
Algorithmic Meta Theorems for Circuit Classes
of Constant and Logarithmic Depth

Michael Elberfeld Andreas Jakoby Till Tantau

Institut für Theoretische Informatik
Universität zu Lübeck

D-23538 Lübeck, Germany
{elberfeld,jakoby,tantau}@tcs.uni-luebeck.de

September 21, 2011

Abstract
An algorithmic meta theorem for a logic and a class C of structures states that all problems ex-

pressible in this logic can be solved efficiently for inputs from C. The prime example is Courcelle’s
Theorem, which states that monadic second-order (mso) definable problems are linear-time solvable
on graphs of bounded tree width. We contribute new algorithmic meta theorems, which state that
mso-definable problems are (a) solvable by uniform constant-depth circuit families (AC0 for deci-
sion problems and TC0 for counting problems) when restricted to input structures of bounded tree
depth and (b) solvable by uniform logarithmic-depth circuit families (NC1 for decision problems and
#NC1 for counting problems) when a tree decomposition of bounded width in term representation
is part of the input. Applications of our theorems include a TC0-completeness proof for the unary
version of integer linear programming with a fixed number of equations and extensions of a recent
result that counting the number of accepting paths of a visible pushdown automaton lies in #NC1.
Our main technical contributions are a new tree automata model for unordered, unranked, labeled
trees; a method for representing the tree automata’s computations algebraically using convolution
circuits; and a lemma on computing balanced width-3 tree decompositions of trees in TC0, which
encapsulates most of the technical difficulties surrounding earlier results connecting tree automata
and NC1.

Keywords: algorithmic meta theorem, monadic second-order logic, circuit complexity, tree
width, tree depth

1 Introduction

Courcelle’s Theorem [16] states that every monadic second-order (mso) definable problem can be de-
cided in linear time on graphs of bounded tree width. Since many important graph properties are easily
expressible in this logic, Courcelle’s Theorem yields a unified framework for showing that numerous
problems on graphs of bounded tree width are solvable in linear time. Recently we showed that both
Courcelle’s Theorem as well as its later extensions [7] also hold when “linear time” is replaced by “log-
arithmic space” [20], making the power of mso-definability available for the study of logarithmic space.

The present paper furthers this line of research and transfers the idea of unified mso-based prob-
lem definitions to circuit classes inside logarithmic space. During the course of this paper we identify
mso-based algorithmic meta theorems that place problems in the circuit classes AC0, GapAC0, TC0, NC1,
and #NC1. The classes AC0, GapAC0, and TC0 are defined via Boolean (AC0), arithmetic (GapAC0), and
threshold (TC0) circuit families of constant depth and unbounded fan-in (detailed definitions will be given
in Section 2). The classes NC1 and #NC1 are defined via Boolean and arithmetic circuits, respectively,
of logarithmic depth and bounded fan-in.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 128 (2011)

The inputs for Courcelle’s Theorem are graphs of bounded tree width and many mso-definable prob-
lems on such graphs are complete for logarithmic space, including even the question of whether the graph
has a certain tree width [20], but also the reachability problem for trees. Thus, in order to prove algorith-
mic meta theorems that place the complexity of problems inside subclasses of L, we either need to restrict
the logic or we need to restrict the kinds of inputs allowed. In the present paper, we consider the latter
case: For the constant-depth circuit classes, we only allow input graphs that have bounded tree depth (a
restriction of bounded tree width). For the logarithmic-depth circuit classes we allow arbitrary graphs of
bounded tree width as input, but require that the graphs are accompanied by tree decompositions in term
representation.

1.1 Our Contributions

Bounded Tree Depth Structures and Constant-Depth Circuits Our first contribution is a set of meta
theorems placing problems in constant-depth circuit classes. The inputs for these theorems are struc-
tures that have bounded tree depth, a measure on graphs that was introduced by Nešetřil and Ossona
de Mendez [34] to quantify the similarity of graphs to star graphs (in opposition to tree width, which
quantifies the similarity of graphs to trees). Characterizations of when a class C of graphs has bounded
tree depth include: (a) All graphs in C have a tree decomposition of both bounded width and depth; or
alternatively (b) all graphs in C have bounded longest path length. The tree depth of a logical structure
is the tree depth of its Gaifman graph (detailed definitions will be given in Section 2).

Theorem 1.1 (Decision Using Boolean Constant-Depth Circuits). For every mso-formula φ over some
signature τ and every d ∈N, there is a dlogtime-uniform AC0-circuit family that, on input of an arbitrary
τ-structure S, outputs 1 if, and only if, the tree depth of S is at most d and S |= φ holds.

As an example application, consider the problem of deciding whether a graph has a perfect matching.
The complexity of this mso-definable problem has been studied in detail and its complexity varies in
dependence of the class of graphs under consideration. By the above theorem, deciding whether a graph
of bounded tree depth has a perfect matching lies in AC0. In contrast, it is known that the same problem
for graphs of bounded tree width is L-complete [17, 20].

Instead of just deciding whether a formula is satisfied by a logical structure, when the formula has
a free second-order variable, we can try to count the number of assignments of sets to the free variable
that make the formula true. Moreover, if we count the number of solutions with respect to the sizes of
these sets, this leads to cardinality versions of Courcelle’s Theorem. These cardinality versions allow a
much broader range of applications than the decision version and we will show how both known results
from the literature and also new results can be proved in an elegant manner using these versions.

To formulate the cardinality versions, we need a bit of terminology: Let φ(X1, . . . ,X`,Y1, . . . ,Yk) be
an mso-formula with two sets of free set variables, namely the Xi and the Yj, and let S be a logical
structure with universe S. The solution histogram of φ and S, denoted by hist(S,φ), is an `-dimensional
integer array that tells us “how many solutions of a certain size exist”. In detail, let s = (s1, . . . ,s`) ∈
{0, . . . , |S|}` be an index vector that prescribes sizes for the sets that are substituted for the Xi. Then
hist(S,φ)[s] equals the number of subsets S1, . . . ,S`,S′1, . . . ,S

′
k ⊆ S with |S1|= s1, . . . , |S`|= s` and S |=

φ(S1, . . . ,S`,S′1, . . . ,S
′
k). In other words, we count how often φ can be satisfied when the sets assigned to

the Xi-variables have certain sizes, but impose no restrictions on the sizes of the Yj. As a first example,
let φdom(X1) = ∀x

(
X1(x)∨∃y(X1(y)∧E(y,x))

)
, which expresses that X1 is a dominating set in a graph

with edge relation E. Then hist(G,φdom)[s1] is the number of dominating sets of size s1 in the graph G.
As a second example, let φmatching(Y1) be the formula expressing that Y1 is an edge set that is a perfect
matching in G. Then, since `= 0, the histogram hist(G,φmatching) is just a scalar value that tells us how
many perfect matchings G has.

In order to represent a histogram h using a single number num(h) ∈ N, imagine h to be stored in
computer memory with a word size large enough so that each of its entries fits into one memory cell

2

(choosing the word size as k|S| will suffice). Then num(h) is the single number representing the whole
of the memory contents (a formal definition of num(h) will be given later). In particular, the bits of any
single entry of h can easily be obtained from the bits of num(h).

Theorem 1.2 (Histogram Computation Using Arithmetic Constant-Depth Circuits). For every mso-
formula φ(X1, . . . ,X`,Y1, . . . ,Yk) over some signature τ and every d ∈ N, there is a dlogtime-uniform
GapAC0-circuit family that, on input of a τ-structure S of tree depth at most d, outputs num(hist(S,φ)).

Note that by Theorem 1.1, we can check in AC0 whether an input structure S has tree depth d and,
if not, we could output an error value like −1. Applying Theorem 1.2 to the formula hist(G,φmatching)
shows that counting the number of perfect matchings in graphs of bounded tree depths lies in GapAC0.
Since GapAC0 is contained in FTC0, the functional version of the class TC0 of constant-depth circuits
with threshold gates, computing a particular bit of the number num(hist(S,φ)) can be done using a
TC0-circuit:

Corollary 1.3. For every mso-formula φ(X1, . . . ,X`,Y1, . . . ,Yk) over some signature τ and every d ∈ N,
there is a dlogtime-uniform TC0-circuit family that, on input of a τ-structure S of tree depth at most d,
an `-dimensional index s, and a bit position i, outputs the ith bit of hist(S,φ)[s].

We cannot hope to place the computation of solution histograms in any complexity class smaller
than FTC0 since the TC0-complete problem majority is easily expressible using an mso-formula and
the histogram: Turning a string s into a logical structure S = ({1, . . . , |s|},PS

1) in the usual manner by
setting i ∈ PS

1 ⇔ s[i] = 1, for the mso-formula φ(X1) = ∀x(X1(x)→ P1(x)) more than half of the input
bits are 1 if, and only if, hist(S,φ)

[
b|s|/2c+ 1

]
> 0. In Section 3.5 we show how extensions of this

idea can be used to prove the TC0-completeness of the unary version of subsetsum and also of other
number problems, the most powerful being unary integer linear programming with a constant number of
equations.

Bounded Width Tree Decompositions in Term Representation and Logarithmic-Depth Circuits
Our second contribution are algorithmic meta theorems for NC1 and its arithmetic companion class #NC1.
For these theorems the input structure is equipped with a tree decomposition of bounded width (no longer
of bounded depth, though) given in term representation. The term representation of a tree like is the
string [[] [[] []]], which exhibits the tree’s ancestor relation. It is this ancestor relation that is needed as
part of the input; the bags and their contents can be encoded in any reasonable way such as a set of pairs
of tree node numbers and associated bags.

Theorem 1.4 (Decision Using Boolean Logarithmic-Depth Circuits). For every mso-formula φ over
some signature τ and every w ∈ N, there is a dlogtime-uniform NC1-circuit family that, on input of a
τ-structure S along with a width-w tree decomposition in term representation for S, decides whether
S |= φ holds.

Unless NC1 =L, neither can the tree decomposition be omitted from the input nor can it be represented
as a pointer structure, because even given a tree decomposition of the input graph as a pointer structure
as part of the input, the reachability problem is still an mso-definable L-complete problem.

As an example of an application of the theorem, consider the problem of deciding the language
accepted by a tree automaton. It is well known that every such language lies in NC1 [30, 23]. The above
theorem allows us to reprove this fact succinctly: an mso-formula can easily check (using existential
second-order quantifiers) whether there is an assignment of states to the nodes of the tree that is locally
consistent and that makes the automaton accept.

Theorem 1.5 (Histogram Computation Using Arithmetic Logarithmic-Depth Circuits). For every mso-
formula φ(X1, . . . ,X`,Y1, . . . ,Yk) over some signature τ and every w ∈ N, there is a dlogtime-uniform

3

#NC1-circuit family that, on input of a τ-structure S along with a width-w tree decomposition in term
representation for S, outputs num(hist(S,φ)).

As an application of this theorem, we will show in Section 4.5 how it can be used to compute the
number of accepting paths of nondeterministic visible pushdown automata.

Technical Contributions The proofs of the algorithmic meta theorems for constant-depth circuits rest
on two new technical tools. First, we introduce a new model of automata, which we call multiset au-
tomata, that exactly captures the mso-definable problems on unordered unranked labeled trees. We show
that multiset automata enjoy standard closure properties like closure under union or complement and
that for every nondeterministic multiset automaton there exists an equivalent deterministic one. Intro-
ducing a new automaton model turned out to be necessary since standard automata-theoretic approaches
to proving meta theorems cannot be applied in the context of constant-depth circuits: all known approach
include preprocessing steps that enlarge the depth of input trees by at least a logarithmic factor, making
them unfeasible for simulation by constant-depth circuits. Second, we develop algebraic representations
of the computations of multiset automata using arithmetic circuits that keep track of the number of ways
in which states can be reached.

In the context of research on logarithmic-depth circuits, trees in term representation are a natural form
of input. In many papers (including the present), a central problem is that a logarithmic-depth circuit
cannot work on the term representation directly when it has large depth. Instead, some sort of balancing
must be done where the represented tree is recursively divided into smaller parts. Finding appropriate
recursive separators of the tree in a uniform manner is a highly involved problem; and even when the
separators have been found, it is difficult to implement the recursion in such a way that intermediate
values are passed around in the correct way. We present a new way of dealing with trees of arbitrary
depth: We develop an algorithm that takes a tree T as input and outputs a width-3 tree decomposition
of T that is perfectly balanced and, hence, has logarithmic depth. The bags of this decomposition form
a hierarchical separation of T into subtrees along which a recursive algorithm can work. A key property
of our construction is that it can be performed by uniform constant-depth threshold circuits.

1.2 Related Work

Algorithmic meta theorems for first-order and monadic second-order logic have been intensively studied
from the perspective of achieving a low runtime (a current overview can be found in the survey article
by Grohe and Kreutzer [24]). While these results place many problems in LINTIME or at least in P (or
FPT when viewed as parameterized problems), there is less work on meta theorems that lead to exact
classifications in complexity theoretic terms. Two exceptions are a paper of Wanke [46], which shows
that all problems that are captured by Courcelle’s Theorem are in LOGCFL, and our paper [20], which
places these problems further down into L.

Tree automata-based techniques are routinely used to prove time- and space-efficient variants of Cour-
celle’s Theorem [7, 20]. The problem of deciding whether a fixed tree automaton accepts a given tree
in term representation lies in NC1 both in the ranked [30] and the unranked case [23]. As discussed in
Section 4.5, Theorem 1.5 can be used to generalize these results and prove that the number of accepting
computations of nondeterministic tree automata can be counted in #NC1.

Buss [12] used pebbling-based strategies to evaluate Boolean sentences in uniform NC1. His method
was later adopted to evaluate arithmetic sentences [11] and, more recently, to prove that the number
of accepting computations of nondeterministic visible pushdown automata can be counted in #NC1 [28].
Our proof plan for the Theorems 1.4 and 1.5 differs from these techniques: We do not evaluate and balance
the input at the same time using logarithmic-depth circuits. We consider these tasks separately by first
computing a balanced (and, thus, logarithmic-depth bounded) version of the input structure in FTC0 and,

4

then, proceed to work on the balanced structure using logarithmic-depth circuits without applying any
balancing strategies.

1.3 Organization of This Paper

The paper is organized as follows: In Section 2, we will discuss the logical, graph theoretic and com-
plexity theoretic background of our work. In Section 3 we prove algorithmic meta theorems for constant-
depth circuit classes. Section 4 contains proofs of the algorithmic meta theorems for classes defined via
logarithmic-depth circuits; both Sections 3 and 4 contain discussions of how to apply the theorems to
yield new and unify old results on the complexity of particular problems.

2 Background

2.1 Logical Structures and Monadic Second-Order Logic

A signature τ (or vocabulary) is a set of relation symbols R together with a mapping assigning an arity
r ≥ 1 to each relation symbol. In slight abuse of notation, we write R ∈ τ to indicate that R lies in τ and
Rr ∈ τ to additionally indicate that R has arity r. A (finite) τ-structure S = (S,RS

1 , . . . ,R
S
m) consists of a

nonempty, finite set S, the universe of S , and for each relation symbol Rri
i ∈ τ a relation RS

i ⊆ Sri . In the
present paper we consider only finite structures.

Monadic second-order logic (mso-logic) is the fragment of second-order logic where all variables
are either first-order variables x1, x2, . . . (also called element variables) or unary second-order variables
X1, X2, . . . (also called set variables). The mso-formulas over a vocabulary τ are inductively defined
as follows: The atomic formulas are of the forms x = y, X(z), R(x1, . . . ,xr), where x,y,z,x1, . . . ,xr are
element variables, X is a set variable, and Rr ∈ τ . Formulas are build from atomic formulas by connectives
¬ and ∧, existential element quantifiers ∃x, and existential set quantifiers ∃X . Bound and free variables
are defined as usual. We write φ(X1, . . . ,X`) for a formula φ with free set variables X1, . . . ,X`. For a
vocabulary τ , a τ-structure S with universe S, a τ-formula φ(X1, . . . ,X`), and sets S1, . . . ,S` ⊆ S, we
write S |= φ(S1, . . . ,S`) to indicate that φ holds in the structure S if each Xi is interpreted as Si.

If we want structures to be processed by circuits, we need to encode them as strings. We do so in the
usual way, see also [26] for a detailed discussion: An r-ary relation is represented by a bitstring whose
ith bit is 1 if, and only if, the ith r-tuple (in lexicographic order) of elements of the universe is an element
of the relation. We denote the encoding of a logical structure S by code(S).

2.2 Graphs and Trees

A (directed) graph is a pair G, consisting of a set V (G) of vertices and a set E(G) ⊆ V (G)×V (G) of
edges. A subgraph of a graph G is a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph
of G induced on a set U ⊆V (G) is the graph G[U] with V (G[U]) =U and E(G[U]) = E(G)∩ (U ×U).
The children of a vertex v of a directed graph G are all vertices u with (v,u) ∈ E(G). A (simple) path
from a vertex s ∈ V (G) to a vertex t ∈ V (G) is a sequence of distinct vertices v1, . . . , vm with s = v1,
t = vm, and (vi,vi+1) ∈ E(G) for all i ∈ {1, . . . ,m−1}; the path’s length is m−1. The maximum length
of a simple path in a graph G is called its longest path length and denoted by lpl(G). We treat undirected
graphs as special cases of directed graphs, namely as directed graphs with a symmetric edge relation.
An undirected graph is connected if there exists a path between any two of its vertices. The components
C1, . . . , Cm of an undirected graph G are its maximal connected subgraphs; the empty graph has zero
components. Graphs can be seen as logical structures, namely {E2}-structures G = (V,EG).

A (directed) tree is a directed graph T together with a distinguished root r ∈V (T), such that for every
v ∈V (T) there exists exactly one path from r to v. We use the term nodes to refer to the vertices of a tree.
Nodes without children are called leaves. The degree of a tree (sometimes also called the rank of the

5

tree) is the maximum number of children any node has. A (directed) forest is a disjoint union of rooted
directed trees. The depth of a forest F is lpl(F). A labeled forest over an alphabet Σ is a pair (F, l) that
consists of a forest F and a mapping l : V (F)→ Σ.

2.3 Tree Width and Tree Depth

The tree width measure generalizes the notion of trees. Robertson and Seymour [38] defined it through
tree decompositions of graphs: A tree decomposition D of a connected undirected graph G is a tree
TD together with a labeling function BD : V (TD) → P(V (G)), where P(X) is the power set of X , that
satisfies two properties: The connectedness condition states that for all v ∈ V (G) the induced subtree
TD

[
{n ∈V (TD) | v ∈ BD(n)}

]
is nonempty and connected. The edge cover condition states that for every

edge e = (v,w) ∈ E, there is an node n ∈V (TD) with v,w ∈ BD(n). The sets BD(n) are called bags. The
width of a tree decomposition D is maxn∈V (TD) |BD(n)|− 1, its depth is the depth of TD. The tree width
of a graph G, denoted by tw(G), is the minimum width over all its tree decompositions. The language
tree-width = {(G,w) | tw(G) ≤ w}, which is the same problem as deciding whether embeddings into
k-trees exist, is NP-complete in general [6], while for any constant w, the problem tree-width-w = {G |
tw(G)≤ w} is complete for L [20].

While tree width generalizes the concept of trees, tree depth is a more restrictive graph measure which
generalizes the concept of star graphs. It was introduced by Nešetřil and Ossoma de Mendez [34] through
closures of trees: The closure clos(T) of a directed tree T is the graph with vertex set V (clos(T)) =
V (T) and edge set E(clos(T)) = {(v,w) ∈ V (T)×V (T) | there is a v-to-w or a w-to-v path in T}. The
tree depth of a connected graph G, denoted by td(G), is 1 plus the minimum depth of a rooted tree T
with V (G) = V (T) and E(G) ⊆ E(clos(T)). The tree depth of a graph with components C1, . . . ,Cm

is maxi∈{1,...,m} td(Ci). Deciding tree-depth = {(G,d) | td(G) ≤ d}, which is the same problem of
deciding whether a graph has an elimination tree of a given depth [34], is NP-complete [8]. At the end
of Section 3.3 we show tree-depth-d = {G | td(G)≤ d} ∈ AC0 for any constant d ∈N. In Section 3 we
will make use of the following bound on the longest path length of a graph in terms of its tree depth that
was observed by Nešetřil and Ossoma de Mendez [35]. We provide a proof of it for completeness.

Lemma 2.1. For undirected graphs G we have lpl(G)≤ 2td(G)−2.

Proof. Without loss of generality let G be connected. We prove the lemma by induction over td(G). If
td(G) = 1, then |V (G)|= 1 and, therefore, lpl(G) = 0 = 21 −2. For the case that G’s tree depth is larger
than 1, we consider a tree T of depth td(G)− 1 on G’s vertices with E(G) ⊆ clos(T). Every simple
path in G that does not cross the root of T has length at most 2td(G)−1 − 2 by the induction hypothesis.
Every path in G that crosses the root r of T has the form (v1, . . . ,vn,r,w1, . . . ,wm), where the subpaths
(v1, . . . ,vn) and (w1, . . . ,wm) lie completely inside subgraphs G[V (T1)] and G[V (T2)] for two subtrees T1
and T2 of T . Thus, the overall length of such a path is bounded by 2+2(2td(G)−1 −2) = 2td(G)−2.

The concepts of tree width and tree depth generalize from graphs to logical structures as follows:
The Gaifman graph of a structure S with universe S, denoted by GS , is an undirected graph that has
vertex set S and there is an edge (a,a′) ∈ S× S if, and only if, a relation RS from S contains a tuple
(a1, . . . ,ar) ∈ RS with a,a′ ∈ {a1, . . . ,ar}. The tree width (tree depth) of a logical structure S equals
the tree width (tree depth) of GS . A class of structures has bounded tree width (bounded tree depth) if
the tree width (tree depth) of all its structures is bounded by a constant. Tree decompositions for logical
structures can also be defined directly [22]: Here the bags are subsets of the universe of the structure
and for every tuple inside any relation, there is a bag containing all the elements of the tuple. A logical
structure and its Gaifman graph have exactly the same tree decompositions since tuples of r elements
give rise to cliques of size r in the Gaifman graph and for every clique in the graph there is always a bag
that contains this clique.

6

2.4 Constant-Depth and Logarithmic-Depth Circuit Classes

Circuit Classes In the present paper we are concerned with uniform circuit complexity classes that are
inside deterministic logarithmic space. The most widely known language classes we consider are NC1,
the class of decision problems L ⊆ {0,1}∗ that are decidable by Boolean circuit families of logarithmic
depth and polynomial size with input gates {x1, . . . ,xn,¬x1, . . . ,¬xn} and bounded fan-in inner gates
from {∧,∨,0,1}; AC0, the class of decision problems L ⊆ {0,1}∗ decidable by Boolean circuit families
of constant depth and polynomial size with input gates {x1, . . . ,xn,¬x1, . . . ,¬xn} and unbounded fan-in
inner gates from {∧,∨,0,1}; and TC0, whose definition is the same as that of AC0 except that we also
allow unbounded fan-in gates that decide majority= {y1 . . .yn ∈ {0,1}∗ |∑i∈{1,...,n} yi > n/2}. Note that
we do not allow ¬-gates to be located in the inner part of the circuit; they are only applied to input gates
directly, but this does not restrict the computational power of the uniform circuit classes we consider.
We also consider the function class variants of AC0, TC0, and NC1, known as FAC0, FTC0, and FNC1,
respectively. Each function class is defined in the same way as its corresponding language class, but
with Boolean circuit families computing general mappings f : {0,1}∗ →{0,1}∗ instead of characteristic
functions χL : {0,1}∗ →{0,1} of languages L ⊆ {0,1}∗.

The classes AC0 and NC1 can be arithmetized by replacing, in the definition of each class, the admitted
input gates by {x1, . . . ,xn,1−x1, . . . ,1−xn} and the Boolean inner gates by arithmetic gates {×,+,0,1}.
This leads to circuit families that compute functions f : {0,1}∗ → N; the resulting classes are called
#AC0 and #NC1. If we also allow the constant −1 as an inner gate, the circuit families compute functions
f : Σ∗ → Z; the corresponding classes are known as GapAC0 and GapNC1. Vollmer [45] calls the above
circuits counting arithmetic circuits and the classes counting arithmetic classes due to their equivalent
definitions in terms of counting the number of accepting proof trees of Boolean circuits. To study the
relation between language classes defined via Boolean circuits and their arithmetic variants, the following
language classes are known from the literature: PNC1 is the class of all languages L ⊆ {0,1}∗ such
that there exists a function f ∈ GapNC1 with x ∈ L if, and only if, f (x) > 0 for all x ∈ {0,1}∗. The
corresponding variant of AC0, the class PAC0, is defined in the same way, but with respect to GapAC0.

Uniformity We use the above complexity classes in their dlogtime-uniform variants, as defined by
Barrington, Immerman and Straubing [33]. For constant-depth circuit families with unbounded fan-in
gates, this corresponds to the notion that their direct connection languages, a language of tuples that
describe the type of gates and their adjacencies, can be decided by random-access logarithmic-time de-
terministic Turing machines [33]. For logarithmic-depth circuit families with bounded fan-in gates this
corresponds to the fact that their extended connection languages, a language that extends the direct con-
nection language to also include tuples describing paths between gates in the circuits, can be decided by
random-access logarithmic-time alternating Turing machines [40, 12, 33].

The equality PAC0 = TC0 (and GapAC0 = FTC0) was first shown in the P-uniform setting [2, 5], and
later refined to also hold in the dlogtime-uniformity setting [25]. The classes #NC1, GapNC1, and PNC1

where introduced by Caussinus et al. [14] who showed PNC1 ⊆ L and FNC1 ⊆ #NC1 (note that, in order
to state inclusion relations between classes of functions that compute numbers and classes of functions
that compute strings, we consider binary string representation of numbers). The classes of functions can
be arranged into the following chain of inclusions:

FAC0 (#AC0 ⊆ GapAC0 = FTC0 ⊆ FNC1 ⊆ #NC1 ⊆ GapNC1 ⊆ FL ,

where GapNC1 ⊆ FL follows from [15] (see also [3]). The language classes that are defined via Boolean
and counting arithmetic circuits are related as follows:

AC0 (PAC0 = TC0 ⊆ NC1 ⊆ PNC1 ⊆ L .

7

Reducibility Notions To compare the complexity of problems, we will use different uniform reducibil-
ity notions: We will use dlogtime-uniform AC0 many-one and Turing reductions that are equivalent to
first-order many-one and Turing reductions as studied in the book of Immerman [26]. Moreover, we will
use dlogtime-uniform TC0 many-one reductions. All uniform circuit classes defined above are closed
under both kinds of AC0 reductions; uniform TC0, FTC0, and all their superclasses defined above are
closed under TC0 many-one reductions.

For a general introduction to the field of circuit complexity, we refer to the book of Vollmer [45] and
a survey article of Allender [3].

3 Algorithmic Meta Theorems For Constant-Depth Circuit Classes

In the present section we prove the algorithmic meta theorems that relate monadic second-order prop-
erties of graphs of bounded tree depth to constant-depth circuit classes (Theorems 1.1 and 1.2 from the
introduction). The route toward proving them is the following:

1. In Section 3.1 we show how a tree decomposition of a logical structure of bounded tree depth can
be computed using first-order reductions.

2. In Section 3.2 we show how, once the tree decomposition is available, we can adjust the original
mso-formula to an equivalent formula for the computed tree. This first step allows us to replace
the task of computing solution histograms for structures of any signature by the more manageable
problem of computing solution histograms for trees.

3. In Section 3.3 we introduce the notion of multiset automata for unordered unranked labeled trees,
prove standard closure properties for these automata, and show that they capture exactly the mso-
definable properties of unordered unranked labeled trees. This turns the problem of deciding for-
mulas into the problem of evaluating multiset automata.

4. In Section 3.4 we explain how to reduce computing the number of ways in which multiset tree
automata accept an input tree to evaluating arithmetic circuits of constant depth.
In the course of this last step, we address the problem of how histograms can be encoded as num-
bers. As we will see, by using an appropriate encoding, we may assume that our formulas φ are
all of the form φ(X1, . . . ,Xk), that is, we may assume that no variables Yi are present. This is why
the lemmas and theorems of the present section are all formulated without references to any Yj.

5. At the end, in Section 3.5, we apply the algorithmic meta theorems to concrete problems. We
show, in particular, that the unary version of integer linear programming with a constant number
of equations is complete for TC0.

3.1 Computing Tree Decompositions of Bounded Width and Depth

The first step toward our goal of proving Theorems 1.1 and 1.2 is to compute tree decompositions of
bounded width and depth for input structures of bounded tree depth. The following lemma states that
this is possible to achieve using first-order reductions.

Lemma 3.1. Let τ be a signature and d ∈ N. There is a first-order computable function that, on input
of the encoding code(S) of a τ-structure S, outputs either

1. a tree decomposition D of S of width at most 2d −3 and depth at most 2d −1 or
2. “no” and td(S)> d holds in this case.

Proof. On input of a structure S, we first build its first-order definable Gaifman graph GS . Then we
use another appropriate first-order formula to test whether the graph contains a path of length 2d −1. If
there is such a path, we know td(S) > d by Lemma 2.1 and output “no”. Otherwise, the computation

8

proceeds to construct a closure tree of depth at most 2d − 2 for each component of GS . This means
that for each component C, a tree T is constructed with V (C) = V (T), E(C) ⊆ clos(T), and lpl(T) ≤
lpl(C)≤ 2d −2. Finally, each closure tree T is turned into a tree decomposition (T,B) for C by assigning
to each node v ∈ V (T) the bag B(v) = {w | w lies on the path from v to the root of T}, and, if GS has
more than a single component, the tree decompositions for the components are merged by connecting
their roots to a new root with an empty bag. The width bound 2d −3 and the depth bound 2d −1 of the
tree decomposition follow directly from the depth bound 2d −2 of the closure trees. Since T ’s depth is
bounded, constructing the tree decomposition from the closure trees is first-order definable. We are left
to describe the computation of closure trees.

We use a parallel first-order computable procedure that constructs depth-first graph search trees for
connected undirected graphs of bounded longest path length. A depth-first graph search tree T for an
undirected connected graph G is a closure tree of bounded depth for G since, firstly, lpl(T) ≤ lpl(G)
and, secondly, each edge (v,w) ∈ E(G) is either a tree edge (that means (v,w) ∈ E(G)) or a back-edge
(that means w lies on the path from v to the root of T) of the graph search. Thus, V (T) = V (G) and
E(G)⊆ E(T), as was also observed by Grohe and Kreutzer [24].

We construct a depth-first graph search tree T by using 2d − 2 first-order computations of the same
kind that are arranged in a series. The input to each computation layer i is a partial depth-first search tree
Ti that is extended in parallel to a tree Ti+1. The input to the first layer is any vertex v ∈V (G), the output
of the last layer is a depth-first search tree for the whole graph G. Each layer considers the components
C1, . . . , Cm of G[V \Ti] in parallel. In order to mimic the sequential computation of depth-first search
trees, it finds, for each C j, the vertex v j ∈ V (Ti) that is connected to some vertex from C j in G with
longest distance from the root of Ti in Ti. Then it singles out a longest simple path Pj in G[C j ∪{v j}] that
starts at v j. The layer outputs the tree Ti+1 that is the union of Ti and all paths Pj. Finally, 2d −2 layers
are sufficient to construct T since the lengths of the longest simple paths in the considered components
decrease after each layer.

3.2 Turning Tree-Depth-Bounded Structures into Depth-Bounded Tree Structures

In the previous section we saw that tree decompositions (T,B) of bounded width and depth can be con-
structed using first-order formulas for logical structures S of bounded tree depth. Our aim is to “work”
with these tree decompositions rather than the original structures. However, the formula φ for which we
wish to decide φ |= S or to compute a histogram refers to S, not to (T,B). Thus, our objective is to
transform the formula φ into a new formula ψ that refers to this tree rather than the structure S , such that
φ |= S ⇔ ψ |= (T,B). We must also ensure that the histograms are not modified by this transformation.
Lemma 3.2 states that such a transformation is, indeed, first-order computable. For the formulation of
the lemma, we use the following terminology: An s-tree structure is a structure T = (V,ET ,PT

1 , . . . ,PT
s)

over the signature τs-tree = {E2,P1
1 , . . . ,P

1
s } where (V,ET) is a directed tree.

Lemma 3.2. Let φ(X1, . . . ,X`) be an mso-formula over some signature τ and w ∈ N. There is an s ∈ N,
and a mso-formula ψ(X1, . . . ,X`) over τs-tree, and a first-order computable function that, on input of any
τ-structure S with universe S and a width-w tree decomposition D = (TD,BD) for S, produces an s-tree
structure T , such that

1. the depth of T equals the depth of TD plus 1, and
2. for all indices i ∈ {0, . . . , |S|}` we have hist(S,φ)[i] = hist(T ,ψ)[i] and all other entries in the

array hist(T ,ψ) are 0.

Proof. The proof is similar to the logspace-reduction we used before [20, Lemma IV.1], but avoids a
recursive coloring of the elements of T to make the transformation first-order computable. We describe
the whole reduction and highlight the steps that differ from the previous approach.

9

The node set of T is the union of two disjoint sets VB and VE of nodes, which we call the bag nodes
and the element nodes. In detail, the set VB is exactly V (TD). The set VE is the disjoint union of the sets
{en

1, . . . ,e
n
rn
} for n ∈ V (TD) with attached bag BD(n) = {e1, . . . ,ern}, where some ordering is chosen for

each bag. For an element node x = en
i , we write n(x) for the node n ∈V (T), we write i(x) for the index i,

and we write e(x) for the element ei ∈ S. The edges of T are as follows: All edges of TD are also present
in T . Additionally, for each x ∈VE there is an edge from n(x) to x.

The s unary predicates that are present in T fall into four groups:

1. Node type predicates: We define the predicate PT
B =VB and the predicate PT

E =VE .
2. Element ordering predicates: We use w+1 predicates PT

1 , . . . , PT
w+1 to record a total ordering for

the element nodes of each bag: For each bag node n with attached element nodes {x1, . . . ,xr} we
set x1 ∈ PT

i(x1)
, . . . , xr ∈ PT

i(xr)
.

3. Structure predicates: These predicates are used to represent the relations from the structure S as
follows: To represent a relation RS of arity r of S, we introduce new predicates PT

i1,...,ir for every
i1, . . . , ir ∈ {1, . . . ,w+1}. They locally encode the tuples of RS at the bags with (i1, . . . , ir) being
the local indices of the element of a tuple of RT . In detail, for every tuple (x1, . . . ,xr) ∈ V r

E with
n(x1) = · · · = n(xr) and (e(x1), . . . ,e(xr)) ∈ RS , let x j ∈ PT

i(x1),...,i(xr)
for j ∈ {1, . . . ,r}. Since a

tree decomposition puts the elements of a tuple completely into at least one bag, for all tuples
(e1, . . . ,er)∈ RS there are element nodes x1, . . . , xr with n(x1) = · · ·= n(xr) and x1 ∈ PT

i(x1),...,i(xr)
∧

x1 ∈ PT
i(x1)

, . . . , xr ∈ PT
i(x1),...,i(xr)

∧ xr ∈ PT
i(xr)

.
4. Equivalence predicates: These predicates are used to relate element nodes that stand for the same

elements in the structure; the construction of these predicates differs from our previous method [20,
Lemma IV.1]. For the logspace reduction we used a coloring that groups element nodes that stand
for the same element from the structure into the same color class, such that the components of the
subforests of T that are induced by the different color classes are in one-to-one corresponds to
the elements of S . Since assigning colors to the element nodes is not a local operation (elements
of S may be distributed around the whole decomposition), we use a different approach to relate
equivalent element nodes. We introduce w+1 predicates NT

1 , . . . ,NT
w+1 and put an element node

x into NT
j if e(x) = e(y) for some y with i(y) = j and n(y) is the parent node of n(x) in T . If

an element node is in none of the predicates NT
i , we insert it into the predicate PT

R , the set of
representative element nodes. By this construction, there is a one-to-one correspondence between
PT

R and the universe of S.

All steps of the reduction are first-order computable. The formula ψ is build on top of the following
two subformulas: (a) The mso-τs-tree-formula ψequ(x,y) that is true if x and y are element nodes with
e(x) = e(y). This formula quantifies over element nodes that are attached to the bag nodes on the path
between x and y and uses the element ordering predicates and the equivalence predicates to make sure
that all chosen element nodes stand for the same element of the universe of S. (b) The mso-τs-tree-formula
ψR(x1, . . . ,xr), where the xi are first-order variables, that is true for representative element nodes xi if,
and only if, (e(x1), . . . ,e(xr)) ∈ RS : The formula tests whether there are element nodes y1, . . . , yr such
that ψequ(x1,y1)∧·· ·∧ψequ(xr,yr), the yi are children of the same bag node, and there is an index tuple
(i1, . . . , ir) with Pi1,...,ir(y1)∧ y1 ∈ Pi1 ∧·· ·∧Pi1,...,ir(yr)∧ yr ∈ Pir . To build ψ , we first extend the formula
φ such that only elements and subsets of PT

R are permissible for the free and bounded variables. Second,
substitute x = y by ψequ(x,y). Third, substitute every R(x1, . . . ,xr) with the formula ψR(x1, . . . ,xr).

In Section 4 we will use a reduction that is similar to the one from the previous lemma, but ap-
plies to structures that are equipped with a tree decomposition in term representations. Lemma 3.1 and
Lemma 3.2 together provide a transformation from evaluating mso-formulas on logical structures of
bounded tree depth to s-tree structures of bounded depth.

10

3.3 Turning Formulas on Tree Structures into Tree Automata

The trees underlying the s-tree structures that are produced by Lemma 3.2 do not impose an order on
sibling nodes and nodes may have an unbounded number of children. Such trees, with the s unary predi-
cates represented by binary strings, are known as unordered, unranked labeled trees in the literature [29].
“Unordered” means that there is no total order on sibling nodes and “unranked” stands for unbounded
degree. In this section we introduce a new notion of automata that is appropriate for unordered labeled
trees and prove that it exactly captures the mso-definable properties of unordered labeled trees, resulting
in a theorem which can be seen as an extension of the Büchi–Elgot–Trakhtenbrot Theorem [10, 21, 43].
Moreover, the translation between mso-formula and automata will preserve the sizes and number of so-
lutions, thereby establishing a reduction from computing solution histograms for mso-formulas on s-tree
structures to evaluating tree automata.

Tree-automata-based proofs of time and space efficient variants of Courcelle’s Theorem transform
input structures into trees where the underlying tree has bounded degree. Then, in these proofs mso-
formulas on bounded degree trees are transformed into the classical tree automata for ranked labeled
trees that were developed in the 1970’s by Doner [18] and Thatcher and Wright [42]. Adopting this
strategy and transforming s-tree structures with unbounded degree into tree structures of bounded degree
would come at the cost of increasing the depth of the tree by at least a logarithmic factor and this would
imply vertical data dependencies in the tree that we cannot hope to handle with constant-depth circuits.
Due to this reason, we need an automaton model that does not force us to change the topology of the tree.
For a similar reason, we cannot use some order on the children and translate to tree automata for ordered
unranked trees that are studied in the context of xml processing [9, 23]; here the horizontal data depen-
dencies on sibling subtrees are too high. In fact, such automata are able to decide any regular property
on the ordered children of a node and, thus, cannot be simulated by constant-depth circuits.

The only automaton model from the literature that does not introduce dependencies between nodes
that cannot be handled by constant-depth circuits is due to Libkin [29] who defined counting unranked
tree automata, which are equivalent to mso on unordered trees. The transition function of these automata
are defined in terms of Boolean functions: they allow us to assign a state q′ to a node with symbol σ

if a Boolean function δ (σ ,q′), which depends on the number of occurrences of states at the children,
evaluates to 1. However, it is unclear (at least to us) how these automata could be used to compute
solution histograms since we need to relate the states assigned to the subtrees of a node with the state
that is assigned to the whole tree in a transparent way, without “hiding it inside a Boolean function.”

In this section, we develop multiset automata as a notion that exactly captures the mso-definable
properties of unordered labeled trees (unranked or ranked) and that allows us to control the assignment
of states to the children of a node such that we can later establish a cardinality-preserving transformation
into arithmetic circuits in Section 3.4.

For readers familiar with hedge automata [9] and the first-order and monoid-based characterizations
of regular languages [41], we remark that the multiset automata we introduce are equivalent to bottom-up
hedge automata whose horizontal languages can be recognized by finite monoids that are commutative
and aperiodic.

Definition of Multiset Automata The basic idea behind our definition of a multiset automaton is as
follows: In order to determine the state reached for a given node of the tree, we consider the states reached
at the children of the node. Since the trees under consideration are unordered, we need to consider the set
of states reached rather than the sequence of states reached at the children. However, “just” considering
the set of states reached turns out to be insufficient: For our proofs we need to be able to distinguish
whether, say, the state q1 is reached twice and the state q2 once or whether the cardinalities are the other
way round. For this reason, we consider the multiset of states reached at the children of a given node.
However, our trees are also unranked and as the number of children grows, the number of possible state

11

multisets that the automaton may encounter grows without limit. In order to use finite descriptions of the
automata nevertheless, we introduce a capping operation: The automaton’s transition relation is defined
only for state multisets with some maximal multiplicity m and whenever a state is reached at more than
m children, the state is inserted into the state multiset only m times (multiplicities are “capped” at m).

?

q1 q1 q2 q1 q2 q1 q3

As an example, suppose an automaton reaches the indicated states at the chil-
dren of the root in the example to the right. Then the multiset of states reached
is M = {q1,q1,q1,q1,q2,q2,q3}. If the multiplicity of the automaton is, say, 2,
then the capped multiset is M|2 = {q1,q1,q2,q2,q3}. The state reached at the
root would then be determined by the entry of the transition relation for this par-
ticular multiset. In the following, we formalize these ideas.

Multisets generalize sets by allowing elements to appear more than once. Formally, given a uni-
verse U (which is just a normal set), a multiset M on U is a function #M : U → N that assigns a multi-
plicity to each element of U . We say that M has multiplicity at most m if #M(e)≤ m holds for all e ∈U .
The cardinality of M is |M| = ∑e∈U #M(e). We write Pω(U) for the class of all multisets on U and we
write Pm(U) for the class of all multisets on U of multiplicity at most m. Usual sets can be considered
as multisets M with multiplicity at most 1 and P1(U) is the usual power set of U . Given two multisets M
and N over the same universe U , we write M ⊆ N to indicate that #M(e)≤ #N(e) holds for all e ∈U . The
union M ∪N is the multiset with #M∪N(e) = max{#M(e),#N(e)} for all e ∈ U . Similarly, the intersec-
tion M∩N has the property #M∩N(e) = min{#M(e),#N(e)} and the set difference M \N has the property
#M\N(e) = max{0,#M(e)−#N(e)}.

We define two restriction operations on multisets M ∈ Pω(U). First, given a number m ∈N, let M|m
be #M|m(e) = min{#M(e),m} for e ∈U . We call M|m the capped version of M to multiplicity m. Second,
for a set V ⊆U , let us write M|V for the restriction of M to V , defined by #M|V (e) = #M(e) for e ∈V and
#M|V (e) = 0 for e /∈V .

Definition 3.3 (Multiset Automata). A nondeterministic (bottom-up) multiset automaton is a tuple A =
(Σ,Q,Qa,∆) consisting of an alphabet Σ, a state set Q, a set Qa ⊆ Q of accepting states, and a state
transition relation ∆ ⊆ Σ×Pm(Q)×Q for some constant multiplicity bound m. The automaton is deter-
ministic if for every σ ∈ Σ and every M ∈ Pm(Q) there is exactly one q ∈ Q with (σ ,M,q) ∈ ∆; in this
case we can view ∆ as a state transition function δ : Σ×Pm(Q)→ Q.

Definition 3.4 (Computation of a Multiset Automaton). Let (T, l) be a labeled tree, where l : V (T)→ Σ

is the labelling function, and let A = (Σ,Q,Qa,∆) be a multiset automaton. A computation of A on (T, l)
is a partial assignment q : V (T) → Q such that for every node n ∈ V (T) for which q(n) is defined, we
have that (a) the value q(c) is defined for each child c of n in T and (b) for the mulitset M = {q(c) | c is
a child of n} we have (l(n),M|m,q(n)) ∈ ∆. A computation is accepting, if q(r) ∈ Qa holds for the root
node r of T . The tree language L(A) contains all labeled trees accepted by A.

Closure Properties of Multiset Automata We now show that multiset automata enjoy the same clo-
sure properties as usual tree automata: The class of tree languages accepted by multiset automata is
closed under intersection, union, complement, and for every nondeterministic multiset automaton there
is a deterministic automaton accepting the same tree language. These closure properties will be crucial
for the transformation of mso-formulas into multiset automata.

Lemma 3.5. For all multiset automata A and B there is a multiset automaton C with L(C) = L(A)∩L(B).

Proof. For this proof, we introduce the following operations on multisets: For a universe U , the projec-
tions π1,π2 : Pω(U2)→Pω(U) of multisets of pairs to their first and second components are defined as
#π1(M)(e) = ∑ f∈U #M((e, f)) and #π2(M)(f) = ∑e∈U #M((e, f)). Observe that if M|m = N|m holds for two
multisets M and N, then we also have π1(M)|m = π1(N)|m and π2(M)|m = π2(N)|m.

12

Let A = (Σ,Q,Qa,∆A) and B = (Σ,P,Pa,∆B) be multiset automata with multiplicity bounds m and n,
respectively. The intersection product automaton of A and B is C = (Σ,Q×P,Qa ×Pa,∆C) with multi-
plicity bound k = max{m,n} and transition relation

∆C =
{(

σ ,M|k,(q, p)
)
| σ ∈ Σ, q ∈ Q, p ∈ P, M ∈ Pω(Q×P),

(σ ,π1(M)|m,q) ∈ ∆A, (σ ,π2(M)|n, p) ∈ ∆B
}
.

We show by induction on the tree depth that the following is true for all labeled trees: The automata
A and B can reach states q and p at the root, respectively, if, and only if, C can reach the state (q, p) at
the root. Clearly, this implies the claim. Since there is nothing to prove for empty trees, we only need to
prove the inductive step. Let c1 to ct be the children of the root.

We need to prove two directions. For the only-if-direction, let q1 to qt be states reached by A at the
children c1 to ct , respectively, such that (σ ,{q1, . . . ,qt}|m,q) ∈ ∆A and let p1 to pt be states reached by B
at these children such that (σ ,{p1, . . . , pt}|n, p) ∈ ∆B. By the induction hypothesis, C can reach (q1, p1)
to (qt , pt) at c1 to ct , respectively. By definition of ∆C, we immediately get that C can now reach (q, p)
at the root.

For the if-direction, let C reach (q1, p1) to (qt , pt) at the children and let
(
σ ,{(q1, p1), . . . ,(qt , pt)}|k,

(q, p)
)
∈ ∆C. By the induction hypothesis, A can reach the states q1 to qt at the children and B can

reach p1 to pt . By the definition of ∆C, there must be a set M with {(q1, p1), . . . ,(qt , pt)}|k = M|k
and (σ ,π1(M)|m,q) ∈ ∆A and (σ ,π2(M)|n, p) ∈ ∆B. Now, since {(q1, p1), . . . ,(qt , pt)}|k = M|k, we get
π1({(q1, p1), . . . ,(qt , pt)})|k = π1(M)|k, which implies {q1, . . . ,qt}|k = π1(M)|k, which in turn implies
{q1, . . . ,qt}|m = π1(M)|m because of m ≤ k. This last conclusion shows that (σ ,{q1, . . . ,qt}|m,q) ∈ ∆A

and, thus, q is reachable by A at the root as claimed. The same argument, with q’s replaced by p’s and
π1 replaced by π2, shows that p is reachable by B at the root.

Lemma 3.6. For every nondeterministic multiset automaton A there is a deterministic multiset automa-
ton B with L(A) = L(B).

Proof. For this proof, we introduce the following operation on multisets: For a universe U , let PU =
P1(U) be the usual powerset of U . We define the choice relation ι ⊆ Pω(U)×Pω(PU) as follows:
({v1, . . . ,vt},{V1, . . . ,Vt}) ∈ ι whenever vi ∈ Vi holds for all i ∈ {1, . . . , t}. A key observation for the
following construction will be that for every m and every W ∈ Pω(PU), the following set (not multiset)
equality holds: {

V |m
∣∣ (V,W) ∈ ι

}
=
{

V |m
∣∣ (V,W |m·|U |) ∈ ι

}
. (1)

To see that this holds, first let (V,W)∈ ι . We must find a multisetV ′ withV ′|m =V |m and (V ′,W |m·|U |)∈ ι .
To this end, we construct a sequence of pairs (Vi,Wi) such that for all i we have (a) (Vi,Wi) ∈ ι , (b)
Vi|m =V |m, and (c) Wi|m·|U | =W |m·|U |. Setting V1 =V and W1 =W , the properties clearly hold for i = 1.
Each pair is obtained from the previous pair as follows, when possible: Choose an element v ∈ Vi that
has multiplicity exceeding m and that is an element of a set X ∈Wi of multiplicity exceeding m · |U |. Let
Vi+1 =Vi \{v} and Wi+1 =Wi \{X}. Clearly, each new pair still has the three properties. Furthermore,
this process will not stop as long as Wi still contains an element X of multiplicity exceeding m · |U |
since, then, at least one element of X must be present more than m times in Vi. This implies that for
the last set V ′ = Vi constructed in this way we have V ′|m = V |m and Wi =W |m·|U | and by (a) this means
(V ′,W |m·|U |) ∈ ι as claimed.

Second, let (V,W |m·|U |) ∈ ι . We must construct a set V ′ with V ′|m = V |m and (V ′,W) ∈ ι . Again,
we construct a sequence of pairs satisfying the same properties as above, but this time starting with
V1 = V and W1 =W |m·|U |. This time, seek an element v in Vi that has multiplicity at least m in Vi and a
set X in Wi whose multiplicity is at least m · |U |, but still less than #W (X). We set Vi+1 = V ∪{v} and

13

Wi+1 = Wi ∪{X}. Clearly, the three properties are still met by this construction. We claim that for the
last V ′ = Vi we have Wi =W . To see this, note that elements of W of multiplicity less than m · |U | have
this multiplicity in all Wi and that for elements X of W of multiplicity at least m · |U | at least one element
v ∈ X must be present at least m times already in V .

We are now ready to construct the automaton B. Let A = (Σ,Q,Qa,∆) be a nondeterministic multiset
automaton with multiplicity bound m. We call the elements of PQ = P1(Q) power states. Let B =
(Σ,PQ,{Q′ ∈ PQ | Q′ ∩Qa 6= ∅},δ) with multiplicity bound k = m · |Q| and transition function δ : Σ×
Pk(P)→ P defined by δ (σ ,W) = {q ∈ Q | ∃V ∈ Pω(Q) with (V,W) ∈ ι ,(σ ,V |m,q) ∈ ∆}.

We prove by induction on the tree depth that for every labeled tree the set S of states that the automa-
ton A can reach at the root is exactly the power state S reached by B at the root on input of this tree. Given
a tree whose root has children c1 to ct , assume that the set of states reached by A at child ci is Si for each i.
By the induction hypothesis, B will reach the single power state Si at child ci. Let W = {S1, . . . ,St}.
Now, by definition of the computation of multiset automata, the set S of states reached by A at the root
is {q ∈ Q | ∃V ∈ Pω(U) with (V,W) ∈ ι ,(σ ,V |m,q) ∈ ∆}. By equation (1), the set {V |m | (V,W) ∈ ι}
is the same as {V |m | (V,W |k) ∈ ι}. Thus, we can also write S as {q ∈ Q | ∃V ∈ Pω(U) with (V,W |k) ∈
ι ,(σ ,V |m,q) ∈ ∆}, which is exactly δ (σ ,W |k). Hence, the set of states that are assigned to the root of
the tree by nondeterministic computations of A equals the power state that is assigned to it by B.

Lemma 3.7. For every multiset automaton A there is a multiset automaton B accepting the complement
of L(A).

Proof. Make A deterministic, if necessary, and exchange accepting and rejecting states.

A Büchi-Elgot-Trakhtenbrot-like Theorem for Multiset Automata and Unordered Labeled Trees
Given an s-tree structure T = (V,ET ,PT

1 , . . . ,PT
s) and sets S1, . . . ,S` ⊆ V , let us write T (T ,S1, . . . ,S`)

for the labeled tree whose node set is V , whose edge set is ET , and whose labeling function maps each
node v ∈V to the bitstring l1 . . . lsx1 . . .x` ∈ {0,1}s+` with li = 1 ⇔ v ∈ PT

i and xi = 1 ⇔ v ∈ Si. We write
T (T) in case `= 0. Using multiset automata, we prove the following cardinality-preserving theorem for
unordered labeled trees. We remark that for the purposes of the present paper, only the first part of the
theorem would suffice.

Theorem 3.8. Let s, ` ∈ N.

1. For every mso-formula φ(X1, . . . ,X`) over τs-tree there is a multiset automaton A with alphabet
{0,1}s+`, such that for all s-tree structures T with universe V and S1, . . . ,S` ⊆ V we have T |=
φ(S1, . . . ,S`) if, and only if, A accepts T (T ,S1, . . . ,S`).

2. For every multiset automaton A with alphabet {0,1}s+` there is an mso-formula φ(X1, . . . ,X`)
over τs-tree, such that for all s-tree structures T with universe V and S1, . . . ,S` ⊆ V we have T |=
φ(S1, . . . ,S`) if, and only if, A accepts T (T ,S1, . . . ,S`).

Proof. Our proof follows Arnborg et al. [7], but modified to unranked trees rather than ranked trees and
multiset automata rather than usual tree automata.

For the first claim of the theorem, let a formula φ(X1, . . . ,X`) be given. The first step is to trans-
form it into an equivalent formula ψ(X1, . . . ,X`) without element variables by introducing an additional
set of atomic formulas. In detail, we replace every occurrence of a first-order quantifier ∃x(ρ) by
∃X(singleton(X)∧ρ). Here, X is a fresh second-order variable and singleton(X) is a new kind of atomic
formula with the obvious semantics: singleton(S) holds for a set S if, and only if, S contains exactly one
element. Next, every occurrence of the automatic formula x= y is replaced by subset(X ,Y)∧subset(Y,X)
for the second-order variables X and Y that correspond to x and y, respectively. The interpretation of the
new atomic formula subset(S,T) is that it is true if, and only if, S ⊆ T . The atomic formula X(y) is

14

replaced by subset(Y,X), where Y is the second-order variable corresponding to y. Finally, the atomic
formula E(x,y) is replaced by the new atomic formula edge(X ,Y), where edge(S,T) is true if, and only
if, for every t ∈ T there is a s ∈ S with (s, t) ∈ ET . The formula ψ that results from these transformations
is clearly equivalent to φ .

The next step in the construction of [7] is to transfer the formula ψ into an automaton. This is done by
induction on the structure of the formula ψ . First, assume that ψ is an automatic formula. Because of the
transformations we applied, ψ must now be of one of the following forms: singleton(X), subset(X ,Y),
or edge(X ,Y). In each case, there exists a multiset automaton accepting exactly those trees satisfying
the formula: The automaton for singleton(X) needs three states q0, q1, and qtoo many, with only q1 being
accepting, and has multiplicity 2. Working up from the leaves in state q0, it switches to q1 once it
encounters a node that is an element of X and propagates this state to the root. However, when q1 is
reached at two children simultaneously or when a child is in state q1 and the node is also an element
of X , the automaton switches to the error state qtoo many. Next, for the atomic formula subset(X ,Y), an
automaton must simply check that for all nodes whenever the node is in X , it is also in Y . Finally, the
automaton for edge(X ,Y) will use a state to signal each node that is an element of Y and will test whether
each node is an element of X when one of its children has this state.

For the inductive step, we must now build an automaton for formulas composed using negation, con-
junction, and the monadic existential quantifier. These automata can be constructed using the closure
properties of multiset automata that we proved earlier in Lemmas 3.5 to 3.7: When φ = α ∧β , we con-
struct the intersection product automata from Lemma 3.5 of the automata for α and β . When φ = ¬α ,
we take the complement automaton from Lemma 3.7. Finally, when φ = ∃X(α), we first transform the
automaton for α into a nondeterministic automaton that makes its transition regardless of the relation X ,
using up- and down-projection of the alphabet, and then make it deterministic via the power set construc-
tion from Lemma 3.6.

For the second claim of the theorem, the sought mso-formula can be obtained as follows: We use
|Q| many set variables Q1, . . . , Q|Q| that are quantified existentially and we require that each node n is
an element of exactly one of these sets. The formula φ tests that the root gets assigned a state from Qa

and that, whenever Qq(n) holds for a node n, for the multiset M = {q′ | ∃c(Qq′(c)∧ c is a child of n)}
we have (σ ,M|m,q) ∈ ∆, where σ is the label of n. To see that we can, indeed, express that the capped
multiset of states assigned to the children of n is a given multiset M|m using an mso-formula (actually,
even a first-order formula suffices), it is best to give an example: Suppose that for m = 3 we wish to test
whether M|3 = {q1,q1,q1,q2,q3,q3,q4,q4,q4} holds for a node n. This is the case if, and only if, (a)
there are nine distinct children of n such exactly three of them have state q1 assigned to them, exactly one
has state q2 assigned, exactly two state q3, and exactly three have state q4 assigned; and (b) all children
other than these nine children must have either state q1 or q4 assigned to them.

Deciding mso-Properties in Constant Depth Theorem 3.8 shows that in order to decide whether a
given mso-formula is true for a given tree, we can instead evaluate a multiset automaton. Since we saw
earlier in this section that any logical structure of bounded tree depth can be transformed into a labeled
tree of constant depth, we have all the ingredients together to prove Theorem 1.1 from the introduction:
Proof of Theorem 1.1 We first consider only the case that the input structures are guaranteed to have tree
depth d and do not care what the circuits output when this is not the case. Later on, we will remedy this
problem.

Let φ by an mso-formula over a signature τ and let d ∈N. By Lemmas 3.1 and 3.2 and Theorem 3.8,
we can turn φ into a fixed multiset automaton A and we can turn (using a first-order computable func-
tion) any logical structure S of tree depth at most d into an unordered, unranked, labeled tree (T, l) of
constant depth such that (T, l) ∈ L(A) ⇔ S |= φ . Thus, all that remains to argue is that the behaviour
of any fixed deterministic multiset automaton on given bounded depth labeled trees can be simulated in
dlogtime-uniform AC0 (or, equivalently, FO). However, this construction is essentially the same as the

15

one given in the proof of the second claim of Theorem 3.8: For every node of the tree, we can hard-wire
the behaviour of the automaton in dependence of the states reached at the children by testing for each
possible capped multiset M|m whether the states reached at the children do, indeed, form this multiset.
Since the tree has constant depth, we can compute the state reached at the root in a constant number of
layers.

Now we have to address the problem that input structures S may have tree depth larger than d. If the
tree depth is very high, namely not only larger than d, but even larger than 2d − 2, this can be detected
using Lemma 3.2. Thus, in a constant-depth preprocessing step, we can check whether this is the case
and, if so, reject. The difficult case arises when the tree depth is between d+1 and 2d −2 and it is known
to be NP-complete to decide whether an input graph has tree depth d, when d is part of the input [8].
However, d is fixed and we can apply the following trick: It is known that the class of graphs of tree depth
at most d is closed under taking minors and thus mso-definable via a formula ψ that describes a finite
set of forbidden minors [39]. Now, after the preprocessing that ensures that the input graph’s tree depth
is as most 2d −2, we apply all of the above constructions, but not to φ and depth d, but rather to ψ and
depth d′ = 2d −2. This time, because of the preprocessing, we will get a definite answer to the question
of whether the input graph satisfies ψ and, thus, of whether it has tree depth at most d. If the answer is
negative, we also reject.

3.4 From Automaton Evaluation to Arithmetic Circuit Evaluation

In the previous section we saw how Theorem 3.8 enables us to decide mso-formulas on structures of
bounded tree depth using constant-depth circuits. Instead of just deciding the formulas, in the present
section we turn our attention to the more challenging problem of computing the solution histograms.
Our aim will be to replace the evaluation of automata by the evaluation of convolution circuits, see
Lemma 3.11, such that the circuits’s outputs are the sought solution histograms. Then we reduce the
evaluation of convolution circuits to the evaluation of arithmetic circuits. Since arithmetic circuits of
constant depth can be evaluated in GapAC0, we get Theorem 1.2.

From Formula Histograms to Multicoloring Histograms Theorem 3.8 establishes a link between
formulas and multiset automata that is “solution-preserving” in the sense that there is a one-to-one cor-
respondence between satisfying assignments to the free variables of the formulas and labelings of the
trees that make the automaton accept. In order to talk more easily about the number of such labelings,
we recall the notion of multicolorings from [20].

An [r]`-array is an `-dimensional array of integers where all indices i = (i1, . . . , i`) are elements of
the index set [r]` = {0, . . . ,r− 1}`. We call r the range. Given a set S, a multicoloring of S is a tuple
(S1, . . . ,S`) of subsets S j ⊆ S for j ∈ {1, . . . , `}. Given a set X of multicolorings of S, let hist(X) denote
the [|S|+1]`-array whose entry at index i = (i1, . . . , i`) is the number of multicolorings (S1, . . . ,S`) ∈ X
with |S1| = i1, . . . , |S`| = i`. For instance, for S = {1,2} and X = {({1},{1}),({2},{2}),({2},∅)}, we
have hist(X) =

(
0 0 0
1 2 0
0 0 0

)
.

The connection between multicolorings and tree automata is as follows: Given a multiset automaton
A = ({0,1}s+`,Q,Qa,∆) and an s-tree structure T with universe V , let us write SA(T ,P) for the set of
tuples (S1, . . . ,S`) with Si ⊆V for which A reaches a state q ∈ P at the root of T (T ,S1, . . . ,S`). Clearly,
SA(T ,P) is a set of multicolorings of V . In particular, for the automaton A constructed in Theorem 3.8 for
a formula φ we have hist(T ,φ) = hist(SA(T ,Qa)). This means that “all” we have to do in the following
is to devise a way of computing hist(SA(T ,Qa)) for a given automaton A and a tree T .

Before we proceed, it will be useful to recall some simple operations from [20] on sets of multicolor-
ings and see how these operations change their histograms. First, for two disjoint sets of multicolorings
X1 and X2 of the same set A, we have hist(X1 ∪X2) = hist(X1)+ hist(X2) where the addition of arrays

16

is just the component-wise addition. Second, given two disjoint sets A and B and sets of multicolor-
ings X and Y of A and B, respectively, let us write X ⊗Y for the set of multicolorings {(A1 ∪B1, . . . ,
A` ∪B`) | (A1, . . . ,A`) ∈ X ,(B1, . . . ,B`) ∈ Y}. This operation combines two multicolorings of different
parts of a tree into a single one “in all possible ways.” To understand its effect, consider the case where
` = 1. Then X ⊗Y = {A∪B | A ∈ X ,B ∈ Y} and consider, say, hist(X ⊗Y)[3]. This is number of ways
we can choose sets A ∈ X and B ∈ Y with |A∪B| = 3. It is not hard to see that this is exactly equal to
hist(X)[0] ·hist(Y)[3]+hist(X)[1] ·hist(Y)[2]+hist(X)[2] ·hist(Y)[1]+hist(X)[3] ·hist(Y)[0]. This sum
is also known as the convolution of the two histogram arrays at position 3. In general, given two arrays A
and B with the same dimension ` and ranges r and s, respectively, their convolution is the [r+s−1]`-array
C = A∗B with

C[k] = ∑
i∈[r]`, j∈[s]` with k=i+ j

A[i]B[j].

With these definitions, hist(A⊗B) = hist(A)∗hist(B).

Definition of Convolution Circuits Our ultimate goal is to prove Theorem 1.2, which states that we
can compute (number encodings of) solution histograms using constant-depth arithmetic circuits. We
postpone the problem of computing number encodings for the moment, leaving us with the computation
of histograms. To this end, we now introduce convolution circuits, which instead of passing around
Boolean values (like AC0 circuits) or numbers (like GapAC0 circuits) pass around whole number arrays
(that is, histograms). The gates of these circuits will be addition (“+”-gates) and convolution gates
(“∗”-gates). Addition gates allow us to unite histograms that arise from disjoint sets of solutions: For
instance, suppose that for some deterministic multiset automaton M we have found a way to compute
the histograms hq = hist(SM(T ,q)) for all states q ∈ Qa. Then the sum over all of these histograms
will be the histogram of all multicolorings that make M accept. Convolution gates are used to combine
solution histograms for different child trees: Suppose the root of a tree has exactly two children c1 and
c2 and suppose the only way to reach a state q at the root is to reach q1 at c1 and q2 at c2. Then the set
of multicolorings SM(T ,q) is exactly SM(T1,q1)⊗ SM(T2,q2), where T1 and T2 are the subtrees rooted
at c1 and c2, because every multicoloring of T1 that makes M reach q1 can be combined with every
multicoloring of T2 that makes M reach q2. But then, as we saw above, the desired solution histogram
hist(SM(T ,q)) is given by the convolution of the subtrees histograms.

The formal definition of a convolution circuit is now straightforward:

Definition 3.9 (Convolution Circuit). A convolution circuit is a circuit C where each inner gate is labeled
with +, −, or ∗. The addition and convolution gates have unbounded fan-in, the subtraction gates have
fan-in 2 and there children are ordered. Constant gates can be labeled with arbitrary arrays. A convolution
circuit without subtraction gates will be called positive.

In slight abuse of notation, when describing the structure of circuits, we will sometimes just write
down formulas involving addition and convolution operators. For instance, A∗B+C denotes the circuit
starting with an addition gate at the top, one convolution gate as a child, and the three leaves A, B, and C.
When a gate has many predecessors P1, . . . , Pn, we use the notation ∑i Pi for addition gates and ∏i Pi for
convolution gates.

Definition 3.10 (Computation of a Convolution Circuit). The input for a convolution circuit C with n
inputs is a sequence (A1, . . . ,An) of arrays. The output val(g,C[A1, . . . ,An]) of a gate g is the component-
wise addition, component-wise difference, or convolution of the arrays that are output by the gate’s prede-
cessors. For the ith input gate, val(g,C[A1, . . . ,An]) is Ai; while for constant gates its value is the constant
attached to it. The array produced at the output gate will be denoted val(C[A1, . . . ,An]) or, if there are no
input gates, just val(C).

17

Turning Automata Computations Into Convolution Circuits We are now ready to prove a lemma
that shows how the histograms of multiset automata on labeled trees can be computed using convolution
circuits.

Lemma 3.11. Let A= ({0,1}s+`,Q,Qa,δ) be a deterministic multiset automaton with multiplicity bound
m ∈ N. Then there is a first-order computable function that maps every s-tree structure T = (V,PT

1 , . . . ,
PT

s) to a convolution circuit C such that

1. val(C) = hist(SA(T ,Qa)),
2. the depth of C is bounded by a function that depends on A and linearly on the depth of T , and
3. the fan-in of C is bounded by a function that depends on A and linearly on the degree of T .

Furthermore, if the degree of T is bounded by m, then C is positive.

Before we prove the lemma, let us try to get some intuition first. The easy case arises when T is a
binary tree, which is the situation that we studied in a previous paper [20]. Here, the construction of C
roughly works as follows: We first replace each node n of T by |Q| gates gn

q, one for each state q ∈ Q.
Let Tn be the tree rooted at n. The objective is to have val(gn

q,C) = hist(SA(Tn,{q})), that is, the gate gn
q

should tell us how many multicolorings of the tree Tn cause A to reach state q at node n. To achieve this,
gn

q is an addition gate that combines the results of several new gates, namely one new gate for each pair
(q1,q2) such that A will switch to state q when it reaches the states q1 and q2 at the children c1 and c2
of n. Now, all of these new gates will be convolution gates that combine the histograms coming from their
respective gates gc1

q1
and gc2

q2
. (The actual construction is slightly more involved, since we also have to take

the coloring of the node n into account.) When we construct the whole circuit C in this way, for the root
node r we have one gate gr

q for each state that tells us exactly the histogram of the set of multicolorings
making the automaton reach state q at the root. Thus, by adding one addition gate at the top that sums
up over all the outputs of all gr

q with q ∈ Qa, we get the desired circuit. Note that the circuit is positive.
It is straightforward to extend the above construction to any tree of bounded degree, but for trees of

unbounded degree, complications arise. To keep things simple, consider an automaton with multiplicity
m = 1 and Q = {q1,q2} and assume that the root has, say, ten children c1 to c10 at which the subtrees T1
to T10 are rooted. As above, assume that for each child ci we have two gates gi

1 and gi
2 setup in such a way

that val(gi
1,C) = hist(SA(Ti,q1)) and val(gi

2,C) = hist(SA(Ti,q2)). The question is how we can combine
these twenty histograms to a histogram for the whole tree.

Let us start with the easy cases: What is the histogram of all multicolorings that make A reach q1
at all ci? Clearly, this is given by h1 = val(g1

1,C)∗val(g2
1,C)∗ · · · ∗val(g10

1 ,C) since this counts exactly
the number of ways in which the multicolorings of the different trees can be combined. Similarly, the
histogram of all multicolorings where q2 is reached at all ci is h2 = val(g1

2,C)∗ · · · ∗val(g10
2 ,C). Finally,

the histogram of all multicolorings where q1 or q2 is reached at all ci is h = (val(g1
1,C)+ val(g1

2,C)) ∗
· · · ∗ (val(g10

1 ,C)+val(g10
2 ,C)).

The harder case is to compute the histograms of all multicolorings such that for the multiset M of
states reached by A at c1 to c10 we have M|1 = {q1,q2}. These multicolorings must cause the automaton
to reach q1 at some children and q2 at some (other) children. The trick is to see that is the same as the set
of multicolorings where the automaton reaches q1 or q2 at each child, minus the multicolorings where it
reaches only q1 and also minus the multicolorings where it reaches only q2. This means that the sought
histogram is given exactly by h−h1 −h2.

In general, in order to compute the histogram of all multicolorings making the automaton reach a
set of states whose capped version equals some given multiset, we first compute the histogram of all
multicolorings making the automaton reach any of the capped states in the multiset and then subtract
appropriate histograms where only some of the capped states are reached exclusively. To compute these,
in turn, we may need to apply a similar construction, leading to a slightly involved recursive definition
whose details are given in the following proof of Lemma 3.11.

18

Proof of Lemma 3.11 Let A = ({0,1}s+`,Qa,δ) be a deterministic multiset automaton with multiplicity
bound m ∈ N. Let T = (V,PT

1 , . . . ,PT
s) be an s-tree structure. We will first describe a transformation

that turns T and A into a convolution circuit C by locally transforming the root of every subtree T ′ into
a subcircuit whose inputs are the outputs of the subcircuits for the child trees of T ′. Then we will prove
that C satisfies the claimed properties.

Before we go into the details of the construction, let us introduce some new terminology. Given a
multiset M ∈ Pω(Q) of states, let us say that a state q ∈ Q is rare in M, if #M(q)< m and let us say that
it is plentiful in M if #M(q) ≥ m. Let us write rare(M) and plenty(M) for the sets of rare and plentiful
states, respectively.

Construction and its complexity: For every subtree T ′ = (V ′,PT ′
1 , . . . ,PT ′

s) of T we build two groups
of subcircuits, called the transition circuits Ctrans, which depend on the transition function, and the mul-
tiset circuits Cmulti, which combine histograms for specific multisets of states of child trees:

1. For the transition circuits, let z ∈ {0,1}s be the label of the root of T (T ′). Then for every state set
P ⊆ Q let Ctrans(T ′,P) have the form

∑
x∈{0,1}`, M∈Pm(Q) s.t.

δ (zx,M)∈P

Cmulti(T1, . . . ,Tn,M)∗χ(x),

where χ(x) is the `-dimensional array with a 1-entry at position x and 0-entries at all other positions.
The Cmulti(T1, . . . ,Tn,M) are the multiset circuits defined next. Note that each Ctrans has depth 2.

2. Let T1, . . . , Tn be the child subtrees of T ′ and let M ∈Pm(Q). Then the circuit Cmulti(T1, . . . ,Tn,M)
is of the form Cuncap−Ccorrect, where Cuncap is what we call the uncapped circuit and Ccorrect is what
will be called the correction circuit.
The uncapped circuit Cuncap starts with an addition gate that sums up a large number of subcircuits.
There is one subcircuit for each function f : {1, . . . ,n}→ {{q} | q ∈ rare(M)}∪{plenty(M)} such
that M|rare(M) = {i ∈ {1, . . . ,n} | f (i) 6= plenty(M)}|rare(M) (in other words, for each rare state q ∈
M, the state must be present in M exactly as often as f maps some i to {q}; in contrast, f can
map an arbitrary number of i to a plentiful state, including zero) and each subcircuit has the form
∏

n
i=1Ctrans(Ti, f (i)).

The correction circuit also starts with an addition gate. This gate is directly connected to all circuits
Cmulti(T1, . . . ,Tn,N) where N (M and M|rare(M) = N|rare(M). (In other words, N is obtained from
M by deleting some elements from states that used to be plentiful in M and by leaving rare states
untouched.)
Note that, since N is a proper subset of M, this definition is not cyclic. Also note that if the number
n of children is bounded by the multiplicity m, there is no N (M with the property M|rare(M) =
N|rare(M) and the correction circuit is empty and can be left out.

The output of the whole circuit C is Ctrans(T ,Qa). Since we transfer T into C by making only local
changes that depend on the fixed automaton A, the construction is first-order computable.

Correctness: To show the first property, we prove the following two claims:

Claim 1. For each P ⊆ Q we have val(Ctrans(T ′,P)) = hist(SA(T ′,P)).

Claim 2. For each M ∈ Pm(Q) we have

val(Cmulti(T1, . . . ,Tn,M)) = ∑
q1,...,qn∈Q s.t.
{q1,...,qn}|m=M

n

∏
i=1

val(Ctrans(Ti,qi)).

19

The proof of these claims is based on two nested inductions. The “outer” induction is an induction
over the structure of the tree T ′. Thus, in this outer induction we assume that both claims have already
been proved for the child trees Ti of T ′ and we must show that they both hold for T ′. The second “inner”
induction is over the size of the multisets M. Recall that the definition of the correction circuits Ccorrect
referred to the circuits Cmulti(T1, . . . ,Tn,N) for proper subsets N of M. We show that the second claim
holds for a given M under the assumption that it holds for all N (M.

For the outer inductions, first observe that if the claims hold for the child trees T1 to Tn of a subtree
T ′, then the first claim holds for this particular subtree: By the second claim and the outer induction
hypothesis, the array val(Cmulti(T1, . . . ,Tn,M)) stores the number of multicolorings making A reach a
particular capped multiset M ∈Pm(Q) at the children of the root of T ′. Note that for each pair of different
multisets the underlying sets of multicolorings are distinct. But, then, the circuit Ctrans(T ′,P) sums up
exactly over those histograms that contribute to reaching a state from P at the root. The convolution with
χ(x) ensures that the histogram for the children is shifted to accommodate for the contribution of the
root’s label x to the sizes of the multicolorings.

Next, to prove the second claim, in addition to the outer induction hypothesis we have the inner
induction hypothesis that the second claim holds for all proper subsets N (M. For the empty M there is
nothing to prove. We give names to sequences (q1, . . . ,qn) of states qi ∈Q: Let us say that the sequence is
perfect if {q1, . . . ,qn}|m = M. Let us call it good if {q1, . . . ,qn}|rare(M) = M|rare(M). Clearly, every perfect
sequence is good, but not necessarily the other way round, namely when a plentiful state of M is present
less than m times in the sequence. Let us call a sequence superfluous if it is good, but not perfect. Note
that the second claim states that we can express the value of the multiset circuits as a sum over all perfect
sequences. In the following, we show that the uncapped circuit Cuncap computes the sum over all good
sequences while the correction circuit computes the sum over all superfluous sequences. Then, since the
multiset circuit is just Cuncap −Ctrans, we get the second claim.

The uncapped circuit Cuncap computes, by definition, the left hand side of the following equation and
we claim that it can be rewritten as the right hand side:

∑
f :{1,...,n}→{{q}|q∈rare(M)}∪{plenty(M)} s.t.
M|rare(M)={i∈{1,...,n}| f (i)6=plenty(M)}|rare(M)

n

∏
i=1

val(Ctrans(Ti, f (i))) = ∑
q1,...,qn∈Q s.t.
(q1,...,qn) is good

n

∏
i=1

val(Ctrans(Ti,qi)).

To prove this equality, first fix a function f . Let us say that a sequence (q1, . . . ,qn) of states is good
for f , if {qi} = f (i) for all i with f (i) 6= plenty(M) and qi ∈ plenty(M) for all i with f (i) = plenty(M).
Observe that for the latter kind of i, the set of sequences good for f will range over all possible combi-
nations of states qi ∈ plenty(M) for these positions. By construction of the transition circuits, we have
Ctrans(Ti, f (i)) = ∑q∈ f (i)Ctrans(Ti,{q}). This implies that we can rewrite ∏

n
i=1 val(Ctrans(Ti, f (i))) as fol-

lows:

∑
q1,...,qn∈Q s.t.

(q1,...,qn) is good for f

n

∏
i=1

val(Ctrans(Ti,qi)).

Since every sequence (q1, . . . ,qn) is good for exactly one f and since {q1, . . . ,qn}|rare(M) = {i ∈ {1, . . . ,
n} | f (i) 6= plenty(M)}|rare(M) holds for this f , we get the claimed equality.

Let us now analyse the correction circuit Ccorrect. By definition, it computes the following value:

∑
N(M s.t. M|rare(M)=N|rare(M)

val(Cmulti(T1, . . . ,Tn,N)).

20

By applying the inner induction hypothesis to N for the second claim, we can rewrite this as

∑
N(M s.t.

M|rare(M)=N|rare(M)

∑
q1,...,qn∈Qn s.t.
{q1,...,qn}|m=N

n

∏
i=1

val(Ctrans(Ti,qi)) = ∑
q1,...,qn∈Qn s.t.

ex. N(M s.t.
M|rare(M)=N|rare(M) and

{q1,...,qn}|m=N

n

∏
i=1

val(Ctrans(Ti,qi)).

Consider the set of sequences (q1, . . . ,qn) for which there exists an N (M with M|rare(M) = N|rare(M) and
{q1, . . . ,qn}|m = N. This is exactly the set of superfluous sequences: These are the sequences where the
number of rare states is the same as in M, but where at least one plentiful state of M is not present m
times in the sequence. This concludes the correctness proof.

Depth and Degree: The second and third properties of the lemma follow since the construction of
the circuit makes only local changes to the tree that only depend on the automaton.

As argued earlier, if the number of children of each node is bounded by m, no correction circuits are
needed and, hence, the circuit is positive.

Turning Convolution Circuits Into Arithmetic Circuits We now tackle the problem of evaluating
convolution circuits using GapAC0 circuits and, at the same time, address the problem of how histograms
are encoded as numbers.

In order to represent a one-dimensional histogram h using a single number num(h) ∈ N, imagine h
to be stored in computer memory. Then numb(h) = ∑i∈{0,...,|S|} h[i]bi, where log2 b is the “word size”
of the memory, is a single number that represents the whole of the memory contents. In particular, for
sufficiently large b, the bit representation of each h[i] can be retrieved easily from the bit representation
of numb(h). For multidimensional histograms, use a vector b = (b1, . . . ,b`) of bases and set numb(h) =
∑(i1,...,i`)∈{0,...,|S|}` h[i1, . . . , i`]b

i1
1 · · ·bi`

` .
By choosing ever larger bases bi, namely b1 = 2|S|, b2 = 2|S|

2 , b3 = 2|S|
3 , all histogram entries can be

retrieved from the bits of numb(h). However, we can also set a bi to just 1. If we do so for all bi, then
the number numb(h) is just the sum over all entries of the histogram, and setting the last k many bi to 1
while setting the first ` many to ever larger values, we get a number that encodes for each index into the
first ` dimensions of the histogram the sum over all entries for the last k dimensions. Thus, in order to
prove Theorem 1.2, it suffices to prove the following theorem:

Theorem 3.12. For every mso-formula φ(X1, . . . ,X`) over some signature τ and every d ∈ N, there is a
dlogtime-uniform GapAC0-circuit family that, on input of a τ-structure S of tree depth at most d and a
vector b ∈ N` of bases, outputs numb(hist(S,φ)).

Proof. Clearly, given two arrays A and B, we have numb(A+B)= numb(A)+numb(B) and also numb(A−
B) = numb(A)− numb(B). More importantly, we also have numb(A ∗B) = numb(A) · numb(B) as the
following computation shows:

numb(A∗B) = ∑k1,...,k`∈[r](A∗B)[k1, . . . ,k`]b
k1
1 · · ·bk`

`

= ∑k1,...,k`∈[r] ∑i1+ j1=k1,...,i`+ j`=k` A[i1, . . . , i`]B[j1, . . . , j`]b
k1
1 · · ·bk`

`

= ∑k1,...,k`∈[r] ∑i1+ j1=k1,...,i`+ j`=k` A[i1, . . . , i`]B[j1, . . . , j`]b
i1+ j1
1 · · ·bi`+ j`

`

= ∑i1,...,i`∈[r] A[i1, . . . , i`]b
i1
1 · · ·bi`

` ∑ j1,..., j`∈[r] B[j1, . . . , j`]b
j1
1 · · ·b j`

`

= numb(A) ·numb(B).

With these observations, we can easily turn a convolution circuit into an arithmetic circuit for given
bases, as stated by the following claim:

21

Claim. There is a first-order computable function that gets a convolution circuit C with n input gates as
input and outputs an arithmetic circuit A with n+ ` input gates such for all b = (b1, . . . ,b`) the following
holds:

numb
(
val(C[R1, . . . ,Rn])

)
= val(A[numb(R1), . . . ,numb(Rn),b1, . . . ,b`]).

The circuit A will have the same topology as C, except that each constant gate gets replaced by a circuit
of constant depth and size O(|r|` logM) where r is the range of the constant gate’s arrays and M is the
largest number in these arrays.

Proof. The circuit A is obtained from C by replacing every addition gate of the convolution circuit by
a normal addition gate in the arithmetic circuit, replacing every convolution gate by a multiplication
gate, and replacing every constant gate with the constant array X attached to it by the arithmetic circuit
evaluating the formula

numb(X) = ∑k1,...,k`∈[r] X [k1, . . . ,k`]b
k1
1 · · ·bk`

` .

The above circuit has constant depth and each number X [k1, . . . ,k`] can easily be expressed in constant
depth and size logarithmic in its value.

Returning to the proof of Theorem 3.12, let us recapitulate the sequence of transformations intro-
duced in this section: Starting with an mso-formula φ over a signature τ and d ∈ N, by Lemmas 3.1
and 3.2 and Theorem 3.8 we can turn φ into a fixed multiset automaton A and we can turn (using a first-
order reduction) any logical structure S of tree depth at most d into an s-tree structure T of constant
depth such that hist(S,φ) = hist(SA(T,Qa)). By Lemma 3.11 we can turn the s-tree structure into a con-
volution circuit whose output is exactly the desired histogram. This circuit will have constant depth and
polynomial size and, furthermore, the range of all constants in the circuit is [2]` = {0,1}`. By the above
claim, we can turn the convolution circuit into an arithmetic circuit that takes bases as (additional and
only) inputs. Since all constants in the convolution circuit have constant range, the resulting arithmetic
circuit has constant depth. In particular, it can be evaluated in GapAC0 as claimed.

3.5 Application: Placing Problems in Constant-Depth Circuit Classes

The algorithmic meta theorems developed in this section allow putting problems into the uniform circuit
classes AC0, GapAC0 and TC0 by using direct mso-based definitions of problems on structures of bounded
tree depth or reductions to mso-definable problems on bounded tree depth structures.

We start by considering problems that are mso-definable. By restricting them to input structures of
bounded tree depth we can apply the meta theorems from this section. We saw already at the end of
the proof of Theorem 1.1, that for every d the language tree-depth-d lies in dlogtime-uniform AC0

and the argument relied heavily on the fact that this language is mso-definable. Three problems that
nicely exemplify the use of Theorems 1.1 and 1.2 and Corollary 1.3 in a unified way are related to perfect
matchings in graphs: In the introduction we mentioned that Theorems 1.1 and 1.2 can be used to show that
the problems of deciding whether a graph of bounded tree depth has a perfect matching and counting the
number of theses matchings lie in dlogtime-uniform AC0 and GapAC0, respectively, via a MSO formula
φmatching(Y) that defines perfect matchings on structures encoding the incidence matrix of graphs G. That
means φmatching(Y) is true for sets E ′ ⊆ E(G) that are perfect matchings.

Counting the number of perfect matchings in #P-complete in general [44] and in FL for graphs of
bounded tree width [20]. Das, Datta, and Nimbhorkar [17] have pointed out that the problem of deciding
whether a graph has a perfect matching is hard for L, implying that it is L-complete. By using the formula
φmatching(Y) and Corollary 1.3 we can show that the optimization problem of deciding whether the number
of perfect matchings in a graph of bounded tree depth exceeds a given threshold value is in TC0. In fact,
this problem is complete for TC0:

22

Theorem 3.13. For every d ∈N, the language {(G,s) | G has tree depth at most d and at least s perfect
matchings} is TC0-complete under AC0-reductions.

Proof. We are only left to prove TC0-hardness under AC0-reductions; we will do this by a transformation
from majority. For an input x1 . . .xn ∈ {0,1}n to majority, build a graph G that is the union of n
components G1, . . . ,Gn. Each component Gi has four vertices. We connect them to form the cycle
if xi = 1 and, otherwise, we connect them as follows: . It is an easy observation that the first graph
has two perfect matchings while the second graph has one. Thus, since the graphs Gi are not connected,
at least bn/2c+ 1 entries in x1 . . .xn are 1 exactly if the number of perfect matchings of G is at least
2bn/2c+1.

Even when problems are not directly definable in mso, we may use reductions to problems that are
in order to place them in uniform constant depth circuit classes. An important example are problems
whose inputs are sequence of numbers and we ask whether we can add up the numbers in a certain
way. In the introduction we saw that majority can easily be reduced to a problem that fits to Corol-
lary 1.3. Similar arguments work for the unary version of the subset sum problem: unary-subsetsum =
{1a1# . . .#1an##1s | ∃I ⊆ {1, . . . ,n} with ∑i∈I ai = s}. The quest of resolving the complexity of this prob-
lems has a long history, see [20] for a discussion. Recently it was shown to lie in L by us [20] and, indepen-
dently, by Kane [27]. For our proof of unary-subsetsum ∈ L we mapped unary-subsetsum instances
1a1# . . .#1an##1b to a forest F consisting of n stars where the ith star has ai vertices and use an mso-
formula φ(X) that forces solution sets S ⊆V (F) to cover each star either completely or not at all. Since
the reduction is easily accomplished in FO and the forest has tree depth 2, we can apply Corollary 1.3 to
get unary-subsetsum ∈ TC0 since 1a1# . . .#1an##1b ∈ unary-subsetsum exactly if hist(F ,φ)[b]> 0. It
is clear that unary-subsetsum is also hard for TC0: asking whether the majority of entries of a binary
string of length n are set to 1 is equivalent to ask whether we can single out a subset of positions whose
{0,1}-entries add up to bn/2c+1. Number problems like subsetsum can be phrased as the task of solv-
ing a constant number of linear equations where the values that are assigned to the variables are bounded
by some threshold: For example, subsetsum is the problem of deciding, for a given vector a ∈Nn and a
target value b ∈N whether there exists a vector s ∈ {0,1}n with aT s = b. The application of Corollary 1.3
to the unary version of subsetsum can be adjusted to solve systems of a constant number of linear equa-
tions with integer coefficients where the entries of the solution vector are bounded by a number given
in the input. Formally, the input to this problem, which we call `-integer-linear-programming, is a
linear equation system with integer coefficients (A,b) ∈ Z`×m and an upper bound t ∈ N. The problem
asks whether there is an s ∈ {0, . . . , t}m with As = b. This problem is well known to be NP-complete
for any ` if the input numbers are encoded in binary and solvable in polynomial time if the input num-
bers are encoded in unary (this fact is discussed, for example, in [37]). Actually, its unary version is
TC0-complete:

Theorem 3.14. For each ` ∈ N, `-integer-linear-programming where input numbers are given in
unary is complete for TC0.

Proof. We show how to reduce the unary version of `-integer-linear-programming to an mso-definable
problem on structures of tree depth 4 that can be solved in TC0 by applying Corollary 1.3. We first discuss
the case that the coefficients of the equation system are fromN and later extend this to coefficients fromZ.

Given an equation system (A,b) ∈ N`×m ×N` and a bound t ∈ N, we build a forest F of m trees
T1, . . . , Tm. Each tree Ti has a root ri to which we attach t +1 child nodes vi,0, . . . , vi,t . Choosing a node
vi, j will later correspond to choosing the value j for the variable xi. To each vi, j we attach ` children ai, j,1,
. . . , ai, j,`. We establish k unary predicates PF

1 , . . . , PF
` and put each node ai, j,k into the predicate PF

k . To
each ai, j,k, we attach j ·A[k, i] leaf nodes.

To define the problem, we use an mso-formula φ(X1, . . . ,X`) whose solutions S1, . . . , S` must sat-
isfy the following properties: There exists a set of vertices {v1, j1 , . . . ,vm, jm} (that means, a value for

23

each variable), such that for each k ∈ {1, . . . , `} (each equation with index k), exactly the leaves be-
low the nodes ai, j1,k, . . . , am, jm,k are in Xk. The last property can be defined in MSO using the pred-
icates PF

k . As a result, the number of elements in each set Sk equals the value of the k’s equation
when evaluated for the assignment of values to the variables. Thus, hist(F ,φ)[b]> 0 exactly if (A,b) ∈
`-integer-linear-programming.

To solve the general problem with integer coefficients (and not only positive integers) we first consider
the absolute value of all coefficients and construct the structure as described above. Then we establish two
unary predicates PF

+ an PF
− that are used to label the ai, j,k nodes and stand for positive and negative coef-

ficients, respectively. This means, if A[k, i] is a positive coefficient, we set ai, j,k ∈ PF
+ for all j ∈ {1, . . . , t},

and ai, j,k ∈PF
− otherwise. We extend the previous formula to the formula φ(X1,+, . . . ,X`,+,X1,−, . . . ,X`,−)

that forces the same requirements, except that we put leaves below nodes from PF
+ into the Xk,+ sets and

leaves below nodes from PF
− into the Xk,− sets. The equation system has a solution if there exists an index

i = i1, . . . , i`, i`+1, . . . , i2` with hist(F ,φ)[i]> 0 and b[1] = i1 − i`+1, . . . , b[`] = i`− i2`.
Hardness follows by encoding unary-subsetsum instances as 1-integer-linear-programming in-

stances.
Papadimitriou [36] showed that the dynamic programming-based technique of solving a constant

number of linear equations with integer coefficients that are given in unary still works if there is no
bound on the entries of the solution vector. His key argument states that if (A,b) is solvable, then also
by a vector whose entries are polynomial in the length of the unary encoding of (A,b). By equipping an
input with this bound and applying the previous theorem, we can solve this problem in TC0.

4 Algorithmic Meta Theorems For Logarithmic-Depth Circuit Classes

In the present section we prove the Theorems 1.4 and 1.5, which involve circuits of logarithmic depth
rather than constant depth as in the previous section. The inputs now consist of (an encoding of) a logical
structures S together with a tree decomposition D of S, where TD is given in term representation. The
proofs follow along the same lines as those of Theorems 1.1 and 1.2, which involved the following steps:

1. Compute a tree decomposition of the input structure.
2. Move from formulas on the input structures to formulas on trees.
3. Move from formulas on trees to the evaluation of tree automata.
4. Move from the evaluation of tree automata to convolution circuits.
5. Move from convolution circuits to arithmetic circuits.

Clearly, the first step is no longer necessary in the setting of the present section since the tree de-
composition is already part of the input. All of the other steps are also possible when the tree depth is
no longer constant, the resulting circuits then simply have arbitrary depth. Since it is known that tree
automata can be evaluated in NC1 on trees given in term representation [30, 23], Theorem 1.4 follows
(almost) immediately from our previous arguments, see Section 4.2 for the proof details.

The main obstacle in proving Theorem 1.5 is that one can evaluate arithmetic formulas of arbitrary
depth in #NC1 [11, 14], but evaluating arithmetic circuits can be done in #NC1 only if the circuit has
logarithmic depth (evaluating arithmetic circuits of arbitrary depth is already FP-hard when we cap the
numbers to enforce the outputs to have only polynomial length, which they need not have in general).
This means that, at some point in the course of the proof of Theorem 1.5, we need to move from trees
or circuits of arbitrary depth to logarithmic depth. Previous papers, such as [28], have faced a similar
obstacle, namely evaluating tree-like structures of arbitrary depth whose nodes perform a complicated
algebraic operation on the values of their children. In these papers, the approach was to somehow extend
the ideas used in the proof that evaluating arithmetic formulas can be done in #NC1 [11, 14] to more
general algebraic structures.

24

Our approach to tackling this problem is different and may be of independent interest. Rather than
trying to adapt algorithms to the convolution computations that would be needed in our setting, we attack
the problem at a much earlier stage: We balance the tree decomposition. Since all of our later algorithms
do not increase the depth of the considered trees, we get the desired arithmetic circuits of logarithmic
depth. In detail, we show how a balanced width-3 tree decomposition of an arbitrary tree can be computed
using constant-depth threshold circuits. The construction has two key properties. First, it is based on the
classical tree contraction method, which is used a lot in the context of parallel random access machines,
but which hitherto was not used in the context of NC1. Using it will allow us to compute a balanced
tree decomposition even in TC0 and not only in NC1. Second, the tree decomposition we compute does
not have the property that the nodes of each bag form a balanced separator of some part of the tree.
Normally, recursive NC1 algorithms find sets of nodes that in each step split up the tree into components
that are smaller than the current tree by a certain factor. This is not the case for the sets of nodes in our
bags: While we can ensure that the whole tree is balanced and, hence, has logarithmic depth, we cannot
ensure that the elements of any individual bag split the tree in some balanced way. Naturally, a lot of bags
will have this balancing property (otherwise no tree decomposition of logarithmic depth would result),
but we cannot say anything about where these balancing bags will lie. It seems that this more global
approach (just find a tree decomposition of logarithmic depth) instead of the traditional local approach
(find a balancing separator for each subtree recursively) allows us to lower the circuit complexity to a
constant depth.

In Section 4.1 we first review term representations, then we prove Theorem 1.4 in Section 4.2. In
Section 4.3 we prove the technical result on how a width-3 tree decomposition of any tree can be computed
in FTC0; and then use this result in Section 4.4 to prove Theorem 1.5. In Section 4.5 we sketch applications
of the established meta theorems.

4.1 Term and Ancestor Representations of Trees

Up to now, the details of how tree decompositions are encoded as strings was not important; indeed, in
the context of constant tree depth almost any encoding of the input graph and of tree decompositions will
do since they can easily be transformed into one another. In the context of logarithmic-depth circuits,
however, it is well known that it is crucial that the “ancestor relation” of the tree (for directed trees, this
is exactly the transitive closure) is made accessible to the circuits, rather than just a pointer-structure or
an adjacency matrix. There are two different ways of encoding this relation: Explicitly as a list of pairs
or implicitly as a bracket structure. The two representations can be transformed into one another using
TC0-circuits and we will use both of them. In the following, let T be a (rooted, directed) tree.

The set of term representations of T is the set of all strings over the two-letter alphabet { [,]} that
can be obtained recursively as follows: If the subtrees rooted at the children of T ’s root are T1, . . . , Tk
(in some arbitrary order) and if t1 to tk are term representations of T1 to Tk, respectively, then [t1 . . . tk]
is a term representation of T . For instance, the tree has the two term presentations [[] [[] []]] and
[[[] []] []].

The set of ancestor representations of a tree T whose nodes are bitstrings is a string s over the alphabet
{(,) ,0,1,#} that is a concatenation of all strings (u#v) where u is an ancestor of v in T . For the example
tree , with the nodes being labeled with bitstrings a to e according to an in-order traversal (so b is the
root), a possible ancestor representation is (b#a)(b#c)(b#d)(b#e)(d#c)(d#e).

In order to encode a tree decomposition using either term representations or ancestor representations,
we must also encode the bags. For term representations, this can be done, for instance, by first encoding
individual bags in some sensible way as strings, and then encoding the bag function B as a string of blocks
such that the ith block encodes the bag B(n) exactly if the ith symbol of the term representation is the
opening bracket of the node n. (The contents of blocks at positions of closing brackets are arbitrary and
ignored.) For ancestor representation, we use the same encoding, only i is now the number of bitstrings

25

different from n that precede n in the ancestor representation.

Converting Representations In a term representation t, the elements of the set V (T) are not explicitly
encoded anywhere; we only access them indirectly through the fact that each node n has a unique position
L(n) in t were the opening bracket of this node is located. For this reason, for convenience we may assume
that V (T) = {1, . . . ,q} is just a set of numbers and we may assume that L is a monotone function. For a
node n with exactly two children, let us call the child of n that comes first in the term representation the
left child and the one that comes second the right child. Let R : V (T)→{1, . . . ,q} map each node of the
tree to the position of the closing bracket of its representation in t. For instance, if t = [[[] []] []], for
the first child c of the root we have L(c) = 2 and R(c) = 7.

It is well known that L and R are computable in FTC0: The number L(n) for n ∈ {1, . . . ,q} is the
position of the opening bracket for which there are exactly n−1 opening brackets to its left. The number
R(n) is the first position to the right of L(n) such that between L(n) and R(n) the number of opening
and closing brackets is balanced (that is, equal). Given a node n ∈ V (T), using L(n) and R(n) we can
easily determine whether a node n is a left or a right child or the root. Provided they exist, we can also
compute its parent node p(n), its grandparent node g(n) = p(p(n)), and also its sibling node s(n) in
FTC0. We can also decide the ancestor relation for two nodes n and m by testing whether [L(m),R(m)]
is contained in [L(n),R(n)]. The least common ancestor lca(n,m) is the least node (with respect to the
ancestor relation) that is an ancestor of both u and v. These observations imply the following lemma:

Lemma 4.1. There is a dlogtime-uniform TC0-family that maps every term representation of a tree T
to an ancestor representation of T (for an appropriate naming of the nodes of T).

It is also possible to convert ancestor representation to term representations:

Lemma 4.2. There is a dlogtime-uniform TC0-family that maps every ancestor representation of a
tree T to a term representation of T .

Proof. It suffices to show that a TC0-circuit can compute, for every node n ∈ V (T), two positions L(n)
and R(n) such that the string t that has an opening bracket at each L(n) and a closing bracket at each R(n)
is a term representation of T . Let us order the nodes of T as follows: For each node n let the children of n
be ordered according to the order in which they first appear in the ancestor representation. This induces a
specific term representation t of T and we will compute this particular representation. Observe that with
respect to this ordering, the position L(n) of a node n can be expressed as follows: Consider the path n1,
n2, . . . , nk from the root to the parent of n. For each node on this path there is one opening bracket to the
left of L(n). Furthermore, for every sibling s of any ni that comes before ni with respect to the ordering
we fixed earlier, every node in the subtree rooted at s contributes an opening and a closing bracket to the
left of L(n).

For the computation of L(n) using a TC0-circuit, first observe that given a node n ∈ V (T) we can
compute the number dn of nodes of T that are descendants of n. Next, we can also compute the parent
node of n in T and, thus, also the set of all of its siblings and also which siblings are before n with respect
to the ordering. For a node n, let pn be the number of nodes in the subtrees rooted at the siblings of n that
precede n in the ordering of the siblings. Then L(n) is the sum of the numbers 2pni +1, where the ni are
all ancestors of n, plus 1 for the opening bracket of n.The number R(N) is given by L(n)+2dn +1.

Balancing Trees of Bounded Degree and Logarithmic Depth Ancestor representations make a num-
ber of modifications easy. In particular, we can use them to balance trees of logarithmic depth. For
this, we recall a definition from [20]: An embedding of a tree T into a tree T ′ is an injective mapping
ι : V (T)→ V (T ′) such that for every pair of nodes a,b ∈ V (T) there is a path from a to b in T if, and
only if, there is a path from ι(a) to ι(b) in T ′, and the root of T is mapped to the root of T ′. Given two

26

Tree T :
a

b c d

e f

Tree T ′ :
a

b

c

d

e

f

embeddings ι : V (T)→V (T ′) and κ : V (T ′)→V (T ′′), note
that the composition κ ◦ ι : V (T) → V (T ′′) is also an em-
bedding. Given an embedding ι : V (T)→ V (T ′), we call a
node w ∈ V (T ′) a white node if there is no node n ∈ V (T)
with ι(n) = w. An example of an embedding is shown right,
where the embedding maps each node of the left tree to the
node with the same label in the right tree. The unlabeled
nodes are exactly the white nodes.

Lemma 4.3. There is a dlogtime-uniform TC0-family that maps the ancestor representation of any tree
T of bounded degree to an ancestor representation of a tree T ′ together with an encoding of an embedding
ι : T → T ′ such that in T ′ every inner node has exactly two children.

Proof. For every node of n too high degree d > 2, introduce d−2 new white nodes and connect them so
that they form a path starting at n and make the children of n children of these nodes in such a way that
n and all new nodes have degree 2. Note that these new nodes inherit their ancestors and descendants
(other than n and its children) from the original node n. For nodes of degree 1, just add a second child
that is white. Again, the ancestor relation is inherited.

Lemma 4.4. For every c, there is a dlogtime-uniform TC0-family that maps the ancestor representation
of any tree T of degree c and depth c log2 |V (T)| to an ancestor representation of a tree T ′ together with
an encoding of an embedding ι : T → T ′ such that T ′ is balanced (that is, every inner node has degree
2 and all leaves are on the same level).

Proof. First, using Lemma 4.3, we may assume that the degree of all inner nodes of T is 2. We compute
the depth d of the tree. Now, for every leaf l of T at a depth d′ < d, we add a new balanced binary tree
of depth d −d′ with l as its root. All added nodes are white. The added trees themselves do not depend
on the input and they inherit their ancestors from the leaf l.

4.2 Decision by Logarithmic-Depth Circuits for Term Representations

We are now ready to prove Theorem 1.4 from the introduction. It states, that every mso-property of
graphs of bounded tree width can be decided in NC1, provided a tree decomposition is given in term
representation. The proof follows the exact same lines as for Theorem 1.1, except that while we no
longer need to compute a tree decomposition (it is part of the input, after all), we now have to make sure
that our transformations of the input still yield a term representation of the resulting trees. It turns out
that the crucial point is to show the following modified version of Lemma 3.2:

Lemma 4.5. Let φ(X1, . . . ,X`) be an mso-formula over some signature τ and w ∈ N. There is an s ∈
N, and a mso-formula ψ(X1, . . . ,X`) over τs-tree, and a dlogtime-uniform FTC0-circuit family that, on
input of any τ-structure S with universe S and a width-w tree decomposition D = (TD,BD) for S and
a term representation of TD, produces an s-tree structure T , whose underlying tree is T , and a term
representation of T , such that for all indices i ∈ {0, . . . , |S|}` we have hist(S,φ)[i] = hist(T ,ψ)[i] and all
other entries in hist(T ,ψ) are 0.

Proof. The proof structure is identical to that of Lemma 3.2. The only difference is that the input tree is
given as a term representation and we must output the resulting tree also as a term representation. For
this, we must just adjust the representation so that the same number of w leaves are added to all nodes of
the tree. This can easily be achieved in TC0 using ancestor representations.
Proof of Theorem 1.4 We transform the input structure into an s-tree structure T and consider an equiv-
alent mso-formula ψ over τs-tree for φ using Lemma 4.5. Then we translate the formula into a classical
tree automaton for binary labeled trees. Since evaluating such tree automata is in NC1 [30], the claim
follows.

27

4.3 Computing Width-3 Tree Decompositions of Trees in Constant Depth

In the present section we show that using only TC0-circuits, for every tree T given in term representation
we can compute a width-3 tree decomposition (TD,BD) of T (regarded as a graph) such that TD is a
perfectly balanced binary tree (and, hence, has logarithmic depth).

Review of Tree Contraction Algorithms Our following proof uses the classical method of tree con-
traction [32, 1], which is used extensively in the context of pram-algorithms, but no NC1-algorithms, let
alone TC0-algorithms, seem to be based on this method to the best of our knowledge. Starting with a
tree T in which every inner node has exactly two children, consider every second leaf (with respect to
the left-to-right ordering induced by the term representation of T). Among these leaves, (conceptually)
build two sets Lleft and Lright of leaves that are left and right children, respectively. Starting with, say,
Lleft, apply the following prune-and-bypass operation (also known as the rake operation) in parallel to
all its members:

. . .
g

p

n s

. . .

. . .
g

s

. . .

Definition 4.6. Let T be a tree and let n be a leaf of T . Let p be its parent, s its
sibling, and g its grandparent. We call the tuple (n,s, p,g) the contraction tuple
of n. The tree resulting from the prune-and-bypass operation applied to this tuple
is the tree in which we remove both the node n (this is called pruning) and its parent
node p, making the sibling s the new child of g, taking the place of p (this is called
bypassing).

Note that, because only every second leaf is considered and since all leaves are left children, the
contractions can be applied in parallel to all members of Lleft. Next, apply the prune-and-bypass operation
to all leaves in Lright in parallel. The tree that results obviously has half the number of leaves as T used
to have and we can reapply the contraction operation. After a logarithmic number of steps, the tree will
have shrunk to a single node.

Parallel algorithms use tree contraction to perform a computation on the tree as follows: During each
contraction step, they keep track of the “effect” the nodes that have been pruned and bypassed would
have had. This “keeping track” is done by attaching information to the edges of the tree and during each
contraction step the new edge from the sibling to the grandparent must store which effect the deleted
node and its parent would have had. Tree contraction algorithms mainly differ in what is stored on these
edges. For instance, for evaluating arithmetic trees over + and ×, we store a linear function of the
form f (x) = ax+b along each edge in the form of the two numbers (a,b). In the context of our proof,
however, nothing needs to be stored; it is the contraction tuples themselves that will serve as bags in the
to-be-constructed tree decomposition.

Computing Prune and Bypass Positions in Constant Depth. Let T be a tree with m = 2k leaves.
Number the leaves of T from left to right as {l1, . . . , lm}. The leaves to be deleted in round i are all that
have an even number among those that remain. Thus, in the first round, {l2, l4, l6, . . . , lm}will be removed,
in the second round {l3, l7, l11, l15, . . . , lm−1}, and so on. In general, in the ith round we remove the leaves
{l1+ j2i−1 | j ∈ {1,3,5, . . . ,2i −1}}= {l j2i−2i−1+1 | j ∈ {1,2,3, . . . ,2i−1}}.

For each set S of leaves to be removed, we first compute the contraction tuples of all leaves in S that
are left children and apply the contraction step to them. In the resulting tree, we compute the contraction
tuples in S that are right children and, again, apply the contraction step to all of them. Thus, it actually
takes two rounds to halve the number of leaves.

Let us call the sequence of trees generated in this way T1, T2, T3, . . . , Tt , where T1 = T and in Tt there
are exactly two leaves, and in every second tree the number of leaves has exactly halved. For a leaf l,
let rank(l) be the maximal number i such that l is still an element of Ti. Clearly, this rank function is
computable in FTC0.

28

a

1 b

c

2 3
d

4 e

f

5 6

g

7 8

a

1 b

3 e

5 7

f

6

g

8

a

1 b

3 e

5 7

a

1

e

5 7

a

1

5

Tree T1: Tree T2: Tree T3: Tree T4: Tree T5:

Figure 1: Example of a tree T = T1 and the trees T2, T3, T4 and T5. In T1 and T2 the prune-and-bypass
operation is applied to the even-numbered leaves that are left children (2 and 4) or right children (6 and 8)
of their parents in T1, respectively. In T3 and T4 the operation is applied to the even-numbered leaves that
are left children (3) or right children (5) of their parents in T3, respectively. The gray nodes indicate the
nodes that will be pruned and bypassed in each tree.

For technical reasons, in the following we require that T has the following properties: (a) Every inner
node has exactly two children, (b) the number of leaves is m = 2k for some k, (c) the left child of the root
is a leaf. This ensures that the root’s left child comes first in the leaf ordering and that it will never be
pruned. Thus, all pruning is done on the right subtree of the root. This implies, however, that in all trees
up to Tt , the root is not the parent of a pruned node (but, possibly, the grandparent). Thus, by stopping
our construction at Tt , we ensure that g(l) is always well-defined for all pruned leaves l.

The following observations concerning the trees Ti are due to Buss [13]:

1. The leaves of each Ti are precisely the leaves of T with rank at least i.
2. If x and y are nodes in Ti, then their least common ancestor in Ti is the same as their least common

ancestor in T .
3. An inner node of T is a node of Ti if, and only if, it is the least common ancestor of two leaves of

rank at least i.

Buss infers from these properties that the Ti can be computed in NC1, which is the class under inspection
in his paper. However, since computing ranks and least common ancestors can even be done in FTC0, as
we argued earlier, the Ti can actually be computed in FTC0.

Computing the Tree Decomposition

Theorem 4.7. There is a dlogtime-uniform FTC0-circuit family that on input of a term representation of
a tree T outputs a term representation of a width-3 tree decomposition (S,B) of T where S is a balanced
binary tree.

Proof. Our input is a term representation t of a tree T . As a preprocessing set, we compute an embedding
of T into another tree T ′ such that the three technical properties from above are satisfied: (a) Every

r

1 . . .

inner node has exactly two children, (b) the number of leaves is m = 2k for some k, (c) the left
child of the root r is a leaf. To achieve this, we apply Lemma 4.3 and add some additional
white nodes as needed. Clearly, this can be done using TC0-circuits. Note that T ′ now has
exactly 2m−1 nodes.

Our objective is to compute a width-3 tree decomposition (S,B) of T that is balanced. In the follow-
ing, we only describe how we can compute a width-3 tree decomposition of T ′ that has bounded degree
and logarithmic depth. However, Lemma 4.4 allows us to embed S into a balanced tree and extending the
bag function to the white nodes w of this balanced tree can be done, for instance, by setting B(w) = B(n)
for the first non-white ancestor n of w. Thus, we must now compute an ancestor representation of a
width-3 tree decomposition (S,B) of T of constant degree and logarithmic depth.

29

I(u,v)
. . .

u

. . .
v

. . .

We start with some observations concerning how contraction tuples can be related.
Given two nodes u,v ∈V (T ′) such that u � v let I(u,v) = {n ∈V (T ′) | u � n∧ v 6� n} be
the set of nodes “between” u and v. (Note, however, that a node in I(u,v) does not need
to lie on the path from u to v.) For every contraction tuple c = (n,s, p,g), observe that the
sets I(g, p), I(p,n), and I(p,s) are disjoint because p is the least common ancestor of n
and s in T . Furthermore, because n is a leaf, I(g,s) = I(g, p)∪ I(p,n)∪ I(p,s). Let us
also write I(c) for this disjoint union, see Figure 2 for an example.

When moving from Ti to Ti+1, each edge is either copied or contracted. This implies that for all i ≤ j
and all edges (u,v) ∈ E(Ti) there is a unique edge (x,y) ∈ E(Tj) such that I(u,v)⊆ I(x,y):

Given two different contraction tuples c = (n,s, p,g) and c′ = (n′,s′, p′,g′), the sets I(c) and I(c′) are
either disjoint or one is contained in the other. To see this, let r = rank(n) and r′ = rank(n′) and without
loss of generality assume r ≤ r′. Then I(c) = I(g,s) and as we just argued there is a unique edge (x,y)
in E(Tr′) with I(g,s)⊆ I(x,y). If (x,y) = (g′,s′), then I(c)⊆ I(c′); and if (x,y) and (g′,s′) are different
edges, then I(x,y) and I(g′,s′) are disjoint and hence also I(g,s) and I(g′,s′) since I(g,s)⊆ I(x,y).

g1

p1

n1 s1

g2

p2

n2 s2

g3

p3

s3 n3

Figure 2: Three contraction tuples c1 = (n1,s1, p1,g1) to c3 = (n3,s3, p3,g3) of the tree T from Figure 1.
Note how in each tree the sets I(pi,ni) (red), I(pi,si) (green), and I(gi, pi) (blue) are disjoint and that
their union I(ci) is exactly one of the sets for the next tuple.

Let the nodes of S be exactly the contraction tuples. There is an edge (c,c′) ∈ E(S) if I(c′) (I(c)
and there is no c′′ with I(c′)(I(c′′)(I(c). By the above properties of contraction tuples, S is, indeed,
a tree. We attach the bag B(c) = {n,s, p,g} to each tuple c = (n,s, p,g).

We claim that (S,B) is a width-3 tree decomposition of T ′. First, its width is clearly at most 3. Second,
it has the covering property: Except for two special edges, for every edge (u,v) ∈ E(T) there is a first
i such that (u,v) ∈ E(Ti), but (u,v) /∈ E(Ti+1), because edges are copied from each Ti to the next until
they become part of a contraction tuple c. But, then, by definition, u,v ∈ B(c). (The only two exceptional
edges are those still present in the last Tt . To cover these, we can add one additional bag at the very end
to the root. We ignore these edges in the following discussion.)

Third, we have to prove the connectedness condition: For this, let v ∈ V (T) be a fixed node and let
c = (n,s, p,g) be a node of S with v ∈ B(c). Then v is one of n, s, p, or g by construction. Consider the
parent c′ of c in S. Suppose c was contracted in tree Ti and c′ = (n′,s′, p′,g′) was contracted in some later
Tj. Then in Tj there is still the edge (g,s) and we have (g,s) = (g′, p′) or (g,s) = (p′,n′) or (g,s) = (p′,s′).
This means that if v was either n or p, we have v /∈ B(c′) and if v was either g or s, we have v ∈ B(c′).
Repeating this argument, let c0 = (n0,s0, p0,g0) be the first ancestor of c such that v ∈ {n0, p0}. Then
v ∈ B(c′′) holds for all ancestors of c up to c0, but not for any ancestors of c0. Now, starting from any
two nodes c and d with v ∈ B(c) and v ∈ B(d), suppose we had c0 6= d0. Then v ∈ I(g(c0),s(c0)) would
hold and also v ∈ I(g(d0),s(d0)), but these sets are disjoint. This shows that v lies in every bag on the
path from both c and d to a common ancestor. Hence, the set of all nodes of S whose bags contain v is
connected.

It remains to show that we can compute an ancestor representation of S and that S has bounded degree.
We saw already that the ancestor relation of S is computable in TC0. The maximum degree of any node
of S is three: A contraction tuple c = (n,s, p,g) can only be a direct child of another contraction tuple c′

30

if the edge (g,s) resulting from contracting c is one of the three edges contracted by c′.

4.4 Computing Histograms by Logarithmic-Depth Circuits for Term Representations

Recall that our goal for the present section is to prove Theorem 1.5, that our line of proof was to do
the same sequence of transformations as we did in Section 3 for constant depth circuits, and that the
missing building block was a procedure to turn an arbitrary tree decomposition into a tree decomposition
of logarithmic depth. Theorem 4.7 from the previous section provides us with the tools to build this
missing block. In the following, we first show in Lemma 4.9 how this theorem can be used to balance
tree decompositions and then prove Theorem 1.5.

Lemma 4.8. Let G be a graph, let (T,B) be a width-w tree decomposition of G, and let (T ′,B′) be a
width-w′ tree decomposition of T . Then (T ′,B′′) with B′′(n) =

⋃
x∈B′(n) B(x) is a width-(ww′+w+w′)

tree decomposition of G.

Proof. Clearly, the width of (T ′,B′′) is at most ww′+w+w′. To prove the covering property, note that
every bag B(x) that is present in (T,B) is a subset of some B′′(n) for some n ∈ V (T ′). To prove the
connectedness property, consider any node v ∈ V (G). By the connectedness condition for (T,B), the
subgraph Tv = T [{x | v ∈ B(x)}] is connected. By the connectedness condition for (T ′,B′), for each node
x∈V (Tv) the subgraph Tx = T ′[{n | x∈ B′(n)}] is also connected, and by the covering property of (T ′,B′)
for every {x,y} ∈ E(Tv) the trees Tx and Ty share at least one node. Hence, since Tv is connected, the
union of all Tx for x ∈V (Tv) is connected and this union is exactly T [{n | v ∈

⋃
x∈B′(n) B(x)}].

As a corollary we obtain:

Lemma 4.9. Let w be a fixed tree width. Then there is a dlogtime-uniform TC0-circuit family that gets
a term-represented width-w tree decomposition D of a graph G as input and outputs a term-represented
width-(4w+3) tree decomposition D′ of G that is balanced.

Proof. Apply Lemma 4.8 to Theorem 4.7.

Just as in the proof of Theorem 3.12, in order to prove Theorem 1.5, we actually prove a stronger
theorem were the bases are part of the input:

Theorem 4.10. For every mso-formula φ(X1, . . . ,X`) over some signature τ and every w ∈ N, there is
a dlogtime-uniform #NC1-circuit family that, on input of a τ-structure S along with a width-w tree
decomposition in term representation for S and bases b ∈ N`, outputs numb(hist(S,φ)).

Proof. After balancing the given tree decomposition using Lemma 4.9, we use a variant of Lemma 3.2
that expects tree decompositions (term(T),B) in term representations as inputs to turn S into an s-tree
structure T and φ into an equivalent mso-formula ψ . Note that the node degree of T is bounded in terms
of the width of (T,B). We use Theorem 3.8 and consider an equivalent tree automaton A for ψ and extend
its multiplicity bound to be higher than the degree of T . Using the claim proved in Theorem 3.12, we
can reduce to the problem of evaluating bounded fan-in arithmetic circuits without subtraction gates, a
problem that can be solved in #NC1. The resulting circuit family produces a number representation of
the histogram.

4.5 Application: Placing Problems in Logarithmic-Depth Circuit Classes

In this section, we show some examples of how to use the algorithmic meta theorems for logarithmic-
depth circuit classes to put decision and counting problems into NC1 and #NC1, respectively. Problems
will be shown to lie in these classes by reductions to mso-definable decision and counting problems on
bounded tree width structures. In order to apply Theorems 1.4 and 1.5, the reductions also compute term
or ancestor representations of bounded width tree decompositions.

31

Evaluating Boolean and Arithmetic Sentences The problem of evaluating Boolean sentences that are
given as terms is well known to lie in dlogtime-uniform NC1 via pebbling-based evaluation strategies
that recursively split input sentences into sentences of almost the same size [12, 11] (a Boolean sentence
is a Boolean formula with operations ∧ and ∨ where the values of all input bits are determined). Theo-
rem 1.4 provides a different route to prove this result by using an MSO-formula that existentially guesses
truth values for all operations in the sentence and locally checks whether the value of each operation is
consistent with its child values. Theorem 1.5, in turn, can be used to count the number of proof trees
of Boolean sentences. A proof tree T of a Boolean sentence S is a subsentence of S that (a) contains
the output gate of S, (b) for each ∨-operation in T contains exactly one of its children from S, (c) for
each ∧-operation in T contains all its children from S, and (d) evaluates to true. Since proof trees are
mso-definable, we can use Theorem 1.5 to count them. The evaluation of arithmetic sentences whose
inputs are 0 and 1 is closely related to the problem of counting proof trees: if we replace, in an arith-
metic sentence, each + by an ∨ and each × by an ∧, then the number of proof trees of the resulting
Boolean formula equals the value of the arithmetic sentence [14]. Thus, by replacing operands in this
way, Theorem 1.5 provides an alternative mso- and tree-decomposition-based route to reprove the fact
that arithmetic sentence evaluation is in #NC1 [11, 14].

Evaluating Visible Pushdown Automata Buss [12] extended his NC1-approach for the evaluation of
Boolean sentences to also cover the membership problem for parenthesis languages. Later researchers
adapted this approach to show that larger classes of context-free languages can be decided in NC1, with the
most general one being the result of Dymond [19] that input-driven languages are in NC1. Input-driven
languages are recognizable by visible pushdown automata (vpas), which are pushdown automata A =
(Σ,Γ,⊥,Q,q0,Qa,∆) (that means Σ is the input alphabet, Γ is the stack alphabet with a distinguished
empty stack symbol ⊥∈ Γ, Q is the state set with an initial state q0 ∈ Q and a subset Qa ⊆ Q of accepting
states, and ∆ ⊆ Σ×Γ×Q×Γ∗×Q is the transition relation that describes how to observe the current
input symbol, the topmost stack symbol and the current state, and replace the topmost stack symbol by
a string and the current state by a new state) with the following property: Σ can be partitioned into three
sets Σpush, Σpop, and Σno-change, such that (a) when reading a symbol from Σpop, the automaton pushes
exactly one symbol on the stack, (b) when reading a symbol from Σpop, it pops the topmost symbol from
the stack or leaves an empty stack unchanged, and (c) when reading a symbol from Σno-change, it does not
alter the stack (see [4] for automata theoretic aspects of vpas). Thus, given some input string, the height
of the stack at all positions of the string (a) is the same for any nondeterministic computation and (b)
can be computed by observing the type of the input symbols without simulating the automaton explicitly.
Beside deciding whether a string is accepted by a fixed vpa, recently the problem of counting the number
of accepting computation paths of nondeterministic vpas was studied in the context of logarithmic-depth
circuits and shown to be complete for #NC1 by Krebs, Limaye, and Mahajan [28]. We will show how
Theorems 1.4 and 1.5 can be used to reprove that these decision and counting problems are in NC1 and
#NC1, respectively.

Let A = (Σ,Γ,⊥,Q,q0,Qa,∆) be any vpa. We use a FTC0-computation to translate input strings for
A into a tree width-1 structure that represents the input string and a skeleton of the stack at the input posi-
tions. In order to apply Theorems 1.4 and 1.5, the reduction also computes a width-1 tree decomposition
in ancestor representation for the structure. The signature of the structure as well as an mso-formula that
describes accepting computations depend only on the fixed automaton A.

Let x = x1 . . .xn ∈ Σ∗ be an input string. We start to define the height function hA(x, i) = |{ j ≤ i |
x j ∈ Σpush}|− |{ j ≤ i | x j ∈ Σpop}|. Note that the height function does not always equal the height of
A’s stack since A may pop on empty stacks during its computation. The structure S that we construct
is a vertex labeled graph over the signature τA = {E2}∪ {P1

σ | σ ∈ Σ}∪ {P1
⊥}. Its node set S consists

of the tuples (i,hA(x, i)) for i ∈ {1, . . . ,n}, and the tuples (0,h) for h ∈ {mini∈{1,...,n} hA(x, i), . . . ,0}. Its
relations are build as follows: For each position i ∈ {1, . . . ,n}, we put the node (i,hA(x, i)) into PS

xi
. For

32

each h ∈ {mini∈{1,...,n} hA(x, i), . . . ,0}, we put the node (0,h) into PS
⊥ . For each position i ∈ {1, . . . ,n}, an

edge (an element of ES) is added in dependence of which part of the alphabet xi belongs to: if xi ∈ Σpush,
we insert an edge from (i−1,hA(x, i−1)) = (i−1,hA(x, i)−1) to (i,hA(x, i)). If xi ∈ Σpop, let i′ < i be
the largest index such that (i′,hA(x, i)) is a node of S (such a node always exists). We insert an edge from
(i′,hA(x, i′)) = (i′,hA(x, i)) to (i,hA(x, i)). If xi ∈ Σno-change, we insert an edge from (i−1,hA(x, i−1)) =
(i−1,hA(x, i)) to (i,hA(x, i)). For each h ∈ {mini∈{1,...,n} hA(x, i), . . . ,−1}, we insert an edge from (0,h)
to (0,h+ 1). Using FTC0 computable arithmetic operations, the height function hA and the structure S
that is defined in terms of x and hA can be computed in FTC0.

−1

0

1

0 1 2 3 4 5 6 7 8

⊥

⊥

u n

o

o

u

u

o

o

As an example for the construction
consider a vpa with alphabet Σ = {u,o,n}
and partition Σpush = {u}, Σpop = {o}, and
Σno-change = {n}. For the input string
x = unoouuoo, the reduction computes the
structure that is shown on the right, where
the names of the nodes are given by their
coordinates on the grid and the informa-
tion whether a node is in some unary predicate (each element is in exactly one of the |Σ|+ 1 unary
predicates) is depicted by labeling the node with the corresponding symbol.

By definition, edges of the structure lead only from left to right and there are no edges going down-
wards. Thus, the edges form a directed tree and, therefore, the structure’s tree width is always 1. It is
straightforward to define a tree decomposition of width 1 whose bags are the edges from the structure.
An ancestor representation for this decomposition can be computed in FTC0 by using the fact there is a
path from a node (i,h) to a node (i′,h′) in S exactly if (a) i = i′ = 0 and h < h′, or (b) i < i′, h ≤ h′, and
for all i′′ with i < i′′ < i′ we have hA(x, i′′)≥ h.

To define accepting computation paths we use an mso-formula φ that consists of two collections of
free set variables. The first collection are unary state labeling predicates Q0, . . . ,Q|Q|−1 used to define a
partition of all nodes that are labeled with symbols from Σ and the node (0,0). An assignment of such a
partition to these variables corresponds to guessing the states of the automaton at the input positions. The
second collection of unary stack content predicates P1, . . . ,P|Γ\{⊥}| is used to guess a single stack symbol
for every push node. The mso-formula evaluates to true if the sets assigned to the free variables satisfy
these partition conditions and describe a valid and accepting computation. For that, (0,0)must be labeled
by the initial state and the last node must be labeled by an accepting state. Moreover, a state at a push
node is verified with respect to its labeling symbol from the input alphabet and the state at its predecessor;
states at no-change elements are evaluated in the same way. For a state at a pop node e we observe the
stack symbol that labels its sibling node s (the node that is reached by going a single step backwards
to its direct predecessor and then following the edge to the other child of the predecessor) and the state
that labels the node r that one reaches from s by only going along edges to no-change and pop nodes.
For the last verification step, the mso formula existentially guesses a path through the structure. We
note that the structure that is computed by our reduction is different from the mountain range structures
used by Mehlhorn in the context of context-free language recognition [31]; in fact, mountain ranges have
unbounded tree width since they use additional edges to connect pairs of nodes that we connect implicitly
by using an mso formula that guesses paths between them. Applying Theorem 1.5 reproves that counting
the number of accepting paths of vpas lies in #NC1. Extending φ to a formula that existentially guesses
sets for its free variables and applying Theorem 1.4 reproves that membership testing for input-driven
languages is in NC1.

Evaluating Tree Automata Our new method of balancing trees using width-3 tree decomposition,
Theorem 4.7, allows us to give a “one paragraph proof” that deciding whether a fixed ranked deterministic
tree automaton A accepts a tree T given in term representation as input lies in NC1:

33

First, compute a width-3 tree decomposition (TD,BD) of T using Theorem 4.7. Modify the bag
function BD as follows: For each node n in a bag B, add all children of n to B. It is easily seen that in
result we still have a tree decomposition of T and, since A is ranked, its width w is still some constant
depending only on A. For a node n with a bag B = {x1, . . . ,x|B|} attached to it, consider all sequences
(q1, . . . ,q|B|) where all qi are arbitrary states of A. We call such a sequence valid, if it has the following
three properties: (a) If B contains a node xi of T and also all of its child nodes xi1 , . . . , xik in T , then the
transition function of A must map (qi1 , . . . ,qik) together with xi’s label to the state qi. (b) We must be able
to pick one valid sequence from each bag of the children of n in TD such that when a node xi is present in
the bag of a child, the child’s sequence assigns the state qi to this node. (c) If xi is the root of T , then qi

must be an accepting state. It is not hard to see that, since the number of possible sequences is fixed, an
NC1-circuit can compute the sets of valid sequences for all nodes of TD in a bottom-up fashion and that
A accepts T if, and only if, there is a valid sequence for the bag of TD’s root.

We remark that one could try to use Theorem 1.4 to reprove the same result more easily: An mso-
formula can easily guess a supposedly reached state for each node of an input tree and then check the
local and hence global correctness of the guess. However, inside the proof of Theorem 1.4 we use the
fact that tree automata can be evaluated in NC1, so we cannot use our theorems to (re)prove this fact.

5 Conclusion

In the present paper we transferred the idea of unifying computational problems by using mso-based
problem definitions and tree decompositions to circuit complexity classes inside logarithmic space, lead-
ing to algorithmic meta theorems for Boolean and arithmetic circuit classes of constant and logarithmic
depth. The theorems that are related to constant-depth circuits state that solving mso-definable decision
problems and computing mso-definable solution histograms can be done in dlogtime-uniform AC0 and
GapAC0, respectively, for input structures of bounded tree depth. The theorems for logarithmic-depth cir-
cuits state that these problems lie inside NC1 and #NC1, respectively, for input structures that are equipped
with a tree decomposition of bounded width in term representation. While the theorem for GapAC0 cov-
ers, for example, the problem of counting the total number of all solutions, it does not cover mso-definable
optimization problems that ask whether the number of solutions lies above (or below) some threshold
that is given as part of the input; this can be remedied by using TC0 = PAC0 circuit families, which are
able to simulate GapAC0 circuits and look up individual bits of the histogram encoding. The algorith-
mic meta theorems stated and proved in this paper can be used to place problems in the corresponding
uniform circuit classes. Regarding constant-depth circuits, we discussed how to put the unary version of
subsetsum and, more generally, the problem of solving a linear equation system that contains a constant
number of equations whose coefficient are given in unary into TC0. The most general application for
logarithmic-depth circuits showed an alternative proof of a recent result that one can count the number
of accepting paths of visible pushdown automata in #NC1.

Relation to Prior Works and Techniques The structure of the proofs of the algorithmic meta theorems
in this paper follow a classical plan: After constructing a tree decomposition (if not already provided as
part of the input), the problem of computing the solution histogram for the input structure is reduced to
computing an equivalent solution histogram for tree structures, which, in turn, is reduced to the problem
of evaluating automata. We used the same proof plan in a recent paper [20] for which it was enough
to compute all steps in deterministic logarithmic space. For the current paper we redesigned all proof
building steps to satisfy the algorithmic requirements imposed by constant and logarithmic depth compu-
tations. While none of the proof steps survived this transformation from L to circuit classes unchanged,
the most difficult parts were (a) finding an appropriate automaton notion for unordered unranked trees,
(b) developing a simulation based on arithmetic circuits for it, and (c) balancing tree decompositions
using FTC0 reductions.

34

Outlook and Open Problems We highlighted some applications of the presented algorithmic meta
theorems in this paper. One research direction would be to find more applications of the theorems. For
example, can the theorems for logarithmic-depth circuits be used to simulate some generalization of
visible pushdown automata where the height of the stack at different positions in time can be computed
in advance; say, in NC1 instead of FTC0? Another direction would be to find algorithmic meta theorems
that unify problems lying in other complexity classes around logarithmic space. Such research would
need to address all three dimensions of algorithmic meta theorems: (a) the considered logic, (b) the
considered class of input structures, and (c) the considered complexity class. We may go from mso to
more expressive or less expressive logics (like, for example, mso on graphs where we can only quantify
over vertex sets). Or we may consider other classes of structures that are more or less restrictive than
bounded tree width (like, for example, bounded clique width). Other interesting complexity classes that
are related to both space-bounded computations and circuits are LOGDCFL and LOGCFL.

Acknowledgements

Many of the results presented in this paper were initiated by discussions during the 2011 Dagstuhl sem-
inar Computational Complexity of Discrete Problems. With special thank going to Martin Grohe for
pointing us toward the notion of tree depth, we would like to thank the organizers of the seminar and
all participants. We would also like to thank Christoph Stockhusen for helping us with the proof of
TC0-completeness of the integer programming problem.

References
[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple parallel tree contraction algorithm.

Journal of Algorithms, 10(2):287–302, 1989. doi:10.1016/0196-6774(89)90017-5.
[2] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits. Journal of Computer and

System Sciences, 60(2):395–421, 2000. doi:10.1006/jcss.1999.1675.
[3] E. Allender. Arithmetic circuits and counting complexity classes. In J. Krajı́ček, editor, Complexity of

Computations and Proofs, volume 13 of Quaderni di Matematica, pages 33–72. Seconda Universita di Napoli,
2004. Available from: http://ftp.cs.rutgers.edu/pub/allender/quaderni.pdf.

[4] R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the ACM, 56(3):16:1–16:43,
2009. doi:10.1145/1516512.1516518.

[5] A. Ambainis, D. A. Mix Barrington, and H. LêThanh. On counting AC0 circuits with negative constants.
In Proceedings of the 23rd International Symposium on Mathematical Foundations of Computer Science
(MFCS 1998), volume 1450 of LNCS, pages 409–417. Springer, 1998. doi:10.1007/BFb0055790.

[6] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. SIAM
Journal on Algebraic and Discrete Methods, 8(2):277–284, 1987. doi:10.1137/0608024.

[7] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Journal of Algorithms,
12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

[8] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, pathwidth, frontsize,
and shortest elimination tree. Journal of Algorithms, 18(2):238–255, 1995. doi:10.1006/jagm.1995.

1009.
[9] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regular hedge languages over unranked

alphabets: Version 1. Technical Report HKUST-TCSC-2001-05, The Hongkong University of Science and
Technology, 2001. Available from: http://hdl.handle.net/1783.1/738.

[10] J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical Logic Quarterly, 6(1–6):66–92,
1960. doi:10.1002/malq.19600060105.

[11] S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algorithm for formula evaluation.
SIAM Journal on Computing, 21(4):755–780, 1992. doi:10.1137/0221046.

[12] S. R. Buss. The boolean formula value problem is in ALOGTIME. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing (STOC 1987), pages 123–131. ACM, 1987. doi:10.1145/28395.

28409.

35

http://dx.doi.org/10.1016/0196-6774(89)90017-5
http://dx.doi.org/10.1006/jcss.1999.1675
http://ftp.cs.rutgers.edu/pub/allender/quaderni.pdf
http://dx.doi.org/10.1145/1516512.1516518
http://dx.doi.org/10.1007/BFb0055790
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1006/jagm.1995.1009
http://dx.doi.org/10.1006/jagm.1995.1009
http://hdl.handle.net/1783.1/738
http://dx.doi.org/10.1002/malq.19600060105
http://dx.doi.org/10.1137/0221046
http://dx.doi.org/10.1145/28395.28409
http://dx.doi.org/10.1145/28395.28409

[13] S. R. Buss. Algorithms for boolean formula evaluation and for tree contraction. In P. Clote and J. Krajı́ček,
editors, Arithmetic, Proof Theory, and Computational Complexity, pages 95–115. Oxford University Press,
1993. Available from: http://math.ucsd.edu/∼sbuss/ResearchWeb/Boolean3/.

[14] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1 computation. Journal of
Computer and System Sciences, 57(2):200–212, 1998. doi:10.1006/jcss.1998.1588.

[15] A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. RAIRO - Theoretical Informatics and
Applications, 35:259–275, 2001. doi:10.1051/ita:2001119.

[16] B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics, pages 193–242. Elsevier and MIT
Press, 1990.

[17] B. Das, S. Datta, and P. Nimbhorkar. Log-space algorithms for paths and matchings in k-trees. In Proceedings
of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS 2010), volume 5
of LIPIcs, pages 215–226. Schloss Dagstuhl LZI, 2010. doi:10.4230/LIPIcs.STACS.2010.2456.

[18] J. Doner. Tree acceptors and some of their applications. Journal of Computer and System Sciences, 4(5):406–
451, 1970. doi:10.1016/S0022-0000(70)80041-1.

[19] P. Dymond. Input-driven languages are in log n depth. Information Processing Letters, 26(5):247–250, 1988.
doi:10.1016/0020-0190(88)90148-2.

[20] M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of bodlaender and courcelle. In
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pages
143–152, 2010. doi:10.1109/FOCS.2010.21.

[21] C. C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the Amer-
ican Mathematical Society, 98(1):21–51, 1961. doi:10.2307/1993511.

[22] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin Heidelberg, 2006. doi:10.

1007/3-540-29953-X.
[23] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath query evaluation and XML typing.

Journal of the ACM, 52(2):284–335, 2005. doi:10.1145/1059513.1059520.
[24] M. Grohe and S. Kreutzer. Methods for algorithmic meta theorems. In M. Grohe and J. Makowsky, edi-

tors, Model Theoretic Methods in Finite Combinatorics, AMS Contemporary Mathematics Series. American
Mathematical Society, 2011. to appear. Available from: http://www2.informatik.hu-berlin.de/∼grohe/pub/
grokre11.pdf.

[25] W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth threshold circuits for division and
iterated multiplication. Journal of Computer and System Sciences, 65(4):695–716, 2002. doi:10.1016/

S0022-0000(02)00025-9.
[26] N. Immerman. Descriptive complexity. Springer, New York, 1999.
[27] D. M. Kane. Unary subset-sum is in logspace. CoRR, abs/1012.1336, 2010. Available from: http://arxiv.

org/abs/1012.1336.
[28] A. Krebs, N. Limaye, and M. Mahajan. Counting paths in VPA is complete for #NC1. In Proceedings of the

16th Annual International Conference on Computing and Combinatorics (COCOON 2010), volume 6196 of
LNCS, pages 44–53. Springer, 2010. Available from: 10.1007/978-3-642-14031-0 7.

[29] L. Libkin. Logics for unranked trees: An overview. Logical Methods in Computer Science, 2(3), 2006.
doi:10.2168/LMCS-2(3:2)2006.

[30] M. Lohrey. On the parallel complexity of tree automata. In Proceedings of 12th International Conference on
Rewriting Techniques and Applications (RTA 2001), volume 2051 of LNCS, pages 201–215. Springer, 2001.
doi:10.1007/3-540-45127-7_16.

[31] K. Mehlhorn. Pebbling moutain ranges and its application of DCFL-recognition. In Proceedings of the 7th
Colloquium on Automata, Languages and Programming (ICALP 1980), volume 85 of LNCS, pages 422–435.
Springer, 1980. doi:10.1007/3-540-10003-2_89.

[32] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In Proceedings of the 26th Annual
Symposium on Foundations of Computer Science (FOCS 1985), pages 478–489. IEEE Computer Society,
1985. doi:10.1109/SFCS.1985.43.

[33] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. Journal of Computer
and System Sciences, 41(3):274–306, 1990. doi:10.1016/0022-0000(90)90022-D.

[34] J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and homomorphism bounds. European
Journal of Combinatorics, 27(6):1022—1041, 2006. doi:10.1016/j.ejc.2005.01.010.

[35] J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion I. Decompositions. European

36

http://math.ucsd.edu/~sbuss/ResearchWeb/Boolean3/
http://dx.doi.org/10.1006/jcss.1998.1588
http://dx.doi.org/10.1051/ita:2001119
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2456
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.1016/0020-0190(88)90148-2
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.2307/1993511
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1145/1059513.1059520
http://www2.informatik.hu-berlin.de/~grohe/pub/grokre11.pdf
http://www2.informatik.hu-berlin.de/~grohe/pub/grokre11.pdf
http://dx.doi.org/10.1016/S0022-0000(02)00025-9
http://dx.doi.org/10.1016/S0022-0000(02)00025-9
http://arxiv.org/abs/1012.1336
http://arxiv.org/abs/1012.1336
10.1007/978-3-642-14031-0_7
http://dx.doi.org/10.2168/LMCS-2(3:2)2006
http://dx.doi.org/10.1007/3-540-45127-7_16
http://dx.doi.org/10.1007/3-540-10003-2_89
http://dx.doi.org/10.1109/SFCS.1985.43
http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1016/j.ejc.2005.01.010

Journal of Combinatorics, 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.07.013.
[36] C. H. Papadimitriou. On the complexity of integer programming. Journal of the ACM, 28(4):765–768, 1981.

doi:10.1145/322276.322287.
[37] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[38] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms,

7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.
[39] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of Combinatorial Theory,

Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.
[40] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences, 22(3):365–383,

1981. doi:10.1016/0022-0000(81)90038-6.
[41] H. Straubing. Finite automata, formal logic, and circuit complexity. Birkhäuser, 1994.
[42] J. W. Thatcher and J. B. Wright. Generalized finite automata theory with an application to a decision problem

of second-order logic. Mathematical Systems Theory, 2(1):57–81, 1968. doi:10.1007/BF01691346.
[43] B. A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSSR,

140:326–329, 1961. In Russian.
[44] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189–201,

1979. doi:10.1016/0304-3975(79)90044-6.
[45] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer, Berlin Heidelberg, 1999.
[46] E. Wanke. Bounded tree-width and LOGCFL. Journal of Algorithms, 16(3):470–491, 1994. doi:10.1006/

jagm.1994.1022.

37

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://dx.doi.org/10.1016/j.ejc.2006.07.013
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://dx.doi.org/10.1007/BF01691346
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1006/jagm.1994.1022
http://dx.doi.org/10.1006/jagm.1994.1022

