
Phylogeny- and Parsimony-Based
Haplotype Inference with Constraints

Michael Elberfeld Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck

D-23538 Lübeck, Germany
{elberfeld,tantau}@tcs.uni-luebeck.de

Technical Report
SIIM-TR-A-10-01

Schriftenreihe der Institute für Informatik/Mathematik der
Universität zu Lübeck

March 10, 2010

Abstract

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely hap-
lotypes based on genotype data. One fast computational haplotyping method is based on an evolu-
tionary model where a perfect phylogenetic tree is sought that explains the observed data. In their
CPM’09 paper, Fellows et al. studied an extension of this approach that incorporates prior knowl-
edge in the form of a set of candidate haplotypes from which the right haplotypes must be chosen.
While this approach is attractive to increase the accuracy of haplotyping methods, it was conjectured
that the resulting formal problem constrained perfect phylogeny haplotyping might be NP-complete.
In the paper at hand we present a polynomial-time algorithm for it. Our algorithmic ideas also yield
new fixed-parameter algorithms for related haplotyping problems based on the maximum parsimony
assumption.

1 Introduction

In large-scale studies of the relation between genomic variation and phenotypic traits, low-cost sequenc-
ing methods are used to read out the DNA sequences of many individuals. For each individual the bases
present on the two chromosomes at a large number of SNP (single nucleotide polymorphism) sites are
determined, yielding the individual’s genotype for the different sites. In order to study phenotypic traits
that are related to the bases present on multiple loci on a single DNA strand, it is important to deter-
mine haplotypes rather than genotypes. They describe how bases are assigned to chromosomes (this
assignment of bases to haplotypes is also known as phasing), but are expensive to determine directly.
Haplotype inference or just haplotyping methods aim at computationally predicting haplotypes from
genotypes by using biological insights into the haplotype distribution in a population. They either use
statistics, pioneered in [11], or combinatorics, the two most common approaches being the perfect phy-
logeny method (haplotype evolution is assumed to take place with unique point mutation and without
recombination) and the maximum parsimony method (haplotype evolution is assumed to produce only
few haplotypes).

Most combinatorial algorithms ignore prior knowledge that we might have on which haplotypes
may be permissible to explain a given genotype. In some situations a pool of haplotypes from prior
studies is already known and we should only pick haplotypes out of this pool. We may even have

1

more specific information about the permissible haplotypes for the genotypes of the individuals: the
ethnicity of individuals may be known, allowing us to narrow the pool of permissible haplotypes for
each individual. On the other hand, for some individuals no prior knowledge may be available.

In the present paper we study combinatorial haplotyping methods that take such pool constraints into
account. For some or all genotypes we are given a pool of haplotypes that are allowed for this particular
genotype. The task is to predict haplotypes for the genotypes such that all constraints are satisfied and
the haplotypes form a perfect phylogeny or their number is minimal or both.

The above ideas lead to three mathematical problems, whose complexity we study in the present
paper: CpoolsPPH is the constrained perfect phylogeny haplotyping problem, CpoolsMH is the constrained
maximum parsimony haplotyping problem, and CpoolsMPPH is the combined problem (see Section 2 for
formal definitions). The two problems CpoolsPPH and CpoolsMH are generalizations of the two problems
Cone pool for allPPH and Cone pool for allMH recently studied by Fellows et al. [12]; the difference is that Fel-
lows et al. require a single pool of haplotypes to be used for all genotypes while we allow pools to be
specified individually for each genotype. We remark that, since we also allow that no constraints are
imposed at all, the standard problems PPH, MH, and MPPH (without any constraints) are special cases of
their constrained counterparts and the algorithms we present also work for them.

Our Results. Our first main result is a polynomial-time algorithm for CpoolsPPH. It is based on an initial
partition of the genotypes into independent subinstances and a subsequents recursive decomposition of
the pool constraints. Since this algorithm also solves the simpler problem Cone pool for allPPH, we settle
the main open problem of Fellow et al. [12]: Cone pool for allPPH is polynomial-time solvable.

Our second set of results concerns maximum parsimony haplotyping. Both MH and Cone pool for allMH

are known to be NP-complete, but fixed-parameter tractable with respect to the number of distinct hap-
lotypes in the solution [12, 22]. We show that, in contrast, CpoolsMH is hard for the class W[2] for the
same parameter and, therefore, unlikely to have a fixed-parameter algorithm. We prove this by showing
that Cpools for allMH, where some pool must be specified for each genotype, is W[2]-complete. On the
positive side we present a fixed-parameter algorithm for CpoolsMH where the parameter is the number
of distinct haplotypes in the solution plus the number of times duplicated genotypes have incomparable
pool constraints.

Our third main result is that the NP-complete problem CpoolsMPPH is fixed-parameter tractable with
respect to the number of distinct haplotypes in the solution. So, CpoolsMPPH has the same complex-
ity as Cone pool for allMH. As corollaries we obtain that MPPH and Cone pool for allMPPH are both fixed-
parameter tractable, which was not known before. Our algorithm is a combination of the algorithmic
ideas for CpoolsPPH and CpoolsMH.

We have implemented our polynomial-time algorithm for CpoolsPPH. The implementation shows
that the algorithm works very fast in practice. We also applied it to laboratory data, but, since real
haplotypes for the constraints are hard to get, until now these experiments are limited. In the present
paper we concentrate on the algorithmic side; we plan to report on experiments in a future publication.

Related Work. The study of the perfect-phylogeny haplotyping problem was initiated by the seminal
paper of Gusfield [14], who showed that it is solvable in polynomial time. Subsequent papers presented
conceptually simpler polynomial-time algorithms [2, 10], linear-time algorithms [5, 3, 20, 21], and fine-
grained complexity-theoretic results [7, 9] for it.

The problem MH is NP-complete, as remarked in [15], and a later publication sharpens this lower
bound by showing that MH remains NP-complete if every given genotype has at most three heterozygous
sites [19]. On the positive site Sharan, Halldórsson, and Istrail [22] devised a fixed-parameter algorithm
for MH, where the parameter is the number of distinct haplotypes in the solution. Moreover, algorithms
based on linear programming [4], branch-and-bound algorithms [25], and a recent combination of both
methods [17] are known for this problem.

2

To increase the accuracy of the predicted haplotypes, the perfect phylogeny and the maximum parsi-
mony assumptions have been combined, leading to the problem MPPH. It was shown to be NP-complete
for instances with at most three heterozygous entries per genotypes by Bafna et al. [1] and later studied
by Iersel et al. [24].

Another direction to increase prediction accuracy is to constrain the set of solution haplotypes: Fel-
lows et al. [12] proposed the Cone pool for allPPH problem and presented polynomial-time algorithms for
some special cases like the number of heterozygous entries in the genotypes and in the sites being
bounded by small constants. They left open the complexity of Cone pool for allPPH and leaned towards the
conjecture that it is NP-complete. The problem Cone pool for allMH is NP-complete by a reduction from
MH with at most three heterozygous entries per genotypes (for each genotype put all its explaining hap-
lotypes, of which there can be at most four, into the pool). Huang et al. [16] studied approximation
algorithms for this problem, Fellows et al. [12] showed that it is fixed-parameter tractable with respect
to the number of distinct haplotypes in the solution.

Organization of This Paper. We first give formal definitions of genotypes, haplotypes, and the com-
putational problems we study. Sections 3, 4, and 5 are devoted to the algorithmic and complexity-
theoretic studies of CpoolsPPH, CpoolsMH, and CpoolsMPPH, respectively.

2 Haplotypes, Genotypes, Constraints, and Haplotyping Problems

A haplotype describes the genetic information from a single chromosome at SNP sites. Since most SNP

sites are biallelic, it is customary to encode a haplotype as a binary string h ∈ {0,1}n, where 0 and 1
represent the two possible alleles. A genotype combines the genetic information of two haplotypes by
joining their entries to a sequence of sets. Following common conventions, instead of sets we write a 0
or a 1 when both underlying haplotypes have this value (these entries are called homozygous) and use
the value 2 when the underlying haplotypes have different entries (these entries are called heterozygous).
A pair of haplotypes {h,h′} ⊆ {0,1}n explains a genotype g ∈ {0,1,2}n if for every site s ∈ {1, . . . ,n}
we have g[s] = h[s] = h′[s] whenever g[s] ∈ {0,1} and h[s] 6= h′[s] whenever g[s] = 2. In a genotype
matrix A each row is a genotype. If the matrix is clear from the context, we refer to the genotype in row i
by gi. Similar, we arrange haplotypes in a haplotype matrix B and refer to the haplotype in row i by hi.
A 2n×m haplotype matrix B explains an n×m genotype matrix A if every genotype gi is explained by
the haplotype pair {h2i−1,h2i}. We use the term site to refer to a position in genotypes and haplotypes
and to a column of genotype and haplotype matrices.

For a pair s and t of sites the induced set ind(B,s, t) contains all strings from {00,01,10,11} that
appear in the sites s and t in the haplotype matrix B. We say that these strings are induced by s and t. The
notion of induces can be extended to genotype matrices A: for two sites s and t the set ind(A,s, t) contains
a string xy ∈ {00,01,10,11} if A has a genotype g with either g[s] = x∧g[t] = y or g[s] = x∧g[t] = 2 or
g[s] = 2∧g[t] = y. This implies ind(A,s, t)⊆ ind(B,s, t) for every haplotype matrix B explaining A.

A haplotype matrix B admits a perfect phylogeny if there exists a tree T (an undirected acyclic
graph), such that: (a) Each haplotype from B labels exactly one vertex of T ; (b) each site s ∈ {1, . . . ,m}
labels exactly one edge of T and each edge is labeled by at least one site; and (c) for every two haplo-
types hi and h j from B and every site s ∈ {1, . . . ,m}, we have hi[s] 6= h j[s] if, and only if, s lies on the
path from hi to h j in T . It is well-known that B admits a perfect phylogeny if, and only if, it satisfies the
following four gamete property: for every pair of sites s and t we have {00,01,10,11} 6= ind(B,s, t).

For the three problems PPH, MH, and MPPH the input is always a genotype matrix plus, for the last
two problems, a number k. The questions are whether there exists a haplotype matrix B that explains A
and admits a perfect phylogeny (PPH), has at most k different haplotypes (MH), or admits a perfect
phylogeny and has at most k different haplotypes (MPPH).

3

Constrained Haplotyping Problems. For constrained haplotyping problems different kinds of con-
straints are specified along with the input genotype matrix. The first kind of constraints that we study
are pool constraints. Let A be an n×m genotype matrix. A pool constraint specifies that, in the output
haplotype matrix, the two explaining haplotypes for some particular genotype gi should both be drawn
from a pool Hi ⊆ {0,1}n of allowed haplotypes. This constraint is written as pool(i,Hi). Clearly, it
suffices to allow only one such constraint per genotype. Two pool constraints are incomparable if none
of their pools is a subset of the other.

The second kind of constraints are restrictions on the phase of sites. For a genotype g with 2-
entries in two sites s and t, the explaining haplotypes add either {00,11} or {01,10} to the induced
set. If there is another genotype g′ with 2-entries in the sites s and t, then, in order to satisfy the four
gamete property, it must choose the same pair for its explaining haplotype. In the first case we say
that s and t are phased equally, otherwise phased unequally. The constraints “equal-phase(s, t)” and
“unequal-phase(s, t)” specify that a particular phasing must be chosen for the two sites s and t in a
solution matrix. Formally, a haplotype matrix B satisfies equal-phase(s, t) if {01,10} 6⊆ ind(B,s, t); and
unequal-phase(s, t) if {00,11} 6⊆ ind(B,s, t).

We indicate constrained haplotyping problems by prefixing the haplotyping problems MH, PPH,
and MPPH with a C whose index indicates which constraints are allowed to be specified as part of the
input. The index “pools” means that arbitrary pool constraints are allowed; “pools for all” indicates that
(possibly different) pools must be specified for all genotypes (and not only for some); and “one pool for
all” indicates that, additionally, the same pool must be specified for all genotypes. The index “phase”
indicates that phase constraints are permissible. For example, Cpools,phaseMPPH is the MPPH problem
where both haplotype and phase constraints are allowed as part of the input.

Haplotyping with phase constraints has not been defined formally in the literature, but many known
algorithms implicitly handle phase constraints:

Fact 2.1 ([2, 10]). There exists an algorithm that, given an n×m genotype matrix with phase constraints,
solves the problem CphasePPH in time O(nm2).

3 Constrained Perfect Phylogeny Haplotyping

In this section we prove the following theorem, which answers the main question of Fellows et al. [12]
affirmatively: There is a polynomial-time algorithm for Cone pool for allPPH.

Theorem 3.1. There exists an algorithm that, given an n×m genotype matrix with phase constraints
and pool constraints where p equals the sum of the sizes of all pools, solves Cpools,phasePPH in time
O(p(n+ p)m2).

The outline of the algorithm for Cpools,phasePPH, which we detail in the rest of this section, is as
follows: Given an n×m genotype matrix A and a set K of pool and phase constraints, our algorithm
uses procedure SOLVE-CPPH from Figure 1 to preprocesses the input and to partition the genotypes into
at most m matrices As that can be solved independently. Each matrix As has the property that there is
a site s, called the 2-site of As, that has only 2-entries in all genotypes from As. Each As along with
its corresponding constraints is then solved by the procedure SOLVE-CPPH-2-SITE from Figure 1 via
a recursive branch-and-reduce approach: For each of the two possible phasings between the 2-site and
another site, it branches recursively, derives new phase constraints, and splits the pool constraints.

In the following we describe the four procedures that make up our algorithm: the two main pro-
cedures SOLVE-CPPH and SOLVE-CPPH-2-SITE, whose pseudo-code is depicted in Figure 1, and the
simpler procedures SANITIZE-POOL-CONSTRAINTS and DEDUCE-PHASE-CONSTRAINTS for which no
pseudo-code is given. In the following, we say that a computational step has the correctness property if
the following holds: There exists a haplotype matrix that explains the genotype matrix and satisfies the

4

four gamete property and the constraints before the step if, and only, if this holds for the instance after
the step. Furthermore, whenever the step outputs “no”, no solution exist for the current instance.

Procedure SOLVE-CPPH(A,K).
Input: An n×m genotype matrix A and a set of haplotype and phase constraints K
Output: An explaining haplotype matrix B for A that satisfies the four gamete property
and the constraints K, if it exists; or “no”, otherwise
Preprocessing:
1 ensure that column pairs with different entries induce 00
2 sort columns decreasingly by leaf count
3 update phase constraints with induces
4 call DEDUCE-PHASE-CONSTRAINTS

5 call SANITIZE-POOL-CONSTRAINTS

Solve independent subinstances:
6 for each site s ∈ {1, . . . ,m} do
7 Bs← call SOLVE-CPPH-2-SITE(As,Ks,s)
8 if Bs is “no” then return “no”
9 return combination of matrices Bs and genotypes without 2-entries

Procedure SOLVE-CPPH-2-SITE(A,K,s2).
Input: An n×m genotype matrix A with a 2-site s2 and a set of haplotype and phase constraints K
Output: An explaining haplotype matrix B for A satisfying the four gamete property and the constraints,
if it exists; or “no”, otherwise
Recursion break:
1 if for every pool(i,Hi) ∈ K we have |Hi|= 2 then
2 replace all pool constraints by corresponding phase constraints
3 return solution for the resulting CphasePPH instance
Recursive branch-and-reduce:
4 else for each component G′ from Gcover with corresponding instance A′, K′ do
5 s← some site from G′

6 B′e← call TRY-PHASE-CPPH(A′,K′∪{equal-phase(s2,s)},s2)
7 B′u← call TRY-PHASE-CPPH(A′,K′∪{unequal-phase(s2,s)},s2)
8 if B′e = “no” and B′u = “no” then return “no” else add non-“no” B′e or B′u to solution
9 return solution

Sub-Procedure TRY-PHASE-CPPH(A,K,s2).
1 call DEDUCE-PHASE-CONSTRAINTS and SANITIZE-POOL-CONSTRAINTS for A, K
2 if pool(i, /0) /∈ K for all i then return SOLVE-CPPH-2-SITE(A,K,s2) else return “no”

Figure 1: The polynomial-time algorithm for Cpools,phasePPH.

Procedure SANITIZE-POOL-CONSTRAINTS. This procedure removes superfluous haplotypes from
pool constraints. Let K be a set of constraints. First, for a constraint pool(i,Hi) ∈ K and a genotype gi, it
removes all h from Hi for which there exists a site s such that h[s] 6= gi[s]∈{0,1}. Second, it deletes every
haplotype h from Hi for which there exists no other haplotype h′ ∈Hi such that {h,h′} explains gi. Third,
it deletes haplotypes contradicting phase constraints: For two sites s and t with gi[s] = gi[t] = 2, it deletes
h from Hi whenever h[s] = h[t]∧unequal-phase(s, t) ∈ K or h[s] 6= h[t]∧ equal-phase(s, t) ∈ K. Finally,
if a pool constraint becomes empty, it outputs “no.” Clearly, this step has the correctness property.

5

Procedure DEDUCE-PHASE-CONSTRAINTS. Let A be a genotype matrix and K a set of constraints.
The procedure repeats the following rule as long as possible: Let s, t and u be three sites such that there
is a genotype gi with gi[s] = gi[t] = gi[u] = 2 and there is no phase constraint for the pair t and u, but
phase constraints for both pairs s and t, and s and u. If these phase constraints have the same type, we
insert equal-phase(t,u) into K and, if their type is different, we insert unequal-phase(t,u) into K. Using
graph representations for phase constraints and their dependencies, the result of this procedure can be
computed in time O(nm2) [2, 10].

Lemma 3.2. DEDUCE-PHASE-CONSTRAINTS has the correctness property.

Proof. Let s, t, and u be three sites such that there is a genotype gi with gi[s] = gi[t] = gi[u] = 2, no phase
constraint for t and u, but equal-phase(s, t) ∈ K and equal-phase(s,u) ∈ K (for other phase constraints
the following arguments are similar). Let {h,h′} be the explaining haplotype pair from the solution
haplotype matrix for gi. Without loss of generality assume that h[s] = 0 and h′[s] = 1 which implies h[t] =
0, h′[t] = 1, h[u] = 0 and h′[u] = 1 by the phase constraints. Thus 00 and 11 are induced by the haplotype
matrix in t and u and, therefore, 01 or 10 is not induced. Thus, it is safe to insert equal-phase(s, t)
into K.

Procedure SOLVE-CPPH. The pseudo-code of this procedure is shown in Figure 1. We go over this
method line by line.

The first five lines preprocess the input. Line 1 extends an idea from Eskin, Halperin and Karp [10] to
constraints. For every site s we iterate downwards through the genotypes and if a 1-entry appears before
a 0-entry, we substitute all 1-entries by 0-entries and vice versa and adjust the constraints accordingly.
As shown in [10], this step ensures that any two sites with at least one different entry induce 00. In line 2
the procedure first calculates the leaf count [14] of each column, which is the number of 2-entries of a
column plus twice the number of its 1-entries. Then it sorts the columns decreasingly from left to right
by this value. After this sorting we have 10 ∈ ind(A,s, t) for every two sites s and t with different entries
and s < t. This holds since otherwise there is no genotype with g[s] = 1∧g[t]∈ {0,2} or g[s] = 2∧g[t] =
0, but at least one genotype with g[s] ∈ {0,2}∧g[t] = 1 or g[s] = 0∧g[t] = 2. This would imply that the
leaf count of site t should be greater than the leaf count of site s, a contradiction. In line 3 the algorithm
considers all pairs of sites s and t and updates their phase constraints as follows: If {00,11}⊆ ind(A,s, t),
it inserts equal-phase(s, t) into K; and if {01,01} ⊆ ind(A,s, t), it inserts unequal-phase(s, t). This step
has the correctness property since the new phase constraints reflect only induces that are already in the
matrix. Finally, lines 4 and 5 deduce phase constraints and sanitize the pool constraints. In the following,
we call a matrix that has undergone the preprocessing from lines 1 to 5 a preprocessed genotype matrix.

In lines 6 to 8 the genotype matrix A is partitioned genotype-wise into m submatrices A1, . . . , Am,
one matrix for every site. A genotype g belongs to the matrix As if g[s] = 2 and for every site t < s we
have g[t] 6= 2. Each As is passed along with the corresponding pool constraint and all phase constraints,
stored in the set Ks, to a call of the procedure SOLVE-CPPH-2-SITE. The construction of As ensures that
site s has 2-entries in all genotypes from As. The effect of the partition is stated by the following lemma:

Lemma 3.3. Let A be a preprocessed n×m genotype matrix with constraints K. Then there exists an
explaining haplotype matrix B for A that satisfies the four gamete property and the constraints K if, and
only if, for every site s ∈ {1, . . . ,m} there exists an explaining haplotype matrix Bs for As that satisfies
the four gamete property and the constraints Ks.

Proof. A solution for A and K can clearly be transformed into solutions Bs for every matrix As with
constraints Ks. For the other direction, let B be the combination of haplotypes from Bs and haplotypes
for genotypes that are not in any matrix As. Clearly, B explains A and satisfies the pool constraints. We
show that it also satisfies the four gamete property and the phase constraints, which proves the lemma:
Let t and u be two sites. Since the instance is preprocessed, we know {00,01,10,11} 6= ind(A, t,u).

6

If there are no genotypes with 2-entries in both t and u, we are done, since the explaining haplotypes
do not add new elements to the induced set. If there are genotypes with 2-entries in both t and u, we
show that their explaining haplotype pairs do not add different elements to the induced set: If all these
genotypes lie in the same matrix As, their explaining haplotype pairs add either {00,11} or {01,10} to
the induced set and satisfy the phase constraints by assumption. Otherwise, let g be a genotype from As

and g′ a genotype from matrix As′ with s < s′ and 2-entries at sites t and u. We show that there exists
a phase constraint for the sites t and u in K and, therefore, the induces for the sites t and u in the
explaining haplotype pairs for g and g′ are determined by the phase constraints: From the construction
of the subinstances, we know that the entries of g and g′ at sites s, s′, t and u are

s s′ t u
g
g′

[
2 g[s′] 2 2

g′[s] 2 2 2

]
with g′[s] ∈ {0,1}. If g′[s] = 1, both pairs of sites s and t and s and u induce {00,11} and the up-
date of phase constraints with induces adds equal-phase(s, t) and equal-phase(s,u) to K. If g′[s] = 0,
both pairs induce {01,10} and the same step adds unequal-phase(s, t) and unequal-phase(s,u). In both
cases DEDUCE-PHASE-CONSTRAINTS adds the constraint equal-phase(t,u) whenever there is no phase
constraint for t and u.

Putting it altogether, we see that SOLVE-CPPH correctly solves Cpools,phasePPH, provided that the
procedure SOLVE-CPPH-2-SITE is correct, which we prove next.

Procedure SOLVE-CPPH-2-SITE. This procedure recursively solves the instances that are produced
by SOLVE-CPPH, each consisting of a genotype matrix A with a 2-site s2 and constraints K. The recursion
stops when all pool constraints contain only two haplotypes (they must contain at least two haplotypes
because a 2-entry is present in the genotype). In such a case the phasing of the genotype is completely
known. We remove the pool constraints and, instead, add phase constraints that describe this particular
phasing: For each constraint pool(i,{h,h′}) and sites s and t add the phase constraint equal-phase(s, t)
if h[s] = h[t] 6= h′[s] = h′[t] and unequal-phase(s, t) if h[s] = h′[t] 6= h[t] = h′[s]. The resulting instance of
CphasePPH can be solved in polynomial time by Fact 2.1.

In order to describe the recursive step, we need some terminology. Let geno2(s) be the set of geno-
types that have a 2-entry at site s. Let Sfree be the set of sites s of A where s 6= s2 and there is no phase
constraint for s and s2 in K. Let Scover be the set of sites s ∈ Sfree for which there is no site s′ ∈ Sfree with
geno2(s)⊆ geno2(s

′); in the case that sites from Sfree have the same set of 2-entries, we choose exactly
one of them to be contained in Scover. Note that when a genotype from A has a 2-entry in a site s ∈ Sfree,
then it also has a 2-entry in one of sites in Scover. Let Gcover be the graph that has Scover as its vertex set
and an edge between sites s and s′ if geno2(s)∩geno2(s

′) 6= /0. Whenever there is an edge between sites
in Gcover, then there exists a phase constraint for them.

In the recursive step the algorithm iterates over the components G′ of Gcover and considers the sub-
matrix A′ of A made up by all genotypes with 2-entries in sites of G′ along with a constraints set K′,
consisting of the pool constraints for the genotypes from A′ and all phase constraints. It chooses a
site s from G′ and adds once the constraint equal-phase(s2,s) and once unequal-phase(s2,s) to the set of
constraints. In each case, it checks which additional phase constraints are now triggered using the sub-
procedure TRY-PHASE-CPPH. This sub-procedure calls DEDUCE-PHASE-CONSTRAINTS followed by
SANITIZE-POOL-CONSTRAINTS and tries to solve the resulting instance recursively by calling SOLVE-
CPPH-2-SITE. If for all components a recursive call returns a solution, the procedure combines them
along with haplotypes for genotypes that are not in any matrix A′ to a solution for the whole instance.
The following lemma states the correctness of SOLVE-CPPH-2-SITE:

7

Lemma 3.4. Let A be a preprocessed n×m genotype matrix with 2-site s2 and constraints K. Then
SOLVE-CPPH-2-SITE returns a haplotype matrix B that explains A and satisfies the four gamete property
and the constraints K, if it exists, or “no”, otherwise.

Proof. We prove the lemma by induction over the size of Sfree. If |Sfree| = 0, then, since A is prepro-
cessed, the phase constraints with s2 completely determine the phase constraints for all sites with 2-
entries. The sanitation of the pool constraints ensures that, then, every small constraint contains exactly
two haplotypes that explain the corresponding genotype. Thus, SOLVE-CPPH-2-SITE works correctly
for |Sfree|= 0.

Now we assume |Sfree|> 0. If there is a solution haplotype matrix B and the procedure reaches lines 2
and 3, then B witnesses a positive answer. We are left to look at the case that the procedure iterates over
matrices A′ with constraints K′ and branches recursively. The solution B for the whole matrix A with K
gives a solution matrix B′ for every submatrix A′ with constraints K′. If B′ does not induce both 01
and 10 in s2 and s, then the call of TRY-PHASE-CPPH(A′,K′∪ equal-phase(s2,s),s2) produces a positive
answer by induction. If s2 and s do not induce both 00 and 11, the call for TRY-PHASE-CPPH(A′,K′ ∪
unequal-phase(s2,s),s2) succeeds.

For the completion of the correctness proof, we show that the algorithm only outputs correct so-
lutions for |Sfree| > 0. If the procedure stops with a solution in line 3, this is clear. Assume that the
procedure outputs a solution B at the end, which is combined from the solutions of recursive calls (and
the haplotypes for genotypes that are not in any submatrix). By induction, B explains A and satisfies
the pool constraints from K. We are left to show that A satisfies the four gamete property and the phase
constraints. Since SOLVE-CPPH-2-SITE is called by SOLVE-CPPH, we can assume that the genotype
matrix itself does not induce four elements in any column pair. If there is a phase constraint for two
sites s and t, then all non-“no” matrices B′e and B′u satisfy it and the combined haplotype matrix does
not contain four elements in these sites. If there is no phase constraint for s and t, observe that there are
not two genotypes from different submatrices with 2-entries in both s and t. Different submatrices only
share 2-entries in s2. If a matrix A′ has a genotype g with 2-entries in s and t and there exists another
genotype that is not part of any submatrix, also with 2-entries in s and t, then there exists a phase con-
straint for this pair of sites. Overall, this proves that the combined solution satisfies both the four gamete
property and the phase constraints.

Runtime. The input to the algorithm consists of a genotype matrix of any dimension n×m, phase
constraints and pool constraints. Let p equal the sum of the sizes of all pool constraints. We show that
the algorithms runs in time O(p(n + p)m2), as claimed in Theorem 3.1. All individual operations of
the algorithm take time at most O((n + p)m2). Thus, it suffice to show that the tree of recursive calls
of procedure SOLVE-CPPH-2-SITE has at most p leafs: The procedure partitions its input matrix into
submatrices with constraints. For every submatrix A′ with constraints K′ it may branch into two possi-
ble phasings for the sites s2 and s. The call of DEDUCE-PHASE-CONSTRAINTS ensures that there are
phase constraints between s2 and all sites from G′: when two sites are connected via an edge in Gcover,
we know that there is a phase constraint for them and a genotype that contains 2-entries in these sites
and s2. Note that the phases between s2 and the sites from G′ for the case equal-phase(s2,s) are exactly
opposite to the phases for the case unequal-phase(s2,s). This implies that, since all genotypes in A′ have
a 2-entry in s2 and a site from G′, every haplotype from the pool constraints is passed to at most one
recursive call. This yields a partition of sets of haplotypes from the pool constraints among all recursive
calls. Since the procedure stops when the sizes of the pools drop to two (or zero), the number of leafs
of the recursive tree of the procedure SOLVE-CPPH-2-SITE is bounded by p + 1. We implemented the
algorithm in Java and applied it to laboratory data. Our prototypic implementation handles the inputs in
a matter of seconds on a standard machine.

8

4 Constrained Maximum Parsimony Haplotyping

In this section, we present two results on the fixed-parameter tractability (see [6] for background in
parametrized complexity theory) of the constrained maximum parsimony haplotyping problem. First, we
prove that Cpools for allMH is W[2]-complete when parametrized by the minimum number of distinct haplo-
types in an explaining haplotype matrix. In sharp contrast, MH and Cone pool for allMH are fixed-parameter
tractable for this parameter, as shown in [22] and [12], respectively. This means that the possibility to
specify pool constraints on a per-genotype basis vastly increases the complexity of the problem. Second,
we show that a fixed-parameter algorithm is possible even for CpoolsMH when we extend the parameter to
the number of distinct haplotypes plus the number of duplicated genotypes that have incomparable pools.

The algorithms for MH and Cone pool for allMH from the literature use data structures that describe how
haplotypes are shared among genotypes. Given an n×m genotype matrix A, we define a haplotype
sharing plan P for A of size k as a multigraph G = (V,E) (a graph with multiple edges between the
same vertices) with |V |= k and |E|= n where (a) edges are labeled bijectively by genotypes from A, (b)
some vertices are labeled by haplotypes, and (c) every genotype that has two labeled incident vertices
is explained by the haplotype labels. We call a plan complete if all vertices are labeled and empty if
no vertex is labeled. A plan P extends a plan P′ if P arises from P′ by labeling previously unlabeled
vertices. A haplotype sharing plan P satisfies a pool constraint pool(i,Hi) if the incident haplotypes
of gi lie in Hi. With this definition, constructing haplotype matrices with at most k distinct haplotypes is
equivalent to constructing plans of at most size k.

Given a budget k for the number of distinct haplotypes in the solution, the known FPT algorithms
for MH and Cone pool for allMH consider all possible empty haplotype sharing plans of size k and check
whether they can be extended to complete ones in polynomial time, using GF[2] equations for MH [22]
and dynamic-programming for Cone pool for allMH [12]. To bound the number of edges of the plan they use
a preprocessing step that deletes duplicated genotypes and retains only one of them. Since k haplotypes
can explain at most k(k−1)/2 different genotypes, these algorithms consider at most O(k2n)≤ O(k2k2

)
different empty plans.

These ideas cannot be extended to a fixed-parameter algorithm when genotype-specific pool con-
straints are given since we cannot delete duplicated genotypes in a preprocessing step. This is due to
the fact that genotypes might have the same entries, but incomparable pools, which we cannot merge
directly. Strong evidence that no slightly variation of the standard approaches will work is given by
Theorem 4.1.

Theorem 4.1. Cpools for allMH, parametrized by the number of distinct haplotypes in the solution, is W[2]-
complete. Consequently, CpoolsMH is W[2]-hard for the same parametrization.

Proof. We present a fixed-parameter reduction from the W[2]-hard [6] problem HITTING-SET to the
problem Cpools for allMH. The HITTING-SET problem is defined as follows: Given a hypergraph G that
consists of a vertex set V and a set of hyperedges E = {e1, . . . ,en} with ei ⊆V and a number k, we want
to find a hitting set S⊆V for G, which means that e∩S 6= /0 for all e ∈ E, of size at most k.

Given a hypergraph G with vertices V = {v1, . . . ,vm} and edges E = {e1, . . . ,en}, our reduction
constructs an instance for Cpools for allMH as follows: The genotype matrix A contains n genotypes of
length m+1 with only 2-entries. For i ∈ {1, . . . ,m} let hi be the haplotype of length m+1 with exactly
one 1-entry, namely at site i, and let h′i be its bitwise complement. For every genotype g j there is a
constraint pool

(
j,
⋃

vi∈e j
{hi,h′i}

)
. The budget (the allowed number of distinct haplotypes to explain A)

is set to 2k. The construction is clearly computable in polynomial time.
For the correctness of the reduction, first let S ⊆ V be a hitting set of size at most k for G. We

choose an explaining haplotype pair for every genotype g j as follows: Let vi ∈ S be a vertex with vi ∈ e j,
then we use the haplotype pair {hi,h′i} to explain g j. Since S contains at most k elements, this gives an
explaining haplotype matrix with at most 2k distinct haplotypes for A that satisfies the pool constraints by

9

construction. For the opposite direction let B be a haplotype matrix with at most 2k distinct haplotypes
explaining A. The matrix B can be seen as a sequence of n haplotype pairs, where the jth pair explains
genotype g j. Since there are at most 2k distinct haplotypes in the solution and the constructed haplotype
pairs do not share any haplotypes, this sequence contains at most k different haplotype pairs. For every
genotype g j consider its explaining haplotype pair {hi,h′i} from pool(j,H j) and insert the corresponding
vertex vi, for which vi ∈ e j holds, into S. This gives a hitting set S of size at most k.

To prove Cpools for allMH ∈W[2], we fixed-parameter reduce it to the W[2]-complete problem of find-
ing a satisfying assignment for Boolean circuits of weft 2 and depth 3 with at most k inputs set to 1,
denoted WCS(2,3) in [6]. The circuit’s input layer has a different gate, called a haplotype gate, for every
haplotype from the union of all constraint pools. The next layer consists of ∧-gates, called genotype
gates, one for each possible pair of haplotypes. Each of these genotype gates is connected to a different
pair of haplotype gates. Next, there is a layer of large ∨-gates, called row gates. The ith row gate is
connected to all genotype gates that are, in turn, connected to two haplotype gates h and h′ such that
(a) h and h′ are both elements of the constraint pool for the ith row of the genotype matrix and (b) h and h′

together explain this ith row. Finally, a large ∧-gate connected to all row gates assures that all genotypes
are explained by haplotype pairs. Clearly, a satisfying assignment of this circuit with k inputs set to 1
corresponds to a set of k haplotypes that explain the genotype matrix and satisfy all pool constraints.

The instances constructed in the W[2]-hardness proof of Cpools for allMH contain only identical geno-
types, namely completely heterozygous genotypes, while pools might be highly incomparable. Since
such a worst case instance is unlikely to be present in practice, we propose to additionally parametrize
the problem by the maximum number l of duplicated genotypes with pairwise incomparable pool con-
straints. When parametrized by the number k of distinct haplotypes and at the same time by l, CpoolsMH

becomes fixed-parameter tractable.

Theorem 4.2. CpoolsMH is fixed-parameter tractable with respect to the number of distinct haplotypes
that are used in an explaining haplotype matrix plus the maximum number of duplicated genotypes with
pairwise incomparable pool constraints.

Proof. Our fixed-parameter algorithm for SOLVE-CMH is shown in Figure 2. After sanitizing the pool
constraints, which does not change the size of a smallest solution, in lines 2 to 4 the algorithm con-
flates genotypes and their pools. This means that instead of simply deleting duplicated genotypes,
which would not give a correct algorithm, it repeatedly finds genotypes gi and g j with gi = g j and
pool(i,Hi),pool(j,H j) ∈ K and Hi ⊆ H j. Each time such genotypes are found, we can delete g j. We
also delete g j if there is no pool constraint for it, but there is another genotype gi with gi = g j. After this
conflation, there can be at most l copies of each genotype by definition of l. In particular, if more than
lk(k−1)/2 genotypes remain after line 4, they cannot be explained using only k haplotypes.

Next, the algorithm considers all empty haplotype sharing plans P of size at most k for the current
matrix and tests whether there are complete extension for it (first without considering any pool con-
straints) by using the following claim and skips the current plan whenever the claim does not hold:
Let G be the underlying graph of a haplotype plan P for A and let s be a site. Let V s

0 ⊆V be the set of all
vertices from G that have a labeling haplotype with a 0-entry at site s or that have an incident genotype
that has a 0-entry at site s. Define V s

1 ⊆V similarly, with “0” replaced by “1.” Then Gs
2 arises from G by

deleting every edge whose genotype does not have a 2-entry at site s.

Claim. Let A be an n×m genotype matrix and P be a haplotype sharing plan for A. There exists a
complete haplotype sharing plan P′ for A that extends P if, and only if, for every site s the following
properties hold:

1. there is no odd-length cycle in Gs
2,

2. there is no even-length path between vertices v ∈V s
0 and v′ ∈V s

1 in Gs
2, and

10

3. there is no odd-length path between vertices v,v′ ∈V s
0 or between vertices v,v′ ∈V s

1 in Gs
2.

Proof. First, we prove that the above properties are necessary. Consider a genotype matrix A and a
haplotype sharing plan for A with graph G = (V,E). For sake of contradiction, assume that there exists
a site s such that Gs

2 contains an odd-length cycle. Let h1,g1, . . . ,hr,gr,h1 be the sequence of haplotypes
and genotypes on this cycle. We know that h1[s] = a∈ {0,1} and, since g1[s] = 2, we have h2[s] = 1−a.
If we transfer this fact to all haplotypes in the cycle, we known that hi[s] = a whenever i is odd and
hi[s] = 1−a whenever i is even. Since r is odd, we have hr[s] = a and, therefore, h1[s] = 1−a holds, a
contradiction. The arguments for the second and third properties are similar, only the values of the first
and last haplotypes on the path are known from the incident genotypes with entries 0 or 1.

To show that the properties are sufficient, consider a haplotype sharing plan P for A. We label pre-
viously unlabeled vertices in a stepwise fashion while maintaining the properties. Pick an unlabeled
vertex v from P and assign a value to its haplotype h at every sites s as follows: When there is an even-
length path between v and a vertex from V s

a , a ∈ {0,1}, in Gs
2, assign h[s] = a and, when there is an

odd length path between v and a vertex from V s
a , a ∈ {0,1}, in Gs

2, assign h[s] = 1− a. If there are no
vertices from V s

0 ∪V s
1 in the component of v, which means that all genotypes in the component of v have

a 2-entry at site s and all vertices in the component are unlabeled, choose a value for h[s] arbitrarily. The
haplotypes that can be assigned to v in this way are called the permissible haplotypes for v in P. An as-
signment of a permissible haplotype does not change the claimed properties 1 to 3. Moreover, whenever
at least one vertex in every component of P is labeled by a haplotype, the permissible haplotypes for the
vertices of the component are uniquely determined.

Procedure SOLVE-CMH(A,K,k).
Input: An n×m genotype matrix A, pool constraints K and a budget k.
Output: An explaining haplotype matrix B for A with at most k distinct haplotypes
that satisfies the constraints K, if it exists; or “no”, otherwise.
Preprocessing:
1 call SANITIZE-POOL-CONSTRAINTS

2 for each gi and g j with gi = g j do
3 if there is no pool constraint for g j or if pool(i,Hi) ∈ K, pool(j,H j) ∈ K, Hi ⊆ H j then
4 delete g j

5 if there are more than lk(k−1)/2 genotypes then output “no”
Try to extend empty haplotype sharing plans:
6 for each empty haplotype sharing plan P of size k do
7 if P cannot be extended to a complete plan (without constraints) then skip P
8 for each component P′ of P do
9 if there is a genotype gi in P′ with pool(i,Hi) ∈ K then
10 v← some vertex incident to gi

11 for each haplotype h ∈ Hi that is permissible for v in P do
12 P′′← P′; in P′′ label v with h and calculate haplotypes for all vertices in P′′

13 if P′′ is a haplotype sharing plan satisfying its pool constraints then
14 store P′′ as a solution for P′ and continue with next P′

15 skip P
16 else choose a permissible haplotype for one vertex from P′,

calculate haplotypes for all other vertices, and store the solution P′′

17 combine all P′′ to a plan for A and K and return combined plan
18 output “no”

Figure 2: The fixed-parameter algorithm for CpoolsMH.

11

We remark at this point that in the absence of pool constraints, the above claim can be used to solve
the problem MH, replacing the usage of a GF[2] equation system solver [22].

The algorithm proceeds to look at every component P′ of P and distinguishes whether P′ contains
a genotype with a pool constraint or not. If there is a genotype gi with a pool constraint pool(i,Hi),
it picks one of gi’s incident vertices and iterates over all haplotypes in Hi. In line 12 it then tries to
assign the haplotype to the vertex and to determine – as discussed in the proof of the claim – haplotypes
for all other vertices in the component. If this succeeds in the sense that we get a correct complete
extension of P′ that satisfies the pool constraints, we save the copy and later incorporate it into the whole
plan. However, if no haplotype h yields a valid extension for P′, we skip the current plan P. If P′ has
only unconstrained genotypes, any permissible haplotype can be chosen for one vertex, which directly
determines haplotypes for all other vertices in the component. If all components of a plan P can be
completed, the algorithm outputs the combined haplotype sharing plan. If no plan can be completed, the
algorithm outputs “no”.

To bound the runtime of the algorithm, first note that after lines 5 there can be at most lk2 different
genotypes. The main loop iterates over all possible haplotype sharing plans P, of which there are at most
O(k2n) ≤ O(k2lk2

) plans. Since the inner part of the algorithm runs in polynomial time, this gives the
desired runtime.

5 Constrained Maximum Parsimony Perfect Phylogeny Haplotyping

In this section we show that Cpools,phaseMPPH and, therefore, MPPH and Cone pool for allMPPH, are fixed-
parameter tractable with respect to the number of distinct haplotypes in the solution.

Theorem 5.1. Cpools,phaseMPPH is fixed-parameter tractable with respect to the number of distinct hap-
lotypes in the solution.

Similar to the algorithm for CpoolsMH, in order to solve Cpools,phaseMPPH we can equivalently search
for a complete haplotype sharing plan that satisfies the constraints and whose haplotypes satisfy the four
gamete property – in this context we say that the haplotype sharing plan satisfies the four gamete prop-
erty. Similar to the algorithm for Cpools,phasePPH, we first apply some preprocessing steps and calculate
a decomposition into independent submatrices with a 2-site (procedure SOLVE-CMPPH from Figure 3
on page 13). Procedure SOLVE-CMPPH-2-SITE then solves these matrices along with their pools via a
recursive branch-and-reduce approach. In addition, to produce only solutions with a certain number of
distinct haplotypes, we use haplotype sharing plans that we decompose during the recursive calls.

Procedure SOLVE-CMPPH. Given a genotype matrix A, a set of constraints K, and a budget value k,
the procedure applies lines 1 to 5 from SOLVE-CPPH, which satisfy the correctness property (Section 3)
and, moreover, do not change the solution size. Then it assures that there are no identical genotypes
in the input: As long as possible it considers two genotypes gi and g j with gi = g j. If both have pool
constraints pool(j,H j), it deletes g j and replaces pool(i,Hi) by pool(i,Hi∩H j) and, otherwise, it deletes
one of the two genotypes that has no pool constraint. This step satisfies the correctness property since, in
order to satisfy the four gamete property, identical genotypes must be explained by the same haplotypes.

Next, the algorithm considers every empty haplotype sharing plan P of size at most k and calculates
the partition of A into matrices A1, . . . , Am as in procedure SOLVE-CPPH from page 5. In order to de-
compose the plan P, the method labels some vertices with haplotypes: In line 8, the procedure considers
every genotype without 2-entries and labels its incident vertices with this genotype. In lines 9 and 10 the
procedure considers every pair of genotypes g and g′ from matrices As and As′ , respectively, where s < s′

and g and g′ are incident to a common vertex v in P. The haplotype of this vertex is determined by
the current instance and is set as follows: The construction of the submatrices ensures that for every

12

Procedure SOLVE-CMPPH(A,K,k).
Input: An n×m genotype matrix A, a set K of haplotype and phase constraints, and a budget k
Output: An explaining haplotype matrix B for A with at most k distinct haplotypes
that satisfies the four gamete property and the constraints K, if it exists; or “no”, otherwise
Preprocessing:
1 lines 1 to 5 from procedure SOLVE-CPPH

2 for each gi and g j with gi = g j do
3 if pool(i,Hi) ∈ K and pool(j,H j) ∈ K then
4 replace pool(i,Hi) by pool(i,Hi∩H j) and delete g j

5 else delete one of the genotypes gi and g j that has no pool constraint
6 if there are more than k(k−1)/2 genotypes then output “no”
Try to extend empty haplotype sharing plans via decomposition:
7 for each empty haplotype sharing plan P of size k do
8 label every vertex in P that is incident to a genotype without 2-entries
9 for each genotype g ∈ As and g ∈ As′ with s 6= s′ do
10 if there is a vertex v in P incident to g and g′ then label v with the correct haplotype
11 for each site s ∈ {1, . . . ,m} do
12 P′s ← SOLVE-CMPPH-2-SITE(As,Ks,Ps,s)
13 if P′s is “no” then skip P
14 return combination of haplotypes from plans P′s and genotypes without 2-entries.
15 return “no”

Procedure SOLVE-CMPPH-2-SITE(A,K,P,s2).
Input: An n×m genotype matrix A with a 2-site s2, constraints K, and a haplotype sharing plan P.
Output: A complete plan P′ for A that extends P and satisfies the four gamete property
and the constraints if it exists; or “no”, otherwise
Recursion break:
1 if for every pool(i,Hi) ∈ K we have |Hi|= 2 then
2 replace all pool constraints by corresponding phase constraints
3 return solution for the remaining instance from PP-COMPLETION-EXTENSION(A,K,P)
Recursive branch-and-reduce
4 else for each group R with constraints KR and plan PR do
5 s← a site from a component of Gcover that corresponds to a matrix from R.
6 P′′e ← call TRY-PHASE-CMPPH(R,KR∪{equal-phase(s2,s)},PR,s2)
7 P′′u ← call TRY-PHASE-CMPPH(R,KR∪{unequal-phase(s2,s)},PR,s2)
8 if P′′e = “no” and P′′u = “no” then return “no” else add non-“no” P′′e or P′′u to solution
9 output solution

Sub-Procedure TRY-PHASE-CMPPH(R,K,P,s2).
1 while the instance is modified do
2 call DEDUCE-PHASE-CONSTRAINTS for R, K
3 call LABEL-INTERJACENT-VERTICES for R, K, P
4 call SANITIZE-POOL-CONSTRAINTS for R, K
5 for each matrix A′ from R with constraints K′ ⊆ K and plan P′ ⊆ P do
6 P′′← call SOLVE-CMPPH-2-SITE(A′,K′,P′,s2)
7 if P′′ is“no” then return “no” else add P′′ to solution
8 return solution

Figure 3: The fixed-parameter algorithm for Cpools,phaseMPPH

13

site t < s′, we have g′[t] ∈ {0,1}. Thus at these sites t we must set h[t] = g′[t]. For every site t ≥ s′, we
can set the entry in h directly if g[t]∈ {0,1} or g′[t]∈ {0,1}. Whenever, we have g[t] = g′[t] = 2, we can
use phase constraints to determine the entry of h: The deduction of phase constraints in the preprocess-
ing ensures that there is a phase constraint for s and t and, therefore, we must set h[t] = h[s] whenever
equal-phase(s, t) ∈ K and h[t] = 1−h[s] whenever unequal-phase(s, t) ∈ K. Overall, every entry of h is
determined.

Every matrix As together with its constraints Ks (the corresponding pool constraints and all phase
constraints), its plan Ps (the part of P that is made up by all edges with genotypes from As), and its
2-site s are passed to the procedure SOLVE-CMPPH-2-SITE. Due to the preceding labeling of vertices
that lie in different plans Ps and the calculated phase constraints, we can combine complete haplotype
sharing plans for the subinstances into a complete haplotype sharing plan for the whole instance. Thus,
provided SOLVE-CMPPH-2-SITE is correct, the whole algorithm is correct.

Procedure SOLVE-CMPPH-2-SITE. Given a genotype matrix A with a 2-site s2, constraints K, and
a haplotype sharing plan P, this procedure recursively checks whether P can be extended to a com-
plete plan that satisfies the constraints and the four gamete property. If all pools contain exactly two
haplotypes, the phase information from these haplotypes is transferred into phase constraints (see pro-
cedure SOLVE-CPPH-2-SITE for details) and the remaining instance is solved using the following claim
in polynomial time.

Lemma 5.2. Let A be a genotype matrix with phase constraints K and P a partial haplotype sharing plan
for A. Then there exists an equation system PP-COMPLETION-EXTENSION(A,P,K) with the following
property: There exists a haplotype sharing plan P′ for A that extends P and satisfies the constraints and
the four gamete property if, and only if, the equation system PP-COMPLETION-EXTENSION(A,P,K) is
solvable.

Proof. The equation system is constructed as follows: Let A be an n×m genotype matrix, K a set
of phase constraints, and P a partial haplotype sharing plan for A of size k. Let B be the haplotype
labels present in P. Then the GF[2] equation system PP-COMPLETION-EQUATION(A,P,K) consists of
m(m− 1)/2 variables ps,t , describing the phase of sites s and t, and km variables hi,s, one for every
vertex with index i and site s. For every pair of sites s, t with {00,11} ⊆ ind(A,s, t)∪ ind(B,s, t) or
equal-phase(s, t) ∈ K, we introduce the equation ps,t = 0 and for every pair of sites with {01,10} ⊆
ind(A,s, t)∪ ind(B,s, t) or unequal-phase(s, t)∈K we introduce the equation ps,t = 1. For every vertex vi

that is labeled by a haplotype h we introduce hi,s = h[s] for every site s. For every genotype gi with
incident vertices v j and vk and site s, we introduce the equations h j,s = gi[s] and hk,s = gi[s] whenever
gi[s] ∈ {0,1} and h j,s⊕ hk,s = 1 whenever gi[s] = 2. For every genotype gi, an incident vertex v j, and
pairs of sites s and t with gi[s] = gi[t] = 2, we introduce the equation ps,s′ = h j,s⊕h j,s′ .

The claimed equivalence now follows because the system directly models the conditions imposed
by P’s being a haplotype sharing plan and the solutions of the system correspond directly to complete
haplotype sharing plans.

If there are pools with more than two haplotypes, the procedure partitions the genotypes into groups
R according to the following rule: Two genotypes lie in same group whenever they are in the same
submatrix with respect to the decomposition from SOLVE-CPPH-2-SITE, which we call the Gcover de-
composition, or incident to a common vertex in P.

The algorithm considers each group R together with its constraints KR (consisting of all phase and
pool constraints for genotypes in R) and its subplan PR (the part of P that is made up by all edges with
genotypes from KR) and picks a site s from a component of Gcover that corresponds to a matrix in R.
Then, as in SOLVE-CPPH-2-SITE it considers both possible phasings of the columns s2 and s by calling
a sub-procedure TRY-PHASE-CMPPH.

14

This sub-procedure starts by repeatedly applying DEDUCE-PHASE-CONSTRAINTS and the procedure
LABEL-INTERJACENT-VERTICES, described in the next paragraph, until there is no further change.

The procedure LABEL-INTERJACENT-VERTICES labels some previously unlabeled vertices in P for
which the haplotypes are completely determined by the current instance. It iterates over all genotypes gi

and g j from R that are incident to a common vertex v in P and labels v in the following cases: (a) Geno-
types gi and g j come from different matrices Ai and A j of the Gcover decomposition with components Gi

and G j, respectively, such that there are phase constraints between s2 and all sites from Gi. At all sites
t with gi[t] ∈ {0,1} or g j[t] ∈ {0,1}, the entry of h is known. Let si be a site from Gi with gi[si] = 2
and g j[s j] ∈ {0,1} (such a site exists due to the decomposition). At this site the value of h is deter-
mined which, together with the phase constraint for s2 and si, determines the value at site s2. Since
there are phase constraints between s2 and all sites that have 2-entries in both gi and g j, the entries
at these positions are also known. Altogether, this gives a haplotype for g j and forces the phase be-
tween s2 and a site s j ∈G j with g j[s j] = 2. We introduce equal-phase(s2,s j) whenever h[s2] = h[s j] and
unequal-phase(s2,s j) whenever h[s2] 6= h[s j]. (b) Genotype gi comes from a matrix Ai of the Gcover de-
composition, such that there are phase constraints between s2 and all sites from Gi, and g j is not part of
any matrix of the decomposition. Due to the decomposition there exists a site si from Gi with gi[si] = 2
and g j[si] ∈ {0,1}. Thus, similar to the previous case, the value at site si determines the value at site s2
and, indirectly, values for all sites where both genotypes have a 2-entry. Altogether, h is completely
determined. (c) Genotypes gi and g j are not part of any matrix of the decomposition. Let si be a site
where the genotypes differ. One of the genotypes, say gi, must have a 2-entry at site si since, otherwise,
the sites s2 and si induce all four gametes. Again, we know the value of the haplotype h labeling v at
position si which determines the value at site s2 and all other sites where both genotypes have a 2-entry.

The effect of the while-loop in lines 1 and 2 of TRY-PHASE-CMPPH is that there are new phase
constraints between s2 and all sites from Gcover components whose matrices lie in R and all vertices in P
that are incident to genotypes from different components are labeled by haplotypes.

Then we apply SANITIZE-POOL-CONSTRAINTS and pass every matrix of the Gcover decomposition
along with its plan and constraints to a recursive call. If this leads to solutions for all matrices, the
sub-procedure TRY-PHASE-CMPPH combines them to a solution for R.

In line 8 of SOLVE-CMPPH-2-SITE, if for every group at least one possibility for the phase of s2
and s gives a solution for all matrices from the group, the algorithm adds them to an extension for the
whole plan P. Otherwise, the algorithm outputs “no”.

Runtime. The runtime of the algorithm is dominated by the iteration over at most O(k2n) ≤ O(k2k2
)

empty plans. For every possible plan the algorithm recursively tries new phase constraints and partitions
the genotypes, the plan, and the haplotypes from the pools. Similar to SOLVE-CPPH-2-SITE, the cor-
responding tree of recursive calls has only polynomial size, which proves the desired fixed-parameter
runtime.

6 Conclusion

We studied phylogeny- and parsimony-based haplotype inference in the presence of pool and phase
constraints. Our main result is that Cpools,phasePPH is polynomial-time solvable by a new recursive de-
composition techniques for genotypes and pools. This solves the open problem from [12] whether
Cone pool for allPPH is polynomial-time solvable. Our Java implementation of this algorithm shows that
it works fast in practice. We showed that CpoolsMH is W[2]-hard by proving that Cpools for allMH is
W[2]-complete when parametrized by the number of distinct haplotypes in the solution. Both prob-
lems are fixed-parameter tractable when we also use the comparability of the pools as a parameter.
For Cpools,phaseMPPH we presented an algorithm that extends the recursive decomposition of genotypes

15

and pools by a decomposition of haplotype sharing plans, yielding a fixed-parameter algorithm for
Cpools,phaseMPPH with respect to the number of distinct haplotypes in the solution.

Open Problems There are several research directions for future work: (1) One direction would be to
incorporate more general constraints, like, for example, ∗-constraints where some entries in the haplo-
types can be chosen freely. (2) We may also try to allow a few additional rare haplotypes to be used
that are not in any pool. (3) A large body of recent work has investigated the more difficult – and more
realistic – variant of PPH where some input data may be missing, the incomplete perfect phylogeny hap-
lotyping problem (IPPH). This problem is NP-complete [23], also if a haplotype without missing entries
is known beforehand [18] and the phylogenetic tree has the topology of a path [13], but there is a fixed-
parameter algorithm for trees with a bounded number of branches [8]. A natural direction would be to
adjust our ideas to algorithms that work on the constrained variants of IPPH.

References
[1] V. Bafna, D. Gusfield, S. Hannenhalli, and S. Yooseph. A note on efficient computation of haplotypes via

perfect phylogeny. Journal of Computational Biology, 11(5):858–866, 2004.
[2] V. Bafna, D. Gusfield, G. Lancia, and S. Yooseph. Haplotyping as perfect phylogeny: A direct approach.

Journal of Computational Biology, 10(3–4):323–340, 2003.
[3] P. Bonizzoni. A linear-time algorithm for the perfect phylogeny haplotype problem. Algorithmica,

48(3):267–285, 2007.
[4] D. G. Brown and I. M. Harrower. Integer programming approaches to haplotype inference by pure parsimony.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(2):141–154, 2006.
[5] Z. Ding, V. Filkov, and D. Gusfield. A linear-time algorithm for the perfect phylogeny haplotyping (PPH)

problem. Journal of Computational Biology, 13(2):522–553, 2006.
[6] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag, New York, 1999.
[7] M. Elberfeld. Perfect phylogeny haplotyping is complete for logspace. Computing Research Repository

(CoRR), abs/0905.0602, 2009.
[8] M. Elberfeld, I. Schnoor, and T. Tantau. Influence of tree topology restrictions on the complexity of hap-

lotyping with missing data. In Proceedings of the 6th Annual Conference on Theory and Applications of
Models of Computation (TAMC 2009), volume 5532 of LNCS, pages 201–210. Springer, 2009.

[9] M. Elberfeld and T. Tantau. Computational complexity of perfect-phylogeny-related haplotyping problems.
In Proceedings of MFCS 2008, volume 5162 of LNCS, pages 299–310. Springer, 2008.

[10] E. Eskin, E. Halperin, and R. M. Karp. Efficient reconstruction of haplotype structure via perfect phylogeny.
Journal of Bioinformatics and Computational Biology, 1(1):1–20, 2003.

[11] L. Excoffier and M. Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in a diploid
population. Molecular Biology and Evolution, 12(5):921–7, 1995.

[12] M. R. Fellows, T. Hartman, D. Hermelin, G. M. Landau, F. A. Rosamond, and L. Rozenberg. Haplotype
inference constrained by plausible haplotype data. In Proceedings of CPM 2009, volume 5577 of LNCS,
pages 339–352. Springer, 2009.

[13] J. Gramm, T. Nierhoff, R. Sharan, and T. Tantau. Haplotyping with missing data via perfect path phylogenies.
Discrete and Applied Mathematics, 155(6–7):788–805, 2007.

[14] D. Gusfield. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In Proceed-
ings of RECOMB 2002, pages 166–175. ACM Press, 2002.

[15] D. Gusfield. Haplotype inference by pure parsimony. In Proceedings of CPM 2003, volume 2676 of Lecture
Notes in Computer Science, pages 144–155. Springer, 2003.

[16] Y.-T. Huang, K.-M. Chao, and T. Chen. An approximation algorithm for haplotype inference by maximum
parsimony. Journal of Computational Biology, 12(10):1261–1274, 2005.

[17] G. Jager, S. Climer, and W. Zhang. Complete parsimony haplotype inference problem and algorithms. In
Proceedings of ESA 2009, volume 5757 of LNCS, pages 337–348. Springer, 2009.

[18] G. Kimmel and R. Shamir. The incomplete perfect phylogeny haplotype problem. Journal of Bioinformatics
and Computational Biology, 3(2):359–384, 2005.

16

[19] G. Lancia, M. C. Pinotti, and R. Rizzi. Haplotyping populations by pure parsimony: Complexity of exact
and approximation algorithms. INFORMS Journal on Computing, 16(4):348–359, 2004.

[20] Y. Liu and C.-Q. Zhang. A linear solution for haplotype perfect phylogeny problem. In Proceedings of the
International Conference on Bioinformatics and its Applications, pages 173–184. World Scientific, 2005.

[21] R. V. Satya and A. Mukherjee. An optimal algorithm for perfect phylogeny haplotyping. Journal of Com-
putational Biology, 13(4):897–928, 2006.

[22] R. Sharan, B. V. Halldórsson, and S. Istrail. Islands of tractability for parsimony haplotyping. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 3(3):303–311, 2006.

[23] M. Steel. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Clas-
sification, 9(1):91–116, 1992.

[24] L. van Iersel, J. Keijsper, S. Kelk, and L. Stougie. Shorelines of islands of tractability: Algorithms for parsi-
mony and minimum perfect phylogeny haplotyping problems. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 5(2):301–312, 2008.

[25] L. Wang and Y. Xu. Haplotype inference by maximum parsimony. Bioinformatics, 19(14):1773–1780, 2003.

17

	Introduction
	Haplotypes, Genotypes, Constraints, and Haplotyping Problems
	Constrained Perfect Phylogeny Haplotyping
	Constrained Maximum Parsimony Haplotyping
	Constrained Maximum Parsimony Perfect Phylogeny Haplotyping
	Conclusion

