the algorithm does
follow the law of mass action. The correspondingpddtion of algorithmNTcs simply loops
through all possible triples of agents insteadllgb@ssible pairs (algorithm not shown).
We simulated the described system using threeo$elgorithms: (1) those described by
Malevanets and Kapral, (2)fcsand NTcs, and (3) DFFcs and NTMA. The simulations
were carried out on a 300x300 square lattice, usiagyeneral simulation framework of
alternating diffusion and interaction phases déscriabove. With algorithmntcs, each
agent was only allowed to interact once per intevaghase (as in the CS model). This
limitation was not used with algorithmMA.

The results are shown in Figure 10. All algorithetsform stable Turing patterns in certain
parameter regions. The parameters given by Malésamel Kapral (1997) can be used
directly with algorithms FFcs and NTMA, while we had to determine the corresponding
values for algorithmNTcs by isolating the diffusion and interaction pantslduning
algorithm NTcsto produce similar results astMA.

The results reveal an important property of al¢poniinTcs for diffusion to play any role at
all, it has to be used with very low parameter galul'ypical parameter values from
ClmmsSim, for example, range from 0.01 (unspecifiagocytosis of antigen by
macrophages) to 1 (specific phagocytosis of antigemaximume-affinity B cells). In this
parameter range, the expected number of interacisoclose to maximal, and the diffusion

algorithm is no longer able to maintain a localyo®th distribution of agents.



Conclusion

The fact that Turing patterns can be generated allitstudied algorithms shows that the
addition of randomness does not break the linkéocbntinuous system description, at least
in certain parameter ranges. The randomness causss” in the Turing patterns, but does
not destroy them. It is interesting to see that torks even with the CS algorithms, which
were not designed to be biophysically meaningfuwwiver, it remains problematic that the
parameters for the CS algorithms have to be deteadrivy tuning, which makes it

cumbersome to use parameters from the literature.

Simulating the Immune Response

Our next goal is to assess how our simulation #@lyos perform when applied to simulating
the immune response. The first part of this sedtiescribes our implementation of the
Celada-Seiden model using the modified simulatimrirenment. We perform some
experiments to test if the qualitative outcomehef simulation remains valid (for no
meaningful quantitative comparison is possiblell emassess the impact of the hybrid
simulation mode. The second part of this sectimstitates a potential application of the
model: We compare two different hypotheses on haellFmediated immune memory

works.

Experiments and Results

Our model of the immune response is essentiallyoat™ of a subset of CimmSim, version
6.3, to our simulation environment. It is implemsohin C++, and the cellular and molecular
agents are arranged in an object hierarchy, wiachithtes extending the model by new types
of molecules and cells. As a technical improvemgna simulation can be split in multiple
threads. For reference, we made the implementatiaitlable under the terms of the GNU

General Public License. It can be downloaded fhaim://www.tcs.uni-




luebeck.de/forschung/software/limmsior/ obtained by e-mail from the corresponding

author.

The simulation includes B cells, T cells, antigeesenting cells, antigen and antibody and the
interactions between them. Motility, interactioasd proliferation are implemented using
algorithms DFFcs, INTMA, and RROLIFLOG, respectively. A complete list of the implemented
processes and their rate parameters is shown ilegakand 4. The capacity of each lattice
point was limited to 64 cells per kind (B cells¢@lls, APC and antigen), excluding antibody,
on which no limit was imposed. The parameters tisethe affinity function wereN =16

for B cells, N = 8for T cells,d,, =N -2, a.,, = 005, anda,,. = 077

Figure 11 shows the distribution of antigen andbanty during the course of an example
simulation run on a 64x64 lattice. The antigemjsdted att = 10@nd starts spreading across
the lattice. Around = 80Qantibody starts to appear in three differentargion the lattice,
where specific B and T cells have met and exchaogstimulatory signals, resulting in the
generation of plasma cells. The antigen is almiestred att = 1500The last image shows
the beginning degradation of antibody molecutes ( 0030Thus, our simulation is capable
of producing the same qualitative behaviour astiginal Celada-Seiden model.

To analyze the effects of the hybrid mode on pentorce and results, we compared the
results of several simulation runs using (1) nesholding, (2) deterministic mode far 64
agents, and (3) deterministic mode for &gents. Note that a threshold of 64 almost
exclusively affects the interactions and diffusafrantibody, for which the capacity limit

does not apply (the number of cells at a site cdy temporarily exceed its capacity, and only
by diffusion). For all simulation runs, we measurég total running time, the time at which
the first antibody appeared, the time at whichl#isé antigen was cleared, and the maximum
total number of antibodies. The simulations werefar 3000 time steps. The results are
shown in Figure 12: Setting the threshold to 64négydecreased the mean simulation time by

about 40%, but thresholding at 32 particles didinotease the performance further. The



guantitative measurements were not significantigcéd by the choice of the threshold, but

interestingly, the standard deviation increasednithe switching was used.

A Case Study: T cell immune memory

Immune memory is thought to be formed by conversioshort-lived effector T- and B cells
to long-livedmemory cellsWhen an already known antigen re-enters the @garthere is
already a reservoir of mature, specific T and Bscabailable that can quickly and efficiently
mount a secondary response.
There is one problem with this commonly acceptedth (Bell and Westermann, 2008):
While the existence of memory B cells is well suped, there is no convincing evidence yet
that T cells can be permanently altered by antggenulation. Memory T cells differ from
other T cells only in features that are known tadeersible. Bell and Westermann suggest
that immunological memory does not need a memaglil antigen could persist in the
organism in processed (presented) form, contingtinoulate naive T cells, and thereby
indirectly maintain a population of matching efi@cT cells. This hypothesis requires that T
cells can go back to the naive state, since otlserthie persistence of antigen would
eventually result in programmed cell death of altching T cells. The persistent antigen
could be stored in memory antigen presenting céfligure 13).
The two theories can be modelled by enhancingithelation as follows:
1. T memory cell hypothesis:
* B cells can become memory cells instead of plasgiia gate=0.05)
» Effector T cells can become memory cells (rate=0230),
2. Persistent antigen hypothesis:
* B cells that have gone through all proliferatiorcleg can become memory cells
(rate=0.05)

» Proliferating T cells can revert to the naive s(aste=0.00125)



« APCs that present antigen can become memory catts=0.00125). Memory

APCs stick with their presented antigen, and dorewtove it like normal APCs

do.
The rates were chosen by exploration of the pammspiace. Figure 14 shows the results of
two simulation runs to illustrate an observatioattivould be interesting to investigate
further: Both memory models cleared a previousgnsantigen more efficiently, but the
persistent antigen model achieved immunological orgrwith lower total number of T cells.
The reason could be that due to the persistergeamtihe proliferation of specific T cells
always keeps going at a low intensity, which micguise a lesser extent of T cell
“overproduction” at the second infection. Howevewould be premature to draw immediate

conclusions from this observation — further workésessary.

Discussion and Conclusions

Recently, there has been considerable activitiierfield of computational immunology that
involved agent-based or similar models (Beltmaal ¢2006; Meier-Schellersheim et al.,
2006; Maini et al., 2008). In contrast to the eavlyrk of Celada and Seiden, these models
focus on more specific parts of the immune systedhachieve a higher level of detail, which
reflects a general trend in immunology to focus enam the details than on the “big picture”.
However, the debate on the underlying principlehefimmune system is still far from
settled, and some fundamental concepts such a&kigtence of T memory cells lack
experimental support. Continuous modelling techesgdominate the analysis of such
fundamental questions (Carneiro et al., 2005) {herte are good reasons to adopt an agent-
based approach, as explained in the beginningoptper. The Celada-Seiden model is
simple and elegant, but nevertheless includes ths¢ mmportant aspects of the humoral

immune response, from the first infection to thexfation of immune memory. These were



our reasons to adopt the Celada-Seiden model; aumr pnoblem with it was its lack of
biophysically sound simulation methodology.

Our methodological analysis focused on the simueginvironment, which organizes the
motility, interactions, and reproduction of ager@seking to implement these processes in a
more efficient and meaningful way, we added thétglo switch between stochastic and
deterministic simulation modes, and establisheaeptual links to continuous models. We
tested this link by modelling a bistable chemigaitem, and found that our stochastic
simulation environment reproduced the characteristhaviour (Turing patterns) predicted
by the system’s continuous description.

We then moved on to discuss our implementatioh@fmmune response. An analysis of the
hybrid mode confirmed our expectation that perfarogashould increase, but further work is
necessary to fully understand the hybrid mode’sachpFor example, it is unclear why
switching to the deterministic mode for large nunsbaf agents leads to an increase of the
standard deviation of all measured quantities. @dlyethe switching itself does not lead to a
significant improvement of the simulation efforthe important part is the resulting link to
continuous models.

Analyzing the T cell memory models gave us somggitdy forcing us to think about these
models in a different way. However, it is unsatsbay that most parameters had to be
“guessed”. A recent discovery in immunology couttprove this situation substantially: The
search of T cells and B cells for antigen doeseaddsem to be realized by a random walk
(Miller et al., 2002; Halin et al., 2005), and e tCelada-Seiden model is closer to reality
than previously thought. The quantitative charasties of this random walk are being
investigated, and some estimates for parameteralfmexist in the Celada-Seiden model
have already been made — for example, the numbzmécts between T cells and APCs per

hour (Beltman et al., 2006). Our link to quantitatchemical and physical laws makes it



possible to incorporate such results into the maaleich would be a promising direction for

future work.
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Figures

B cell detects a shape
on the antigen surface

Antigen presenting cell
ingests antigen and
presents peptides on
its membrane

T cell detects
presented
peptide

Costimulation between B cells
and T cells initiates the immune
response

Figure 1: Antigen detection by cooperation of Ti;eB cells, and antigen presenting cells

during the humoral immune response.
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Figure 2: The bit string model for affinity betwersteptors and antigen.
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algorithm DiFFcs

1 argument T : agent type
dofor each site s

N

3 do for each agenta with typeT at s
4 if coiN|-2L_p,
(As)
5 targeth] < random neighbour of
6 else
7 targeth] « s

Figure 3: Diffusion algorithm from the CS model.eTactual translocation of agents is not

part of this algorithm: it is done simultaneoustierall targets have been determined.



algorithm INTcs

[y

arguments T, T': agent types
do for each site s
L < list of agents with typd at <
L' < list of agents with typd" at s
dofor each alJL
dofor each a'OL'
if COIN(I; )
interactg,a’)
removea’ from L'
10 continue using next a

A oW N

© 00 N o un

Figure 4: CS model algorithm for interactions besweagents. Note that the order of agents in

the listsL and L' does not matter, since all agents of one typecamapletely identical.



algorithm INTMA

1 arguments T, T': agent types

2 dofor each site s

3 L < list of agents with of typd at s
4 L' < list of agents with typd"' at s

5 | ax < Size(L)

6 p—sizell')(S./Cy,)

7 do I, times

8 if COIN(patO, ;)

9 interact(first( ), first(L"))
10 remove first element from
11 remove first element from

Figure 5: Proposed interaction algorithm that repoes the law of mass action. For
simplicity, it is assumed that sizef < size(L') holds at line 5 such that the maximum

number of interactions does not exceed the possibigher of interactions.



algorithm PROLIFLOG

1 argument T : particle type
2 dofor each site s

3 p <0

4 do for each agenta at
5 P — P+ Sypay | Crnax

6 L < list of cells of typeT at s
7 if At[P [(L-p)>0

8 dofor each cOL

9 if COIN(R, (1- p))

10 clonef)

11 else

12 dofor each cOL

13 if COIN(-R, 1- p))
14 kill(c)

Figure 6: Proposed algorithm for cell division (iileration). The capacity of each site is
limited: Cells can only divide when enough spadefis(lines 7-10), otherwise cells may die

due to overpopulation (lines 11-14).



algorithm INTMA (deterministic version)

[y

arguments T, T': agent types
do for each site s
L — list of agents with typd at <
L' < list of agents with typd" at s
o IOt - size() - sizel') - (S /Cpyy)
do floor(l,,) times
interact(first( ), first(L"))
remove first element from

remove first element frohi
10 if COIN(I,, — floor(l,,))

A oW N

© 00 N o un

11 interact(first(), first(L"))

Figure 7: Deterministic version of algorithmTMA. As in Figure 5, we assume that
size(L) < size(L") holds at line 5. Lines 10 and 11 are necessakgap the expected

outcome consistent with the stochastic version.



IA,.-!.*
24 +A* — 34

IA*_.A
24"+ A — 347

Iy«

A*+B — A + B
Iye ge | 1 1aB
A* 4+ B* «— A + B*
IA,B*

Figure 8: Chemical equations of the studied bistalgstem. Each reaction has an associated

rate parametel; .. whereT andT' are the interacting species.



algorithm INTMAS

do for each site s

[y

2 L < agents of typeA at s

3 L' — agents of typeA” at s

4 | ax < Size(L")

s pe(size(L) (Sy/Cpa))’

6 do I . times

7 if COIN[pmtO, . )

8 move agent from L' to L

Figure 9: Extension of algorithmiTMA to interactions between three agents. The

interactions shown here correspond to the cherampadtion2A+ 2A" - 3A.



Figure 10: Simulation results for the bistable clwainsystem. Top left: Solution of the

system equations for random initial conditions.Tigit: Particle simulation as of Malevanets
and Kapral. Bottom left: Simulation using algorithfdFFcs and NTcs. Bottom right:
Algorithms DFFcs and NTMA.Colors are mapped to the concentrationsfofwhite:

maximal); the bottom images appear darker becausdanger variance of concentrations.
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Figure 11: Distribution of antigen (rows 1 and 8pantibody (rows 2 and 3) during a
simulation on a 64x64 hexagonal lattice that wasfon 3000 time steps (white: no agents,

black: 64 or more). The antigen was injected atL00.



running time maximum antibody level

6M

1 | ] ] | ]
1000 |= al
5M = —
800 |- = @
I S am -
[1)] [)]
B e00 |} - L T
] o aMm ~ | 1 T T -
[&] T [
® 1 + g 1 1
400 |- T — R I ]
=
=
200 |- — M = al
5 1 | 1 o 1 | 1
nfa 64 32 nfa 64 32
threshold threshold
appearance of first antibody removal of last antigen
3000 T I T 3000 T I T
2500 |— — 2500 |— —
2000 |- — 2000 |- 11
foX foX I 1
i i *
w w
o 1500 |- — o 1500 |- —
E E
1000 = — 1000 = —
= B e
500 |- — 500 |- —
5 1 | 1 5 1 | 1
nfa 64 32 nfa 64 32
threshold threshold

Figure 12: Measurements of running time and charestics of the simulated immune
response on a 64x64 lattice. Mean, minimum, maxinfiuoses), and standard error of the
mean (error bars) are shown for 10 runs per vditieeathreshold between deterministic and

stochastic mode (n/a: stochastic mode only).



(1) T memory cell model

W

contact with antigen programmed
cell death

&

effector
T cells

\. dividing
S\ Tcells

(2) Persistent antigen model

programmed
cell death

S

effector |
T cells

dividing
T cells

Figure 13: Two hypotheses about T cell immune mgm@) After contact to antigen, T cells
proliferate and become effector T cells that stateiB cells. Effector T cells are short-lived,

but some of them become long-lived memory cellsT{&re is no memory T cell. Processed
antigen is kept in long-lived antigen presentinfisc@nd continues to stimulate naive T cells,
which can revert to the naive state after proliiata This keeps a constant supply of specific

T cells available.
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Figure 14: Simulation results for the two memorydeis on a 40x40 lattice.
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Tables

Symbol Meaning

At>0 Temporal resolution

4s>0 Spatial resolution

Chax >0 Capacity of one site of the lattice

S, >0 Size of agents with tygT

D, [0]] Motility (diffusion) coefficient of T

I O [O;L] Rate of interactions betwe Tiand T

P D[O,l] Proliferation rate oT

C;(sh) Number of agents with tyfT on lattice sites

attimet. C; without parameters refers to the
current site at the current time.
COIN(p) Coin throw with success probabili p

Table 1: Global parameters and functions of theuktion framework.



Parameter CS algorithms Modified algorithms

At

As

o 32 32
S,=S, =S,=S, 1 1

D, =D, 0.032 0.032
D, =D, 0.32 0.32
law =l 0.0007 0.182
Lo =l 0.0006125 0.0104
las =, o 0.001255 0.0208

Table 2: Parameters for the simulations of theabistchemical system. The values given in
are adopted from Malevanets and Kapral (1996),camdoe used directly with our hybrid

algorithms. The corresponding values for the C8rétlyms had to be determined by manual

tuning (left column).



Process Rate

Antigen proliferates 0.02

APC phagocytes antigen 0.0005

B cell phagocytes antigen a(receptor,epitopg
APC or B cell processes ingested antigerr(mhg peptide )
APC or presents antigen to T cell @.Qeptidereceptor )
Costimulation between B and T cell aBpeptidereceptor )
Stimulated B cell proliferates 0.05

Stimulated T cell proliferates 0.025

B cell or APC lose presented antigen 0.01

B cell secretes antibody 16

Antigen binds to antibody Od(antibody epitope )

APC phagocytes antigen-antibody compléx

Table 3: Actions and interactions and their defeatiés as implemented in our simulation of
the immune response. Stimulated B and T cells gough 6 division cycles each, and antigen
never stops to proliferate. The values are setitoierthe relations between the corresponding

processes in the real immune system, but are rexthii interpretable as realistic quantities.



Agent type Half-life Diffusion coefficient

Antigen 00 0.1
Labelled antigen 1000 0.1
Antibody 690 0.5

T cell 200 0.02
Effector T cell 50 0.02
B cell 200 0.02
Plasma B cell 100 0.02
Memory cell 10 000 0.02
APC 00 0.01

Table 4: Agent half-lifes (in time steps) and dsilon coefficients used in our simulation of

the immune response.



