
Negative Selection Algorithms
Without Generating Detectors

Maciej Liśkiewicz
University of Lübeck

Institute for Theoretical Computer Science
Ratzeburger Allee 160

23538 Lübeck, Germany
liskiewi@tcs.uni-luebeck.de

Johannes Textor
University of Lübeck

Institute for Theoretical Computer Science
Ratzeburger Allee 160

23538 Lübeck, Germany
textor@tcs.uni-luebeck.de

ABSTRACT
Negative selection algorithms are immune-inspired classifiers
that are trained on negative examples only. Classification is
performed by generating detectors that match none of the
negative examples, and these detectors are then matched
against the elements to be classified. This can be a per-
formance bottleneck: A large number of detectors may be
required for acceptable sensitivity, or finding detectors that
match none of the negative examples may be difficult. In this
paper, we show how negative selection can be implemented
without generating detectors explicitly, which for many de-
tector types leads to polynomial time algorithms whereas
the common approach to sample detectors randomly takes
exponential time in the worst case.

In particular, we show that negative selection on strings
with generating all detectors can be efficiently simulated
without detectors if, and only if, an associated decision prob-
lem can be answered efficiently, regardless the detector type.
We also show how to efficiently simulate the more general
case in which only a limited number of detectors is gener-
ated. For many detector types, this non-exhaustive negative
selection is more meaningful but it can be computationally
more difficult, which we illustrate using Boolean monomi-
als.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Pattern match-
ing ; I.2.6 [Artificial Intelligence]: Learning

General Terms
Theory

Keywords
Artificial Immune Systems, Negative Selection, Consistent
Learning

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

1. INTRODUCTION
Negative selection is the process by which the vertebrate

immune system generates T cells. These cells can detect
and destroy foreign substances, called antigen or non-self.
The antigen-detecting receptors of T cells are generated ran-
domly by recombination of DNA fragments. Newborn T
cells migrate to the thymus, where they are confronted with
bogus“antigens”that really are normal peptides from the or-
ganism, the self. Cells that detect such a “self-antigen” are
bound to die, and only those that survive negative selection
are allowed to leave the thymus and become detector cells.

This simple process contributes in several ways to the
immune system’s remarkable robustness. To name a few,
detection is distributed – each T cell detects different anti-
gen; and it is diverse – each individual of a species has its
own unique set of T cells, making it difficult for pathogens
to eradicate a species entirely. Naturally, such features are
also highly desirable for computer security systems [2]. In
the field of artificial immune systems (AIS), immunological
processes are studied as a source of inspiration for engineered
systems in general. Negative selection was one of the first
processes considered, and substantial work was dedicated to
it, comprehensively reviewed by Ji and Dasgupta [5].

Negative selection algorithms are quite verbatim abstrac-
tions of the actual process. Self and nonself are often rep-
resented as sets of strings with a fixed length L over some
alphabet Σ. The detector cells are modeled as abstract en-
tities that match subsets of the string universe ΣL. For ex-
ample, a detector d could itself be a string, which matches
another string s if some distance δ(d, s) is sufficiently small.
A generic outline of negative selection algorithms is shown
in Figure 1: The input is a “self-set” S of strings represent-
ing normal behaviour. The algorithm first generates a set
D of detectors that do not match any string in S. These
detectors are to cover the “non-self” regions of ΣL, and a
string m ∈ ΣL is considered non-self if it is matched by a
detector in D. Hence, negative selection is in principle a
classification scheme.

In AIS literature, the two most common detector types
for strings are the r-chunk detectors and the r-contiguous
detectors, which we define later on. The computational com-
plexity of generating such detectors for a given self-set was
investigated in a series of papers [9, 10, 8], leading to the
recent result by Elberfeld and Textor [1] that negative se-
lection with these detectors is feasible in polynomial time, if
we avoid generating detectors explicitly. In the present pa-
per we generalize this idea to arbitrary detector types, which

do not have to be associated with the immune system. Our
main contributions are the following:

• We define negative selection as a consistent learning
algorithm in the notational framework of algorithmic
learning theory (Section 2).

• Since generating a large number of detectors is com-
monly assumed to improve the performance of neg-
ative selection algorithms, we first consider the case
that all detectors are to be generated. This is also the
case considered by Elberfeld and Textor [1], and we
call it exhaustive negative selection. We show that the
computational cost of this case is characterized by a
special case of the consistency problem (Section 3), a
decision problem. If this problem is efficiently solvable,
we can use it to simulate exhaustive negative selection
efficiently without generating detectors. However, we
also give a natural detector type for which the problem
is NP-hard (Section 3.2).

• A more general approach is non-exhaustive negative
selection, which generates only a limited number of
detectors. We show how this can be simulated ef-
ficiently by counting detectors instead of generating
them (Section 4). While we present the approach in
a way that mimics the behaviour of negative selection
with detector sampling, it can be easily derandomized.
Again our approach works in particular for r-chunk
and r-contiguous detectors, but we also give concrete
examples for which it is unlikely to be computationally
tractable.

• We show that there are detector types for which ex-
haustive negative selection is not meaningful, but non-
exhaustive negative selection is actually a reasonable
approach. In particular this is true for many detec-
tor types involving Boolean formulae. However, a de-
randomized simulation of non-exhaustive negative se-
lection by counting detectors may be unlikely to be
tractable computationally even when the exhaustive
case can be simulated efficiently. We introduce mono-
tone monomial detectors as a concrete example for this
case.

2. BASIC TERMS AND DEFINITIONS
The terminology of negative selection literature closely re-

flects its source of inspiration, but most terms have equiva-
lents in the algorithmic learning theory field. For example
a “detector” would in learning theory be called “representa-
tion of a concept”. In this paper, we use the terminology of
algorithmic learning theory except that we adopt the terms
detector and detector type. For reference, Table 1 shows
equivalent terms from learning theory for the most impor-
tant terms of negative selection, and Table 2 summarizes the
symbols and notations used in the algorithms presented in
this paper. In addition, we define the terminology formally
in this section.

2.1 Strings
Let Σ be an alphabet and let s ∈ ΣL be a string consisting

of L symbols from Σ. Then |s| = L denotes the length of s
and si ∈ Σ is the i-th symbol of s. For two strings s and t,
δH(s, t) = |{i | si 6= ti}| denotes the Hamming distance.

Negative Selection Algorithmic Learning
self, normal negative example
non-self, anomalous positive example

self-set
sample containing only negative
examples

detector representation of a concept
matching rule membership function
detector type concept class
detector generability consistency problem

Table 1: Translation between terms used in the AIS
literature about negative selection and the equiva-
lent terms from algorithmic learning theory. This
paper mainly uses terminology from algorithmic
learning theory.

2.2 Concept classes and detectors
A concept c over ΣL is any subset of ΣL. A concept class

or detector type C = {c1, c2, . . . | ci ⊆ ΣL} is any set of con-
cepts with the following two properties. (1) C is succinctly
representable: For every c ∈ C there exists a d ∈ ΣR that
encodes c, where R ∈ O(L). We call d a detector and write
cd for the concept represented by d. Furthermore, there is
a polynomial-time algorithm that decides for every d ∈ ΣR

whether d encodes a concept cd ∈ C. (2) C is efficiently
membership testable: There is a polynomial-time algorithm
χC(x, d) with χC(x, d) = 1 if x ∈ cd and χC(x, d) = 0, other-
wise1. We sometimes drop the distinction between a detec-
tor d and the corresponding concept cd.

A sample S ⊆ ΣL × {+,−} is a set of strings labeled
with either “+” or “−”. We take samples to be free of con-
tradictions, i.e., there is no x ∈ ΣL with both (x,+) ∈ S
and (x,−) ∈ S. Furthermore, in the context of negative se-
lection, we consider only samples that contain at most one
positive example.

A concept cd is said to be consistent with a sample S if
x ∈ cd for all (x,+) ∈ S and x /∈ cd for all (x,−) ∈ S. For a
sample S, DC(S) denotes the set of all detectors d for which
cd is consistent with S. The consistency problem associated
with a concept class C is a decision problem defined as fol-
lows: Given a sample S, reject the input if DC(S) is empty,
and accept otherwise. We say that a consistency problem is
k+-restricted if every possible input contains exactly k pos-
itive examples. The 0+- and 1+-restricted cases are most
important in this paper.

The following two detector types are the most common
ones in AIS [10]. They are inspired by the way that T cells
in the immune system recognize antigen.

Definition 1. An r-contiguous detector d ∈ ΣL represents
the concept

cd = {s ∈ ΣL | ∃ i : di . . . di+r−1 = si . . . si+r−1}

of all strings that share a substring of length r with d. An
r-chunk detector (d, i) ∈ Σr × {1, . . . , L− r + 1} represents

1Formally, concept classes C over ΣL are understood here
as uniform families of concept classes, for L = 1, 2, 3, . . .
that in principle should be indexed with parameter L. For
sake of readability we skip the indices. However, we always
consider the quantity L as variable. Thus, R in the require-
ment (1) above is considered as a function of L, and in the
requirement (2) we assume that the membership test is done
in time bounded by a polynomial with respect to L.

Notation Meaning

S ⊆ ΣL × {−} input sample set

M ⊆ ΣL input monitor set

c ⊆ ΣL concept over ΣL

d and cd detector and the concept it represents
C = {c1, c2, ...} concept class or detector type

DC(S)
set of all detectors d for
which cd is consistent with S

Table 2: Symbols and notations used in the algo-
rithms presented in this paper.

the concept

cd,i = {s ∈ ΣL | si . . . si+r−1 = d}

of all strings in which d occurs at position i.

An obvious generalization of r-contiguous detectors is ob-
tained by dropping the requirement for the matching string
of length r between detector d and string s to be contiguous.

Definition 2. An r-distributed detector d ∈ ΣL represents
the concept

cd = {s ∈ ΣL | ∃ i1 < · · · < ir : di1 . . . dir = si1 . . . sir}

of all strings that share a distributed substring of length r
with d. Equivalently, s ∈ cd if and only if δH(s, d) ≤ L− r.

In addition we define the following two detector types that
are not immune-inspired, but based on Boolean monomials.

Definition 3. Let L = {x1, x̄1, . . . , xL, x̄L} be the set of
literals. A monomial F over L is a conjunction λ1 ∧ λ2 ∧
. . . λt, such that each λi ∈ L. Then F represents the concept

cF = {b ∈ {0, 1}L | F (b) = 1}

of all assignments that satisfy the monomial F .
A monotone monomial F over L+ = {x1, x2, . . . , xL} is a

monomial that contains only positive literals.

We assume that monomials are expressed in canonical
form, i.e., there are no duplicate literals. This allows en-
coding every monomial F over L = {x1, x̄1, . . . , xL, x̄L} as a
bit string of length 2L, and every monotone monomial can
be encoded as a bit string of length L.

2.3 Computational complexity preliminaries
We use in a standard way NP -completeness as a yard-

stick for measuring the computational complexity of decision
problems. For formal definitions of NP -completeness and
other standard notions of computational complexity, e.g. the
complexity class P (deterministic polynomial time), see the
textbook by Garey and Johnson [4].

For measuring computational complexity of counting prob-
lems in Section 4, which can be understood as functions
Σ∗ → N, we use #P-completeness as introduced by Valiant
[11]. We define polynomial-time reductions between count-
ing functions as follows. Let f and g be functions from Σ∗

to N. We say that f is polynomial-time one-Turing reducible
to g if there is a pair of polynomial-time computable func-
tions, R1 : Σ∗ → Σ∗ and R2 : Σ∗ × N→ N, such that for all
x it holds that f(x) = R2(x, g(R1(x))). Finally, we say that
a counting problem Π is #P-hard if any problem in #P is

NegativeSelection(S,M).
Input: Sample S ⊆ ΣL × {−}, set M ⊆ ΣL.
Output: For each m ∈M , either (m,+) or (m,−).
1 D ← some subset of DC(S)
2 for each m ∈M do
3 if there is a d ∈ D with m ∈ cd then
4 output (m,+)
5 else
6 output (m,−)

ConsistentNegativeSelection(S,M).
Input: Sample S ⊆ ΣL × {−}, set M ⊆ ΣL.
Output: For each m ∈M , either (m,+) or (m,−).
1 for each m ∈M do
2 if |DC(S ∪ {(m,+)})| > 0 then
3 output (m,+)
4 else
5 output (m,−)

Figure 1: Above, general outline of a negative selec-
tion algorithm as it is usually defined [3, 10]. Be-
low, exhaustive negative selection algorithm imple-
mented without generating detectors explicitly. The
output of this algorithm is equivalent to the specific
version of the algorithm above in which all detectors
are generated in line 1.

polynomial-time one-Turing reducible to Π. A problem is
#P-complete if it is additionally contained in #P.

#P-completeness of a counting problem provides strong
evidence about its intractability: Let Π be any #P-complete
problem. For any problem Π′ from the polynomial hierarchy,
there exists a deterministic Turing machine M that solves
Π′ in polynomial time querying a Π-oracle at most once.
In this sense, #P is a “harder” complexity class than NP,
which is on the first level of the polynomial hierarchy.

2.4 Negative selection algorithms
A negative selection algorithm is usually loosely defined

as any algorithm that matches the generic scheme shown in
Figure 1: Given a sample S of only negative examples and
a “monitor set”M of strings to classify, generate a detector
set D ⊆ DC(S) consistent with S. Then for every string
m ∈M , label m positively if for some d ∈ D, cd contains m.

Note that it is left to the implementation how to generate
the detector set D. One very frequently used method is
to sample detectors at random from C, rejecting those that
are inconsistent with S. This is repeated until the desired
number of detectors is found. We start our analysis with
the special case where all detectors are generated, which we
call exhaustive negative selection. The more general case,
i.e. non-exhaustive negative selection, will be considered in
Section 4.

3. EXHAUSTIVE NEGATIVE SELECTION
In this section, we study the computational complexity of

exhaustive negative selection. Even though it is in general
infeasible to generate the entire detector set simply because
it can have exponential size, the following proposition shows
that we can simulate exhaustive negative selection without

generating the detector set explicitly, regardless the type of
detector used.

Proposition 1. For every concept class C, every sam-
ple S ⊆ ΣL × {−}, and every set M ⊆ ΣL, the algo-
rithms NegativeSelection with D ← DC(S) in line 1 and
ConsistentNegativeSelection (Figure 1) produce exactly
the same output.

Proof. The equivalence follows by definition of the con-
sistency problem.

Note that either algorithm simulates the other without
any additional computational cost. Thus the 1+-restricted
consistency problem, which is a decision problem, charac-
terizes the computational complexity of the entire negative
selection algorithm as stated by the next corollary.

Corollary 1. Exhaustive negative selection on a con-
cept class C can be implemented in polynomial time if and
only if the 1+-restricted consistency problem for C can be
solved in polynomial time.

Hence an algorithm for the 1+-restricted consistency prob-
lem can be used as a “black box” to implement exhaus-
tive negative selection without generating detectors. In the
rest of this section, we analyze the tractability of the 1+-
restricted consistency problem for important detectors types.

3.1 Tractable detector types

3.1.1 The r-chunk and r-contiguous detectors
As stated previously, most existing literature on nega-

tive selection on strings considers r-chunk detectors and r-
contiguous detectors. The question if exhaustive negative se-
lection can be efficiently implemented with these most com-
mon detector types was solved recently. In the framework
of our analysis, the result can be stated as follows.

Theorem 1 (Elberfeld, Textor [1]).
The 1+-restricted consistency problems for r-chunk and r-
contiguous detectors are in P.

3.1.2 Boolean detectors
From the algorithmic learning theory perspective, both

r-chunk and r-contiguous detectors are rather unusual con-
cept classes. Perhaps the most important family of concept
classes in the learning theory field are the Boolean concept
classes, in which each concept is defined as the set of bit-
strings that satisfy some formula φ. Depending on the type
of formula used, this may give rise to NP-hard consistency
problems, e.g. for 3-term DNF [7]. However, as a conse-
quence of the following proposition, most of these problems
become trivial in the 1+-restricted case.

Proposition 2. Let C be any concept class that contains
all sets c ⊂ ΣL with |c| = 1. Then the 0+- and 1+-restricted
consistency problems for C are in P.

Proof. If S contains a positive example (m,+), we know
by definition that there is a concept containing exactly this
example, and accept the input. If there is no positive ex-
ample, we only need to check if there is at least one x ∈ ΣL

that is not in S. Hence, our algorithm determines the num-
ber n of different negative examples in S and rejects the
input if and only if n = |Σ|L. The runtime of this algorithm
is polynomial in the size of the input.

As stated by the following corollary, this holds in par-
ticular for most canonical Boolean concept classes such as
decision lists, decision trees, DNF or CNF formulae.

Corollary 2. Let Σ = {0, 1} and let C be any concept
class over ΣL subsumed by the monomials. Then the 1+-
restricted consistency problem for C is in P.

Proof. For every string s ∈ {0, 1}L, we can construct
a monomial that evaluates to true only on s: Simply set
λi = xi if si = 1 and λi = x̄i, otherwise.

This means that for Boolean detectors, exhaustive nega-
tive selection is useless as a classification algorithm: Every
monitor string m /∈ S is positively labeled, since there is
always a detector d with cd containing only m. It is not
surprising that the associated consistency problem is trivial.
However, we will see later on that using Boolean detectors is
reasonable (but not necessarily computationally tractable)
for non-exhaustive negative selection.

The property of Proposition 2 does not apply to monotone
monomials, which are less expressive than general monomi-
als. Still, monotone monomials do admit polynomial time
exhaustive negative selection.

Proposition 3. The 0+- and 1+-restricted consistency
problems for monotone monomials are in P.

Proof. For the 0+-restricted consistency problem, let F
be the monomial x1x2 . . . xL containing all literals. F evalu-
ates to true only on the string 1L. Hence, if (1L,−) /∈ S, ac-
cept the input. Otherwise reject the input, since (1L,−) ∈ S
and there is no monotone monomial F such that F (1L) = 0.
This test can be performed in polynomial time.

For the 1+-restricted consistency problem, let m be the
unique positive example where (m,+) ∈ S. If m = 0L then
reject the input since there exists no monotone monomial
satisfied by 0L. Next, assume string m has at least one
bit 1. Any monotone monomial satisfied by m contains only
literals xi where mi = 1. Let I = {i1, . . . , ik}, 0 < k ≤ L, be
the set of all these indices, i.e., i ∈ I if and only if mi = 1.
Now consider the reduced sample S′ obtained from S by
deleting from each negative example string s ∈ S the letters
at positions i /∈ I, i.e., the sample

S′ = {(si1 . . . sik ,−) | (s,−) ∈ S}

and solve the 0+-restricted consistency problem for S′. Com-
puting S′ from S can be done in polynomial time.

3.2 Intractability of r-distributed detectors
To our knowledge, no explicit examples of detector types

for which the 1+-restricted consistency problem is NP-hard
have been given in the literature, even though this was sus-
pected to be the case for r-contiguous detectors [10]. Here
we give an example that arises naturally through a general-
ization of r-contiguous detectors.

Theorem 2. The 0+-restricted and 1+-restricted consis-
tency problems for r-distributed detectors are NP-complete.

Proof. The 0+-restricted consistency problem for r-dis-
tributed detectors can be equivalently stated as follows: For
a set S of strings, find a string d such that δH(d, s) > L−r for
all s ∈ S. This is the well-known farthest string problem [6],

SamplingNegativeSelection(S,M, n).
Input: Sample S ⊆ ΣL × {−}, set M ⊆ ΣL, integer n.
Output: For each m ∈M , either (m,+) or (m,−).
1 D ← ∅ and i← 0
2 while i < n do
3 pick d ∈ C uniformly at random
4 if cd is consistent with S then
5 D ← D ∪ {d} and i← i+ 1
6 for each m ∈M do
7 if there is any d ∈ D with m ∈ cd then
8 output (m,+)
9 else

10 output (m,−)

RandomNegativeSelection(S,M, n).
Input: Sample S ⊆ ΣL × {−}, set M ⊆ ΣL, integer n.
Output: ’undefined’ or for each m ∈M , either

(m,+) or (m,−).
1 if |DC(S)| = 0 then
2 output ’undefined’
3 else
4 for each m ∈M do
5 compute p = (1− δC(S,m))n

6 with probability 1− p do
7 output (m,+)
8 else do
9 output (m,−)

Figure 2: Above, negative selection algorithm that
generates detectors by random sampling, which is
common in practice [5]. Below, randomized im-
plementation of sampling negative selection without
generating detectors explicitly.

which is NP-complete. For the 1+-restricted consistency
problem, we have the additional constraint δH(d,m) ≤ r,
where m is the unique positive example. It is easily seen
that despite the additional constraint the problem remains
NP-hard.

4. NON-EXHAUSTIVE NEGATIVE
SELECTION

Most existing implementations of negative selection are
not exhaustive, but generate only a certain number of de-
tectors by random sampling (Figure 2). The number n of de-
tectors to be generated is part of the input and controls the
algorithm’s sensitivity: The larger the value of n, the more
probably each string m ∈ M is labeled positively. Exhaus-
tive negative selection maximizes this sensitivity. However,
a too large sensitivity might result in a classifier that overfits,
and thus it can be desirable to work with incomplete detec-
tor sets. In this section, we ask under which circumstances
sampling negative selection can be simulated without gen-
erating detectors – i.e., turned into a randomized algorithm
that is guaranteed to terminate and does so in polynomial
worst-case time.

A generic outline of sampling negative selection is shown
in Figure 2. Note that we assume that the generated detec-
tors are not checked for duplicates. All results in this section
still hold if we do, but the analysis becomes more technical
at some points highlighted later on. Also we sample the de-

tectors uniformly from C, which is straightforward for the
concept classes discussed in this paper (and all those from
the AIS literature) but may be highly nontrivial for other
concept classes such as arbitrary boolean formulae.

Definition 4. Let C be a concept class, S ⊆ ΣL × {−}
a sample consisting of negative examples with |DC(S)| > 0,
andm a string. Then the detector sampling distance δC(S,m)
is defined by

δC(S,m) =
|DC(S ∪ {(m,+)})|

|DC(S)| .

We interpret δC(S,m) as a distance because the more
structure is shared between m and S, the less likely a con-
cept chosen at random from “outside” of S contains m. In
particular, δC(S,m) = 0 if m ∈ S.

Using the detector sampling distance we are able to ex-
press the probabilities that algorithm SamplingNegative-
Selection labels every string m positively or negatively if
the algorithm terminates.

Proposition 4. For every concept class C over ΣL, ev-
ery sample S ⊆ ΣL × {−}, and every M ⊆ ΣL, algorithm
SamplingNegativeSelection on input (S,M, n) does not
terminate2 if |DC(S)| = 0. Otherwise, the algorithm termi-
nates and for each m ∈ M it classifies m negatively with
probability p = (1− δC(S,m))n, and positively with probabil-
ity 1− p.

Proof. If |DC(S)| = 0, algorithm SamplingNegative-
Selection obviously does not terminate. Otherwise it ter-
minates and classifies every m ∈M either positively or neg-
atively. Assume algorithm SamplingNegativeSelection
terminates on input (S,M, n) and let k denote the number of
detectors fromD after line 5 of the algorithm that are consis-
tent with S ∪ {(m,+)}. Then k is binomially distributed3.
The probability that none of the generated detectors con-
tains the string m is Pr[k = 0] = (1 − δC(S,m))n. The
probability that one of the generated detectors contains m is
Pr[k > 0] = 1−Pr[k = 0], which completes the proof.

Corollary 3. For every concept class C over ΣL, ev-
ery sample S ⊆ ΣL × {−}, and every M ⊆ ΣL, algo-
rithm SamplingNegativeSelection does not terminate if
and only if algorithm RandomNegativeSelection outputs
“undefined”. Moreover, if algorithm SamplingNegative-
Selection terminates, both algorithms label each m posi-
tively with exactly the same probabilities.

Note that algorithm RandomNegativeSelection does
not generate any detectors explicitly, but computing δC in-
volves counting the detector setsDC(S) andDC(S∪{(m,+)})
for each m ∈M . Hence, the complexity of this procedure is
characterized by a counting problem. This leads to the coun-
terpart of Corollary 1 for non-exhaustive negative selection.

Corollary 4. SamplingNegativeSelection on a con-
cept class C can be implemented in polynomial time if (but
not necessarily only if) the 0+-restricted consistency problem
for C and the concept sampling distance δC are computable
in polynomial time.

2If we check for duplicate detectors, sampling negative se-
lection does in addition not terminate for |DC(S)| < n.
3This becomes a hypergeometric distribution if we check for
duplicate detectors

Note that we can derandomize the algorithm Random-
NegativeSelection by directly outputting each δC(S,m)
in line 5. This would lead to a nice deterministic generaliza-
tion of negative selection in which each string is not labeled
with either + or −, but with a value from the interval [0, 1]
that indicates how “far away”m is from the set S.

In the rest of this section, we investigate the complexity
of computing δC for some important detector types.

4.1 Tractable detector types

4.1.1 The r-chunk detectors
For r-chunk detectors we can easily compute δC(S,m) as

stated by the following proposition.

Theorem 3. Let C be the concept class of r-chunk detec-
tors. Then for all samples S ⊆ ΣL×{−} and all strings m,

δC(S,m) =

P
i min{1,mins∈S{δH(si...i+r−1,mi...i+r−1)}}P

i |Σ|r − |{si . . . si+r | s ∈ S}|

Proof. The expression is correct because a string m can
match at most one r-chunk detector per index i ∈ {1, . . . , L−
r + 1} (numerator), and the number of r-chunk detectors
consistent to S per index i is equal to the number of strings
of length r that do not occur in any s ∈ S (denominator).

Note that we compute δC(S,m) merely by inspecting the
input dataset S, and this does not require any detector to
be generated and stored explicitly.

4.1.2 The r-contiguous detectors
For r-contiguous detectors it is also possible to compute

the concept sampling distance efficiently, although this re-
quires a little more effort than for r-chunk detectors.

Theorem 4. Let C be the concept class of r-contiguous
detectors on the alphabet Σ = {0, 1}. Then the concept sam-
pling distance δC(S,m) can be computed in polynomial time.

Proof. For our proof we build upon the pattern graph
construction by Elberfeld and Textor [1]. This is not gener-
alizable to higher alphabets, but for reasons of clarity and
conciseness we refrain from taking a more generic approach.
The concepts in this proof are illustrated in Figure 3. In a
pattern graph G, every path from the leftmost to the right-
most level describes a set of detectors, which is obtained by
merging the patterns on the path. For example, merging
the patterns (00�, 1), (0 � �, 2), (100, 3) from the correspond-
ing path in G in Figure 3 yields the pattern 00100, which
describes only one detector. This merging process makes
counting the number of detectors difficult, thus we need to
transform the graph slightly for this purpose.

Let G be an r-contiguous pattern graph with L− r + 1
levels. We denote by G[i] the set of vertices on level i of
this graph. Then the r-contiguous counting graph G′ is con-
structed from G as follows: (1) Copy all vertices and edges
from G to G′. (2) For every vertex v ∈ G labeled with a
pattern π = π1 . . . πr, label the corresponding vertex v′ ∈ G′
with π1. (3) For every vertex v ∈ G[L − r + 1] do the fol-
lowing: Denote the corresponding vertex in G′ by v′1. For
i ∈ {2, . . . , r}, create a vertex v′i labeled with πi and an edge
(v′i−1, v

′
i).

pattern graph G

(01011,−)
(01010,−)
(01101,−)

S G

(100,3)

(11�,3)

(00�,3)

(111,2)

(100,2)

(0��,2)

(00�,1)

(1��,1)

counting graphs G′ and G′m for m = 11100

G′

0 p2

� p6

� p6

0 p2

1 p3

0 p3

1 p2

1 p3

0 p3

1 p1

1 p1

0 p2
0 p1

1 p1

G′m

0 p2

� p2

0 p2

1 p1

1 p2

1 p11 p1

0 p2
0 p1

1 p1

Vm Πm p6 P [v]

Figure 3: Computing the detector sampling distance
for r-contiguous detectors as per Theorem 4. For
the shown sample S and r = 3, we have |DC(S)| =
14 by summation of P [v] on level 5 of G′, and then
|DC(S ∪ {(m,+)})| = 4 for G′m. Hence δC(S,m) = 4/14.

The resulting r-contiguous counting graph G′ has L levels.
For every path p from the leftmost to the rightmost level in
G′, concatenating all vertex labels on p (left part of vertex
annotations in Figure 3) yields the merged pattern from the
corresponding path in G. We obtain the theorem through
the following two claims.

Claim 1. Given an r-contiguous counting graph G′, we
can compute the number of detectors described by G′ in
polynomial time.

Proof. We compute the number of detectors by dynamic
programming. (1) For every vertex on level 1 of G′, set
P [v] = 2 if v is labeled with � and 1, otherwise. (2) For each
i ∈ {2, . . . , L} consider the set of vertices v on level i and set

P [v] =
X

u∈pre(v)

P [u]×

(
2 v is labeled with �
1 otherwise

where pre(v) is the set of vertices on level i − 1 that are

linked to v. Computing P [v] for all v ∈ G′ in this manner
takes polynomial time. The number of detectors encoded by
G′ is then given by the expression

P
v∈G′[L] P [v].

Claim 2. For every r-contiguous counting graph G′ and
every string m ∈ ΣL, there is a subgraph G′m ⊆ G′ describ-
ing only the detectors encoded by G′ that also match m.
Furthermore, G′m can be computed from G′ in polynomial
time.

Proof. The following algorithm constructs G′m from G′.
(1) For i ∈ {1, . . . , L}, let Vm[i] ⊆ G′[i] denote the set of
vertices on level i in G′ labeled with either � or mi, and
let Vm =

S
i Vm[i]. (2) Let Πm be the set of all paths in

G′ consisting of exactly r vertices from Vm. These paths
need not be disjoint. (3) Delete all edges (u, v) from G′ for
which none of the following holds: (i) (u, v) is on some path
p ∈ Πm; (ii) The leftmost vertex of some path p ∈ Πm is
either v or reachable from v; (iii) The vertex u is either the
rightmost vertex of some path p ∈ Πm or it is reachable from
such a vertex.

The resulting graph G′m contains every path p ∈ Πm, and
every path from the leftmost to the rightmost level contains
at least one subpath from Πm. Hence it describes all detec-
tors that match m.

Because δC(S,m) =
“P

v∈G′
m[L] P [v]

”
/
“P

v∈G′[L] P [v]
”

,

the theorem follows.

4.2 Intractable detector types

4.2.1 The r-distributed detectors
As an example concept class for which non-exhaustive neg-

ative selection is unlikely to be efficiently implementable us-
ing our approach, we use again the r-distributed detectors
(Definition 2). For this concept class, we have seen that the
0+-restricted consistency decision problem is NP-complete
(Theorem 2). Hence, one cannot expect that the consistency
test in line 1 of the algorithm RandomNegativeSelection
(Figure 2) can be implemented efficiently. But we can still
be interested in computing the probabilities that sampling
negative selection algorithm classifies m positively if the al-
gorithm terminates. The following theorem gives evidence
that this task can be even harder than solving the associated
decision problem.

Theorem 5. Let C be the concept class of r-distributed
detectors (Definition 2). Then computing the detector sam-
pling distance δC is #P-complete.

Proof (Sketch). First note that our theorem adopts a
somewhat broader interpretation of #P-completeness, since
according to our definition in section 2.3 only functions from
Σ∗ to the natural numbers can be #P-complete. However,
for any sample S and string m, computing |DC(S)| and
|DC(S ∪ {(m,+)})| is both in #P. Hence we can compute
δC by making two queries to a #P-oracle.

We will prove the #P-hardness of computing δC show-
ing that counting the number of satisfying assignments for a
2-CNF formula, which is #P-complete [11], is polynomial-
time one-Turing reducible to computing δC . Due to space
limitations we give only a sketch for this reduction and skip
the analysis. The reduction uses however some key ideas
from the one given by Lanctot et al. [6] to prove NP-
hardness of the farthest string problem.

Assume F is a 2-CNF formula. Let x1, x2, . . . , x` denote
the variables in F and let k be the number of clauses of F .

We perform the reduction in two steps. In the first one we
construct a 3-CNF formula F ′ over variables x0, x1, x2, . . . , x`

(hence we add one new variable x0) and in the second step
we construct for the formula F ′ a sample S and a string m.
The crucial property of this construction is that

δC(S,m) =
#SAT(F ′|x0=0)

#SAT(F ′)
=

#SAT(F)

#SAT(F) + 2`
,

where F ′|x0=0 denotes the formula in which x0 is substituted
by the constant 0 and #SAT(F) is the number of satisfying
assignments for the formula F . Thus, one computes the
number of satisfying assignments for the formula F by

#SAT(F) =
δC(S,m) · 2`

1− δC(S,m)
.

We transform F to F ′ by adding to each clause of F the new
variable x0. Thus e.g. for F = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) we get
F ′ = (x0 ∨ x1 ∨ x̄2)∧ (x0 ∨ x̄1 ∨ x̄3). The reduction of F ′ to
S and m is more involved. The set S encodes clauses of F ′

and some constraints to enforce that every detector d that
matches none of the strings in S has the form (01 | 10)∗.
This way, d can be interpreted as an assignment for the
variables in F . The string for m enforces that the variable
x0 is set to 0.

More explicitly, the set S contains strings of length 2 ·
(`+2). It contains (1) words (11)`+2 and (00)`+2, (2) words
(11)i00(11)`+1−i for i = 0, . . . , `+ 1, (3) the word 10(00)`+2

and (4) for every clause (x0 ∨ λ ∨ λ′), if λ is a literal over
the variable xi and λ′, over xj , with i < j, we add to S the
word 1010(00)i−1u(00)j−1−iu′(00)`+2−j such that u = 10
if λ = xi and u = 01, otherwise. The word u′ encodes
the literal λ′ analogously. Finally we define the word m as
0010(00)` and specify r = `+ 2.

4.2.2 Monotone monomial detectors
For the r-distributed detectors, we have shown evidence

that neither exhaustive negative selection nor derandom-
ized non-exhaustive negative selection are computationally
tractable. Finally, we show an example that illustrates the
less intuitive situation where exhaustive negative selection is
tractable, but derandomized non-exhaustive negative selec-
tion is intractable unless #P = P.

We have seen in Proposition 3 that monotone monomial
detectors admit polynomial-time exhaustive negative selec-
tion. Hence, we can compute the consistency test in line 1
of the algorithm RandomNegativeSelection (Figure 2)
in polynomial time. However, the detector sampling dis-
tance is unlikely to be efficiently computable, as shown by
the following theorem.

Theorem 6. Let C be the concept class of the monotone
monomials (Definition 3). Then computing the detector sam-
pling distance δC is #P-complete.

Proof. Similarly to the previous theorem, the proof pro-
ceeds by showing that counting the number of satisfying as-
signments of monotone 2-CNF formulae is polynomial time
one-Turing reducible to computing δC . Analogously to mono-
tone monomials, monotone 2-CNF formulae contain only
positive literals. It was shown by Valiant that the associ-
ated counting problem is #P-complete even for this very
restricted formula class [11].

Let Φ be a monotone 2-CNF formula over the literals
L = {x1, . . . , xL} containing k clauses. We can assume that

every literal is contained at least once in Φ (otherwise we
can rename literals accordingly and use a smaller L). For
example,

Φ = c1 ∧ c2 ∧ c3 = (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x3 ∨ x3)

is such a formula and it has three satisfying assignments,
namely a1 = 011, a2 = 101, and a3 = 111 (L = k = 3). We
construct a negative example set S for Φ by converting every
clause c in Φ to a string as follows: For each i ∈ {1 . . . L}, set
si = 0 if xi ∈ c and si = 1, otherwise. Finally, set sL+1 = 0.
For the above example,

S = {(0100,−), (0010,−), (1100,−)} .

Now, every monotone monomial F consistent with S falls
in one of the following two categories:

1. xL+1 ∈ F . There are 2L monomials with this property.

2. xL+1 /∈ F . Because F is consistent with S, it corre-
sponds to a satisfying assignment a of Φ as follows:
Set ai = 1 if xi ∈ F and ai = 0, otherwise.

On the other hand, for every satisfying assignment a for Φ
there is exactly one monomial consistent with S with xL+1 /∈
F (e.g. for S given above, F1 = x2x3 corresponds to a1 =
011, F2 = x1x3 corresponds to a2 = 101, and F3 = x1x2x3

corresponds to a3 = 111). Hence, |DC(S)| = #SAT(Φ)+2L.
Now we set

m = 00 . . . 0| {z }
L

1 .

It is easy to see that the only monotone monomial satisfying
m is xL+1. This monomial is also consistent with S. Hence,
|DC(S∪{(m,+)})| = 1. Hence, if we have access to an oracle
for δC(S,m), we can infer #SAT(Φ) through the equation

δC(S,m) =
1

#SAT(Φ) + 2L
.

Since constructing S and m from Φ as well as solving the
above equation takes polynomial time, this completes the
proof.

Hence, this result is a consequence of the high difficulty
of exactly determining the number of solutions to Boolean
formulae even for the very restricted class of monotone 2-
CNF formulae. Note however, that this example does not
immediately generalize to other types of Boolean detectors –
e.g. computational hardness of computing the detector sam-
pling distance for arbitrary monomials cannot be established
using the same reduction.

5. CONCLUSIONS AND FUTURE WORK
We have formalized string-based negative selection with

arbitrary detector types as a consistent learning algorithm
in the notational framework of algorithmic learning theory.
From our results it appears that the complexity landscape
of both exhaustive and non-exhaustive negative selection al-
gorithms is equally rich as for consistent learning in general.

There are detector types for which an efficient implemen-
tation of at least exhaustive negative selection is unlikely
to exist. However, for the most commonly used detector
types in artificial immune systems, both exhaustive and non-
exhaustive negative selection are implementable in polyno-
mial time using the techniques we presented to avoid gener-
ating detectors explicitly.

We would like to emphasize that our work generalizes
negative selection on strings beyond the common detector
types that have their roots in theoretical immunology. The
practical use cases for r-chunk and r-contiguous detectors
are limited because both assume a semantic correlation be-
tween adjacent positions of the input strings, which need
not be the case in real-world datasets. Detectors based on
boolean formulae do not present this problem. Future work
should address the question if better classification perfor-
mance can be obtained on real-world datasets using non-
exhaustive negative selection with such detector types. If
that is the case, it should be studied whether approxima-
tion schemes or fixed parameter algorithms can be applied
to overcome the potential computational complexity issues
illustrated in Section 4.2.

6. REFERENCES
[1] M. Elberfeld and J. Textor. Efficient algorithms for

string-based negative selection. In Proc. of ICARIS
2009, volume 5666 of LNCS, pages 109–121. Springer,
2009.

[2] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer
immunology. Communications of the ACM, 40:88–96,
1997.

[3] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri.
Self-nonself discrimination in a computer. In Proc. of
the IEEE Symposium on Research in Security and
Privacy, pages 202–212. IEEE Press, 1994.

[4] M. R. Garey and D. S. Johnson. Computers and
intractability: a guide to the theory of
NP-completeness. Freeman and Company, 1979.

[5] Z. Ji and D. Dasgupta. Revisiting negative selection
algorithms. Evolutionary Computation, 15(2):223–251,
2007.

[6] J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang.
Distinguishing string selection problems. Information
and Computation, 185:41–55, 2003.

[7] L. Pitt and L. G. Valiant. Computational limitations
on learning from examples. Journal of the ACM,
35:965–984, 1988.

[8] T. Stibor. Foundations of r-contiguous matching in
negative selection for anomaly detection. Natural
Computing, 8:613–641, 2009.

[9] T. Stibor, J. Timmis, and C. Eckert. The link between
r-contiguous detectors and k-cnf satisfiability. In Proc.
of GECCO 2006, pages 491–498. ACM, 2006.

[10] J. Timmis, A. Hone, T. Stibor, and E. Clark.
Theoretical advances in artificial immune systems.
Theoretical Computer Science, 403:11–32, 2008.

[11] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal of Computing,
8:410–421, 1979.

