
Implementation and Comparison of
Algorithms for Constructing and Visualizing
Phylogenetic Trees

Implementierung und Vergleich von Algorithmen
für die Konstruktion und Visualisierung
phylogenetischer Bäume

Bachelorarbeit

im Rahmen des Studiengangs
Molecular Life Science
der Universität zu Lübeck

vorgelegt von
Sarah Maya Mäusle

ausgegeben und betreut von
Prof. Dr. Till Tantau

mit Unterstützung von
Dipl.-Inf. Christoph Stockhusen,
Oliver Witt, M.Sc.

Lübeck, den 12. Dezember 2012

reviewer/gutachter

Prof. Dr. Till Tantau
Institut für Theoretische Informatik
Universität zu Lübeck

and/und

PD Dr. Hanns-Martin Teichert
Institut für Mathematik
Universität zu Lübeck

i

declaration

I hereby declare that this thesis has been composed by myself and that I have
taken use of no other resources than the ones stated.

erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Hilfsmittel benutzt habe.

Lübeck, den 12. Dezember 2012

ii

abstract

TEX is a typesetting system which is frequently used for scientific docu-
ments. The TEX package TikZ allows for the creation of high quality vector
graphics directly from a TEX document. The aim of this thesis was to ex-
pand the TikZ graph drawing library, in order to enable the computation
and visualization of phylogenetic trees.

Phylogenetic trees are diagrams that display the phylogeny of a set of taxa
in a tree-like manner. One type of approach on determining the evolutionary
history of a dataset are the distance-based methods, where the phylogeny is
estimated on the basis of a distance matrix. There are a number of different
distance-based methods, of which two are dealt with here: the UPGMA and
the BME algorithm. While the former has the advantage of being simple and
thus easy to implement, the latter is superior when it comes to topological
accuracy, time complexity, and applicability. As both these algorithms do
not only determine the tree’s topology, but also the respective edge lengths,
a graph drawing algorithm, which can handle fixed edge lengths, is also nec-
essary. Both the phylogenetic tree and the graph drawing algorithms have
been implemented in the programming language Lua, as LuaTEX delivers
the possibility of incorporating Lua-code directly into TEX. The algorithms
and their implementation will be discussed and compared, whereas the im-
plemented module is used for the exemplary computation and visualization
of phylogenetic trees directly in this document.

iii

zusammenfassung

TEX ist ein Textsatzsystem, das häufig für die Erstellung wissenschaftli-
cher Dokumente eingesetzt wird. Das TEX-Paket TikZ ermöglicht zusätz-
lich die Erzeugung von qualitativ hochwertigen Vektorgraphiken direkt in
einem TEX-Dokument. Das Ziel dieser Arbeit war es, die TikZ-Graph-Draw-
ing-Bibliothek so zu erweitern, dass die Berechnung und Visualisierung phy-
logenetischer Bäume ebenfalls möglich wird.

Phylogenetische Bäume sind Diagramme, die die Phylogenie einer Men-
ge an Taxa in einer baumartigen Struktur darstellt. Die Stammesgeschichte
kann z.B. durch die sogenannten distance-based methods (engl. distanzbasierte
Methoden) berechnet werden, wobei die Phylogenie anhand einer Distanz-
matrix abgeschätzt wird. Es gibt verschiedene distanzbasierte Ansätze, von
denen zwei in dieser Arbeit näher betrachtet werden: der UPGMA- und der
BME-Algorithmus. Während UPGMA eher einfach und dadurch auch leicht
zu implementieren ist, ist BME deutlich überlegen, wenn es um akkurate
Topologie, Zeitkomplexität und Einsetzbarkeit geht. Da die beiden Algo-
rithmen nicht nur die Topologie des Baumes, sondern auch dessen Kan-
tenlängen bestimmen, ist auch ein Algorithmus erforderlich, der mit dem
Zeichnen von Graphen mit festen Kantenlängen umgehen kann. Sowohl die
Algorithmen für die Berechnung phylogenetischer Bäume als auch die für
deren Zeichnung wurden in der Programmiersprache Lua implementiert, da
es LuaTEX ermöglicht, Lua-Code direkt in TEX einzubetten. Die Algorithmen
und ihre Implementierungen werden diskutiert und verglichen, wobei das
implementierte Modul für die Berechnung und Visualisierung einiger bei-
spielhafter phylogenetischer Bäume direkt in diesem Dokument angewandt
wird.

iv

table of contents

1 introduction 1

1.1 What are Phylogenetic Trees? 1

1.2 Phylogenetic Trees in TEX . 4

1.3 General Aim of the Thesis and Motivation 5

2 computing phylogenetic trees 7

2.1 The UPGMA Algorithm . 7

2.2 The BME Algorithm . 11

2.3 The BNNI Algorithm . 14

2.4 Implementation—Details, Difficulties, and Evaluation 15

3 visualizing phylogenetic trees in TEX 21

3.1 Drawing Rooted Trees . 22

3.2 Drawing Unrooted Trees . 24

3.3 Applying Further Options: Straight Edges, Scaling Factors,
and Inner Node Styles . 24

4 conclusion and outlook 29

5 references 32

appendix

A installing the module 33

B the module: options and commands 34

C distance matrices of the exemplary phylogenetic trees . . 35

1 introduction

TEX is a typesetting program, which, together with its extensions such as
LATEX and BibTEX, has several advantages over standard word processors, as
for example the facilitated correct display of mathematical formulas, the au-
tomatic generation of bibliographies, and the possibility of easily referencing
to figures, tables, and literature sources. Thus, TEX is often used for writing
scientific papers or textbooks. Scientific documents dealing with phyloge-
netical topics often require the calculation and illustration of phylogenetic
trees. If the author of such a document so far wished to display phylogenetic
trees in TEX, he or she had to resort to include them as pictures, generated by
other programs. This, of course, is possible, but brings along the disadvan-
tage of not being able to dynamically modify the trees in retrospective, both
content- and appearance-wise, without reverting to the other programs used
for computing and visualizing them in the first place. Alternatively, the au-
thor can also have the tree computed by another program and then draw it
directly in the TEX document, for example with TikZ, but then again a change
in content would be dependent on the other program, as phylogenetic trees
are often computed by complex algorithms. The general goal of this thesis

Lion

Leopard

Giraffewas to change this inconvenience by delivering the pos-
sibility of creating phylogenetic trees directly in a TEX
document on the basis of evolutionary input data: Typ-
ing a few lines of TEX code should then result in some-
thing like the tree on the right, which has indeed been
produced in this document by doing so. Before looking
at how this is possible, it should first be clarified what the significance of a
pyhlogenetic tree is, both from a biological and a bioinformatical point of view.

1.1 What are Phylogenetic Trees?

Evolutionary studies determining the historical development of the rela-
tions between organisms or other biological systematic units, form the field
of phylogenetics. It has long since been of scientific interest to determine
how closely related organisms are and when they diverged from a com-
mon ancestor. Before information about molecular structures, especially
deoxyribonucleic acid (DNA), became available as a basis of comparison,

1

introduction

morphologic differences where used to classify organisms. It was difficult,
if not impossible, to always distinguish between analogous and homologous
structures, and thus determine the organisms’ true phylogeny, i.e. its evolu-
tionary history. Nowadays, biochemical methods, such as methods for DNA
sequencing, are standard procedures for gaining insight into molecular ge-
netics, offering new possibilities for phylogenetical studies: By comparing
the sequences of homologous genes, the relation between organisms may be
estimated. While some genes have been shown to mutate at a rather quick
rate, other genes retain practically the same sequence over millions of gen-
erations. This renders the possibility of analyzing both recent evolutionary
events and such that took place a long time ago [3].

A phylogenetic tree is a diagram displaying the phylogeny between taxa
in a tree-like manner, see Figure 1.1 for an example. A taxon is a system-
atic unit, which may be a single gene, an organism or a group of organ-
isms with a common ancestor [2]. Thus, to name an example, an indi-
vidual animal with its individual set of chromosomes can be a taxon, but
also the lion species (Panthera leo), and the family of cats (Felidae), may
be chosen as taxa. In phylogenetic trees these taxa are represented by
leaves. Every inner node, on the other hand, embodies an evolutionary
event giving rise to two or more distinct lineages, although it is important

Lion

Domestic Cat

Wolf

Domestic Dog

Horse

Figure 1.1: An exemplary phylogen-
tic tree. The edge lengths do not cor-
respond to the true evolutionary dis-
tances of the displayed taxa.

to note that such a node does not
necessarily suggest a real common
ancestor at that point in evolution.
The edge lengths may or may not
be of significance; if they do matter,
they may either depict the time that
has passed between the two evolu-
tionary events or the difference be-
tween them, i.e. the rate of muta-
tion.

The fact that sequencing genes—
or even whole genomes—has re-
cently become increasingly cheaper
and faster, has made it possible to
compare more and more taxa on a
molecular level. This constantly rising amount of data makes a manual in-
terpretation impractical if not impossible, and thus computer programs have
been developed for this problem. Various different algorithms have been de-
signed to compute phylogenetic relationships and to display them as trees,
bringing us to the bioinformatical aspect of this topic.

There are many different approaches to computing phylogenetic trees.
They differ, on the one hand, in the type of data used as the foundation for
estimating the evolutionary distance and, on the other hand, in how the data
is processed. One can roughly distinguish between two main data sources:
the comparison of whole genomes or parts of them, and the comparison of
individual characters, as for example described in [2].

2

introduction

The main task of phylogenetic tree algorithms is the computation of the
tree’s topology, i.e. its inner structure, and, if required, the computation of
the edge lengths. In general there are two main groups of computational
approaches on calculating phylogenetic trees: the sequence-based methods and
the distance-based methods [7]. The former are based on—and restricted to—
the sequence alignment of genes or (parts of) the genomes of different taxa.
The results of these alignments are then analyzed for an evolutionary model
which may explain them. For this there are again different approaches. One
of them is the maximum parsimony method [7], which operates by search-
ing for the tree that explains the evolutionary events in the easiest way.
This is done by searching for hypothetical sequences of the hypothetical
ancestors—denoted by the inner nodes—that assume the least mutations of
their progeny. The distance-based approach, on the other hand, calculates the
phylogenetic tree on the basis of a distance matrix, which contains the infor-
mation of how closely related all the taxa are to each other. This distance
matrix can be obtained by sequence alignment methods, but also by com-
paring any other given data. Both approaches have their advantages and
disadvantages: while the former provides methods focused on sequence
alignment and is thus superior in that area, the latter is less specialized, but
also more widely applicable and in general much faster concerning the run
time [7]. Due to this wide applicability, the focus here lies on the distance-
based methods.

Within the limits of this thesis two such approaches have been imple-
mented: The first and rather simple approach is the Unweighted Pair Group
Method with Arithmetic Mean (UPGMA), first described by Sokal and Mich-
ener in 1958 [12]. Here the tree is constructed by iteratively forming clus-
ters and merging these to form a rooted tree. UPGMA is the progenitor of
the slightly more complex neighbor-joining method, which, unlike UPGMA,
does not require the distance matrix to be ultrametric—a fact that will be ex-
plained in the subsequent section.

The second approach of choice is an even more powerful one than neigh-
bor-joining: Studies by Richard Desper and Olivier Gascuel [4], first pub-
lished in 2002, have shown that algorithms based on the minimum-evolution
principle render quite accurate phylogenetic trees. Furthermore, a balanced
minimum evolution (BME) approach seems to be even more accurate. This
algorithm is combined with a balanced nearest neighbor interchanging (BNNI)
algorithm, in order to further enhance the results, as also shown by Desper
and Gascuel.

In addition, it is to be said that the sequence alignment of nucleic acids,
which is often needed for calculating the distance matrix, is not trivial and
is in itself a sub-area of bioinformatical studies. Algorithms used for such
alignments are thus neither part of this thesis, nor of the implemented mod-
ule; the user’s input is restricted to precalculated distance matrices.

3

introduction

1.2 Phylogenetic Trees in TEX

Having clarified what phylogenetic trees are, one can go back to the question
of how it is possible to enable their computation and visualization in TEX.

First of all, it should be clarified what TEX actually is. TEX is a typesetting
system, which was developed by Donald E. Knuth mainly between 1977 and
1989 with the goal of enabling the “creation of beautiful books—and espe-
cially for books that contain a lot of mathematics” [9]. Another important
aim was to enable the reproduction of a document with exactly the same
results on preferably any platform. To a great extend, TEX separates the con-
tent of a document from its layout. Every layout option, such as the margin
size or setting a word in italics, is specified by a command in the system’s
own language, also called plain TEX; such a document is thus in principle
programmed, a fact that makes the system very powerful. Users are also
enabled to program macros freely, adding new options and changing the ex-
isting ones. In general, TEX thus offers the possibility of running self-written
algorithmic code, an important prerequisite for this thesis. An example for
this is LATEX, created by Leslie Lamport, which is basically a large collection
of macros that strongly facilitates the usage of TEX [6].

Now, how can the connection between phylogenetic trees and TEX be es-
tablished? Both the computation and the visualizing of phylogenetic trees—
of which the latter is a graph drawing problem—are algorithmic problems,
and can be implemented in a programming language. Programming in plain
TEX, though, is difficult and not well-suited for such complex algorithms as
computing and drawing phylogenetic trees. Lua, on the other hand, is a
scripting language with an easy-to-read and easy-to-write syntax. It is often
integrated into programs written in other programming languages, as the
fact that Lua is simple, efficient and portable onto many platforms, is often
of great value [8]. LuaTEX and LuaLATEX [10], first made public in 2007, allow
the easy direct incorporation of Lua code into a TEX document.

The TEX package TikZ, first released by Till Tantau in 2005 [13], is a
powerful tool that allows the construction of vector graphics by programming
them; for example the following line of code

\tikz\node[star,draw=red,star point height=.2cm,scale=.5] {};

results in a little red star: . The package contains many already imple-
mented functions that have facilitated the implementation of the phyloge-
netic tree algorithms, for example the generation of nodes and edges, the
visualization of the final graphic, and the syntax for programming such a
graphic.

The framework for graph drawing in TikZ, which facilitates the imple-
mentation of graph drawing algorithms in Lua, has first been published
by Till Tantau in 2012 [14]. In general, the connections between TikZ and
Lua can be summarized as follows: The author inputs the required data us-
ing TikZ, which creates the nodes and other graph elements. The complete
graph information is then passed to the Lua layer, which is where the graph

4

introduction

drawing algorithms are invoked. Once Lua has finished the graph compu-
tation, the results are handed back to TikZ, and the graph is adjusted to fit
those results. Finally, the graph is displayed in the TEX document. Thus,
the usage of TikZ, Lua, and LuaTEX enabled the creation of the module that
allows the computation and visualization of phylogenetic trees directly in a
TEX document.

1.3 General Aim of the Thesis and Motivation

The module, implemented as part of this thesis, aims at enabling the user
to compute and display phylogenetic trees in TEX. This can be of great
support when an author is in need of constructing a phylogenetic tree for
a scientific document. He or she neither has to use an external program
for the calculation and/or display of the tree, nor does he or she need to
draw the tree by hand, for example with TikZ or with an additional drawing
program. Figure 1.2 contains another exemplary tree, and Figure 1.3 shows
the TikZ-code that created this tree: In lines 3–9 the general options are set,
i.e. the phylogenetic tree algorithm is chosen, as well as the layout type, and
the nodes’ and edges’ styles are set. The distance scaling factor in line 10 can
be used to scale the phylogenetic distances and thus the edge lengths (see
Section 3.3). In lines 12–16 the taxa are declared and named, and finally in
lines 19–22 the distance matrix is specified. The fact that the tree is directly
created within TEX by a few lines of code allows the user to easily change
the tree’s appearance and/or content at will. The tree can also be used as
part of a larger TikZ picture.

This thesis discusses the two phylogenetic tree algorithms and their im-
plementation. The algorithms will also be tested and compared, and sug-
gestions concerning further extensions and additions to the module will be
made.

5

introduction

Lion

Domestic Cat

Wolf

Domestic Dog

Horse

Figure 1.2: The same exemplary phylogentic tree as in figure 1.1, but
with different decorative options. The colors additionally underline
the closeness of the taxa’s relations: all taxa belong to the class Mam-
malia; the red taxa are of the order Carnivora, whereas the dark red
taxa are of the genus Canis, and the light red taxa belong to the
family of the Felidae.

1 \begin{tikzpicture}
2 \graph[
3 phylogenetic tree,

4 phylogenetic algorithm = UPGMA,

5 phylogenetic layout = rectangular phylogram ,

6 grow = right,

7 every phylogenetic inner node/.style = {},

8 nodes = {inner sep=5pt, thick, draw, rectangle},

9 edges = {draw, rounded corners=2.5pt, thick},

10 distance scaling factor = 1cm,

11]{

12 L/Lion [red!80!black],

13 C/Domestic Cat [red!80!black],

14 W/Wolf [red!50!black],

15 D/Domestic Dog [red!50!black],

16 H/Horse [green!50!black],

17

18 % distance matrix

19 L [distances = {C = 2, W = 4, D = 4, H = 7}];

20 C [distances = { W = 4, D = 4, H = 7}];

21 W [distances = { D = 1, H = 7}];

22 D [distances = { H = 7}];

23 };

24 \end{tikzpicture}

Figure 1.3: The TikZ-code within this LuaLATEX document that created
the phylogenetic tree displayed in Figure 1.2.

6

2 computing phylogenetic trees

Many phylogenetic algorithms—as the ones dealt with in this thesis—yield
two results: a tree topology, i.e. the arrangement of the nodes with respect
to each other and the presence or absence of edges, and the edge lengths.

The topology is the tree’s most important characteristic and its compu-
tation is the central part of phylogenetic algorithms. Some algorithms, like
UPGMA, build up the tree step by step without modifying the already-built
parts, while others, like BME, constantly change the tree’s topology until
the tree has gained its final structure. In contrast to the other two men-
tioned algorithms, BNNI does not compute a tree from scratch, but merely
improves an already existing tree. Phylogenetic trees are often binary trees,
i.e. their inner nodes have exactly two children; nevertheless it is also possi-
ble for them to have nodes with a higher number of children, see Section 3
on graph drawing algorithms for more detailed information. Phylogenetic
trees may be either rooted or unrooted, which depends on the algorithms
that compute them.

Often, though not always, phylogenetic trees have fixed edge lengths.
If they do, the edge lengths give insight into either when in time evolution
has taken place or how significant the resulting difference, or rather distance,
between the taxa is. In other cases it may suffice to display that an evolu-
tionary event has taken place, without giving any further information. In
the following, though, the edge lengths will be regarded as an important
value. Their calculation may differ strongly from algorithm to algorithm: in
the UPGMA method they result quite directly from the distance between the
taxa connected by that edge, whereas the BME/BNNI algorithms demand a
more complex computation.

In this section, these three algorithms will be described, and finally some
details on their implementations will be presented. The notation used in the
following for describing phylogenetic trees and their distance matrices has
been adopted from Desper and Gascuel [4].

2.1 The UPGMA Algorithm

The algorithm’s name, Unweighted Pair Group Method with Arithmetic Mean,
harbors its operating principles, which will be explained in the following.

7

computing phylogenetic trees

The algorithm works by clustering, iteratively joining the two clusters
with the smallest distance. To begin with, every taxon can be seen as its own
cluster; the distances between the clusters correspond to the distance matrix.
As a first step, the two clusters with the smallest distance, i.e. the smallest
evolutionary change, are merged to form a joint cluster, by introducing a
new node to connect them. This new node is now the cluster’s root, and
it is the one that will be connected with another cluster’s node in a future
merging step. This process of searching for the best merge—and performing
it—is repeated until only one cluster, containing all taxa, remains. The node
that is created by merging the two final clusters becomes the tree’s root. The
produced tree is always a binary tree, whereas every node has exactly two
children or none.

This brings us to the required input, namely a distance matrix ∆ which
specifies the evolutionary distance between the different taxa. This matrix
should ideally be ultrametric, and should thus meet several conditions [7]:

First of all, the matrix should be symmetric, meaning that the distance of
taxon a to taxon b equals the distance of b to a. Thus, for a n × n-matrix the
following holds:

∆ab = ∆ba for all a, b ∈ {1, ..., n}. (1)

Secondly, the matrix should fulfill the triangle inequality, i.e.

for all a, b, c ∈ {1, ..., n} we have ∆ac ≤ ∆ab + ∆bc . (2)

This states that the distances are to be “true” distances, i.e. Euclidean dis-
tances, such that the direct way from point a to c cannot be longer than a
detour over point b.

Thirdly, the distance of a taxon to itself is zero, and all other distances
are larger than zero:

for all a, b ∈ {1, ..., n} we have ∆ab =

{
0, if a = b,
x, if a 6= b; x > 0.

(3)

Equations 1, 2, and 3 are the conditions for a metric. As the UPGMA algo-
rithm works on the assumption that all taxa evolve at the same pace, result-
ing in identical distances of all taxa to the root, one more condition should
ideally be fulfilled, making the distance matrix ultrametric: The three-point
condition states, that when looking at three taxa, two of the pairwise dis-
tances must be equal to each other, while the third distance is either smaller
or also equal to them; any three taxa a, b, c ∈ {1, ..., n} can be named such
that we have

∆ab = ∆ac ≥ ∆bc . (4)

Now that it has been clarified what kind of an input matrix is required, we
can take a look at how the distance between two clusters is calculated on the
basis of that matrix [7]: The distance of two clusters Ci and Cj to each other

8

computing phylogenetic trees

is defined as follows, using arithmetic means:

dist(Ci, Cj) =
1

|Ci||Cj| ∑
a∈Ci
b∈Cj

∆ab . (5)

The distance of two clusters is thus simply the average of all pairwise dis-
tances between the taxa in Ci and Cj. As the distances are all weighted
equally in the calculation, regardless of cluster sizes and of the taxa’s posi-
tions in the tree, UPGMA is said to operate in an unweighted way1. For the
actual implementation of the algorithm, it would be impractical to rely solely
on Equation 5. With the help of an update formula, the distance between
two clusters does not have to be calculated from scratch after each merg-
ing step: When two clusters Ci and Cj are merged to Ci,j, the new cluster’s
distance to any third cluster Ck can be calculated from its previous cluster
distances to Ci and Cj, again by using arithmetic means:

dist(Ci,j, Ck) =
dist(Ci, Ck)|Ci|+ dist(Cj, Ck)|Cj|

|Ci|+ |Cj|
. (6)

This saves run time and is easy to implement.
Although the distance matrix should ideally fulfill the requirements de-

scribed beforehand, it is not mandatory, and the algorithm will produce a
tree in any case. The quality of the tree, however, may be affected negatively.
The distance matrix is only fully represented by the tree if the matrix is ul-
trametric. In order to demonstrate how the properties of the matrix affect
the tree quality, three example matrices have been created, as displayed in
Figure 2.2. The trees created by UPGMA upon processing the respective
matrices can be seen in figure 2.1.

While the tree produced with matrix 2.2(a) represents the distances per-
fectly, i.e. the edge lengths mirror the distances, the tree constructed on the
basis of matrix 2.2(b) for example fails to distinguish between ∆ac and ∆ad,

a b g

simply averaging their values. Matrix 2.2(c) does not
only violate the three-point condition, but also the tri-
angle inequality. The information that the pairs of
taxa (a, b) and (a, g) are close, while (b, g) have a large
distance, is not displayed in the tree; see also the tree
on the right. In fact, this cannot be displayed by any
tree (in the Euclidean space). The UPGMA algorithm
instead produces a tree that displays either the close-
ness of (a, b) or that of (a, g) at the expense of the
other pair (in this case the closeness of (a, b) is depicted). In Figure 2.1(c) it
can be seen that the leaf g moved closer to a and thus also closer to b, as a
result of the small values of ∆ag. This happens at the expense of the accuracy
of the distances of g to all other taxa, including ∆bg, which is actually much
larger than displayed in the tree.

1The WPGMA algorithm can be seen as UPGMA’s weighted counterpart [4]; they differ
in the calculation of the cluster distances. WPGMA will not be discussed any further in this
thesis.

9

computing phylogenetic trees

a

b

c

d

e

f

g

(a)

a

b

c

d

e

f

g

(b)

a

b

c

d

e

f

g

(c)

Figure 2.1: The trees produced by UPGMA upon input of the matri-
ces displayed in Figure 2.2. (a): The tree that is produced when the
ultrametric distance matrix 2.2(a) is used as input. (b): The tree that
is produced when the distance matrix 2.2(b), which does not fulfill
the three-point condition, is inputted. (c): The tree generated when
the matrix 2.2(c), which neither fulfills the three-point condition nor
the triangle inequality, is used as input.

a b c d e f g
a 0 4 9 9 9 9 9
b 4 0 9 9 9 9 9
c 9 9 0 2 7 7 7
d 9 9 2 0 7 7 7
e 9 9 7 7 0 3 5
f 9 9 7 7 3 0 5
g 9 9 7 7 5 5 0

(a)

a b c d e f g
a 0 4 9 7 9 6 9
b 4 0 9 7 9 6 9
c 9 9 0 2 7 7 7
d 7 7 2 0 7 7 7
e 9 9 7 7 0 3 5
f 6 6 7 7 3 0 5
g 9 9 7 7 5 5 0

(b)

a b c d e f g
a 0 1 9 9 9 9 1
b 1 0 9 9 9 9 9
c 9 9 0 2 7 7 7
d 9 9 2 0 7 7 7
e 9 9 7 7 0 3 5
f 9 9 7 7 3 0 5
g 1 9 7 7 5 5 0

(c)

Figure 2.2: Example matrices with seven fictional taxa. Differences of
(b) and (c) in comparison to (a) are marked red. (a): An ultrametric
distance matrix. (b): A distance matrix with unfulfilled three-point
condition. (c): A distance matrix with unfulfilled triangle inequality.

10

computing phylogenetic trees

2.2 The BME Algorithm

The balanced minimum evolution algorithm, as described by Desper and Gas-
cuel [4], builds a phylogenetic tree on the assumption of minimum evolution,
i.e. it searches for the tree that explains the given data with as few evolu-
tionary events as possible. In contrast to UPGMA, the BME algorithm does
not work by clustering, but instead it iteratively adds one leaf after another
to the current tree. Hereafter the algorithm will first be outlined, then some
important definitions and details will be given, and finally some examples
will be considered.

The algorithm builds the tree by adding one leaf after another, until all
leaves have been included in the tree. To make things easier, the taxa are
numbered from k = 1 to n. The tree is initialized by connecting the first
three leaves via a new inner node. Before the next leaf (k = 4) is inserted,
all average distances of k to any subtree in the current tree are computed.
Then any edge in the tree Tk−1, i.e. the tree with (k − 1) leaves, is considered
as a possible insertion point for leaf k and the resulting total tree length, a
term that will be explained a little further down, is determined. As we are
looking for a tree that explains the data on an assumption of minimum evo-
lution, k is finally inserted into the edge that minimizes the tree length: For
this purpose a new node is created, connecting k and the two nodes which
were previously direct neighbors. Finally, all average distances influenced
by k need to be updated. These three steps—calculating the distances to k,
finding the best edge and inserting k there, and updating the distances—are
repeated, until all leaves have been added to the tree. Finally, the true edge
lengths must be computed or the subtree-swapping algorithm BNNI must
be called.

As described above, BME depends on the computation of the average
evolutionary distances between subtrees. This is done by using the pairwise
distances of the taxa described in the distance matrix. The average distance
between two subtrees A and B in a topology τ is defined as follows:

∆τ
A|B =

{
∆ab, if A = {a} and B = {b},
1
2

(
∆τ

A|B1
+ ∆τ

A|B2

)
, if B = B1 ∪ B2,

(7)

with B1 and B2 being the two non-intersecting subtrees of B, as shown in
Figure 2.3. As the τ in ∆τ

A|B suggests, in BME, the distance between two
subtrees is dependent on the topology. This means that not only the ques-
tion of which taxa are part of the subtree matters, but also the question of the
arrangement of the taxa within the subtree. The (final) edge lengths need to be
calculated explicitly; they are not computed on the fly as in UPGMA. The
internal edge e in the model tree (see Figure 2.3) for example is computed by
calculating the distance between the subtrees A ∪ B and C ∪ D. But since we
only want the length of e, the distances ∆τ

A|B and ∆τ
C|D, which were added

obligatorily, are subtracted again:

l(e) = ∆τ
A∪B|C∪D − 1

2

(
∆τ

A|B + ∆τ
C|D

)
. (8)

11

computing phylogenetic trees

A

e

C

D

a

v w

c

db

B1

B2

B

Figure 2.3: A tree with labeled edges and nodes, in consensus with
the BME/BNNI notation, as shown similarly by Desper and Gascuel
in [4].

The calculation of external edges can be performed as follows, with i as the
respective leaf:

l(e) =
1
2

(
∆τ

i|A + ∆τ
i|B − ∆τ

A|B

)
. (9)

The tree length is a term which takes on large values if leaves with a large
evolutionary distance are close neighbors in the topology. In other words,
the tree length validates the tree, becoming minimal when the distance ma-
trix is reflected in the topology. It can be calculated by simply adding up all
edge lengths.

Like UPGMA, BME also requires its input distance matrix to ideally ful-
fill the symmetry statement, the triangle inequality, and the identity state-
ment. The three-point condition plays no role, as BME does not assume
a constant mutation rate, allowing the different taxa to evolve at different
speeds. Thus the taxa do not necessarily have the same distance to their
common ancestor. In fact, BME does not make any suggestion about such a
common ancestor and does not produce a rooted tree. This means that BME
does not indicate the direction or order of the evolutionary events.

For the actual implementation of BME, it would be very inconvenient
to determine the complete tree length before every leaf-insertion step, espe-
cially with regard to the computation time; there is an update formula that
can be used instead. This formula does not directly compute the tree length,
but instead merely determines the change in tree length from one topology to
the next. Similarly, the updating of the pairwise subtree distances after each
leaf-insertion step does not have to be done from scratch, but instead the
preceding distances may be used. The number of distances to be updated
here should not be underestimated: the only distances that do not need to be
updated are distances between two subtrees of which neither contains the
newly inserted leaf k; for the actual formulas see [4].

Figure 2.4 shows the trees the BME algorithm produces when the ma-
trices displayed in Figure 2.2 are used as input. The tree 2.4(a) perfectly
mirrors its ultrametric distance matrix. In fact, the branch lengths corre-
spond exactly to the respective ones in tree 2.1(a), produced by UPGMA.
The tree 2.4(b) displays the differences for example between ∆ac and ∆ad and

12

computing phylogenetic trees

a

b

c

d

e

f

g

(a)

a

b

c

d

e

f

g

(b)

a

b

c

d

e

f

g

(c)

Figure 2.4: Trees produced by BME on the basis of the distance ma-
trices displayed in Fig. 2.2. Note that the algorithm produces an un-
rooted tree; a graph drawing algorithm introduced a root afterwards.
(a): The tree produced on the basis of matrix 2.2(a). (b): The tree
produced on the basis of matrix 2.2(b). (c): The tree produced on the
basis of matrix 2.2(c).

also between ∆eg and ∆ f g, unlike its UPGMA counterpart. The real distance
between the taxa pairs (e, g) and (f , g) is 5, as defined by the distance ma-
trix. In a tree that perfectly mirrors the matrix, adding up all branch lengths
between two of those pairs should result in that value; this is the case for
tree 2.4(a) and thus we have

l(e, g) = l(f , g) = 5 = ∆e,g = ∆ f ,g,

with l(e, g) being the sum of the edge length between e and g. Since, among
others, in tree 2.4(b) the distances ∆ae and ∆a f are not equal, the tree has to
compromise by for example adjusting the lengths of the leaves e and f to
their common root. This results in slight deviations from their real distances
to g:

∆e,g 6= 5.29 = l(e, g) 6= l(e, f) = 4.64 6= ∆e, f .

A tree computed on the basis of matrix 2.2(c) has to deal with non-Euclidean
distances, as described before. This results in a negative branch length,
which, mathematically is a solution, but makes no sense biologically, as a
negative evolutionary distance is undefined:

l(a, b) = 1 = ∆ab, but: l(a, r) = −1.5 and l(b, r) = 2.5,

with r being the node connecting a and b.

13

computing phylogenetic trees

2.3 The BNNI Algorithm

In contrast to BME and UPGMA, the balanced nearest neighbor interchange
algorithm, also presented by Desper and Gascuel [4], does not build a tree
from scratch, but instead enhances an already completed tree. The BNNI is
a heuristic for minimizing the tree length; it operates by swapping subtrees
of the completed tree and renders a possibility of improving the results of
BME or also other distance-based algorithms.

One of the input requirements for the BNNI is thus a complete tree T;
the distances between all non-intersecting subtrees are another requirement.
If BNNI is applied subsequently to BME these distances have already been
computed; otherwise they need to be calculated on the basis of the respective
distance matrix, with help of Equation (7).

The BNNI algorithm operates by iterating over all internal edges of the
tree and looking for the best subtree swap, whereas only subtrees separated
by three edges are considered as swapping partners. When regarding an in-
ternal edge e (see Figure 2.3) there are three possibilities of how the subtrees
A, B, C, and D can be positioned relatively to each other. The algorithm
runs over all three possibilities and compares their effect on the tree length.
The information on the swap that would lead to the strongest decrease in
tree length is saved, if such a swap exists. The change in tree length can,
once more, be calculated with an update formula, which saves run time.

Of all tree-length-improving swaps the overall best swap is performed,
whereupon the distance matrix needs to be updated (again with the help of
different update formulas, see [4]). These two steps are repeated until no
such swap is left, improving the tree length every time. Finally, the actual
branch lengths can be calculated. For this the precomputed matrix distances
are used.

Since the BME already aims at producing an optimal tree with respect
to the minimal evolution criterion, small trees are likely to already be in a
(local) minimum after the BME algorithm is finished. Thus, for BNNI to
have an actual effect, the input has to be of a certain size. The sample trees
displayed so far are all so small that no optimizing swaps are found (see
Section 2.4 for an example with a larger input matrix). As stated by Desper
and Gascuel [4], the BNNI algorithm performs approximately one swap if
the input comprises 24 taxa; 96 taxa yield about seven swaps, a tree with
4000 taxa undergoes over 116 swaps on average.

The book Phylogenetic Networks [7] praises the BME algorithm for the fact
that it does not produce negative edge lengths, in comparison for example with
the neighbor-joining method. Readers who had a careful look at Figure 2.4
will be disconcerted: the tree grows right in all three cases, but there is
definitely an edge that grows left, meaning is has a negative edge length. A
further paper by Desper and Gascuel [5] gives insight into when exactly the
statement—that no negative edge lengths are produced—holds: The tree has
to be in a local minimum concerning the tree length, which it is if BNNI is
applied. Under that condition, no internal edge will have a negative length,

14

computing phylogenetic trees

as proven in the paper mentioned above. This holds even if the distance
matrix does not fulfill the triangle inequality. External edges, on the other
hand, may be negative if the distances are no Euclidean distances, as it is the
case for the tree in Figure 2.4(c).

2.4 Implementation—Details, Difficulties, and Evaluation

This section deals with the implementation of the algorithms described above.
To begin with, the overall structure of the module will be outlined, in or-
der to demonstrate which part of the module we are currently dealing with.
Subsequently some details and difficulties of the implementation of the phy-
logenetic tree algorithms will be discussed, followed by an evaluation of the
implementation.

TikZ

distance
matrix

graph drawing
parameters

phylogenetic tree
parameters

UPGMA
BME/
BNNI

none

graph drawing
(see Section 3)

phylogenetic tree

Lua: PhylogeneticTree

input:

phylogenetic
tree
algorithms:

output:

Figure 2.5: A diagram roughly depicting the overall structure of the
implemented module. The user inputs a distance matrix and param-
eters, by typing TikZ code in their TEX document. This information
is handed to the PhylogeneticTree class, which is part of the Lua layer.
According to the user’s specifications, either UPGMA, BME/BNNI
or no phylogenetic tree algorithm is called. In the latter case, the
users have to specify the tree’s topology themselves. Next, a graph
drawing algorithm is evoked; again dependent on the user’s input.
Lua hands the graph information back to TikZ and finally a com-
pleted phylogenetic tree is rendered.

15

computing phylogenetic trees

As can be seen in Figure 2.5, the phylogenetic algorithms are handled by
the class PhylogeneticTree, which analyzes the user’s input and then invokes
the accordant subclasses handling the phylogenetic tree and graph draw-
ing algorithms. For an example of how to specify the required input, see
Figure 1.3; a full list of the parameters is given in Appendix B.

Programming in Lua means programming by using tables, the language’s
most important—or rather only—data structure. Tables occupy the role of
classes2 as well as of objects in object-oriented programming; they can contain
any kind of entry, also functions. There are several classes used to model
graphs on the Lua layer in TikZ, such as the Digraph and the Vertex classes,
which were created by Till Tantau [15]. These classes have also been used
for programming the phylogenetic trees module.

The implementation of the UPGMA algorithm was quite straightfor-
ward. It was especially useful to me for training to program in Lua and
to become familiar with the graph model classes. In addition to the al-
ready existing ones, another class, the Cluster, was needed and therefore
implemented: A cluster object saves the information on the nodes it con-
tains and its distances to other clusters, which are needed for computing the
next merging step, as described in Section 2.1. Analogously to vertices and
arcs, the clusters can be stored in the digraph object, which is accessible via
phy_tree.digraph in the UPGMA class. In Lua this is an easy-to-do modi-
fication, as we can simply create a new table in the existing digraph object
within the UPGMA class:

self.phy_tree.digraph.clusters = {}

There is no need to create an actual matrix to represent the distance
matrix, which in Lua would be implemented as a table of tables. Instead,
the newly computed pairwise distances of the clusters to each other are
stored directly in the respective cluster objects.

The BME/BNNI algorithms, on the other hand, were far less trivial to
implement. This is, for one, due to the algorithms’ general concepts, which
are much more complex than UPGMA’s: alone the process of understanding
BME and BNNI was time consuming. In the actual implementation, the
main difficulties lay with the many updating steps: they had to be carefully
implemented in order to ensure that every distance that needs to be updated
is indeed really updated—with the correct value.

The distance matrix is handled slightly different than with UPGMA:
newly computed distances are stored in the vertices’ storages, which are
objects designed especially to store any kind of information [15]; again there
is no need to create an actual matrix.

As computing the distances between subtrees is a central part of the BME
algorithm, a question that arose very early was how to distinguish between
the different subtrees, i.e. how to identify them unambiguously: A subtree
can be defined by its root, and the distance between two non-intersecting

2Lua does not explicitly offer a class system. Classes may be imitated by making an object
the prototype of another by making it the other’s metatable[8].

16

computing phylogenetic trees

subtrees can be saved unambiguously by saving it as the distance between
the two roots. In Figure 2.3, for example, the distance between subtrees B
and C ∪ D can be stored as the distance between the two nodes b and w. The
distance between A∪ B∪C and D, on the other hand, can be stored by using
w and d as references. Thus, to which subtree the node w refers to depends
on the subtree we are comparing it to. Analogously, when regarding two
leaves, the distance can be saved as the distance between these two nodes.

Less clear was how to implement the step that computes all distances
of the to-be-inserted leaf k to all non-intersecting subtrees; there was no
solution offered by Desper and Gascuel in [4]. As k has, in that step, not yet
been inserted and the distances to all subtrees are required, every inner node
must describe three different subtrees. This can be done by remembering the
direction from which we are looking at a vertex. Considering Figure 2.3 once
more, one can see that w acts as the root of subtree C ∪ D if one regards it
from perspective of the vertex v. Thus, using v as the center, one can see
the three subtrees w, b (as the root of B) and a (as the root of A). This
approach has been implemented by storing the distances of k to the subtrees
in a temporary table of tables:

local k_dists = {}
k_dists[center_vertex] = {}

k_dists[center_vertex][root] = distance

The variable center_vertex contains the vertex we are currently using as the
“center” and the variable root is the vertex functioning as a subtree’s root.
The parameter distance contains the computed distance, done so by applying
Equation (7) recursively [4]. Once k has been inserted into the tree, the
distances that are still relevant are incorporated into the distance matrix; the
other distances are discarded.

Implementing the updating steps is very error-prone; especially time
consuming was the detection and then the correction of implementation mis-
takes, especially those yielding no error report. To name just one example,
in the step after the insertion of taxon k into the tree, where all distances of k
to still relevant subtrees are incorporated into the distance matrix, I acciden-
tally introduced such a mistake: The tree produced by the algorithm looked
almost perfect, but by comparing the tree in Figure 2.4(a) and its respective
distance matrix, it became apparent that for example the edge lengths of
leaves a and b to their common parent must be identical. This was not the
case, and as the source of that error could have been almost anywhere, a sys-
tematic search began—until the mistake was finally eliminated successfully.
Such error findings made clear that the implementation of the algorithms
should be carefully scrutinized, which will be done a little further down.

During the implementation of the BNNI algorithm, the updating steps
were again the most critical steps. Additionally, a heap was needed to store
the possible swaps efficiently, a data structure I had not worked with before.
The heap was implemented as a binary heap, which turned out to be quite
straightforward.

17

computing phylogenetic trees

(a)

a

b

c

d

e

(b)

Figure 2.6: (a): The tree displayed in Figure 3.20(b) in Phylogenetic
Networks [7], computed on the basis of the distance matrix depicted
in Figure 3.20(a) in [7]. (b): The tree computed by the implemented
UPGMA algorithm, when the same distance matrix is used.

Let us now turn to the evaluation of the implementations. To verify that
an algorithm has been implemented correctly is not trivial. In the following
an attempt at evaluating the algorithms’ correctness will be made, although
no actual proof will be given.

Whether the UPGMA algorithm has been implemented correctly can be
evaluated by having a tree computed on the basis of the distance matrix
displayed in Phylogenetic Networks ([7]: p. 53, Figure 3.20), as suggested in
Exercise 3.13.1 on the same page. This has been done; the results are depicted
in Figure 2.6: The tree produced has the same topology as the one in the
book. Furthermore, the edge lengths seem to have the same ratio to each
other, although there are no numeric data given in the book to confirm this
observation and the book does not clarify whether the taxa labels are to
be seen as part of the edge or not. Even though the assumption that the
algorithm has been implemented correctly is not proven by this, it is at least
supported by this result.

In order to try to evaluate whether the implementation of the BME algo-
rithm is error-free, two computed results (the trees in Fig. 2.4(a) and 2.4(c))
have been validated by calculating parts of their final distance matrices with-
out using the results of the updating formulas, but instead by recursively
using Equation 7, which defines the distances between subtrees. If the ma-
trix is correct, so are the edge lengths, as they can be simply computed by
solving Equations 8 and 9. This test run demonstrated that the calculation
of the edge lengths and its underlying distances is performed correctly—at
least for the tested examples; it did not, though, directly test whether the
tree is built correctly. But, if the distance matrix is correct, it is unlikely that
the tree is erroneous, as the construction of the tree is directly dependent on
the matrix. If BNNI is run subsequently and no subtree swapping is per-
formed, it can be gathered that a local tree length minimum was found by
BME, making an incorrect BME implementation even more unlikely.

18

computing phylogenetic trees

a
b

c
d

e

f

g

h

i

j
k

l

m

n

(a)

a
bc

d
e

f
g

h

i

j

k

l

m

n

(b)

Figure 2.7: Trees with 14 Taxa computed on the basis of the same dis-
tance matrix (see Figure C.1 in Appendix C). (a): The tree produced
by BME, without the BNNI algorithm performing any branch swap-
ping. A slightly negative edge length is marked by an arrow. (b): The
tree produced by BME with subsequent optimization by BNNI in the
form of two swaps.

This brings us to the inspection of the BNNI implementation—which
is challenging because of the large input sizes it requires, as stated in Sec-
tion 2.3. During the programming phase, the condition for carrying out a
swap was changed, so that a specific number of swaps were performed in-
stead of just those that improve the tree length. This, of course, resulted
in poorer results, but enabled the testing of the code. To assess whether the
BNNI implementation really functions correctly and improves the tree length,
the usage of a larger exemplary input matrix cannot be evaded. The trees
in Figure 2.7 were produced on the basis of a distance matrix describing 14
taxa. It should be noted that the underlying distance matrix has been con-
structed with random numbers and does not fulfill the triangle inequality
for many pairs of taxa. Figure 2.7(a) shows the tree produced by BME with-
out BNNI, while Figure 2.7(b) depicts the same tree after BNNI performed

19

computing phylogenetic trees

two branch swaps. There is one slightly negative internal edge length in
tree 2.7(a), marked with an arrow, whereas in tree 2.7(b) all edge lengths
are positive—which is a clear improvement of the tree and, as stated earlier,
negative internal edges can only occur if the tree is not in a local tree length
minimum. Although this test run does, of course, not prove that the algo-
rithm functions correctly, the fact that the tree length has been improved by
BNNI supports this assumption: While tree 2.7(a) has a total length of 29.80,
the length of the tree in Fig. 2.7(b) is only 29.37.

All in all, the test runs suggest that the implementation of the algorithms
are at least free of major errors. The performance is fast; the examples de-
picted in this thesis are each computed in less than a second: For the largest
examples computed by BME (Figure 2.7) the run time lies at about 0.12 s,
the graph drawing for the same trees takes approximately 1 ms. The branch
swapping by BNNI takes about 1 ms for Figure 2.7(b); UPGMA takes at most
0.06 s to compute the given examples.

20

3 visualizing phylogenetic trees in TEX

Once the topology of the tree has been defined for good, whether by a phy-
logenetic algorithm or by the user, the tree still has to be visualized. The
essence of the visualization process is to set the positions of the nodes in the
plane, i.e. their x- and y-coordinates. Decorative visualizing elements, such
as the color of the edges or the shape of the nodes, are handled by TikZ at a
different level; it merely has to be made sure that the user has the possibility
of adjusting those decorative elements.

Though other graph drawing algorithms have already been implemented
as part of the TikZ graph drawing library, none of them allow the option of
fixed edge lengths. As exactly this property is the important factor for the
type of phylogenetic trees dealt with in this thesis, a new graph drawing
algorithm has been implemented. Such trees with edge lengths that are
proportional to evolutionary change are often called phylograms [7].

Some phylogentic algorithms, like UPGMA, always produce rooted trees:
Every inner node is either of degree three, or is the root and thus of degree
two. In unrooted trees produced by other algorithms, as for example BME,
all inner nodes are of degree three. There may be other settings for trees
computed by other algorithms, as for example inner nodes of degree two or
four, thus the graph drawing algorithm has been designed to allow all kinds
of degrees.

This section deals with the graph drawing algorithm—designed by my-
self—that has been implemented as part of the module. This graph drawing
algorithm offers several different layout options, which will be explained
and discussed hereafter; the basal layout can be specified by the user via the
key phylogenetic layout (see Figure 3.1). The first two parts to follow are about
drawing rooted and unrooted trees, respectively—the two most important
layout options. The last part deals with some further options, which are
applying straight edges instead of rectangular ones, using a scaling factor to
control the tree size, and changing the style of the inner nodes. Additionally,
the edge length will be defined and the effect of certain rotating options on
the edge lengths will be discussed.

21

visualizing phylogenetic trees in TEX

Maeusle2012

phylogenetic layout

rooted
rectangular
phylogram rooted

straight
phylogram

unrooted
straight

phylogram

unrooted
rectangular
phylogram

Figure 3.1: The implemented graph drawing class, Maeusle2012, has
four main layout options, as depicted above. The edge lengths of the
resulting trees are always proportional to the amount of evolution-
ary change as defined by the distance matrix; the trees can thus be
referred to as phylograms [7].

3.1 Drawing Rooted Trees

In this section we will look at how a rooted rectangular phylogram3 is built;
information on phylograms with straight edges will be added in Section 3.3.
A rooted rectangular phylogram has its edges bent in 90◦ angles, see Fig-
ure 3.2 for an example. The implemented algorithm can be summarized as
follows:

1. Look for nodes of degree two.
(a) If at least one such node exists, choose the first one as root of the

tree,
(b) else compute the center of the tree and use the most central node

as root.
2. Beginning at the root, use a depth-first traversal to set the x- and

y-positions.

Let us take a closer look at the individual steps. As the algorithm sets the
positions for a rooted tree (see Figure 3.2 for illustration of the used coordi-
nate system), the first step consists of determining the tree’s root. Step 1(a)
is quite straightforward. As an inner node embodies an evolutionary event,
which generally results in at least two different lineages, it usually makes
no sense for phylogenetic trees to have more than one node of degree two.
Nevertheless, if there are more nodes of degree two, a smarter choice of root
could be implemented, such that the most central of those nodes is made
root, similarly to step 1(b): A balanced tree tends to be more appealing to
the eye than a tree with very differently sized subtrees; it is usally also more
compact and thus increases its likelihood of fitting on the page of a docu-
ment (see for example [1] on graph aesthetics).

3An algorithm similar to mine is described in [7], a fact I only noticed after my implemen-
tation was finished. The name rectangular phylogram was adopted from [7].

22

visualizing phylogenetic trees in TEX

a b

c d e f g

x

y

Figure 3.2: The definition of the x- and y-coordinates of a tree used
in this thesis. The growth direction is set to down and the layout is
specified as rectangular phylogram, which results in the rooted style
with bent edges. The tree was computed by BME whereas the matrix
in Figure 2.2(a) was used as input.

In the aforesaid step the root is chosen by determining the tree’s most
central node. For this, the longest path in the tree is identified. This can be
done as follows4:

i. Choose any node as the starting point.
ii. Compute the path lengths from that node to all leaves, by adding up

the lengths of the edges on the respective paths.
iii. Take the leaf of the longest path from the previous step and repeat

step ii with that node as the starting point.
iv. Choose the longest resulting path; this is the tree’s overall longest path.

That this really is the tree’s overall longest path can be concluded from the
following thoughts: We begin with a node anywhere in the tree. The longest
path from that node to any other node will always lead to a leaf. That leaf
must be the starting or end point of the overall longest path, otherwise we
would not have gotten there. Beginning at that leaf, the search for the longest
path will provide us with the globally longest path.

If there is a node directly in the middle of the longest path, the choice
of the root is straightforward: that one will be taken. Otherwise the node
closest to the center is calculated and chosen as the root.

Once the root has been determined, step 2 can begin: the actual posi-
tioning of the nodes. Using a depth-first search, the y-positions of the leaves
are set to the path length from the root to every individual leaf. This means
that the edge length is displayed only by the height between nodes, and not
by their distance along the x-axis. This decoupling of x- and y-positions
facilitates the calculation of the positions on the one hand, and renders an
easy possibility for the viewer of a tree to estimate the distance between two
nodes on the other hand.

4My thanks to Christoph Stockhusen for this approach.

23

visualizing phylogenetic trees in TEX

The first leaf’s x-position remains 0; the next leaf’s x-position is set to the
“ideal sibling distance” [15], which takes the size of the nodes into consid-
eration, so that they do not intersect. Inner nodes are placed in the middle
of their children: if the number of children n is even, the parent’s x-position
is set to (x1 + xn)/2. In case an inner node has an odd number of children,
it is placed above the middle child. In accordance with this, a parent node
with only one child—which usually makes no sense when dealing with phy-
logentic trees—get assigned the same x-position as its child. The y-position
is in all cases dependent on the pre-calculated edge lengths. Finally, the
positions of the root are set; its y-position remains zero.

3.2 Drawing Unrooted Trees

In some cases the display of a tree with a root may be misleading: the BME
algorithm for example produces an unrooted tree and does not necessar-
ily suggest a common ancestor to the taxa. Thus, the depiction of the tree
in an unrooted layout should be—and is—an option. The algorithm for this
works by dividing the tree into two subtrees and setting the positions for
them separately, whereby the two subtrees are also connected by an edge
of the correct length. When using the same input as for the tree in Fig-
ure 3.2, but with the layout option set to unrooted rectangular phylogram, the
tree displayed in Figure 3.3(a) is produced.

The algorithm operates as follows:

1. Determine the root as in Section3.1, but additionally determine the
roots nearest neighbor.

2. Taking these two nodes as the starting points, use a depth-first search
for each to set the positions for the respective subtree.

3. If necessary, shift the x-positions of one tree half for a more aesthetic
result.

The first step is quite straightforward. The root and its nearest neighbor
can be seen as the roots of two non-intersecting subtrees, which together
make up the complete tree. In step 2 the nodes’ positions are set similarly
to the way described in the previous section, with the difference that the
two subtrees are handled separately. The growth direction of the two sub-
trees are opposite to each other, see Figure 3.3(a) for an example: The node
marked with an asterisk is the computed root and the node marked with
two asterisks is its nearest neighbor.

Finally, in step 3, the x-positions of the two roots are compared—if they
are not the same, the x-positions of one subtree are shifted by their differ-
ence, to make the figure more aesthetic.

3.3 Applying Further Options: Straight Edges, Scaling Factors, and Inner
Node Styles

Here, first of all the usage of straight edges instead of rectangular ones will
be discussed as additional layout options. We will also look into the problem

24

visualizing phylogenetic trees in TEX

a b

c d

e f g

∗

∗∗

(a)

a b

c d

e f

g

(b)

a b

c d e f
g

(c)

a

b

c

d

e

f

g

(d)

Figure 3.3: Trees with different layout options produced by BME with
Fig. 2.2(a) serving as distance matrix. (a): The tree produced when
the layout option is set to unrooted rectangular phylogram. (b): The
resulting tree when the layout option is set to unrooted straight phy-
logram. (c): The tree produced when the layout option is specified
as straight phylogram. (d): The resulting tree when the layout option
is set to unrooted straight phylogram, together with a higher distance
scaling factor.

of scaling a phylogenetic tree correctly, and then turn to the question of how
the inner nodes’ style can be customized. In order to enable the correct
interpretation of the trees, a definition of the edge length will be given, and
finally, the effect of rotating parts of the tree on the correct edge lengths will
be analyzed.

Although it is not uncommon to display phylogenetic trees with rectan-
gular edges as in Figure 3.2, this might not always be the user’s wish—
especially if he or she wants to use an unrooted layout. Therefore, the
module offers the additional options of an unrooted straight phylogram and
a straight phylogram. The main alteration to the rectangular style, is that the
edge length (l) now does not only consist of the vertical distance (∆y) be-
tween two nodes, but also the horizontal portion (∆x). As the horizontal

25

visualizing phylogenetic trees in TEX

distance is, as mentioned before, determined by the ideal sibling distance and
the diagonal length is determined by the evolutionary distance, the vertical
length can be calculated with the Pythagorean theorem: ∆y =

√
l2 − (∆x)2.

This works fine as long as ∆x is smaller than l—otherwise y is not real. In
practice ∆x may often be larger than l, if for example the scale of the picture
is rather small, or if the nodes are very large and thus their centers need to
be placed far from each other. Thus, to avoid error messages, if ∆x > l then
∆y = 0.

The procedure of setting the positions is once more similar to the previ-
ously discussed ones. As the calculation of the y-positions depends on the
x-positions, these need to be set before anything else is done; the y-positions
are set subsequently.

Figure 3.3(b) shows an unrooted straight phylogram; the edge marked with
an arrow delivers such a case where ∆x > l and thus this edge does not
have the correct length. By increasing the distance scaling factor—which will
be discussed in the following—this flaw can be eradicated, as depicted in
Figure 3.3(d).

As the edge lengths depend on the distance matrix, the magnitude of
the individual distances influence the total size of the tree, and hence, the
picture. The TikZ scaling key must not be used to change the size, as it flaws
the edge lengths, due to the fact that for example the font size is not influ-
enced by the scaling key, neither are the nodes’ minimum sizes. Thus, the
tree is scaled non-uniformly and as the inner nodes are included in the edge
length—as will be discussed a little further down—the ratio between the in-
dividual edges will be flawed. To solve this problem, there is another key,
the distance scaling factor, which scales the phylogenetic distances and thus
the edge lengths internally. Thus, if, for example, a distance of 1 should
correspond to 2 cm on the paper, the factor must be set to 2cm. The pos-
sibility of directly specifying the total tree size is sometimes also of great
use. Thus, the implementation of a second scaling key should be consid-
ered. Such a scaling procedure, though, would be more complex than the
implemented one: First the tree’s coordinates would have to be set in order
to determine the ratio between all the positions, and subsequently all the
coordinates would have to be reset to the values that fit the required total
tree size.

When using the layout option straight phylogram and the same input as in
the previous examples, this results in the tree displayed in 3.3(c). The distance
scaling factor would have to be three times larger in order to eliminate the
faulty edge marked with an arrow. This result hints at the fact that the
implementation of another, “smarter” graph drawing algorithm might be
reasonable.

While every leaf’s style can be directly manipulated by the user, this is
not the case for the inner nodes, as they are not created by the user them-
self. Thus, to set the inner nodes’ style the key every phylogenetic inner node
must be used. When a new inner node is create by the algorithm, the style
phylogenetic inner node is assigned to it, which is defined as follows:

26

visualizing phylogenetic trees in TEX

}louter

}

linner Cat

Dog

Rabbit

Rat

Bird

(a)

Cat

Dog

Rabbit

Rat

Bird

(b)

Cat Dog
R

ab
bi

t
Rat

Bird

(c)

Figure 3.4: Defining the edge length in the picture and the effect of
rotating on the determined edge length. For the distance matrix used
for the computation see Figure C.2 in Appendix C. (The animal-name
labels are purely fictional.) (a): Demonstration of what is included in
inner edge lengths (linner) and outer edge lengths (louter), i.e. edges
leading to leaves. (b): The effect of rotating the tree on the outer edge
lengths. (c): The effect of rotating individual leaves on the outer edge
lengths.

\pgfgdset{

phylogenetic inner node/.style={

/tikz/.cd, coordinate ,

every phylogenetic inner node/.try

},

}

Hence, if the user does not specify anything else, inner nodes will be
set to coordinates and thus be invisible. In case the tree is created with-
out a phylogenetic algorithm, but instead by having the topology and edge
lengths directly defined by the user, setting options to that key will have no
effect: only nodes generated by the algorithm are internally marked as phy-
logenetic inner nodes. Nodes that are introduced by the user can be directly
modified in any case.

27

visualizing phylogenetic trees in TEX

In order to interpret the depiction of a tree correctly, it is important to
define how exactly the evolutionary distance in terms of edge length is de-
picted. The graph drawing algorithms have been implemented in such a
way, that the leaves themselves are not included in the edge length, as shown
in Figure 3.4(a). This gives the user the opportunity of changing the leaves’
appearance freely without interfering with the actual graph drawing com-
putations. The inner edges’ lengths, on the other hand, go from the center
of a node (or coordinate) to another; see the edge labeled with linner in Fig-
ure 3.4(a). If the inner nodes are not overly large, as in the given examples,
it is intuitive to take in the distance between two nodes as the distance be-
tween two layers. It might be worthwhile to consider adding the option of
taking the inner nodes’ sizes into account.

Another fact which should be noted is that the edge lengths are not
correct if the tree is rotated in an angle not dividable by 90◦. In Figure 3.4(b)
a basis line has been drawn through the endpoint of the edge leading to
the node cat; this line is orthogonal to all the edges connected to leaves.
Thus, if the edge lengths were still correct, the line would go through all
the edges’ endpoints—which is not the case. The same goes for the rotation
of individual nodes, as can be seen in Figure 3.4(c): the node “rabbit” is
correctly placed, as it has been rotated by 90◦, as well as “bird”, which
has been rotated by 180◦. The edges leading to “rat” and “cat”, however,
are slightly too long. This, of course, is no mistake—TikZ aims at producing
aesthetic pictures, and from that point of view the nodes in the two examples
are perfectly aligned. As a rectangular placement of the tree and its leaves
should in general be a more common aim than some angles in between, this
problem can be bypassed.

28

4 conclusion and outlook

From the many different ways of calculating and visualizing phylogenetic
trees, only a few are dealt with in this thesis. The module offers the possi-
bility of having a tree constructed in a distance-based approach, either with
UPGMA or with BME, and visualized by an algorithm designed by myself.
In this section, these algorithms will be discussed and compared, leading to
suggestions for further improvements.

Both UPGMA and BME depend on a distance matrix as their basic input.
Even though the computation of the distance matrix is not part of the im-
plemented module, its importance should not be forgotten: Without a valid
distance matrix, no useful tree will be produced.

While UPGMA and BME may produce similar trees when the input ma-
trix is very small, as is the case in this thesis’ examples, their results deviate
strongly from another if the number of taxa is significantly higher. As the
appliance of such algorithms is usually relevant only if the number of taxa
to-be-analyzed is high, the differences of the algorithms’ working mecha-
nisms are indeed relevant.

UPGMA is a greedy algorithm, and “mistakes” made during the tree-
building are not corrected. BME, on the other hand, chooses the inser-
tion point for every new leaf greedily as well, but the tree is constantly
reconstructed and adjusted. BNNI optimizes BME’s final result, by greedily
choosing the best branch swap. Thus, especially for large trees, BME/BNNI
are much more likely to find an optimal result than UPGMA [4, 7].

As mentioned before, UPGMA is based on the hypothesis that all taxa
evolve at the same rate and thus all have the same distance to their root, i.e.
their hypothetical common ancestor. This strongly limits the applicability of
this approach [7]. BME, on the other hand, is actually a heuristic for find-
ing the true balanced minimum evolution tree and has been shown to produce
good results, i.e. with high topological accuracy, as shown by Desper and
Gascuel [4]. It may be used as a good approximation to finding the true
phylogeny of a set of taxa.

When it comes to comparing the algorithms’ run times, BME is once
more ahead of UPGMA. While the latter always has a time complexity of

29

conclusion and outlook

O(n3), with n being the number of taxa5, this is, in the worst case, also
true for BME. But, depending on the tree diameter, i.e. the longest path in
the tree, the time complexity may be a lot lower, and in practice it lies at
O(n2 · log(n)). BNNI, if run subsequent to BME, has a processing time of
O(p · n · log(n)), whereas p is the number of branch swaps, p is usually a lot
smaller than n [4, 7].

It may be worthwhile to consider implementing an alternative way of
inputting the distance matrix, as it is time-consuming for the author of a
document to convert a large matrix into the TikZ distance key format. It
could be allowed for to input the matrix in its actual form and have Lua
convert it internally. This would increase the module’s usability.

To further increase the module’s applicability, one could implement pos-
sibilities to import phylogenetic trees, which were calculated by other pro-
grams, into TikZ. One potential way is the Newick format, a means of com-
pactly describing trees [7], which is also used for phylogenetic algorithms. It
would be useful to allow this syntax as input in TikZ and have Lua interpret
and draw it, according to the user’s specifications.

Let us turn once more to the graph drawing algorithms. The visualiz-
ing process is done by an algorithm designed by myself. Though it offers a
few layout options, as presented in the previous section, it is rather limiting
in some aspects, especially when it comes to displaying the edges in a non-
rectangular way. Let us briefly take a look at a choice of other graph drawing
algorithms; the following is mainly based on information taken from [7].

Next to the already implemented graph drawing algorithm for a rectan-
gular phylogram, the circular phylogram is also often used. Here, every leaf
gets an angle assigned to it, so that the leaves form a steady circle together.
The root is placed in the middle, and the edges are drawn in such a way
that only the radius represents the edge length. This circular form can be of
advantage if the tree is very large. On the other hand, if the edge lengths are
very short, there may be a lack of space to place the nodes nicely.

Unrooted trees, such as the ones produced by BME, can be depicted
by radial diagrams. They are drawn similarly to circular phylograms, with
the difference that the edges are drawn as straight lines only. An advan-
tage of this graph drawing algorithm is that the leaves are placed in a well-
distributed way. If the node sizes are taken into consideration, as they are in
the implemented graph drawing algorithm, it might be difficult to assign the
angles in such a regular way. Nevertheless, implementing a radial diagram
algorithm would provide a good alternative for displaying unrooted trees.

All in all, the BME algorithm is superior to UPGMA, in terms of time
complexity, biological relevance, and optimization. Which phylogenetic al-
gorithm is applied to a given problem nevertheless depends on the specific
aim, making the implementation of further algorithms reasonable.

Although there are other graph drawing algorithms which may be more
suited for particular trees, the implemented algorithm does fulfill its pur-

5This stands for my and for the original implementation; Fionn Murtagh introduced a
O(n2) solution [11].

30

conclusion and outlook

pose. It is especially suited for rooted trees and thus for UPGMA, but has
been adapted to also draw unrooted trees. In any case, a planar tree is always
produced; the exemplary trees in this thesis can be seen as a demonstration.

The underlying structure of the implemented module will allow further
graph drawing and phylogenetic algorithms to be incorporated easily in
future: New layout and algorithm options can simply be added, and the
respective new subclasses can then be called by PhylogeneticTree.

The possibility of producing phylogenetic trees directly in TEX is very
convenient, if one needs to depict them for example in a thesis, such as
this one. Being able to change the appearance of the trees at will, adjusting
them to the complete document’s style, is a valuable opportunity for anyone
wishing to produce an appealing document.

31

5 references

[1] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice
Hall, 1999.

[2] Hans-Joachim Böckenhauer and Dirk Bongartz. Algorithmic Aspects of
Bioinformatics. Springer-Verlag, 2007.

[3] Neil A. Campbell and Jane B. Reece. Biologie. Pearson Studium, 2009.

[4] Richard Desper and Olivier Gascuel. Fast and Accurate Phylogeny
Reconstruction Algorithms Based on the Minimum-Evolution Princple.
Journal of Computational Biology, 9(5):687–705, 2002.

[5] Richard Desper and Olivier Gascuel. Theoretical Foundation of the
Balanced Minimum Evolution Method of Phylogenetic Inference and Its
Relationship to Weighted Least-Squares Tree Fitting. Molecular Biology
and Evolution, 21(3):587–598, 2004.

[6] Goossens, Mittelbach, and Samarin. The LATEX Companion. Addison-
Wesley Publishing Company, 1994.

[7] Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic
Networks: Concepts, Algorithms and Applications. Cambridge University
Press, 2010.

[8] Roberto Ierusalimschy. Programming in Lua. Lua.org, second edition,
2006.

[9] Donald E. Knuth. The TEXbook. Addison-Wesley, 1986.

[10] LuaTEX development team. LuaTEX Reference, November 9, 2012. Avail-
able online at http://www.luatex.org/documentation.html.

[11] F. Murtagh. Complexities of Hierarchic Clustering Algorithms: State of
the Art. Computational Statistics Quarterly, 1:101–113, 1984.

[12] Robert R. Sokal and Charles D. Michener. A Statistical Method for Eval-
uating Systematic Relationships. University of Kansas Scientific Bulletin,
38:1409–1438, 1958.

[13] Till Tantau. The TikZ and PGF Packages. Manual for Version 2.10, Oct. 25,
2010. Available online at http://sourceforge.net/projects/pgf/.

[14] Till Tantau. Graph Drawing in TikZ. In Proceedings of Graph Drawing
2012, Lecture Notes in Computer Science. Springer, 2012.

[15] Till Tantau. The TikZ and PGF Packages. Manual for the Ver-
sion currently under development, Sept. 2012. Available online at
http://sourceforge.net/projects/pgf/.

32

appendix

A installing the module

Here is a quick description of how to install the module under Linux. The
four class files

◦ pgf.gd.trees.BalancedMinimumEvolution2002.lua
◦ pgf.gd.trees.Maeusle2012.lua
◦ pgf.gd.trees.PhylogeneticTree.lua
◦ pgf.gd.trees.UPGMA1958.lua

should ideally be put in the correct pgf folder, i.e.:

pgf/generic/pgf/graphdrawing/lua/gd/trees.

Alternatively, they may also be in the same folder as the working TEX docu-
ment.

The following must be put into the document’s preamble:

\pgfgddeclarealgorithmkey

{phylogenetic tree}

{phylogenetic trees}

{

algorithm=pgf.gd.trees.PhylogeneticTree ,

}

\pgfgddeclareforwardedkeys{/graph drawing}{

distances/.node parameter = table with node keys,

distance scaling factor/.graph parameter = number,

distance scaling factor/.parameter initial = 20,

phylogenetic algorithm/.graph parameter = string,

phylogenetic layout/.graph parameter = string,

}

\pgfgdset{

inner node/.style={

/tikz/.cd,

coordinate ,

every phylogenetic inner node/.try},

}

33

B the module: options and commands

phylogenetic algorithm = 〈string〉

option description

BME, Balanced Minimum Evolu-
tion, bme, balanced minimum evo-
lution

Calls the BME algorithm and subsequently
BNNI.

BME without BNNI Calls BME without calling BNNI subsequently.

UPGMA, upgma Calls the UPGMA algorithm.

none No phylogenetic algorithm is called; the user
needs to determine the tree structure and the
desired edge lengths. This is the default value.

phylogenetic layout = 〈string〉

option description

rectangular phylogram, rooted
rectangular phylogram

rooted straight phylogram, straight
phylogram

Maeusle2012 is called and the x- and
y-positions of the nodes are set according to
the option.

unrooted rectangular phylogram

unrooted straight phylogram

distance scaling factor = 〈number〉

option description

examples: 1 cm, 4 pt, ... This factor scales the input distances. If the
distance 1 should correspond to 4 cm on the
paper, this value must thus be set to 4cm.

distances = 〈table with node keys〉

option description

examples: The phylogenetic distance of a node to other
nodes, for example node a to nodes b and c:

{a = 1;}, {b = 4, c = 5;},

...

a[distances = { b = 3, c = 4;}];

34

C distance matrices of the exemplary phylogenetic

trees

For the sake of completeness the following figures depict the distance ma-
trices used for computation of the trees shown in Figures 2.7 and 3.4.

a b c d e f g h i j k l m n
a 0 4 9 9 9 9 9 5 4 8 7 7 4 3
b 4 0 9 9 9 9 9 3 4 8 7 7 4 2
c 9 9 0 2 7 7 7 2 7 3 6 4 6 5
d 9 9 2 0 7 7 7 5 6 5 8 3 7 4
e 9 9 7 7 0 3 5 4 4 7 6 9 8 8
f 9 9 7 7 3 0 7 6 4 5 7 5 5 5
g 9 9 7 7 5 7 0 4 8 7 6 5 4 5
h 5 3 2 5 4 6 4 0 4 5 6 7 4 6
i 4 4 7 6 4 4 8 4 0 6 4 4 4 6
j 8 8 3 5 7 5 7 5 6 0 6 4 6 4
k 7 7 6 8 6 7 6 6 4 6 0 6 4 6
l 7 7 4 3 9 5 5 7 4 4 6 0 6 5
m 4 4 6 7 8 5 4 4 4 6 4 6 0 5
n 3 2 5 4 8 5 5 6 6 4 6 5 5 0

Figure C.1: Distance matrix used as input for the BNNI example
(Fig. 2.7).

a b c d e
a 0 2 7 5 4
b 2 0 7 5 4
c 7 7 0 4 5
d 5 5 4 0 3
e 4 4 5 3 0

Figure C.2: Distance matrix used as input for the trees in Figure 3.4.

35

	introduction
	What are Phylogenetic Trees?
	Phylogenetic Trees in TeX
	General Aim of the Thesis and Motivation

	computing phylogenetic trees
	The UPGMA Algorithm
	The BME Algorithm
	The BNNI Algorithm
	Implementation—Details, Difficulties, and Evaluation

	visualizing phylogenetic trees in TeX
	Drawing Rooted Trees
	Drawing Unrooted Trees
	Applying Further Options: Straight Edges, Scaling Factors, and Inner Node Styles

	conclusion and outlook
	references
	appendix
	installing the module
	the module: options and commands
	distance matrices of the exemplary phylogenetic trees

