
An XML Pipeline-Based System Architecture
for Managing Bibliographic Metadata

Johannes Textor1 and Benjamin Feldner2

1 Institut für Theoretische Informatik
Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

textor@tcs.uni-luebeck.de
2 Institut für Multimediale und Interaktive Systeme

Universisät zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
feldner@imis.uni-luebeck.de

Abstract. In our knowledge-based economy, bibliographic metadata is
everywhere: Companies, research institutes, schools, museums, and many
other institutions nowadays have to deal with large quantities of biblio-
graphic information. Although several established standards are available
for such data, home-grown ad hoc solutions are still widespread in small
to medium enterprises. This paper presents a framework for storing, in-
dexing, and browsing bibliographic metadata that is designed to lower
the barrier for adoption of metadata standards by facilitating import
of legacy data and integration into existing environments. This goal is
achieved using XML pipelines as a central design paradigm. As a practi-
cal use case, we describe how the system was implemented at a research
institute in our university, where it is used for managing publication lists
and the local library.

1 Introduction

There are twelve institutes in the computer science section of our university, all
of which operate their own web sites. Among other things, all of these websites
contain lists of publications. Four institutes use Typo3 modules to manage these
lists, and one uses a Drupal module; another one uses bibtex2html, and the re-
maining six rely on different home-grown solutions. These numbers might not
be statistically significant, but they illustrate that there is no standard solution
to a standard problem faced by, at least, all research institutions: managing bib-
liographic metadata. Certainly, this is not caused by a lack of choice: Several
well-established standards for bibliographic metadata are available – MARC 21,
RIS, EndNote, and BibTeX are just a few of them. Plenty of software uses or
at least supports these formats, much of it Open Source: from reference man-
agement systems like RefDB (refdb.sourceforge.net) to whole integrated library
systems such as Koha (koha.org).

One reason might be the abundance of field-specific bibliographic conven-
tions: Every discipline, every journal has certain formatting rules for literature

references, and software like BibTeX that is capable of following all these conven-
tions is often very complex – not many people are able to write custom BibTeX
styles, for instance. Another important problem is legacy data: If an institution’s
library, consisting of several thousands of books and journals, has been managed
for several years by the secretary using a Microsoft Excel document, an existing
software product is unlikely able to import this data “out of the box” – clearly,
this raises the barrier of adoption. Hence, one might decide to just continue using
the Excel file, or implementing an custom solution.

In other words, two important factors that inhibit the spread of bibliographic
metadata standards in small to medium enterprises are: (1) a lack of user-friendly
and easily customizable data im- and export facilities in current software, re-
sulting in (2) a prohibitively high cost of adoption. In this paper, we describe
the design and implementation of a bibliographic metadata management sys-
tem with the following main design goal: making import of legacy data and
integration into existing environments as easy as possible. We demonstrate how
this goal is achieved using an XML-centric approach, based on the Dublin Core
and OpenURL standards (Sec. 2). Next, we introduce the system architecture
(Sec. 3), which is built around XML transformations and pipelines as provided
by the framework Apache Cocoon. The pipeline pattern is the most important
architectural aspect of our solution, since it makes it easy to adapt the system
talk to existing data sources and presentation targets. Finally, we describe the
steps that were necessary to put the system into productive use in our own
institution (Sec. 4), and conclude with perspectives for further research.

2 XML metadata format

We adopt the Dublin Core (DC) Metadata Initiative’s metadata element set [1] as
our main semantic framework. The main reasons not to use a more specialized
format like EndNote or the DBLP XML format [2] are the DC’s ease of use
and its broader scope. However, it is not straightforward to describe complex
bibliographic objects like articles in conference proceedings directly in DC. There
was a Citation Working Group formed at the DCMI to address this problem,
which in 2006 published a concluding guideline for encoding citation information
that recommends to embed third-party formats within a refined DC description
element [3]. Following this recommendation, we use the OpenURL framework
standardized by ANSI/NISO [4] to encode citation information of more complex
resources.

As is common practice, we encode the DC terms using RDF/XML syntax.
However, because the XML documents are used for communication between our
system’s internal components, we simplify the syntax by omitting all namespace
declarations. This considerably eases writing stylesheets to transform the data
and saves processing time. For data export, an output filter that adds the correct
namespaces can be implemented (see below).

Every DC element can carry the attributes type to encode DC element re-
finements (e.g. the subtype created of the date element [5]), scheme to define

content encoding schemes (e.g. HTML for the description element or ISBN-13
for identifier), and lang to indicate the content language of elements such as title
and rights. Each element can be omitted or used several times. As recommended
by the DCMI, a controlled vocabulary is used for the Element type (Fig. 1).

<RDF>
<description about="235">

<creator type="AUTHOR">Johannes Textor</creator>
<creator type="AUTHOR">Juergen Westermann</creator>
<date type="PUBLISHED" scheme="W3C_DTF">2007</date>
<description type="BIBLIOGRAPHIC_CITATION"

scheme="OPEN_URL">
<proceeding>

<volume>4628</volume>
<series>Lecture Notes in Computer Science</series>
<btitle>6th International Conference on Artificial

Immune Systems (ICARIS 2007)</btitle>
<pages>228-239</pages>

</proceeding>
</description>
<identifier

scheme="URI">http://www.springerlink.com/content/
[snip]</identifier>

<publisher>Springer</publisher>
<title lang="en_EN">Modeling Migration,

Compartmentalization, and Exit of Naive T Cells in
Lymph Nodes Without Chemotaxis</title>

<type>IN_PROCEEDINGS</type>
</description>

</RDF>

1
Fig. 1. Description of an article in a conference proceedings in our simplified XML
syntax. Authors, date of publication, URL, publisher, title, and type are directly ex-
pressed in terms of Dublin Core elements, while the information about the proceedings
volume and the page numbers are encoded using OpenURL.

3 System architecture

The central design paradigm of our architecture is the XML pipeline as imple-
mented in Cocoon [6], the Apache Software Foundation’s Java-based XML pre-
sentation framework. Cocoon applications are built from a toolbox of reusable
pipeline components that can be plugged together in a Lego-like approach: Gen-
erators, transformers, and serializers (Fig. 2). Data is sent through the pipeline

in XML format, although the XML is not actually serialized within the pipeline,
but kept in form of SAX events for performance reasons. This makes it somewhat
cumbersome to write custom generators and serializers, since the SAX API is
more optimized for efficiency than for ease of use – however, a more programmer-
friendly API such as DOM would cause performance problems when processing
very large amounts of data. On the other hand, transformers are very easy to
write using the XSL stylesheet language. Cocoon’s philosophy is to provide a
large set of generators and serializers out of the box, such that end users them-
selves usually only write transformations. Accordingly, our system provides cus-
tom Cocoon components that take care of storing, indexing, searching, and re-
trieving XML resource descriptions in the format described above. Indexing and
searching capabilities are provided by Lucene, a framework for building search
engines [7]. Our components manage the Lucene index and keep it synchronized
with the backend XML store (Fig. 3).

XML file
SQL

database CSV file
HTML

form data

XM
L
do

m
ai
n

XML
generator

RDBMS
generator

CSV
generator

HTTP
generator

transformer transformer

transformer transformer

HTML
serializer

XML
serializer

Plain text
serializer

browser webservice
client

database
import

1
Fig. 2. Illustration of the Apache Cocoon framework: Data from different external
sources is fed into XML pipelines by generators and subsequently modified, extended,
and aggregated by transformers. Finally, a serializer converts the stream to an output
format such as HTML or plain text and delivers the result to the client. Data is passed
between the application’s components in XML form (SAX events).

The task of the core system is to store and retrieve two simple kinds of
objects: Resources, which are explicitly identified by their database IDs, and

lists, which are implicitly identified by a Lucene query (e.g. creator:feldner
AND date:[1990 TO 2005]). To connect the system’s XML-based core to the
outside world, we need input and output adapters, called importers and views, re-
spectively. Following Cocoon’s philosophy, views are created by writing a custom
XSL stylesheet that converts the simplified RDF/XML to the desired output for-
mat, and combining it with the corresponding serializer. Since existing pipelines
can be used as input sources for new pipelines, one will typically not create a
new view from scratch, but rather fine-tune an existing one by adding another
stylesheet. For instance, our current prototype contains views for RDF/XML
with namespaces, HTML, and BibTeX.

As mentioned at the beginning of this paper, importing bibliographic data
from existing sources is a crucial function, even though it might well be used only
once. Our approach is to split the import in two parts: A syntactic step, where the
input data is converted to XML according to its internal syntactic structure; and
a semantic step, where the elements of the resulting XML stream are rearranged,
post-processed and converted to corresponding Dublin Core elements. While the
first step is functionally trivial, it is usually hard to implement, as some seemingly
simple formats like CSV and BibTeX are not well standardized and there are
surprisingly many variants. The goal is to provide a large toolbox of Cocoon
generators that can syntactically preprocess these common input formats out of
the box. Once the data has been fed into an XML stream, the second step is
again merely a matter of writing an XSL stylesheet, or adapting an existing one.
Our prototype currently contains generators for CSV, RIS, and BibTeX.

The reason to use this two-step approach is that one cannot expect legacy
data to follow certain semantics. This is obvious in the case of CSV tables, but
even the semantics of more advanced formats such as BibTeX are often not clear
at all (there is no definitive standard for the meaning of BibTeX keys). Hence, we
cannot expect data import functions to work correctly in all cases. Our approach
enables users to focus on getting the semantics right without having to deal with
the parsing step.

4 Implementing the system in practice

To illustrate how the described concepts are applied in the real world, we describe
the steps that were necessary to implement the system at our faculty’s institute
for theoretical computer science, where it is now used to manage the publication
lists and the institute’s internal library. For the publication lists, a view for
HTML form-based editing of the database was first implemented. The view
consists of some XSL stylesheets (for the forms themselves and a searchable list
of existing publications) along with some static CSS and image files, which are
stored in a subdirectory of the application’s webapp folder. Some researchers
had BibTeX files of their publications available, which were imported directly.
To embed the bibliographic information into the institute’s website, a view was
written to generate HTML bibliographies, which was basically a small extension
to the standard HTML fragment view to allow for both English and German

XML store
Lucene
search
index

Core System:
storage, indexing,
searching, retrieval,

pagination

Syntactical
import

(generators)

XML
BibTeX

XML
CSV

XML
RIS

XML
MARC

Semantical
import
(XSLT)

RDF/XML

XML

RDF/XML

XML

RDF/XML

XML

RDF/XML

XML

Views
(XSLT)

HTML
RDF/XML

BibTeX
RDF/XML

CSV
RDF/XML

External datasources

Clients

1Fig. 3. Overview of the proposed system architecture. The core system uses RDF/XML
as its only interface language, and is specialized on efficient storage, searching, and
retrieval of documents in this format. Clients will usually not talk to directly to the
core system, but rather use a corresponding view. Import of existing data sources
is split in two stages: First, the data’s internal structure is converted to XML (for
instance, a CSV file results in a document containing row and column elements), which
is then further processed by XSL stylesheets to produce semantically correct Dublin
Core output.

output. The result can be seen at our website http://www.tcs.uni-luebeck.de,
where the system feeds bibliographic information to several places.

Similarly, a custom view was created to allow browsing the local library. The
metadata was imported from a legacy CSV file, which was piped through the
XSL stylesheet shown in Fig. 4 upon syntactic conversion to an XML stream
consisting of line and column elements

5 Conclusions

Many small and medium enterprises nowadays deal with large quantities of bib-
liographic metadata. Adoption of metadata standards and metadata manage-
ment software, however, progresses at a rather slow pace – even though it yields
unquestionable benefits, such as improved searching capabilities and data con-
sistency, easier data exchange among institutions, and increased data lifetime. In
this paper, we presented an architecture for an XML-based metadata manage-
ment system that lowers the cost of adopting metadata standards by facilitating
data import and integration into existing environments. We implemented the
system and put it in productive use.

There are two main directions for future work. On one hand, a prerequisite
for widespread use of the described system would be to hide the fairly complex
Cocoon framework, which is known to have a rather steep learning curve, from
the end user. Currently, at least a basic knowledge of Cocoon’s internals such
as how to configure and connect generators and serializers is necessary to write
new views and importers. On the other hand, the system is currently tied to
our specific RDF/XML implementation of Dublin Core. In principle, the archi-
tecture described here is applicable to any XML-based metadata format, and a
generalization would broaden its application potential substantially.

References

1. Dublin Core Metadata Initiative Usage Bord: DCMI metadata terms.
http://dublincore.org/documents/dcmi-terms/ (2008)

2. Ley, M.: The DBLP computer science bibliography: Evolution, research issues, per-
spectives. In: String Processing and Information Retrieval. Volume 2476 of Lecture
Notes in Computer Science., Springer (2002) 481–486

3. Dublin Core Metadata Citation Working Group: Guidelines for en-
coding bibliographic citation information in dublin core metadata.
http://dublincore.org/documents/dc-citation-guidelines/ (2005)

4. ANSI/NISO: The OpenURL framework for context-sensitive services. Standard Nr.
Z39.88-2004 (2004)

5. Johnston, P.: Element refinement in Dublin Core metadata.
http://dublincore.org/documents/dc-elem-refine// (2005)

6. Langham, M., Ziegeler, C.: Cocoon: Building XML Applications. Sams (2002)
7. Hatcher, E., Gospodnetic, O., McCandless, M.: Lucene in Action. Manning (2009)

<xsl:stylesheet version="2.0"
exclude-result-prefixes="xs"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xsl:template match="csv">

<RDF><xsl:apply-templates /></RDF>
</xsl:template>
<xsl:template match="line">

<xsl:variable name="title" select="field[position()=3]"/>
<xsl:if test="$title!=’’">
<description>

<xsl:variable name="isbn" select="field[position()=1]"/>
<xsl:variable name="authors" select="field[position()=2]"/>
<xsl:variable name="publisher" select="field[position()=5]"/>
<xsl:variable name="year" select="field[position()=6]"/>
<xsl:variable name="signature" select="field[position()=8]"/>
<xsl:if test="$isbn!=’’">

<identifier scheme="ISBN_10"><xsl:value-of
select="$isbn"/></identifier>

</xsl:if>
<xsl:for-each select="tokenize($authors,’/’)">

<xsl:if test=".!=’’">
<creator type="AUTHOR"><xsl:value-of select="."/></creator>

</xsl:if>
</xsl:for-each>
<title><xsl:value-of select="$title"/></title>
<xsl:if test="$publisher!=’’">

<publisher><xsl:value-of select="$publisher"/></publisher>
</xsl:if>
<xsl:if test="$year castable as xs:integer?">

<date type="PUBLISHED" scheme="W3C_DTF"><xsl:value-of
select="$year"/></date>

</xsl:if>
<xsl:if test="$signature!=’’">

<identifier><xsl:value-of select="$signature"/></identifier>
</xsl:if>
<type>BOOK</type>

</description>
</xsl:if>

</xsl:template>
</xsl:stylesheet>

1
Fig. 4. XSL stylesheet used for the semantic import of a custom CSV file, which was
previously converted to an XML stream consisting of line and column elements by a
Cocoon generator.

