
Space and Circuit Complexity of

Monadic Second-Order Definable Problems

on Tree-Decomposable Structures

Michael Elberfeld





From the Institute of Theoretical Computer Science
of the University of Lübeck

Director: Prof. Dr. Rüdiger Reischuk

Space and Circuit Complexity of
Monadic Second-Order Definable Problems

on Tree-Decomposable Structures

Dissertation
for Fulfillment of
Requirements

for the Doctoral Degree
of the University of Lübeck

from the Department of Computer Science / Engineering

Submitted by

Michael Elberfeld
from Friesoythe

Lübeck, 2012





First referee: Prof. Dr. Till Tantau
Second referee: Prof. Dr. Heribert Vollmer
Third referee: Prof. Dr. Rolf Niedermeier

Date of oral examination: 10 July 2012

Approved for printing. Lübeck, 14 December 2012





Preface
During the summer of 2009 I started to work on the topic that turned into

my doctoral thesis project. Together with my advisor Till Tantau and in col-
laboration with Andreas Jakoby, I considered the question of “how hard is it to
count the number of paths between vertices in series-parallel graphs?” During
our first meetings it was a pleasure to see Andreas and Till solving this prob-
lem; I went on and generalized it to graphs of bounded tree width (Chapter 6
of the thesis). Adjusting the developed techniques to solve monadic second-
order definable problems resulted in a paper published in the proceedings of
the 51st Annual ieee Symposium on Foundations of Computer Science (El-
berfeld, Jakoby, and Tantau, 2010). After spending the summer of 2010 in
Tel Aviv working in computational biology, I picked up the logspace theme
in Lübeck again. Driven by understanding the complexity of the subset sum
problem with unary weights, it turned out that the results for logspace can
be adjusted to work in the context of constant-depth circuits. I developed the
proof of this result in spring 2011, which is based on the notion of multiset tree
automata and an algebraic representation of their computations (Chapters 2
and 4). Many discussions with Till during the summer of 2011 led to refining
parts of the logspace approach in terms of logarithmic-depth circuits (Chap-
ter 5). The circuit-based results are published in the proceedings of the 29th
International Symposium on Theoretical Aspects of Computer Science (Elber-
feld, Jakoby, and Tantau, 2012b). The question of whether it is possible to
prove a variant of the results for constant-depth circuits in terms of first-order
formulæ without build-in predicates was raised by Martin Grohe when I visited
his group in the summer of 2011; we discussed proving it based on his notion of
treelike decompositions. Later, I came up with the idea of proving it based on
the recursive definition of tree depth, which avoids the use of any decomposi-
tions inside the proof (Chapter 3). This result is part of a larger work that will
appear in the proceedings of the 27th Annual acm/ieee Symposium on Logic
in Computer Science (Elberfeld, Grohe, and Tantau, 2012a).

With the present thesis I want to give a comprehensive picture of the compu-
tational and descriptive complexity of monadic second-order definable problems
on tree-decomposable structures. While, especially in the area of circuit com-
plexity and first-order logic, much work is devoted to lower bounds—showing
what cannot be done—, my thesis focuses on what can be done using small com-
plexity classes and related logical formalisms. I hope that the general framework
of problem definitions that are based on monadic second-order logic and input
instances that can be represented as tree decompositions makes understanding
the power of logspace, uniform circuit families, and first-order formulæ more
accessible and, thus, helps to develop future works in this area.

I want to thank Till Tantau for his support during the last five years. I also
want to thank Martin Grohe and Andreas Jakoby for the fruitful collaborations
that helped to shape the present thesis, and Christoph Stockhusen for our
discussions on logspace algorithms and number problems.

My warmest thanks go out to my family, friends, and my partner Bianka;
for their support and close companionship during the last years.

Michael Elberfeld
Lübeck, May 2012

vii





Abstract
A famous theorem of Courcelle states that every problem that is defin-

able in monadic second-order (mso) logic can be solved in linear time on input
structures of bounded tree width. While Courcelle’s result is optimal from
the algorithmic point of view, this thesis shows how to solve monadic second-
order definable decision, counting, and optimization problems on tree-width-
bounded structures optimally from the complexity theoretic point of view. Be-
side bounded tree width, the related notion of bounded tree depth is considered.

A first set of results covers input structures of bounded tree width, which
admit tree decompositions of bounded width. It is shown that all mso-definable
decision, counting, and optimization problems are solvable in deterministic log-
arithmic space (logspace) in this setting. Transferring the powerful framework
of mso-definability to logspace allows one to settle the complexity of problems
related to finding paths and matchings in graphs: It is shown that answering
reachability queries and counting the number of perfect matchings in graphs of
bounded tree width can be done in logspace. Moreover, by solving problems on
tree-width-bounded graphs as subroutines, problems on inputs of unbounded
tree width are solvable in logspace; like deciding whether undirected loop-free
graphs have cycles whose length is a multiple of any constant. These results
rest on the new technique of constructing width-bounded tree decompositions
in logspace.

Once tree decompositions are available, a task shown to be complete for
logspace, actually solving mso-definable decision and counting problems can be
done by logarithmic-depth Boolean and arithmetic circuits, respectively. This
finding itself unifies many automaton evaluation tasks studied in the area of
logarithmic-depth circuits in an elegant manner using mso-formulæ. To let
logarithmic-depth circuits work on tree decompositions whose underlying trees
have arbitrary depth, a preprocessing step is used that balances them using
constant-depth threshold circuits.

The second set of results spans input structures of bounded tree depth,
which admit tree decompositions of bounded width whose underlying trees have
bounded depth. The logspace results are transferred to this setting to solve
mso-definable decision, counting, and optimization problems by constant-depth
Boolean, arithmetic, and threshold circuits, respectively. These theorems apply
to number problems like solving systems of any constant number of linear equa-
tions whose coefficients are given in unary. For their proofs input structures
are turned into trees of bounded depth and unbounded degree. Translating
mso-formulæ to just the right automaton model for this situation and repre-
senting automata computations algebraically by arithmetic circuits lies at the
heart of the proofs of these results.

In terms of computational power, constant-depth circuits are equivalent
to first-order formulæ that have access to ordering and arithmetic predicates
defined on the input’s universe. It is shown that these build-in predicates are
not needed to evaluate mso-formulæ once input structures are extracted from
their string encodings: First-order formulæ and mso-formulæ define the same
problems on any class of structures of bounded tree depth. The main building
block in the proof of this result is a new constructive Feferman–Vaught-type
composition theorem for unbounded partitions.

ix





Table of Contents

Preface vii

Abstract ix

1. Introduction 1
1.1. Definable Problems on Tree-Decomposable Structures 2
1.2. Main Results and Their Applications 4
1.3. Technical Contributions 9
1.4. Organization of This Dissertation 11

2. Unbounded Degree Trees and Automata 13
2.1. Definition and Closure Properties of Multiset Tree Automata 15
2.2. Review of Monadic Second-Order Logic 20
2.3. A Büchi–Elgot–Trakhtenbrot-type Theorem for Unordered Trees 23

3. Bounded Tree Depth and First-Order Logic 27
3.1. A Feferman–Vaught-type Theorem for Unbounded Partitions 28
3.2. Getting Familiar with Tree Depth 34
3.3. Evaluating Monadic Second-Order Formulæ 37
3.4. Application to Evaluating Guarded Second-Order Formulæ 39

4. Bounded Tree Depth and Constant-Depth Circuits 43
4.1. Review of Uniform Circuits 44
4.2. Getting Familiar with Tree Decompositions 46
4.3. From Automata Evaluation to Arithmetic Circuit Evaluation 51
4.4. Applications to Solving Number Problems 58

5. Tree Decompositions as Terms and Logarithmic-Depth Circuits 61
5.1. Representing the Ancestor Relation of Trees by Terms 62
5.2. Balancing Tree Decompositions in Constant Depth 64
5.3. Applications to Evaluating Automata 70

6. Bounded Tree Width and Logarithmic Space 75
6.1. Review of Logarithmic-Space-Bounded Computations 76
6.2. From Descriptor to Tree Decompositions 77
6.3. Computing Tree Decompositions in Logarithmic Space 80
6.4. Applications to Finding Paths and Matchings 85

7. Conclusion 89
7.1. Summary 89
7.2. Outlook 90

List of Terms 93

Bibliography 95

xi





CHAPTER 1

Introduction

Computer science and mathematical logic are intimately connected. Com-
puter science is concerned with solving computational tasks like finding travel-
ing routes in street networks by programming computing devices. Mathematical
logic is concerned with understanding the interplay between properties of logical
structures like graphs and formulæ that describe such properties. While both
fields seem to be unrelated at first sight, mathematical logic found numerous
applications in computer science. This is basically due to two fundamental
connections. First, formulæ help to define computational tasks unambiguously
and in an exact formal way: Instead of writing a functional specification of the
computational task at hand in a semi-formal way, it can often be described
in a succinct and exact way using logical formulæ that describe properties of
structures. In case of the route planning task this means that, instead of writ-
ing a document that talks about maps with streets that cross in junctions and
specify valid routes, one talks about graphs with edges that connect vertices
and writes down a logical formula that defines paths. Second, the question of
whether a formula is satisfied for a given structure can, itself, be viewed as a
computational task; and solved using algorithms. The magic starts when we
combine both observations. Once we know how to evaluate all formulæ of a
certain logical formalism algorithmically, we can solve any problem that can
be phrased as properties of logical structures using formulæ. For the route
planning task this means that, instead of implementing a program based on a
functional specification, just feeding the problem-describing formula into a for-
mula evaluation procedure will, ideally, solve the problem. This programming
by describing paradigm is present in almost all areas of computer science, and in
the early to mid-20th century it was used to clarify the notion of computability
itself. Today, logic is used to formulate database queries, verify hardware and
software designs, and understand the limits of designing efficient algorithms.

The later application—designing efficient algorithms and understanding the
limits thereof—can be seen as an offspring of the works of Büchi (1960), Elgot
(1961), and Trakhtenbrot (1961), who found close connections between monadic
second-order logic on strings and finite automata, as well as the works of Doner
(1970) and Thatcher and Wright (1968), who extended this connection to trees.
Monadic second-order logic is an appealing framework since its formulæ can
express a wide range of problems, and translating them into automata yields
the holy grail of algorithmics: linear time algorithms. While formulæ from
monadic second-order logic can sometimes be hard to evaluate for structures
of any kind, great success has been made in recent years on finding efficient
algorithms that evaluate monadic second-order formulæ on ever larger classes
of input structures that can be decomposed in a tree-like fashion. The thesis at

1



2 1. INTRODUCTION

hand complements the extensive work on understanding the algorithmics be-
hind evaluating monadic second-order formulæ on tree-decomposable structures
by working towards understanding its computational complexity. Upper bounds
on the complexity of formula-defined problems in terms of space-bounded se-
quential and depth-bounded circuit computations are given. The given upper
bounds turn out to be tight since the involved computations can be described
in terms of monadic second-order logic on tree-decomposable structures.

1.1. Definable Problems on Tree-Decomposable Structures

Many computational problems can easily be defined in the language of
monadic second-order logic (mso-logic). Here inputs to the problems are string
encodings of logical structures over a certain vocabulary for which we want to
know whether some fixed formula holds, or not. In the case of the well known
3-colorability problem, an input is a string encoding of a graph G, which is
just a logical structures over the vocabulary τ = {E2}. For this graph we want
to know whether the formula ϕ3-colorable :=

∃R ∃G∃B ∀v
(
R(v) ∨G(v) ∨B(v)∧

∀w
(
E(v, w)→ ¬(R(v) ∧R(w)) ∧ ¬(G(v) ∧G(w)) ∧ ¬(B(v) ∧B(w))

))
holds; that is, whether the model relation G |= ϕ3-colorable is true. The formula
describes that vertices of the graph can be covered by three sets (colored by
the three colors R, for red, G, for green, and B, for blue), such that adjacent
vertices are not in a common set (do not have the same color). Thus, we have
|= ϕ3-colorable by assigning a unique color to each vertex, but 6|= ϕ3-colorable

since all pairs of vertices are adjacent. Beside using mso-formulæ to define
decision problems like 3-colorability, which only ask whether the model
relation holds for a given structure and an mso-formula without free variables,
we can also use mso-formulæ to define counting and optimization problems.
Consider the formula ϕdominates(X1) = ∀v (X1(v)∨ ∃w (X1(w)∧E(v, w))) with
a free set variable X1 that is exactly true for a graph G and a subset of its
vertices D ⊆ V (G) if D is a dominating set in G; that is, every vertex of
G is part of D or is adjacent to a vertex that is part of D. Based on the
formula ϕdominates(X1), we can define the problem of computing the number
of dominating sets of G; that means, counting the number of D ⊆ V (G) with
G |= ϕdominates(D). Moreover, we can ask to compute the smallest, optimal,
s ∈ N, such that there is a D ⊆ V (G) with G |= ϕdominates(D) and s = |D|.
This is the well known optimization problem dominating-set.

The problem 3-colorability and the decision variant of dominating-set
are NP-complete when allowing graphs of any kind as inputs (Garey and John-
son, 1979), but if we consider only input graphs that have tree decompositions
whose width is bounded by some constant, they can be solved in polynomial
time. A width-w tree decomposition decomposes a graph into subgraphs of size
w, called bags, that are arranged in a tree to satisfying certain connectedness
and cover conditions; the tree structure of the decomposition captures the global
tree-likeness of the input and the small subgraphs cover local connectivity pat-
terns that may be far from being trees. Graphs that admit tree decompositions
of width w have tree width at most w. A related notion we consider is the tree
depth of a graph; graphs with tree depth d have tree decompositions where not



1.1. DEFINABLE PROBLEMS ON TREE-DECOMPOSABLE STRUCTURES 3

only the width is bounded in terms of d, but, in addition, the depth of the
underlying trees is bounded in terms of d. While tree width can be seen as
measuring the similarity of graphs to trees (trees have tree width 1 and graphs
with cycles have tree width at least 2), tree depth can be seen as measuring
the similarity of graphs to star graphs (star graphs have tree depth 2, and the
tree depth of a graph grows with the length of paths in it). We say that the
tree width (tree depth) of a class of structures is bounded if there is a constant
that upper-bounds the tree width (tree depth) of them. Solving computational
problems on such tree-decomposable structures is often done by a two-step ap-
proach that first computes a tree decomposition and, then, solves the problem
by using a bottom-up dynamic programming approach along the tree.

For structures of bounded tree width, the polynomial-time bound of solv-
ing mso-definable problems has been refined from the algorithmic point of
view: Linear-time sequential algorithms (Courcelle, 1990) and logarithmic-
time parallel algorithms (Bodlaender and Hagerup, 1998) are known to solve
mso-definable decision problems for structures of bounded tree width and sim-
ilar results hold for counting and optimization problems whose definition is
based on mso-formulæ. A variety of results of a similar flavour have been
developed during the last years and are commonly called algorithmic meta the-
orems (Grohe and Kreutzer, 2011): Instead of presenting an algorithmic result
for some particular problem, these theorems state that “all problems of a certain
kind on structures of a certain kind are solvable by an efficient algorithm of a
certain kind”. The finding of Courcelle (1990), which is often just called Cour-
celle’s Theorem, falls into this category since it shows that all mso-definable
problems for structures whose tree width is bounded are solvable in linear time.

Since many important problems are mso-definable, Courcelle’s Theorem
and its variants yield unified frameworks for showing that numerous problems
on structures of bounded tree width are efficiently solvable. Moreover, often
algorithmic meta theorems show their real power when used as subroutines in
algorithms solving problems that are normally (1) not mso-definable, or (2)
whose inputs are not tree-decomposable in an algorithmically useful way. A
problem of the first kind is computing the chromatic number of a graph, which
is the least number of colors that are needed to properly color a given graph. No
mso-formula ϕ(X) is known that expresses that a graph has chromatic number
|X|, but it is not hard to see (Flum and Grohe, 2006) that graphs of tree width w
have chromatic number at most w+1. Thus, to compute the chromatic number,
we can successively test whether a graph is 1-, 2-, . . . , (w + 1)-colorable using
extensions of the formula for 3-colorability. A problem of the second kind
is even-cycle—deciding whether an undirected loop-free graph has a cycle of
even length. This problem can be solved by first testing whether the tree width
of the graph is higher than some constant. If this is the case, graph-theoretic
methods show (Thomassen, 1988) that there is always an even cycle in such
graphs and we answer “yes”. If the tree width is bounded by the constant, we
use Courcelle’s Theorem to solve the problem via an mso-formula that defines
even-length cycles on the incidence representation of graphs.



4 1. INTRODUCTION

Beside the impact on applying algorithmic meta theorems to particular
problems, proving them contributes to understanding the fundamentals of solv-
ing computational problems: It drives the generalization and extension of ex-
isting algorithmic techniques that where developed for specific problems indi-
vidually, as well as the development of new general techniques.

1.2. Main Results and Their Applications

The algorithmic meta theorems mentioned above provide a unified frame-
work for finding fast sequential and parallel algorithms to solve mso-definable
problems on tree-decomposable structures. In the present thesis I transfer the
idea of using mso-based problem definitions to give algorithmic results in a uni-
fied way to giving tight complexity theoretic results in a unified way. During
the course of the thesis, we work on the question of “what is the complexity of
mso-definable problems on tree-decomposable structures?” We already know
that mso-definable decision problems on structures of bounded tree width can
be solved in polynomial time and, thus, lie in P, but how deep inside P can
we place them? Bodlaender and Wanke contributed important steps to clarify
this question: Bodlaender (1989) showed that all problems that are covered by
Courcelle’s Theorem lie in NC and Wanke (1994) refined this finding by showing
that they lie in LOGCFL, a complexity class sandwiched between NL and AC1,
but proving hardness for this class and any of the covered problems remained
an open question. The thesis exactly characterizes the complexity of the prob-
lems that are covered by Courcelle’s Theorem and its variants for counting and
optimization problems as well as for structures of bounded tree depth using
space-bounded Turing machines and depth-bounded circuits. It contributes
in three ways to the understanding of these problems and resource-bounded
computational models:

Theorems: The theorems show that, depending on the particular tree de-
compositions that the inputs admit, decision, counting, and optimization prob-
lems that are defined using mso-formulæ are solvable using logarithmic-space-
bounded Turing machines, uniform logarithmic-depth circuits, or uniform con-
stant-depth circuits.

Applications: The mso-based framework for defining problems allows to
detect the computational complexity of many problems whose complexity was
unknown before, and unifies known results that were previously proved using
problem-dependent techniques. The results cover complete problems for the
corresponding classes.

Proof Techniques: Many proof techniques are either newly developed or
transferred from the area of time-efficient sequential and parallel algorithms to
fit the needs of space-efficient and circuit computations.

In the remainder of the present section, the main theorems and an overview
over their applications is given. Proof techniques are only mentioned briefly in
the present Section, a detailed discussion of them is given in Section 1.3.

Bounded Tree Width and Logarithmic Space. Two key problems
in the study of logarithmic-space-bounded deterministic Turing machines (log-
space dtms) are reachability, detecting whether there is a path from some
start to some target vertex in a directed graph, and perfect-matching, de-
tecting whether an undirected graph has a perfect matching. The reachability



1.2. MAIN RESULTS AND THEIR APPLICATIONS 5

problem was shown to lie in logspace when restricted to graphs of tree width 2
(Jakoby, Lískiewicz, and Reischuk, 2006) and the same upper bound holds for
directed reachability and perfect-matching when the inputs are restricted
to be k-trees (Das, Datta, and Nimbhorkar, 2010), the maximal graphs of tree
width k. Since paths and matchings are mso-definable on the incidence repre-
sentation of graphs, these results are covered by the following theorem, which
drops the LOGCFL bound of Wanke (1994) to logspace. For Theorems 1.1
to 1.8, the input structures A are encoded as strings str(A) in a standard way;
the details of the string encoding are described in Section 4.1.

Theorem 1.1 (Decision in Logarithmic Space). For every w ∈ N, and every
mso-formula ϕ over some vocabulary τ , there is a logspace dtm that, on input
of a τ -structure A of tree width at most w, decides whether A |= ϕ holds.

Beside its application to detect the existence of paths and perfect matchings,
the theorem can be used as a subroutine in a logspace algorithm that detects,
for undirected loop-free input graphs whose tree width is not restricted, whether
they contain a cycle of even length. Moreover, this even holds for any constant
number m ∈ N and the question whether the length of the cycle is a multiple
of m. (This result and the applications to L-hard path and matching problems
are detailed in Section 6.4.)

To move from mso-definable decision problems to counting and optimization
problems, our work horse is a theorem that shows how to count the number of
solutions with respect to their cardinalities in logspace. To formulate it, we
need a bit of terminology: Let ϕ(X1, . . . , Xk, Y1, . . . , Y`) be an mso-formula
with two sets of free set variables, namely the Xi and the Yj , and let A be
a structure with universe A. The solution histogram of A and ϕ, denoted
by histogram(A, ϕ), is a k-dimensional integer array that tells us how many
solutions of a certain size exist. In detail, let s = (s1, . . . , sk) ∈ {0, . . . , |A|}k
be an index vector that prescribes sizes for the sets that are substituted for
the Xi. Then histogram(A, ϕ)[s] equals the number of (S1, . . . , Sk, S

′
1, . . . , S

′
`) ∈

P(A)k+` with |S1| = s1, . . . , |Sk| = sk and A |= ϕ(S1, . . . , Sk, S
′
1, . . . , S

′
`). In

other words, we count how often ϕ can be satisfied when the sets assigned to
the Xi-variables have certain sizes, but impose no restrictions on the sizes of
the Yj . For the formula ϕdominates(X1) with k = 1 and ` = 0 used above,
histogram(G, ϕdominates)[s] is the number of dominating sets of size s in the
graph G. For an mso-formula ϕis-matching(Y1) with k = 0 and ` = 1 over the
incidence representation of graphs that defines sets of edges that are matchings,
histogram(G, ϕis-matching) is just a scalar value that tells us how many matchings
G contains. For k = ` = 0 we get Theorem 1.1 as a corollary from the following
theorem; in this case the output is a scalar that is 1 if A |= ϕ, and 0, otherwise.
The dtm from the following theorem outputs histogram(A, ϕ) in a linearized
fashion as a string str(histogram(A, ϕ)).

Theorem 1.2 (Histogram Computation in Logarithmic Space). For every
w ∈ N, and every mso-formula ϕ(X1, . . . , Xk, Y1, . . . , Y`) over some vocabu-
lary τ , there is a logspace dtm that, on input of a τ -structure A of tree width
at most w, outputs str(histogram(A, ϕ)).

Applying this theorem to the formula ϕis-matching shows that counting the
number of matchings can be done in logspace for any class of graphs of bounded



6 1. INTRODUCTION

tree width. Moreover, the output of the theorem, which is a string that en-
codes a histogram, can be used in many ways by looking up individual bits
in it. For example, it can be used to show that the optimization problem
dominating-set lies in L when restricted to any class of graphs of bounded
tree width: On input of a graph G of bounded tree width, we first com-
pute histogram(G, ϕdominates) and, then, output the smallest position s with
histogram(G, ϕdominates)[s] > 0. Moreover, we can answer, in logspace, whether
there is a dominating set of some given cardinality or, even, count the number
of dominating sets of a given cardinality. In particular, the histogram theo-
rem for logspace generalizes the findings of Jakoby and Tantau (2007) that the
length of shortest and longest paths in tree width-2 graphs can be computed in
logspace and the results of Das et al. (2010) that the same upper bound holds
for these problems in directed acyclic orientations of k-trees.

A newly developed technique that is crucial for proving the theorems re-
lated to tree-width-bounded structures and logspace is the computation of tree
decompositions of bounded width using only logarithmic space in Chapter 6.
This chapter also contains the proof of the following theorem, which can be
used to remove the witness on the tree width bound from all theorems stated
above, and test the tree width bound together with the mso-defined property.

Theorem 1.3 (Exact-Width Tree Decompositions in Logarithmic Space).
For every w ∈ N, and vocabulary τ , there is a logspace dtm that, on input of
a τ -structure A, either (1) outputs a width-w tree decomposition of A, or (2)
outputs “no” and the tree width of A exceeds w in this case.

The previous Theorem stands at the end of a line of work on detecting the
complexity of constructing tree decompositions using the functional variants of
P (Arnborg et al., 1987), NC (Bodlaender, 1989), and LOGCFL (Gottlob et al.,
2002); it is tight in the sense that deciding whether a given graph has tree width
at most w is L-complete for any width bound w ∈ N (Chapter 6).

Tree Decompositions as Terms and Logarithmic-Depth Circuits.
The inputs of the theorems related to logspace are structures of bounded tree
width. Many mso-definable problems on such structures are complete for L like
the reachability problem restricted to trees (Cook and McKenzie, 1987), which
have tree width 1. Thus, if we want to state theorems that place mso-definable
problems on tree-width-bounded structures inside subclasses of L, which is what
we do next, we either need to restrict the logic or the kinds of inputs allowed.
We will consider the latter case. For logarithmic-depth circuit classes we allow
structures of bounded tree width as inputs, but require that they are accompa-
nied by tree decompositions whose underlying trees are given in term represen-
tation.

The inputs now consist of the string encoding of a logical structure A
together with the encoding of a tree decomposition (T,B) of A, where
T is given in term representation; for example, a term representation for
the tree right is [ [ ] [ [ ] [ ] ] ] (a detailed definition of tree decompositions
in term representation is given in Section 5.1). Terms are a natural form of
input in the study of logarithmic-depth circuits that make the L-complete task
of computing the transitive closure of trees easier.

All circuit families in this thesis are DLOGTIME-uniform as defined by Mix
Barrington, Immerman, and Straubing (1990), and discussed in Section 4.1.



1.2. MAIN RESULTS AND THEIR APPLICATIONS 7

Theorem 1.4 (Decision Using Boolean Logarithmic-Depth Circuits). For
every w ∈ N, and every mso-formula ϕ over some vocabulary τ , there is a
DLOGTIME-uniform NC1-circuit family that, on input of a τ -structure A along
with a width-w tree decomposition in term representation for A, decides whether
A |= ϕ holds.

To state a histogram-based theorem for logarithmic depth, we use arithmetic
circuits instead of Boolean circuits. The inputs of these circuits are (binary)
strings, while their inner gates compute addition and multiplication operations,
and the outputs are integers. In order to represent the output histogram h us-
ing a single number num(h) ∈ N, imagine h to be stored in computer memory
with a word size large enough so that each of its entries fits into one mem-
ory cell (choosing the word size as a multiple of |A|, where A is the universe
of the input structure A, suffices). Then num(h) is the single number repre-
senting the whole of the memory contents (the formal definition of num(h) is
given on page 56f.). Theorem 1.4 is a corollary of the following theorem since
testing whether a function from #NC1 outputs a value greater than 0 is an
NC1-computable property.

Theorem 1.5 (Histogram Computation Using Arithmetic Logarithmic-
Depth Circuits). For every w ∈ N, and every mso-formula ϕ(X1, . . . , Xk,
Y1, . . . , Y`) over some vocabulary τ , there is a DLOGTIME-uniform #NC1-circuit
family that, on input of a τ -structure A along with a width-w tree decomposition
in term representation for A, outputs num(histogram(A, ϕ)).

The theorems for logarithmic-depth circuits can be applied to solve prob-
lems whose inputs are already accompanied by tree decompositions of bounded
width with underlying trees given in term representation, or from which it is
easy to derive decompositions. Many evaluation and simulation tasks are of
the later kind: evaluating Boolean and arithmetic sentences, as well as sim-
ulating the acceptance behavior and counting the number of accepting com-
putations of visible pushdown automata. These applications are discussed in
Section 5.3. Encoding the problems of evaluating Boolean and arithmetic sen-
tences as mso-defined decision and counting problems, respectively, proves that
Theorems 1.4 and 1.5 cover problems that are complete for NC1 and #NC1, re-
spectively. Previous NC1 and #NC1 approaches for these problems consisted of
input balancing strategies that were deeply intertwined with the actual prob-
lem solving steps. The thesis shows how to divide these steps by first balancing
the given tree decomposition and, then, solving the problem at hand along
a logarithmic-depth decomposition; which results in simpler proofs, and more
powerful and flexible theorems

Bounded Tree Depth and Constant-Depth Circuits. For structures
of bounded tree depth, which admit tree decompositions of bounded width whose
underlying trees have bounded depth, the complexity of mso-definable prob-
lems drops even further to constant-depth circuit classes. In order to solve
mso-definable decision, counting, and optimization problems on tree-depth-
bounded structures, we need to use different kinds of constant-depth circuits:
Boolean circuits for solving decision problems, arithmetic circuits for computing
number representations of histograms and, hence, solving counting problems,
and Boolean circuits with threshold gates for computing string representations



8 1. INTRODUCTION

of histograms and, hence, solving optimization problems. Thus, depending on
its type, a problem will either lie in AC0, GapAC0, or TC0. We start with
mso-definable decision problems.

Theorem 1.6 (Decision Using Boolean Constant-Depth Circuits). For ev-
ery d ∈ N, and every mso-formula ϕ over some vocabulary τ , there is a
DLOGTIME-uniform AC0-circuit family that, on input of a τ -structure A of
tree depth at most d, decides A |= ϕ.

An example application of Theorem 1.6 is to put the mso-definable decision
problem of whether a graph of bounded tree depth has a perfect matching
into AC0. In contrast, in Section 6.4, we see that the same problem for graphs
of bounded tree width is L-complete. In case of input structures of bounded tree
depth, we can state the following theorem on counting the number of solutions
with respect to their cardinalities.

Theorem 1.7 (Histogram Computation Using Arithmetic Constant-Depth
Circuits). For every d ∈ N, and every mso-formula ϕ(X1, . . . , Xk, Y1, . . . , Y`)
over some vocabulary τ , there is a DLOGTIME-uniform GapAC0-circuit family
that, on input of a τ -structure A of tree depth at most d, outputs the number
num(histogram(A, ϕ)).

Applying Theorem 1.7 to the formula histogram(G, ϕis-matching) shows that
counting the number of matchings lies in GapAC0 on graphs of bounded tree
depths.

Like in the case of logspace, the solution histogram subsumes many op-
timization problems that ask for the existence of a solution with a certain
cardinality. For this, we need to look up individual bits in a string representa-
tion of the solution histogram and not only compute a number representation
of it. Using the result of Hesse, Allender, and Mix Barrington (2002) that
DLOGTIME-uniform GapAC0-circuit families, which compute numbers, can be
simulated by DLOGTIME-uniform FTC0-circuit families that compute the bi-
nary string representations of these number, we get the following theorem as a
corollary from Theorem 1.7.

Theorem 1.8 (Histogram Computation Using Boolean Constant-Depth
Circuits with Threshold Gates). For every d ∈ N, and every mso-formula
ϕ(X1, . . . , Xk, Y1, . . . , Y`) over some vocabulary τ , there is a DLOGTIME-uni-
form FTC0-circuit family that, on input of a τ -structure A of tree depth at
most d, outputs the string str(histogram(A, ϕ)).

We cannot hope to compute string representations of histograms in any
complexity class smaller than FTC0 since the TC0-complete problem majority
is expressible using an mso-formula and the histogram: Turning a string w =
w1, . . . , wn ∈ {0, 1}∗ into a logical structure A = ({1, . . . , n}, PA

1 ) in the usual
manner by setting i ∈ PA

1 ⇔ wi = 1, for the mso-formula ϕ(X1) = ∀x(X1(x)→
P1(x)) we have histogram(A, ϕ)

[
bn/2c+ 1

]
> 0 if, and only if, more than half

of the input bits are 1. Like the histogram theorem for logspace, the histogram
theorem for FTC0 can be used to solve a wide range of problems that where not
known to lie in DLOGTIME-uniform TC0 before: In Section 4.4, Theorem 1.8
is applied to show that the subsetsum problem with input numbers that are
encoded in unary lies in DLOGTIME-uniform TC0. Moreover, the same upper



1.3. TECHNICAL CONTRIBUTIONS 9

bound holds for the problem of solving linear equation systems with any con-
stant number of equations whose coefficients are integer values that are encoded
in unary.

The proofs of the theorems for constant-depth circuits rest on the devel-
opment of a tree automaton model for degree-unbounded labeled trees and
an algebraic representation of the automata’s computations using arithmetic
circuits.

Bounded Tree Depth and First-Order Logic. Mix Barrington, Im-
merman, and Straubing (1990) characterize DLOGTIME-uniform AC0 in terms
of first-order logic with build-in order and certain arithmetic predicates and,
thus, Theorem 1.6 implies that mso-definable decision problems on structures
of bounded tree depth can be solved using this logical formalism. The next
theorem shows that turning mso-formulæ into first-order formulæ is possible
even without accessing any ordering or arithmetic predicates. Since first-order
logic is a fragment of mso-logic, this shows that mso- and first-order logic have
the same expressive power on any class of structures of bounded tree depth.
With this result, Theorem 1.6 follows from Theorem 1.9 as a corollary by using
the alternative definition of DLOGTIME-uniform circuits based on first-order
formulæ and the fact that a structure can be extracted from its string encoding
using such formulæ.

Theorem 1.9 (First-Order Definability). For every tree depth bound d ∈ N,
and every mso-formula ϕ over some vocabulary τ , there is a first-order formula
ψ over τ , such that for all τ -structure A of tree depth at most d, we have A |= ϕ
if, and only if, A |= ψ.

Theorem 1.9 still holds if we additionally test whether the tree depth of
the given structure is, indeed, d since the property of whether a structure has
tree depth d is first-order definable for any d ∈ N. Moreover, in Section 3.4
it is shown that Theorem 1.9 still holds when mso-logic is replaced by the
more general guarded second-order logic, which also allows quantifying over
sets of tuples that are present in the input structure; like, for example, subsets
of edges in a graph. For turning mso-formulæ into first-order formulæ, the
main technical development is a new Feferman–Vaught-type theorem that is
constructive and works for an unbounded number of partitions.

1.3. Technical Contributions

The present section discusses the overall structure of the proofs of the the-
orems and highlights the main technical developments of the thesis.

The proofs of the theorems exploit in either an explicit or implicit way the
fact that the given structures admit tree decompositions of bounded width.
Explicitly means that the first step in the proof is the construction or adjust-
ment of a tree decomposition. For such proofs, on input of a tree-decomposable
structure A,

(1) the first step is to compute a tree decomposition for A, and
(2) the second step is to solve the problem using the tree decomposition as

a guide of how to process the input.



10 1. INTRODUCTION

A Constructive Feferman–Vaught-type Theorem for Unbounded
Partitions. The proof of Theorem 1.9 avoids the constructing of a decomposi-
tion for the input structure altogether. Instead, first-order formulæ that define
tree-depth-bounded structures are developed and extended to not only check
whether a structure’s tree depth is bounded by some constant, but also evaluate
the mso-formula at the same time. For this, the first-order formula recursively
computes the set of mso-formulæ that are true in substructures of the input
structure and combines this information to compute the set of mso-formulæ
that are true in the whole structure; this information is known as the type of a
structure. The task of combining the information is done by a new variant of
the type composition theorem of Feferman and Vaught (1959) that shows how
to construct the type of a structure based on the types of an unbounded number
of substructures that have a constant-size overlap. In the case of first-order for-
mulæ and structures of bounded tree depth, this theorem is the basic building
block to process the input structure in order to evaluate the mso-formula.

Automata for Trees of Unbounded Degree and Their Arithmetic-
Circuit-Based Evaluation. Since Theorem 1.6 follows from Theorem 1.9 us-
ing the definition of DLOGTIME-uniform AC0 in terms of first-order formulæ we
also do not need to construct tree decompositions for its proof. In contrast, for
the proof of Theorem 1.7, tree decompositions of bounded width whose under-
lying trees have bounded depth are constructed. Once such tree decompositions
are available, the proof of Theorem 1.7 proceeds to evaluate the mso-formula
from the problem definition along the tree decomposition. This is done by
refining proof step (2) into

(2.1) first transforming the formulæ on the input structure into equivalent
tree automata on the tree decomposition,

(2.2) and, then, evaluating tree automata using arithmetic circuits.
This basic structure is often used to prove Courcelle’s Theorem and its

variants, but for implementing it using constant-depth circuits, new techniques
needed to be developed. In the proof of Theorem 1.2 of Elberfeld, Jakoby,
and Tantau (2010), the trees underlying the involved tree decompositions have
bounded degree and this is used to translate mso-formulæ into the classical
tree automata of Doner (1970) and Thatcher and Wright (1968). Evaluating
automata is then done by constructing arithmetic formulæ that are evaluated
in logspace. The nodes of the depth-bounded trees underlying the tree decom-
positions that are involved in the proof of Theorem 1.7 necessarily have an
unbounded degree since, otherwise, they would only be able to cover constant-
size structures. The technically involved step in proving Theorem 1.7 is the
development of just the right variant of an automaton model for unbounded-
degree labeled trees that can simulate mso-formulæ and whose computations
can be represented algebraically using arithmetic circuits. Since the automaton
model and the translation between mso-formulæ and automata also serve as
building blocks in the proof of Theorem 1.9, the automaton model is defined
in Chapter 2 before proving the Theorems 1.9 and 1.7 in Chapters 3 and 4,
respectively.

Balancing Tree Decompositions Using Constant-Depth Circuits.
For proving the theorems related to logarithmic-depth circuits, we do not need
to construct tree decompositions since they are already part of the input, but



1.4. ORGANIZATION OF THIS DISSERTATION 11

for proving the theorems we run across a different problem: The tree we want
to process may have a linear depth and, thus, may contain data dependencies
whose ad hoc resolution would need the same linear circuit depth. While we
are lucky in the case of Theorem 1.4 where we can translate the mso-formula
that defines our problem into a tree automaton and plug in a result from the
literature that shows that the acceptance behaviour of tree automata can be
simulated using logarithmic-depth Boolean circuits (Lohrey, 2001), it is less
obvious to prove Theorem 1.5. For the proof of this theorem, we proceed as
follows: Before translating the formula on the structure into a tree automaton,
we insert an extra layer into the proof that transforms the given tree decompo-
sition into a tree decomposition whose underlying tree is binary and balanced
and, thus, has logarithmic depth. Interestingly, for this step we do not even
need logarithmic-depth circuits; constant-depth Boolean circuits with threshold
gates are enough to balance the tree decomposition. Evaluating tree automata
can then be done with logarithmic-depth circuits for the resulting logarithmic-
depth decomposition.

Computing Tree Decompositions in Logarithmic Space. After prov-
ing the theorems related to logarithmic-depth circuits, the main task for proving
the theorems related to tree-width-bounded structures and logspace, for which
no tree decompositions are given in the input, is to compute a tree decomposi-
tion and output the underlying tree in term representation. Then the theorems
for logarithmic-depth circuits are plugged in to complete the proof. While, for
proving the Theorems 1.1 and 1.2, computing tree decompositions of some ap-
proximate constant width would be enough, the developed techniques also lead
to the logspace construction of tree decompositions of exact constant width.

1.4. Organization of This Dissertation

The main part of the thesis is made up by five chapters that are organized
according to how the theorems from the introduction are proved. Each chapter
presents one of the techniques described above, uses it to prove the related
theorems, and discusses their applications.

Chapter 2 contains the definition of the new notion of multiset tree au-
tomata and its equivalence to mso-definable properties on tree structures. It
is also shown how to move from mso- to first-order formulæ in case of depth-
bounded trees.

Chapter 3 picks up the transformation from mso- to first-order formulæ
from Chapter 2 and generalizes it from trees of bounded depth to logical struc-
tures of bounded tree depth. The development of a new Feferman–Vaught-type
theorem for unbounded partitions and its combination with the recursive defi-
nition of tree depth culminates in a proof of Theorem 1.9—how to move from
mso- to equivalent first-order formulæ in case of structures of bounded tree
depth.

In Chapter 4 we begin to consider computations based on shallow circuits.
We start to review the definition of uniform circuits and their equivalent defini-
tion in terms of first-order formulæ that describe computational problems. In
conjunction with the equivalence of the expressive power of mso- and first-order
logic in case of tree-depth-bounded structures proved in Chapter 3, we get The-
orem 1.6—mso-definable decision problems lie in AC0 for classes of structures



12 1. INTRODUCTION

whose tree depth is bounded. Next, after defining the notion of tree decom-
positions, the main part of Chapter 4 is devoted to proving how computations
of multiset tree automata can be represented algebraically using arithmetic
circuits. This proves Theorem 1.7—computing number representations of his-
tograms in GapAC0—and Theorem 1.8—computing string representations of
histograms in FTC0. The final proof steps are given on page 58.

With Chapter 5 we move our focus from constant-depth circuits that work
on tree-depth-bounded structures to logarithmic-depth circuits that work on
tree-width-bounded structures that are accompanied with tree decompositions
in term representation. After discussing the details of term representations, we
show how to balance tree decompositions using constant-depth Boolean circuits
with threshold gates. Once balanced tree decompositions, which always have
logarithmic depth, are available, we can plug in the generic arithmetic circuit
construction from Chapter 4 to prove Theorem 1.5 for #NC1 on page 69. As
discussed above, this implies Theorem 1.4 for NC1 as a corollary.

In Chapter 6, we consider the case that tree decompositions of bounded
width are not part of the input, but need to be computed. We show how to do
this using logspace dtms. Since logspace dtms can simulate logarithmic-depth
Boolean and arithmetic circuits and, hence, are able to solve all problems from
Chapter 5, Theorem 1.2 follows once we know how to construct tree decompo-
sitions and output them in term representation (the final steps for proving this
theorem are given on page 82f.).

At the end of each chapter, except Chapter 2, applications of the developed
theorems and proofs are discussed.

The thesis concludes with reviewing the developed techniques, theorems,
and their applications. Moreover, future research directions related to the pre-
sented results are discussed.



CHAPTER 2

Unbounded Degree Trees and Automata

Courcelle’s Theorem is commonly proved by translating an mso-formula on
a structure into an equivalent automaton that works on a tree. Then, instead
of evaluating the formula for the structure, the automaton’s computation on
the tree is simulated. We will follow the same basic approach in the proofs
of the theorems from the introduction, but define a new automaton notion to
work with the trees that arise in the context of tree-depth-bounded structures
in Chapters 3 and 4. The trees that appear inside the proofs of these chapters
have a bounded depth and, to cover structures of any size, necessarily have
an unbounded node degree. Thus, classical automata for bounded-degree trees
cannot be used in this context. The present chapter is devoted to discuss the
need for a new automaton model, its definition, and equivalence to monadic
second-order formulæ on trees.

The technique of translating betweenmso-formulæ and equivalent automata
has a long history. One of the first results is a theorem of Büchi (1960), Elgot
(1961), and Trakhtenbrot (1961) showing that the languages accepted by finite
automata are exactly the mso-definable sets of strings. To establish a connec-
tion between the language-theoretic concept of strings and relational structures
from mathematical logic, formal statements of this result use back and forth
translations between strings and equivalent path structures in which monadic
relations indicate the symbols that are present in the string.

a b a aFor example, the string abaa is translated into the struc-
ture A with universe A = {1, 2, 3, 4}, containing one ele-
ment for each position of the string, successor relation EA =
{(1, 2), (2, 3), (3, 4)}, encoding the order of positions in the string, and the
monadic relations RA

a = {1, 3, 4} and RA
b = {2}, indicating which symbols

are present at the different positions of the string; a convenient way to rep-
resent this structure is to draw it like the path on the right where the edges
represent the successor relation and the labels indicate which monadic relations
hold. An equivalent way of bridging the world of automata with the world of
logic is to directly define the automaton on a labeled path (or tree), which is
what we later do in the present chapter.

a

b a

a a

The Büchi–Elgot–Trakhtenbrot Theorem was extended
to labeled trees of bounded degree by Doner (1970), and
Thatcher and Wright (1968). In this case, the considered
structures not only contain one, but a constant number of
successor relations EA

1 , . . . , E
A
d whose number equals a degree

bound d as well as a monadic relation RA
σ for each symbol σ

from the considered alphabet Σ. An example of such a structure is shown on
the right for d = 2 where the relation EA

1 is indicated using solid and the re-
lation EA

2 is indicated using dashed edges. Doner, and Thatcher and Wright

13



14 2. UNBOUNDED DEGREE TREES AND AUTOMATA

translate mso-formulæ on degree-d trees into tree automata whose transition
functions δ : Σ × Qd → Q assign a state to a node based on its label from Σ
and the (implicitly ordered) sequence of states from Qd that are assigned to
its children. The finding of Büchi, Elgot, and Trakhtenbrot follows from this
result for degree d = 1.

Beside the classical application to the satisfiability problem for mso-formulæ
in case of tree structures, a recent use of Büchi–Elgot–Trakhtenbrot-type theo-
rems is in the area of finding efficient algorithms for evaluating an mso-formula
for a given tree. To solve this problem one constructs an automaton that is
equivalent to the considered mso-formula and, then, evaluates the automaton.
This approach can be generalized to mso-formulæ on structures of bounded tree
width where one first turns a tree-width-bounded structures and an mso-formu-
la on it into an equivalent tree of bounded degree and an mso-formula on the
tree. Then the formula is evaluated using an equivalent automaton for bounded
degree trees. The proofs in the present thesis follow the same idea, but, in case
of tree-depth-bounded structures, cannot be based on the classical tree au-
tomata for bounded-degree trees since the trees that appear in the proofs of
these results have an unbounded number of children. Moreover, they do not
impose an order on sibling nodes. Such trees are called unranked unordered
in the literature, where unranked means that nodes have an unbounded degree
(in opposition to ranked trees whose node-degree is bounded by some constant)
and unordered means that there is no total order on sibling nodes. The au-
tomaton notion we define for this setting and its equivalence to mso-formulæ
is tailored to serve two tasks in later chapters:

Task 1: The transition function of the automaton is definable in first-order
logic. That means, whether some state q of the automaton can be assigned
to a node n of the tree can be decided by a first-order formula ϕq(n) that has
access to the states assigned to the children of n. This feature of multiset tree
automata is used in Chapter 3 to prove Theorem 1.9—first-order and mso-logic
have the same expressive power on tree-depth-bounded structures.

Task 2: The transformation from mso-formulæ to automata preserves the
sizes and number of solutions and, thereby, establishes a reduction from count-
ing the number of solutions to an mso-formula to evaluating an automaton.
Moreover, the specific form of the automaton’s transition function allows to
implement its evaluation using arithmetic circuits in Chapter 4.

a

a

b b

a b b

a

b b

a

b b a

Towards an automaton notion for task 1. The theo-
rems that handle structures of bounded tree depth cover,
as one of the simplest example, trees that have bounded
depth, but an unbounded degree. Adopting the classi-
cal strategy for designing time-efficient algorithms, which
means in this case transforming trees of unbounded degree
into trees of bounded degree, would come at the cost of
increasing the depth of the tree by at least a logarithmic
factor and this would imply vertical data dependencies
in the tree that we cannot hope to handle by first-order
formulæ in Chapter 3 or constant-depth circuits in Chap-
ter 4. The automaton notion from this chapter helps to
sidestep this problem since it directly works on unbounded-degree trees and,



2.1. DEFINITION AND CLOSURE PROPERTIES OF MULTISET TREE AUTOMATA 15

thus, does not force us to change the topology of the tree. The successor rela-
tion in each of the considered trees is encoded using a single binary relation EA

and, thus, sibling nodes are not distinguished by multiple edge relations. Such
trees can be seen has having only a single type of edges and having unordered
children that are not distinguishable solely based on successor relations. As a
result, there are multiple ways of drawing the same tree as shown in the example
above.

a

a

b b

a b b

For a similar reason, we are not able to use automata
notions that are developed (Brüggemann-Klein et al., 2001)
and used (Gottlob et al., 2005) in the context of xml pro-
cessing. Such automata work on trees where every node
may have an unbounded number of children, but whose sib-
ling nodes are totally ordered in an implicit way using an
order relation on sibling nodes, as indicated by the dotted
lines in the tree right. This perfectly fits the needs of xml processing where
documents not only encode a hierarchical bracket structure, but also a total
order on the children of each node by the text file encoding in an implicit way.
Without further restricting this automaton model we are not able to use it for
our applications since the horizontal data dependencies on sibling nodes are too
high. In fact, mso-formulæ and the corresponding automata on this structures
are able to define any regular property on the ordered children of a node and,
thus, cannot be simulated by constant-depth circuits, let alone first-order for-
mulæ. For similar reasons our automaton notion needs to be different from the
order-invariant tree automata of Courcelle (1989), which, for example, can an-
swer the question of whether the number of sibling nodes that satisfy a certain
property is even.

Towards an automaton notion for task 2. An automaton notion from the
literature that is equivalent to our model are the counting unranked tree au-
tomata of Libkin (2006). Transitions of these automata are defined in terms of
Boolean functions: They allow us to assign a state q to a node with symbol σ if a
Boolean function δ(σ, q), which depends on the number of occurrences of states
at the children, evaluates to 1. Another equivalent automaton notion would
result from using hedge automata (Brüggemann-Klein et al., 2001) whose hor-
izontal languages are recognized by finite monoids that are commutative and
aperiodic (Straubing, 1994). The automaton notion that is presented in this
chapter makes it a relatively easy task to solve mso-definable counting problems
using arithmetic circuits since it allows to relate the states that are assigned
to the children of a node with the state that is assigned to the node itself
in a transparent way, without hiding the transition relation inside a Boolean
function or a monoid.

The present chapter starts with the definition of multiset tree automata and
proofs of their closure properties in Section 2.1. Then monadic second-order
logic is formally defined in Section 2.2 and its equivalence to multiset tree
automata on unordered labeled trees is shown in Section 2.3.

2.1. Definition and Closure Properties of Multiset Tree Automata

The basic idea behind the definition of a multiset tree automaton is as
follows: In order to determine the state reached for a given node of the tree, we
consider the states reached at the children of the node. Since the trees under



16 2. UNBOUNDED DEGREE TREES AND AUTOMATA

consideration are unordered, we need to consider the set of states reached rather
than the sequence of states reached at the children. However, just considering
the set of states reached turns out to be insufficient: For our proofs we need to
be able to distinguish whether, say, the state q1 is reached twice and the state q2
once or whether the cardinalities are the other way round. For this reason, we
consider the multiset of states reached at the children of a given node. However,
our trees are also unranked and as the number of children grows, the number of
possible state multisets that the automaton may encounter grows without limit.
In order to use finite descriptions of the automata nevertheless, we introduce
a capping operation: The automaton’s transition relation is defined only for
state multisets with some maximal multiplicity m ∈ N and whenever a state is
reached at more than m children, the state is inserted into the state multiset
only m times (multiplicities are capped at m).

?

q1 q1 q2 q1 q2 q1 q3

As an example, suppose an automaton reaches
the indicated states at the children of the root like
in the example on the right. Then the multiset of
states reached is M = {q1, q1, q1, q1, q2, q2, q3}. If
the multiplicity of the automaton is, say, 2, then
the capped multiset is M |2 = {q1, q1, q2, q2, q3}. The
state reached at the root is then determined by the
entry of the transition relation for this particular multiset. In the following,
these ideas are formalized.

Definition of Multiset Tree Automata. Multisets generalize sets by
allowing elements to appear more than once. Formally, given a universe U
(which is just a normal set), a multiset M on U is a function #M : U → N that
assigns a multiplicity to each element of U . We say that M has multiplicity at
most m if #M (e) ≤ m holds for all e ∈ U . The cardinality of M is |M | :=∑

e∈U #M (e). We write Pω(U) for the class of all multisets on U and we
write Pm(U) for the class of all multisets on U of multiplicity at most m.
Usual sets can be considered as multisets M with multiplicity at most 1 and
P(U) := P1(U) is the usual power set of U . Given two multisets M and N
over the same universe U , we write M ⊆ N to indicate that #M (e) ≤ #N (e)
holds for all e ∈ U . The union M ∪ N is the multiset with #M∪N (e) =
max{#M (e),#N (e)} for all e ∈ U . Similarly, the intersection M ∩ N has the
property #M∩N (e) = min{#M (e),#N (e)} and the set difference M \ N has
the property #M\N (e) = max{0,#M (e) − #N (e)}. We define two restriction
operations on multisets M ∈ Pω(U). First, given a number m ∈ N, let M |m be
#M |m(e) := min{#M (e),m} for e ∈ U . We call M |m the capped version of M
to multiplicity m. Second, for a set V ⊆ U , let us write M |V for the restriction
of M to V , defined by #M |V (e) := #M (e) for e ∈ V and #M |V (e) := 0 for
e /∈ V . Next, we formally define the notion of multiset tree automata and how
they process labeled trees.

Definition 2.1 (Multiset Tree Automaton). A nondeterministic (bottom-
up) multiset tree automaton is a tuple A = (Σ, Q,Qa,∆) consisting of an al-
phabet Σ, a state set Q, a set Qa ⊆ Q of accepting states, and a state transition
relation

∆ ⊆ Σ× Pm(Q)×Q



2.1. DEFINITION AND CLOSURE PROPERTIES OF MULTISET TREE AUTOMATA 17

for some constant m ∈ N, the multiplicity bound of A. The automaton is
deterministic if for every σ ∈ Σ and every M ∈ Pm(Q) there is exactly one
q ∈ Q with (σ,M, q) ∈ ∆; in this case we can view ∆ as a state transition
function

δ : Σ× Pm(Q)→ Q .

Definition 2.2 (Graph). A (directed) graph G is a tuple (V,E) consisting
of a vertex set V and a set of edges E ⊆ V × V , which we also denote by
V (G) and E(G), respectively. A vertex c ∈ V (G) is a child of another vertex
n ∈ V (G) in G if (n, c) ∈ E(G) holds.

Definition 2.3 (Tree). A tree is a directed graph T that contains a distin-
guished root r ∈ V (T ), such that for every v ∈ V (T ) there exists exactly one
path from r to v. We use the term nodes to refer to the vertices of a tree. The
leaves of a tree are its nodes without children; all other nodes are inner nodes.

Definition 2.4 (Labeled Tree). Let Σ be an alphabet. A labeled tree over Σ
is a pair (T, l) consisting of a tree T and a mapping l : V (T )→ Σ.

Definition 2.5 (Computation of a Multiset Tree Automaton). Let A =
(Σ, Q,Qa,∆) be a multiset tree automaton and (T, l) be a labeled tree over Σ.
A computation of A on (T, l) is a mapping q : V (T ) → Q, such that for every
node n ∈ V (T ) we have (l(n),M |m, q(n)) ∈ ∆, whereM is the multiset {q(c) | c
is a child of n in T}. A computation is accepting, if q(r) ∈ Qa holds for the
root r of T . The tree language L(A) contains all labeled trees over Σ for which
there exists an accepting computation of A on (T, l).

Example 2.6 (A Multiset Tree Automaton for All-0 Labeled Trees).

q1

q0 q0

q0 q0

1

0 0

0 0

A multiset tree automaton that accepts exactly the labeled
trees (T, l) over Σ = {0, 1} where l(n) = 0 holds for each
node n ∈ V (T ) is the following automaton (Σ, Q,Qa, δ) with
multiplicity bound m = 1: The automaton has the state set
Q := {q0, q1}, where q0 stands for the fact that the already
processed part of the tree is only labeled by 0s, and q1 stands
for the opposite fact, that there is at least one node labeled
by 1. Since we want to test whether the former property
holds, we set Qa := {q0}. Let σ ∈ {0, 1} and M ⊆ Q. For the transition
function we set δ(σ,M) := q1 if σ = 1 or q1 ∈M and δ(σ,M) := q0, otherwise.
The example on the right shows a tree whose nodes are labeled by symbols
from {0, 1} and states that are assigned to them by the defined automaton.
The whole tree is not accepted, while every proper subtree is accepted.

Closure Properties of Multiset Tree Automata. We now show that
the class of tree languages accepted by multiset tree automata is closed under
intersection, complement, and for every nondeterministic multiset tree automa-
ton there is a deterministic automaton accepting the same tree language. These
closure properties are crucial for the transformation of mso-formulæ into mul-
tiset tree automata.

Lemma 2.7. For all multiset tree automata A and B there is a multiset tree
automaton C with L(C) = L(A) ∩ L(B).



18 2. UNBOUNDED DEGREE TREES AND AUTOMATA

Proof. For this proof, we introduce the following operations on multi-
sets: For universes U1 and U2, the projections π1 : Pω(U1 × U2) → Pω(U1)
and π2 : Pω(U1 × U2) → Pω(U2) of multisets of pairs to their first and second
components are defined as #π1(M)(e) :=

∑
f∈U2

#M ((e, f)) and #π2(M)(f) :=∑
e∈U1

#M ((e, f)) for any M ∈ Pω(U1 × U2).
In the proof we use that for any multiset M and bounds m,n, k ∈ N with

m,n ≤ k the equations

π1(M)|m = π1(M |k)|m and

π2(M)|n = π2(M |k)|n hold. (∗)

Let A = (Σ, Q,Qa,∆A) and B = (Σ, P, Pa,∆B) be multiset tree automata
with multiplicity bounds m and n, respectively. The intersection product au-
tomaton of A and B is C := (Σ, Q × P,Qa × Pa,∆C) with multiplicity bound
k := max{m,n} and transition relation

∆C :=
{(
σ,N, (q, p)

)
| σ ∈ Σ, N ∈ Pk(Q× P ), q ∈ Q, p ∈ P,
(σ, π1(N)|m, q) ∈ ∆A, (σ, π2(N)|n, p) ∈ ∆B

}
.

We show by induction on the depth of the tree that the following is true for
all labeled trees: The automata A and B can reach states q and p at the root,
respectively, if, and only if, C can reach the state (q, p) at the root. Clearly,
this implies the claim. Since there is nothing to prove for empty trees, we only
need to prove the inductive step. Let c1 to ct be the children of the root. We
need to prove two directions.

For the only-if-direction, let q1 to qt be states reached by A at the children
c1 to ct, respectively, such that (σ, {q1, . . . , qt}|m, q) ∈ ∆A and let p1 to pt be
states reached by B at these children, such that (σ, {p1, . . . , pt}|n, p) ∈ ∆B. By
the induction hypothesis, C can reach (q1, p1) to (qt, pt) at c1 to ct, respectively;
let M denote the multiset of these state pairs. Since m,n ≤ k, property (∗)
implies the second equality in both

{q1, . . . , qt}|m = π1(M)|m = π1(M |k)|m and

{p1, . . . , pt}|n = π2(M)|n = π2(M |k)|n .

The definition of C immediately implies (σ,N, (q, p)) ∈ ∆C for N = M |k and,
thus, there exists a computation of C that assigns (q, p) to the root.

For the if-direction, let C reach (q1, p1) to (qt, pt) at the children and let(
σ,N, (q, p)

)
∈ ∆C for N = {(q1, p1), . . . , (qt, pt)}|k. By the induction hypothe-

sis, A can reach the states q1 to qt at the children and B can reach p1 to pt. By
the definition of ∆C , we have (σ, π1(N)|m, q) ∈ ∆A and (σ, π2(N)|n, p) ∈ ∆B.
Since (∗) implies both

π1(N)|m = {q1, . . . , qt}|m and

π2(N)|n = {p1, . . . , pt}|n ,

we have (σ, {q1, . . . , qt}|m, q) ∈ ∆A and (σ, {p1, . . . , pt}|n, p) ∈ ∆B. Thus q and
p are reachable by A and B, respectively, at the root. �

Lemma 2.8. For every nondeterministic multiset tree automaton A there is
a deterministic multiset tree automaton B with L(A) = L(B).



2.1. DEFINITION AND CLOSURE PROPERTIES OF MULTISET TREE AUTOMATA 19

Proof. For this proof, we define the choice relation ι ⊆ Pω(U)×Pω(P(U))
as follows:

({v1, . . . , vt}, {V1, . . . , Vt}) ∈ ι whenever vi ∈ Vi holds for all i ∈ {1, . . . , t} .

A key observation for the following construction is that for every m and every
W ∈ Pω(P(U)), the following set (not multiset) equality holds:{

V |m
∣∣ (V,W ) ∈ ι

}
=

{
V |m

∣∣ (V,W |m·|U |) ∈ ι
}
. (∗∗)

To see that this holds, first let (V,W ) ∈ ι. We must find a multiset V ′ with
V ′|m = V |m and (V ′,W |m·|U |) ∈ ι. To this end, we construct a sequence of
pairs (Vi,Wi), such that for all i we have

(1) (Vi,Wi) ∈ ι,
(2) Vi|m = V |m, and
(3) Wi|m·|U | =W |m·|U | .

Setting V1 := V and W1 := W , the properties clearly hold for i = 1. Each
pair is obtained from the previous pair as follows, when possible: Choose an
element v ∈ Vi whose multiplicity in Vi exceeds m and that is an element of
a set X ∈ Wi of multiplicity exceeding m · |U | in Wi. Let Vi+1 := Vi \ {v}
and Wi+1 := Wi \ {X}. Clearly, each new pair still has the three properties.
Furthermore, this process will not stop as long as Wi still contains an element
X of multiplicity exceeding m · |U | since, then, at least one element of X must
be present more than m times in Vi. This implies that for the last sets V ′ and
W ′ constructed in this way we have V ′|m = V |m and W ′ =W |m·|U | and by (a)
this means (V ′,W |m·|U |) ∈ ι as claimed.

Second, let (V,W |m·|U |) ∈ ι. We must construct a set V ′ with V ′|m = V |m
and (V ′,W ) ∈ ι. Again, we construct a sequence of pairs satisfying the same
properties as above, but start with V1 := V and W1 := W |m·|U |. We choose
an element v in Vi of multiplicity at least m and a set X in Wi with v ∈ X of
multiplicity is at leastm·|U |, but still less than #W (X). We set Vi+1 := V ∪{v}
and Wi+1 :=Wi ∪{X}. The three properties are still met by this construction.
We claim that for the last sets V ′ and W ′ we have Wi = W . To see this, note
that elements of W of multiplicity less than m · |U | have this multiplicity in all
Wi and that for elements X of W of multiplicity at least m · |U | at least one
element v ∈ X must be present at least m times already in V .

We are now ready to construct the automaton B. Let A = (Σ, Q,Qa,∆)
be a nondeterministic multiset tree automaton with multiplicity bound m. We
call the elements of P = P1(Q) power states. Let B = (Σ, P, {Q′ ∈ P |
Q′ ∩ Qa 6= ∅}, δ) with multiplicity bound k = m · |Q| and transition function
δ : Σ× Pk(P )→ P defined by

δ(σ,W ) := {q ∈ Q | ∃V ∈ Pk(Q) with (V,W ) ∈ ι and (σ, V |m, q) ∈ ∆} .

We prove by induction on the depth of the tree that for every labeled tree
the set S of states that the automaton A can reach at the root is exactly the
power state S reached by B at the root on input of this tree. Given a tree
whose root has children c1 to ct, assume that the set of states reached by A at
child ci is Si for each i. By the induction hypothesis, B will reach the single
power state Si at child ci. Let W := {S1, . . . , St}. Now, by definition of the
computation of multiset tree automata, the set S of states reached by A at
the root is {q ∈ Q | ∃V ∈ Pω(Q) with (V,W ) ∈ ι and (σ, V |m, q) ∈ ∆}. By



20 2. UNBOUNDED DEGREE TREES AND AUTOMATA

equation (∗∗), we can write S also as {q ∈ Q | ∃V ∈ Pk(Q) with (V,W |k) ∈
ι and (σ, V |m, q) ∈ ∆}, which is exactly δ(σ,W |k). �

Lemma 2.9. For every multiset tree automaton A there is a multiset tree
automaton B accepting the complement of L(A).

Proof. Make A deterministic, if necessary, using Lemma 2.8 and exchange
accepting and rejecting states. �

2.2. Review of Monadic Second-Order Logic

In the present section we formally define mso-logic and review a technique
on how to eliminate first-order variables from mso-formulæ.

Vocabularies and Structures. We define the notion of vocabularies with
a finite set of symbols and structures with a finite universe as used, for example,
by Libkin (2006).

Definition 2.10 (Vocabulary). A (relational) vocabulary τ is a finite set
of relation symbols together with a mapping ar that assigns an arity ar(R) ≥ 1
to each relation symbol R.

In slight abuse of notation, we write R ∈ τ to indicate that R is part of τ
and Rr ∈ τ to additionally indicate that the arity of R in τ is r.

Definition 2.11 (Structure). Let τ be a vocabulary. A (finite) structure
over τ , or τ -structure, A consists of a nonempty, finite set A, the universe of A,
and for each relation symbol Rr ∈ τ a relation RA ⊆ Ar.

Like in the previous definition, we will often use the same letter for a
structure and its universe, but a calligraphic font for the structure and a non-
calligraphic font for the universe. Thus, the universes of the structures A, B,
and C are denoted by A, B, and C, respectively. A relation RA and its symbol
R are monadic if ar(R) = 1.

Let A and B be two structures over the same vocabulary τ . The union of
A and B is the τ -structure A∪B with universe A ∪B and for every R ∈ τ , we
have RA∪A = RA ∪ RB. We say that B is a substructure of A if B ⊆ A and
RB ⊆ RA holds for every R ∈ τ . For a subset B ⊆ A, the substructure of A
that is induced on B has universe B and for all Rr ∈ τ we have RB = RA ∩Br;
we denote it by A[B].

While the theorems from the introduction make statements about structures
over any fixed vocabulary, within their proofs we use relational structures whose
forms are tailored to serve specific tasks:

We use structures to encode the adjacency relations of directed graphs.

Definition 2.12 (Graph Structure). A graph (structure) is a structure
G = (V,EG) over the vocabulary τgraph := {E2}, which consists of a binary
edge relation symbol.

The concepts of a subgraph and a subgraph that is induced are inherited
from general structures. We denote the set of edges (the universe) of a graph
structure G also by V (G) and its edge set also by E(G).

To formulate a translation between mso-formulæ and automata, we consider
trees whose vertices are labeled using monadic relations.



2.2. REVIEW OF MONADIC SECOND-ORDER LOGIC 21

Definition 2.13 (s-Tree Structure). For s ∈ N0, an s-tree (structure) is a
structure T = (V,ET, RT

1 , . . . , R
T
s ) over the vocabulary τs-tree = τgraph∪{R1

1, . . . ,

R1
s} where (V,ET ) encodes the adjacency relation of a directed tree.

Formulæ and Definability. The formulæ of mso-logic are all second-
order formulæ where each variable is either a first-order variable, also called an
element variable, or a monadic second-order variable, also called a set variable.
We denote element variables by lowercase Latin letters like x, y, and z, and set
variables by uppercase Latin letters like X, Y , and Z. Formally, mso-formulæ
are defined inductively as follows:

Definition 2.14 (mso-Formula). Let τ be a vocabulary. An mso-formula
over τ is either

(1) an atomic formula of the form x = y, X(z), or R(x1, . . . , xr), where
x, y, z, x1, . . . , xr are element variables, X is a set variable, and Rr ∈ τ , or

(2) a composed formula of the form (ϕ)∧(ψ), ¬(ϕ), ∃x (ϕ), or ∃X (ϕ) where
ϕ and ψ are mso-formulæ.

While the formal syntax of mso-formulæ requires all subformulæ to be en-
closed by brackets, for better readability we will sometimes omit some brackets
that are implicitly known from the usual binding strength of the connectives
and quantifiers. Beside the Boolean connectives ∧ and ¬, the existential ele-
ment quantifier ∃x, and the existential set quantifiers ∃X, which are formally
part of the syntax of mso-formulæ, we use the connectives ∨, →, and ↔, and
the universal quantifiers ∀x and ∀X as shorthands. Moreover, we use x 6= y as
a shorthand for ¬x = y. Bound and free variables are defined as usual. We
write ϕ(x1, . . . , x`, X1, . . . , Xk) to indicate that the formula ϕ has exactly the
free element variables x1, . . . , x` and set variables X1, . . . , Xk.

Classically first-order logic is defined by using only element variables in the
formula. We deviate from this and define first-order formulæ as mso-formulæ
without set quantifier, but free set variables. This allows to compare mso-
and first-order formulæ. This choice does not increase the expressive power of
first-order formulæ since they are still not able to quantify over sets.

Definition 2.15 (First-Order Formula). Let τ be a vocabulary. A first-
order formula over τ is an mso-formula that does not contain set quantifiers,
but may contain free set variables.

A variable assignment for a structure A is a mapping α whose domain is
a finite set of element and set variables that maps each element variable x to
an element α(x) ∈ A and each set variable X to a subset α(X) ⊆ A. For an
element variable x and s ∈ A, α[x 7→ s] denotes the assignment that alters (or
extends) α to map x to s; α[X 7→ S] for a set variable X and a set S ⊆ A is
defined similarly.

Given a structure A, an mso-formula over the same vocabulary ϕ, and
a variable assignment α that assigns a value to every free variable of ϕ, we
write (A, α) |= ϕ to indicate that (A, α) is a model of ϕ, where the model
relation is defined in the usual way. We also write A |= ϕ(s1, . . . , s`, S1, . . . , Sk)
for a formula ϕ(x1, . . . , x`, X1, . . . , Xk) if s1 = α(x1), . . . , s` = α(x`) and
S1 = α(X1), . . . , Sk = α(Xk) hold.

Let τ be a vocabulary and ϕ a formula without free variables over τ . The
set of τ -structures that is defined by ϕ contains exactly the τ -structures A with



22 2. UNBOUNDED DEGREE TREES AND AUTOMATA

A |= ϕ. A set of τ -structures is definable in mso-logic (in first-order logic)
if it is defined by some mso-formula (first-order formula). If ϕ is a formula
with free element variables {x1, . . . , x`} and set variables {X1, . . . , Xk}, then
it defines the set of pairs (A, α) of τ -structures A and variable assignments α
with domain {x1, . . . , x`, X1, . . . , Xk}, such that (A, α) |= ϕ holds. A set of
such pairs is definable in mso-logic (first-order logic) if there is an mso-formula
(a first-order formula) that defines it.

Example 2.16 (Defining 3-Colorings and 3-Colorability). The set of graphs
with a valid 3-coloring consists of all pairs of graphs G = (V,EG) and sets
R ⊆ V , G ⊆ V , and B ⊆ V , such that all vertices lie in some set and adjacent
vertices lie in different sets. The pairs of such graphs and solution sets are
exactly the ones that satisfy the first-order formula ϕ3-coloring(R,G,B) :=

∀v
(
R(v) ∨G(v) ∨B(v)∧

∀w
(
E(v, w)→ ¬(R(v) ∧R(w)) ∧ ¬(G(v) ∧G(w)) ∧ ¬(B(v) ∧B(w))

))
.

The set of graphs that have valid 3-colorings is defined by the mso-formula
∃R ∃G∃B ϕ3-coloring(R,G,B); this is the formula ϕ3-colorable from the introduc-
tion.

Monadic Second-Order Formulæ Without Element Variables. For
some proofs it will be convenient to consider only mso-formulæ that do not
contain any first-order variables (free or bound). For this purpose, we transform
mso-formulæ into equivalent formulæ without element variables using different
atomic formulæ.

Definition 2.17 (mso-Formula Without Element Variables). Let τ be a
vocabulary. The formulæ over τ of mso-logic without element variables are
defined like the usual mso-formulæ, but use a different set of atomic formulæ
whose syntax and semantics is defined as follows:

(1) First, empty(X) is an atomic formula for every set variable X and
semantically A |= empty(S) means S = ∅.

(2) Second, elem(X1, . . . , Xr, Z) is an atomic formula, where the Xi are
set variables and Z is either a relation symbol from τ and r = ar(Z), or Z is
a set variable and r = 1. Semantically, (A, α) |= elem(X1, . . . , Xr, Z) means
|α(Xi)| = 1 for each i ∈ {1, . . . , r}, and α(X1) × · · · × α(Xr) ⊆ ZA when Z is
a relation symbol and α(X1) ⊆ α(Z) when Z is a set variable.

Any mso-formula that uses first-order variables can be transformed into an
equivalent mso-formula without first-order variables:

Lemma 2.18. For every mso-formula ϕ(y1, . . . , y`, X1, . . . , Xk), there exists
an mso-formula without element variables ψ(Y1, . . . , Y`, X1, . . . , Xk) over the
same vocabulary τ , such that for every τ -structure A with universe A, elements
s1, . . . , s` ∈ A, and sets S1, . . . , Sk ⊆ A, we have A |= ϕ(s1, . . . , s`, S1, . . . , Sk)
if, and only, if A |= ψ({s1}, . . . , {s`}, S1, . . . , Sk).

Proof. Let ϕ(y1, . . . , y`, X1, . . . , Xk) be any mso-formula. We construct
an mso-formula without element variables ψ(Y1, . . . , Y`, X1, . . . , Xk) as follows:

We start by introducing a fresh set variable for every element variable. Then
we replace atomic formulæ that use element variables by atomic formulæ with-
out element variables. Assume that X, Y , and X1 to Xr are the set variables



2.3. BÜCHI–ELGOT–TRAKHTENBROT-TYPE THEOREM FOR UNORDERED TREES 23

introduced for the element variables x, y, and x1 to xr, respectively. We re-
place every x = y by elem(X,Y )∧elem(Y,X), every R(x1, . . . , xr) for R

r ∈ τ by
elem(X1, . . . , Xr, R), and every Z(x) where Z is a set variable by elem(X,Z).
The lemma holds for all atomic formulæ. To eliminate first-order variables from
composed formulæ, we inductively replace every subformula ∃x(ϕ′) by the for-
mula ∃X(elem(X,X)∧ϕ′). The first part of this formula expresses that we can
only choose singleton sets, sets with exactly one element, for X. By induction,
the second part ensures that choosing an element s for x has the same effect as
choosing a singleton set {s} for X. Thus, the formula constructed in this way
proves the lemma. �

2.3. A Büchi–Elgot–Trakhtenbrot-type Theorem for
Unordered Trees

In the following we prove a back and forth translation between mso-formulæ
on s-tree structures and multiset tree automata on labeled trees that preserves
the sizes and number of solutions. This can be seen as extending the results
of Büchi (1960), Elgot (1961), and Trakhtenbrot (1961) from strings and finite
automata to (unranked and unordered) trees and multiset tree automata.

The translation from formulæ to automata, part (1) of Theorem 2.19, is
used inside proofs from Chapter 4. While part (2) of Theorem 2.19 is not used
in later chapters, we use one of its proof steps, Lemma 2.21 for moving from
mso-formulæ to equivalent first-order formulæ in case of bounded-depth trees,
in Chapter 3.

1

2

4 5

3

101

000 100

001 100

To transform between labeled trees, on which automata
work, and s-tree structures, for which mso-formulæ define
properties, we use the following definition: Given an s-tree
structure T = (V,ET, P T

1 , . . . , P
T
s ) and sets S1, . . . , Sk ⊆ V ,

let us write T (T , S1, . . . , Sk) for the labeled tree over Σ =
{0, 1}s+k whose node set is V , whose edge set is ET , and
whose labeling function maps each node v ∈ V to l1 . . . lsx1 . . . xk ∈ {0, 1}s+k
with li = 1⇔ v ∈ P T

i and xi = 1⇔ v ∈ Si. We write T (T ) in case k = 0. An
example of this transformation is shown right for the 1-tree structure T with
V = {1, 2, 3, 4, 5}, ET = {(1, 2), (1, 3), (2, 4), (2, 5)}, P T

1 = {1, 3, 5}, S1 = ∅,
and S2 = {1, 4}.

Theorem 2.19 (Back and Forth Between Formulæ and Automata on Un-
ordered Trees). Let s, k ∈ N0.

(1) For every mso-formula ϕ(X1, . . . , Xk) over τs-tree there is a multiset
tree automaton A with alphabet {0, 1}s+k, such that for all s-tree structures T
with universe V and S1, . . . Sk ⊆ V we have T |= ϕ(S1, . . . , Sk) if, and only if,
A accepts T (T , S1, . . . , Sk).

(2) For every multiset tree automaton A with alphabet {0, 1}s+k there is an
mso-formula ϕ(X1, . . . , Xk) over τs-tree, such that for all s-tree structures T
with universe V and S1, . . . , Sk ⊆ V we have T |= ϕ(S1, . . . , Sk) if, and only if,
A accepts T (T , S1, . . . , Sk).

We start to prove Part (1) of Theorem 2.19.



24 2. UNBOUNDED DEGREE TREES AND AUTOMATA

Proof of Part (1) of Theorem 2.19. The proof follows ideas of Arn-
borg et al. (1991) that are modified to work for s-trees and multiset tree au-
tomata instead of degree-bounded trees and classical tree automata. We con-
sider an mso-formula ϕ without element variables from Definition 2.17 that is
turned into an automaton by induction on its structure.

First, assume that ϕ is an atomic formula; that means it is either of the
form empty(X), elem(X,Z) (where Z is a monadic relation symbol from τs-tree
or a set variable), or elem(X,Y,E). In each case, there exists a multiset tree
automaton accepting exactly those trees satisfying the formula: (1) The au-
tomaton for empty(X) has the same behaviour as the automaton from Exam-
ple 2.6, which accepts exactly the labeled trees over {0, 1} where all nodes are
labeled by 0: It has two states q0 and q1 with only q0 being accepting, and
multiplicity m = 1. Working up from the leaves in state q0, it switches to q1
once it encounters a node that is an element of X and propagates this state to
the root. The information of whether a node n is part of X can be looked up
in its label. (2) For an atomic formula elem(X,Z), we construct the intersec-
tion automaton from Lemma 2.7 for two automata: the first automaton tests
whether X is a singleton set, and the second automaton tests that, if an element
is part of X, it is also part of Z. (3) For the atomic formula elem(X,Y,E), we
combine three automata using Lemma 2.7. The first two automata test whether
X and Y are singleton sets, respectively. The third automaton tests whether
we have α(X)×α(Y ) ⊆ ET if |α(X)| = |α(Y )| = 1. To verify this property, the
automaton uses a state to signal each node that is an element of Y and tests
whether each node is an element of X when one of its children has this state.

For the induction step, we must build an automaton for formulæ that are
composed using negation, conjunction, and the existential set quantifier. These
automata are constructed using the closure properties of multiset tree automata
we proved earlier in Lemmas 2.7 to 2.9: When ϕ = ϕ1 ∧ ϕ2, we construct the
intersection product automata from Lemma 2.7 of the automata for ϕ1 and ϕ2.
When ϕ = ¬ϕ′, we take the complement automaton from Lemma 2.9. Finally,
when ϕ = ∃X(ϕ′), we first transform the automaton for ϕ′ into a nondetermin-
istic automaton that makes its transition regardless of the relation X, using
up- and down-projection of the alphabet, and then make it deterministic via
the power set construction from Lemma 2.8. �

For the proof of Part (2) of Theorem 2.19, we first show that the transitions
of multiset tree automata can be defined using first-order formulæ.

Lemma 2.20 (First-Order-Definable State Transitions). Let s, k ∈ N0, and
A = (Σ, Q,Qa,∆) be a multiset tree automaton with multiplicity bound m,
alphabet Σ = {0, 1}s+k and states Q = {q1, . . . , q|Q|}. For ever qi ∈ Q, there is
a first-order formula ϕqi(X1, . . . , Xk, x, Z1, . . . , Z|Q|) over τs-tree, such that for
every s-tree structure T with universe V , sets S1, . . . , Sk ⊆ V , n ∈ V , and a
partition Q1, . . . , Q|Q| of the children of n in T , we have

T |= ϕqi(S1, . . . , Sk, n,Q1, . . . , Q|Q|, ) if, and only if, (l(n),M |m, qi) ∈ ∆ ,

where M is the multiset {qj ∈ Q | ex. child c of n with c ∈ Qj} and l is the
labeling function of T (T , S1, . . . , Sk).



2.3. BÜCHI–ELGOT–TRAKHTENBROT-TYPE THEOREM FOR UNORDERED TREES 25

Proof. For each (σ,N, qi) ∈ ∆ with N = {qi1 , . . . , qin}, we define the
first-order formula ϕσ,N,qi(x,Z1, . . . , Z|Q|) :=

∃z1 . . . ∃zn
(
E(x, z1) ∧ · · · ∧ E(x, zn)∧

distinct(z1, . . . , zn) ∧ Zi1(z1) ∧ · · · ∧ Zin(zn)∧

∀z
(
E(x, z) ∧ distinct(z, z1, . . . , zn)→

∨
qj∈Q s.t.
#N (qj)=m

Zj(z)
))

,

where distinct describes that distinct elements are assigned to its free variables.
Given a partition Q1, . . . , Q|Q| of the children of n, this formula tests whether
the multiset M contains each state qi ∈ Q with #N (qi) < m exactly #N (qi)
times and each state qi ∈ Q with #N (qi) = m at least #N (q) times; this holds
exactly if we have M |m = N . A formula that tests whether the state qi can be
assigned to n provided that the symbol for n is σ is

ϕσ,qi(x,Z1, . . . , Z|Q|) :=
∨

(σ,N,qi)∈∆

ϕσ,N,qi(x,Z1, . . . , Z|Q|) ,

the disjunction over all capped multisets of states that lead to valid transitions
assigning qi to n. Thus, the only thing left to do is to detect which symbol
is present at n and apply the right formula. For this, we define the first-order
formula ϕqi(X1, . . . , Xk, x, Z1, . . . , Z|Q|) :=∧

σ∈Σ

(
ϕσ(X1, . . . , Xk, x)→ ϕσ,qi(x,Z1, . . . , Z|Q|)

)
,

where ϕσ holds if σ is the label of n in T (T , S1, . . . , Sk). This can easily be
defined using a first-order formula that queries the monadic relations RT

i of T
and the set variables Xi. �

Proof of Part (2) of Theorem 2.19. The formula guesses a partition
Q1, . . . , Q|Q| of V using existential quantifiers that bind variables Z1,. . . ,Z|Q|.
Then it tests whether this assignment represents a valid computation of the
automaton. In detail, it checks for every node n and qi ∈ Q whether Zi(n)
implies ϕqi(S1, . . . , Sk, n,Q1, . . . , Q|Q|), which is a formula from Lemma 2.20.

�

Using the transformation from mso-formulæ to multiset tree automata, and
the first-order definability of state transitions of multiset tree automata, we are
already able to prove the following special case of Theorem 1.9 that first-order
formulæ can simulate the behaviour of mso-formulæ on trees of bounded depth.
The depth of a node n in an s-tree structure T is the maximum number of
vertices on a path from n to a leaf. The depth of T is the depth of its root.

Lemma 2.21. Let s, k ∈ N0, d ∈ N. For every mso-formula ϕ(X1, . . . , Xk)
over τs-tree there exists a first-order formula ψd(X1, . . . , Xk) over τs-tree, such
that for every s-tree structure T of depth d with universe V and S1, . . . , Sk ⊆ V
we have T |= ϕ(S1, . . . , Sk) if, and only if, T |= ψd(S1, . . . , Sk).

Proof. Let A = (Σ, Q,Qa, δ) be the deterministic multiset tree automaton
with Σ = {0, 1}s+k from part (1) of Theorem 2.19, which is equivalent to ϕ.

We prove by induction over d for all q ∈ Q that there is a first-order
formula ψd,q(X1, . . . , Xk, x) with the following properties: For every s-tree T



26 2. UNBOUNDED DEGREE TREES AND AUTOMATA

with universe V , node n of depth d from T , and S1, . . . , Sk ⊆ V , we have
T = ψd,q(S1, . . . , Sk, n) if, and only if, the state that is assigned to n in
T (T , S1, . . . , Sk) by A is q. Once this formula is available, we can prove the
lemma using ψd(X1, . . . , Xk) :=

∀x
(
root(x)→

∨
q∈Qa

ψd,q(X1, . . . , Xk, x)
)
,

where root(x) says that the passed node is the root of the tree (the unique node
without ingoing edges).

For d = 1, we use the formula ψ1,q(X1, . . . , Xk, x) := ϕ′
q(X1, . . . , Xk, x),

where ϕ′
q(X1, . . . , Xk, x) is the formula we get from applying Lemma 2.20 to

the automaton A and replacing every occurrence of a Zqi(z) with a formula
that is always false (like, for example, ∃xx 6= x). This formula has the claimed
properties since n has no children and, thus, the multiset of states at the chil-
dren is always empty. For the induction step, we use ψd,q(X1, . . . , Xk, x) :=
ϕ′
q(X1, . . . , Xk, x) where, again, we get the formula ϕ′

q(X1, . . . , Xk, x) from ap-
plying Lemma 2.20 to A, but this time replacing each occurrence of a Zqi(z) by

d−1∧
c=1

(
depthc(z)→ ψc,qi(X1, . . . , Xk, z)

)
,

where depthc(z) is a first-order formula that tests whether the depth of the
passed node in T is exactly c. Since the depth of the children of n in the tree
is at most d − 1, by the induction hypothesis this formula correctly decides
whether the state at a child of n is qi. �



CHAPTER 3

Bounded Tree Depth and First-Order Logic

Nešetřil and Ossona de Mendez (2006) generalized the notion of a depth
bound for trees to graphs by defining the concept of bounded tree depth. In
the present chapter we show that on such graphs, and logical structures, the
expressive power of first-order logic and monadic second-order logic coincides.
We prove the following theorem, which implies Theorem 1.9 from the introduc-
tion as a special case for k = 0, and Lemma 2.21 from the previous section for
tree structures.

Theorem 3.1. For every d ∈ N, and every mso-formula ϕ(X1, . . . , Xk)
over some vocabulary τ , there is a first-order formula ψ(X1, . . . , Xk) over τ ,
such that for all τ -structure A of tree depth at most d with universe A and
all sets S1, . . . , Sk ⊆ A, we have A |= ϕ(S1, . . . , Sk) if, and only if, A |=
ψ(S1, . . . , Sk).

In Section 3.4 we see that the preceding theorem still holds when mso-logic
is replaced by the more general guarded second-order logic (gso-logic).

Tree depth is defined via a recursive process that deletes elements from
disconnected parts of a structures in a parallel fashion. The minimum number
of recursions that are needed in this process is the tree depth of a structure.
Our first step towards proving Theorem 3.1 is to rigorously prove that this
process can be implemented by first-order formulæ. In detail, we show that,
for any d ∈ N, the class of structures of tree depth at most d is definable us-
ing a first-order formula. For the proof of Theorem 3.1, we then extend this
formula, such that it evaluates a fixed mso-formula at the same time along the
element deletion process. To achieve this, we combine the information of which
mso-formulæ hold in an unbounded number of substructure that arise during
the recursive deletion process. Formally this is done by utilizing a newly devel-
oped Feferman–Vaught-type composition theorem that shows how to evaluate,
using first-order formulæ, mso-formulæ on structures that are partitioned into
an unbounded number of substructure for which it is known which mso-formulæ
hold and which do not hold. The proof of the composition theorem, in turn, is
based on Lemma 2.21 from the previous chapter.

A variant of Theorem 3.1 for graph structures was developed as part of a
work of Elberfeld, Grohe, and Tantau (2012a) that presents graph-invariant-
based characterizations of when first-order logic has the same expressive power
as second-order logics like mso and gso, which are normally more expressive.
In this paper it is shown that the property of having bounded tree depth is a
necessary and sufficient condition for mso-logic and first-order logic to have the
same expressive power when considering classes of structures that are closed
under taking substructures, and the same holds when mso-logic is replaced
by gso-logic and closure under substructures by closure under induced sub-
structures. A difference between Theorem 3.1 in the present dissertation and

27



28 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

the same theorem in the paper lies under the hood, in the proof techniques:
While the paper uses model-theoretic properties that are based on playing
Ehrenfeucht–Fräıssé games in a non-constructive way to move from mso- to
first-order formulæ, the proof in my thesis is based on the effective construc-
tion of multiset tree automata for mso-formulæ and their simulation using
first-order formulæ in case of depth-bounded trees.

The present chapter is organized as follows: Section 3.1 contains the com-
position theorem. In Section 3.2, tree depth is formally defined and its first-
order definability for any constant bound d ∈ N is shown. In Section 3.3 we
combine the composition theorem with tree-depth-defining formulæ to prove
Theorem 3.1. Section 3.4 shows the generalization to gso-logic.

3.1. A Feferman–Vaught-type Theorem for Unbounded Partitions

The question answered by Feferman–Vaught-type composition theorems is
the following: Suppose a logical structure A is the disjoint union of two struc-
tures A1 and A2 and suppose we wish to find out whether A |= ϕ holds; can we
decide this solely based on knowing which formulæ hold in A1 and A2? Fefer-
man and Vaught (1959) presented such a theorem for first-order formulæ. Intu-
itively, this should also be the case at least for logics like mso where a formula
cannot establish connections between the two disjoint parts of A and, indeed,
a basic extension for mso-logic states exactly this: For every mso-formula ϕ
we can decide A |= ϕ solely based on knowing for which formulæ ϕ′ of at
most the same quantifier rank we have A1 |= ϕ′ and for which we have the
property A2 |= ϕ′. An elegant proof of this is based on determining the set
of mso-formulæ that hold in a structure, which is called the type of the struc-
ture, by playing an appropriate kind of Ehrenfeucht–Fräıssé game on it; since
strategies for the individual structures A1 and A2 can be combined into a strat-
egy for the whole structure A, we get the claim as discussed, for example, by
Makowsky (2004). One can think of extending the basic composition theorem
for mso-logic in three ways:

(1) First, one can consider structures that are not partitioned into two
completely disjoint parts, but where the parts are related in some way like
having a constant-size overlap or being the shores of a complete bipartite graph
that is a substructure of the whole structure (Courcelle and Engelfried, 2012).

(2) Second, one can make explicit how to construct the type of A when the
types of A1 and A2 are given as input. Constructive type composition theorems
for mso, like the one proved by Courcelle and Engelfried (2012), state that for
each mso-formula ϕ one can construct a propositional formula fϕ that has two
propositional variables p1ϕ′ and p2ϕ′ for a finite number of mso-formulæ ϕ′. When

we set these propositional variables to true or false, depending on whether ϕ′

hold in A1 and A2, the formula fϕ will evaluate to true if, and only if, A |= ϕ.
One can extend this idea to any fixed number of structures A1, . . . , Ak by
introducing new propositional variables p3ϕ′ to pkϕ′ as done by Makowsky (2004).

(3) Third, instead of considering only partitions into a fixed number of
structures, one can consider partitions into an unbounded number of structures.
The non-constructive theorem based on Ehrenfeucht–Fräıssé games still works
in this setting, but the constructive version for a bounded number of parts
in the partition that is based on propositional formulæ cannot be generalized



3.1. A FEFERMAN–VAUGHT-TYPE THEOREM FOR UNBOUNDED PARTITIONS 29

since a single propositional formula has only access to a constant number of
propositional variables.

In the present section, we develop a type composition theorem that is both
constructive and works for an unbounded number of parts with a constant-
size overlap. The idea is to use first-order formulæ rather than propositional
formulæ in order to define whether a formula holds in a structure A that is
the union of an arbitrary number of substructures Ai for i ∈ I. Instead of
having to introduce new propositional variables as the number of substructures
increases, we simply enlarge the universe: We consider a structure I whose
universe is the index set I, and, instead of using propositional variables piϕ′ in-

side a propositional formula, we use atomic formulæ Rϕ′(i) inside a first-order
formula Rϕ is a monadic relation symbol that tells us whether ϕ′ holds in the
structure Ai. The result is a first-order formula that takes a structure as in-
put that encodes which mso-formulæ hold in the substructures Ai and outputs
whether A |= ϕ holds. The composition theorem encompasses both the clas-
sical non-constructive theorem for unbounded index sets (the theorem shows
that the mapping is first-order definable instead of non-constructively claiming
that there is some unique mapping) and the constructive version for a fixed
number of substructures (in case of fixed-size structures, one can transform the
first-order formulæ into an equivalent propositional formula) as special cases.
To state the theorem, we first review the notion of logical types and define type
indicators that encode the types of substructures.

Types and Type Indicators. We say that two mso-formulæ ϕ and ψ over
the same vocabulary τ are equivalent, written ϕ ≡ ψ, if for every τ -structure A
and every variable assignment α we have (A, α) |= ϕ if, and only if, (A, α) |=
ψ. The (quantifier) rank qr(ϕ) of an mso-formula ϕ is the nesting depth of
quantifiers in the formula. For a set Φ of formulæ, let us write Φ/≡ for the set
of all equivalence classes [ϕ]≡ of formulæ from Φ with respect to the equivalence
relation ≡. Formulæ that have the free set variables X1 to Xk and rank q
are called k-variable rank-q formulæ. Variable assignments α with domain
{X1, . . . , Xk} are called k-variable assignments.

Fact 3.2. Let τ be a vocabulary and k, q ∈ N0. Let Φ be the set of all
k-variable rank-q mso-formulæ. Then Φ/≡ contains finitely many equivalence
classes.

The fact can be proved by defining normal forms for mso-formulæ as de-
scribed, for example, by Libkin (2004). In such a proof, formulæ in normal form
are used to build a representative system for the k-variable rank-q mso-formulæ
over some vocabulary τ , which is a finite set of formulæ that contains exactly
one formula out of each class of equivalent formulæ. Let msok,q[τ ] denote such
a finite representative system for the k-variable rank-q mso-formulæ.

Definition 3.3 (Type). Let τ be a vocabulary and k, q ∈ N0. Let A be a
τ -structure and α a k-variable assignment. The rank-q type of (A, α) is the set

tpq(A, α) := {ϕ ∈ msok,q[τ ] | (A, α) |= ϕ} .

The set of all rank-q types for τ -structures and k-variable assignments, denoted
by Θk,q[τ ], contains exactly the formula sets θ ⊆ msok,q[τ ] with θ = tpq(A, α)
for some τ -structure A and k-variable assignment α.



30 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

Since msok,q[τ ] contains only finitely many (representative) formulæ, types
are finite sets and, hence, Θk,q[τ ] is finite. As a consequence, sets of struc-
tures and variable assignments having a certain type can be defined using
mso-formulæ:

Lemma 3.4. Let τ be a vocabulary and k, q ∈ N0. For every type θ ∈ Θk,q[τ ]
there is a formula βθ ∈ msok,q[τ ], such that for every τ -structure A and every
k-variable assignment α, we have

(A, α) |= βθ if, and only if, tpq(A, α) = θ .

Proof. Let βθ ∈ msok,q[τ ] be equivalent to the k-variable rank-q mso-for-
mula ∧

ϕ∈θ
ϕ ∧

∧
ϕ∈msok,q [τ ]\θ

¬ϕ .

The formula βθ holds for (A, α) exactly if the formulæ from θ hold for (A, α)
and the representative formulæ not in θ do not hold for (A, α). By definition,
this is exactly the case when θ = tpk,q(A, α). �

To formulate the composition theorem, we define rooted partitions of struc-
tures and a structure that encodes information about the types of the parts of
a rooted partition.

Definition 3.5 (Rooted Structure). Let w ≥ N0 and τ be a vocabulary.
A width-w rooted τ -structure is a structure A over τ ∪ {B1

1 , . . . , B
1
w} (where

the B` are fresh monadic relation symbols not present in τ), such that for each
` ∈ {1, . . . , w} the set BA

` is a singleton; B(A) =
⋃w
`=1B

A
` is the bag of A.

Definition 3.6 (Rooted Partition). Let A be a rooted structure for some
width w ∈ N0 and vocabulary τ . A rooted partition of A is a family F = (Ai)i∈I
of width-w rooted τ -structures, such that the following holds:

(1) The union of all Ai is exactly A.
(2) Each Ai is a substructure of A induced by some set Ai ⊆ A.
(3) For all distinct i, j ∈ I, we have Ai ∩Aj = B(A).

Note that in a width-0 rooted partition (Ai)i∈I , the structure A is the
disjoint union of the Ai. Let α be a variable assignment for a rooted structure A
with rooted partition (Ai)i∈I . Then αi(X) := α(X)∩Ai denotes the restriction
of α to the universe Ai of Ai. Let τk,q,w be the vocabulary that contains a
monadic relation symbol R1

θ for each θ ∈ Θk,q[τ ∪ {B1
1 , . . . , B

1
w}].

Definition 3.7 (Type Indicators). Let τ be a vocabulary and k, q, w ∈ N0.
Let F = (Ai)i∈I be a rooted partition of some width-w rooted τ -structure A
and α be a k-variable assignment for A. The rank-q type indicator of F and α
is the τk,q,w-structure I = Iq(F, α) with universe I and relation

RI
θ := {i ∈ I | θ = tpq(Ai, αi)}

for every monadic relation symbol Rθ ∈ τk,q,w.

From knowing the types of the parts of a rooted partition that are encoded
in a type indicator, we can determine which formulæ hold in them.



3.1. A FEFERMAN–VAUGHT-TYPE THEOREM FOR UNBOUNDED PARTITIONS 31

Lemma 3.8. Let τ be a vocabulary and k, q, w ∈ N0. For every k-variable
rank-q mso-formula ϕ over τ ∪{B1

1 , . . . , B
1
w}, there exists a first-order formula

γϕ(x) over τk,q,w, such that for every rooted partition F = (Ai)i∈I of some
width-w rooted τ -structure A, k-variable assignment α for A, and i ∈ I, we
have

(Ai, αi) |= ϕ if, and only if, Iq(F, α) |= γϕ(i) .

Proof. Let ϕ′ ∈ msok,q[τ ∪ {B1
1 , . . . , B

1
w}] with ϕ′ ≡ ϕ. We set

γϕ(x) :=
∨

θ∈Θk,q [τ∪{B1
1 ,...,B

1
w}]

s.t. ϕ′∈θ

Rθ(x) .

�

Formulation and Proof of the Composition Theorem. The compo-
sition theorem states that one can define the type of a structure based on
knowing the types of the parts of a rooted partition for it. First, we prove that
defining types can be done using mso-formulæ in Theorem 3.9, then we show
that the used mso-formulæ can be replaced by equivalent first-order formulæ
in Theorem 3.10.

Theorem 3.9 (Composing Types by Monadic Second-Order Formulæ). For
every type θ ∈ Θk,q[τ ∪ {B1

1 , . . . , B
1
w}] for some k, q, w ∈ N0 and vocabulary τ ,

there is an mso-formula ρθ without free variables over τk,q,w, such that for
every rooted partition F = (Ai)i∈I of a width-w rooted τ -structure A, and
every k-variable assignment α for A, we have

tpq(A, α) = θ if, and only if, Iq(F, α) |= ρθ.

Proof. By Lemma 3.4, we can test whether θ ∈ Θk,q[τ ∪ {B1
1 , . . . , B

1
w}] is

the type of (A, α) using an mso-formula βθ ∈ msok,q[τ ∪ {B1
1 , . . . , B

1
w}]. Thus,

to prove the lemma, it is enough to show the following claim.

Claim. For every formula ϕ ∈ msok,q[τ ∪{B1
1 , . . . , B

1
w}] for some k, q, w ∈

N0 and vocabulary τ , there is an mso-formula ρϕ without free variables over
τk,q,w, such that for every rooted partition F = (Ai)i∈I of a width-w rooted
τ -structure A, and every k-variable assignment α for A, we have

(A, α) |= ϕ if, and only if, Iq(F, α) |= ρϕ .

For the proof of the claim, we consider mso-formulæ without element vari-
ables from Definition 2.17.

Let w ∈ N0 be any width bound that is fixed throughout the proof. We
prove the claim by induction on the structure of ϕ for all k ∈ N0

We start with atomic formulæ. For ϕ = empty(X) we set ρϕ := ∀x (γϕ(x)),
where γϕ(x) is the formula for ϕ from Lemma 3.8. We have (A, α) |= empty(X)
if, and only if, for all i ∈ I we have (Ai, αi) |= empty(X), which is exactly what
Iq(F, α) |= ∀x (γempty(X)(x)) means.

For ϕ = elem(X1, . . . , Xr, R) with R
r ∈ τ , we set

ρϕ := ∃i
(
γϕ(i) ∧ ∀j

(
j 6= i→

r∧
m=1

γempty(Xm)(j) ∨ γ∨w
`=1 elem(Xm,B`)(j)

))
.



32 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

For the correctness proof first assume that (A, α) |= ϕ holds. Then we know
|α(Xm)| = 1 for each m ∈ {1, . . . , r} and α(X1)×· · ·×α(Xr) ⊆ RA. Since A is
the union of the Ai, we have α(X1)×· · ·×α(Xr) ⊆ RAi for some Ai. Moreover,

each singleton α(Xm) is either part of the bag B(A), and we have α(Xm) ⊆ B
Aj

`
for some ` ∈ {1, . . . , w} and all Aj , or it is not part of the bag, and α(Xm) 6⊆ Aj
holds for all j 6= i. For the other direction assume Iq(F, α) |= ρϕ. The formula
witnesses that there exists some i with (Ai, αi) |= elem(X1, . . . , Xm, R) and
for all other Aj and sets α(Xm), we have Aj ∩ α(Xm) ⊆ B(A). From the
definition of rooted partitions, we know B(A) ⊆ Ai, which implies α(Xm) ⊆ Ai
for each m ∈ {1, . . . , r}. Thus, (A, α) |= elem(X1, . . . , Xm, R) follows from
(Ai, αi) |= elem(X1, . . . , Xm, R).

For ϕ = elem(X1, Z), where Z is a set variable, the formula and correctness
arguments are the same, except that we work with a set α(Z) that is assigned
to Z instead of a relation RA from the structure.

For the inductive step, we start with ϕ = ¬ϕ′. Here we can set ρϕ := ¬ρϕ′ .
Clearly, this has the required properties. Similarly, for ϕ = ϕ1 ∧ ϕ2, setting
ρϕ := ρϕ1 ∧ ρϕ2 also has the desired properties. The proof is more involved
for ϕ = ∃Xk+1(ϕ

′). Let ρϕ′ be the formula over τk+1,q−1,w from the induction
hypothesis and let Θk+1,q−1[τ ∪ {B1

1 , . . . , B
1
w}] = {θ1, . . . , θn}.

For each W ⊆ {1, . . . , w} and type θj , we consider the following k-variable
rank-q mso-formula over τ ∪ {B1

1 , . . . , B
1
w}:

ψW,θj := ∃Xk+1 βθj ∧
∧
`∈W

elem(B`, Xk+1)
∧

`∈{1,...,w}\W

¬elem(B`, Xk+1) ,

where βθj is the (k + 1)-variable rank-(q − 1) formula over τ from Lemma 3.4,

which defines the set of pairs of τ ∪{B1
1 , . . . , B

1
w}-structures and (k+1)-variable

assignments of type θj .
We show that the following formula over τk,q,w has the claimed properties:

ρϕ := ∃Xθ1 . . . ∃Xθn

(
partition(Xθ1 , . . . , Xθn) ∧ ρ′ϕ′ (1)∨
W⊆{1,...,w}

∀x
( n∧
j=1

Xθj (x)→ γψW,θj
(x)

))
, (2)

where the formula partition tests whether the passed sets partition I, and ρ′ϕ′

results from ρϕ′ by substituting every relation symbol Rθj with Xθj .
We prove the correctness of this construction in two directions: First, as-

sume (A, α) |= ϕ, which means that there exists a set S ⊆ A with (A, α[Xk+1 7→
S]) |= ϕ′. The rooted partition F of A and the assignment α[Xk+1 7→ S] give
rise to an indicator structure Iq−1 = Iq−1(F, α[Xk+1 7→ S]) over τk+1,q−1,w. By
the induction hypothesis, we know Iq−1 |= ρϕ′ . To show Iq = Iq(F, α) |= ρϕ,
we describe an assignment of sets to the variables Xθj and show that it sat-
isfies the three parts of the formula. For the assignment, we put an index

i ∈ I into the set for Xθj if it lies in R
Iq−1

θj
. Since the relations of Iq−1 par-

tition I, this also holds for the sets assigned to the variables Xθj . Moreover,

since the sets for the variables Xθj are exactly the monadic relations R
Iq−1

θj
,

we know that ρ′ϕ′ is satisfied. Thus, line (1) of ρϕ is satisfied. To show that



3.1. A FEFERMAN–VAUGHT-TYPE THEOREM FOR UNBOUNDED PARTITIONS 33

line (2) is satisfied, we consider W := {` ∈ {1, . . . , w} | BA
` ⊆ S} and the

part of the disjunction for this set. Let i ∈ I be any index and let Xθj be a
variable whose set contains i. Let Si = S ∩ Ai. By the construction of the
set for Xθj we know tpq−1(Ai, αi[Xk+1 7→ Si]) = θj , which can be written as
(Ai, αi[Xk+1 7→ Si]) |= βθj using Lemma 3.4. Since F is a rooted partition, we

have W = {` ∈ {1, . . . , w} | BA
` ⊆ Si} and, therefore,

(Ai, αi[Xk+1 7→ Si]) |=
∧
`∈W

elem(B`, Xk+1)
∧

`∈{1,...,w}\W

¬elem(B`, Xk+1)

Putting both arguments together, we know (Ai, αi) |= ψW,θj and, hence, Iq |=
γψW,θj

(i).

For the other direction assume Iq = Iq(F, α) |= ρϕ. Consider any assign-
ment of sets to the variables Xθj that satisfy the inner part of the formula ρϕ.
Let W ⊆ {1, . . . , w} be a set of indices for which the disjunction in line (2)
holds. From line (1) we know that for each i ∈ I there is exactly one Xθj

whose set contains i, which implies that γψW,θj
(i) is true. We can equivalently

write the last statement as (Ai, αi) |= ψW,θj . This means there exists a set
Si ⊆ Ai that has the following two properties: tpq(Ai, αi[Xk+1 |= Si]) |= θj
and W = {` ∈ {1, . . . , w} | BA

` ⊆ Si}. We combine the sets Si, which
agree on the bag B(A), to a set S :=

⋃
i∈I Si. Since ρ′ϕ′ is satisfied, we have

Iq−1 = Iq−1(F, α[Xk+1) 7→ S] |= ρϕ′ . Applying the induction hypothesis, we
know (A, α[Xk+1 7→ S]) |= ϕ′ and, thus, (A, α) |= ∃Xk+1 ϕ

′. �

The next theorem states that we can turn the mso-formulæ from the pre-
vious theorem into first-order formulæ.

Theorem 3.10 (Composing Types by First-Order Formulæ). For every
type θ ∈ Θk,q[τ ∪ {B1

1 , . . . , B
1
w}] for some k, q, w ∈ N0 and vocabulary τ , there

is a first-order formula ρθ without free variables over τk,q,w, such that for every
rooted partition F = (Ai)i∈I of a width-w rooted τ -structure A, and every
k-variable assignment α for A, we have

tpq(A, α) = θ if, and only if, Iq(F, α) |= ρθ.

Proof. Let ρ
(1)
θ be the mso-formula over τk,q,w from Theorem 3.9. We

turn ρ
(1)
θ into an equivalent first-order formula by using the transformation

from mso-formulæ to equivalent first-order formulæ in case of bounded-depth
s-trees from Lemma 2.21. In order to apply the lemma, let T be the structure
over the vocabulary {E2} ∪ τk,q,w that arises from I = Iq(F, α) by adding a

new root element r to the universe and the relation ET that contains a pair

(r, i) for each i ∈ I. Moreover, adjust ρ
(1)
θ to a formula ρ

(2)
θ , such that I |= ρ

(1)
θ

if, and only if, T |= ρ
(2)
θ ; the new formula just ignores the existence of the root

element r, which can be singled out during quantifications since it is the only
element in T without ingoing edges. Since T is a depth-2 s-tree structure for
some s that only depends on w, k, q, and τ , we are able to apply Lemma 2.21 to

turn ρ
(2)
θ into an equivalent first-order formula ρ

(3)
θ ; that means T |= ρ

(2)
θ if, and

only if, T |= ρ
(3)
θ . The last step is to turn ρ

(3)
θ back into a first-order formula

ρθ over τk,q,w, such that T |= ρ
(3)
θ if, and only if, I |= ρθ. Since the root r of T

does not encode any information in the sense that it is connected to all other



34 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

elements and is not part of any of the monadic relations, we can get rid of the

relation symbol E in ρ
(3)
ϕ and the element r in T : Imagine we decide, for each

element variable of ρ
(3)
ϕ , whether we choose r for it, or not. Then we can adjust

ρ
(3)
ϕ to a formula that has the desired property with respect to this choice by

replacing atomic formulæ E(x, y) with formulæ that are always true or always
false, and leaving each Rθ′(x) either unchanged (if we decided to use elements
from I for x) or replace it by a formula that is always false (if we decided to
use r for x). A large disjunction over all choices proves the lemma. �

3.2. Getting Familiar with Tree Depth

In the present section, we define the notion of tree depth and learn enough
about it to prove its first-order definability used in Section 3.3 to show Theo-
rem 3.1.

Definition of Tree Depth. As discussed in the previous chapter, a graph
can be represented by a relational structure G = (V,EG) over the vocabulary
τgraph = {E2}. A (simple) path from a vertex s ∈ V (G) to a vertex t ∈ V (G)
in a graph G is a sequence of distinct vertices v1, . . . , v` with s = v1, t = v`,
and (vi, vi+1) ∈ E(G) for all i ∈ {1, . . . ,m − 1}; this path’s length is m − 1.
An undirected graph is a graph with a symmetric edge relation. An undirected
graph is connected if there exists a path between any two of its vertices. The
(connected) components of an undirected graph G are its maximal connected
induced subgraphs.

The tree depth of undirected graphs was defined by Nešetřil and Ossona de
Mendez (2006). We consider a generalized definition for relational structures
based on their Gaifman graphs. The Gaifman graph of a structure is the follow-
ing undirected graph that describes how the structure’s elements are connected
by relations.

Definition 3.11 (Gaifman Graph). Let A be a structure with universe A.
The Gaifman graph of A, denoted by G(A), is the undirected graph (structure)
whose vertex set is A and there is an edge (a, a′) ∈ E(G(A)) for a, a′ ∈ A if a
relation RA contains a tuple (a1, . . . , aar(R)) ∈ RA with a, a′ ∈ {a1, . . . , aar(R)}.

Let A be a relational structure and (Gi)i∈I (for some finite set of indices I)
be the components of its Gaifman graph G(A). The components of A are the
induced substructures Ai := A[V (Gi)] for i ∈ I; A is connected if |I| = 1.

Definition 3.12 (Tree Depth). Let A be a relational structure with uni-
verse A and (Ai)i∈I be the components of A.

The tree depth of A is

td(A) :=


1 if |A| = 1,

1 + minr∈A td(A[A \ {r}]) if |A| > 1 and |I| = 1,

maxi∈I td(Ai) otherwise.

A class of structures C over some vocabulary τ has bounded tree depth (is
tree-depth-bounded) if there exists a constant d ∈ N, such that td(A) ≤ d for
every A ∈ C.

The following fact follows immediately from the definition of tree depth and
the definition of the components of a structure based on its Gaifman graph.



3.2. GETTING FAMILIAR WITH TREE DEPTH 35

Fact 3.13. For every structure A, we have td(A) = td(G(A)).
In light of the preceding fact, to get an intuition for the notion of tree depth,

we have a look at some undirected graphs.

Example 3.14. The notion of the tree depth of a graph can be seen as
measuring the distance of a graph to being an independent set, a graph without
any edges. Independent sets have tree depth 1, td( ) = 1, while all stars have
tree depth 2, td( ) = 2, which follows from Definition 3.12 by deleting the
center vertex that is connected to all other vertices of the graph, and producing
an independent set. A slightly more complicated example is td( ) = 3,
where the upper bound on the tree depth can be seen by deleting the vertex
in the middle, which produces a graph whose components are stars. For any
graph class C of bounded tree depth, Definition 3.12 states that graphs from C
can be split into graphs of ever smaller tree depth by and deleting vertices from
connected components using a constant number of parallel steps. This is not
possible for graph classes whose tree depth is not bounded. Such graph classes
of unbounded tree depth include the class of all cliques, the tree depth of a clique
is the number of its vertices (thus, td( ) = 5), and the class of all paths, the
tree depth of an n-vertex path is blog2(n)c+ 1 (thus, td( ) = 3).

Alternative characterizations of when a class C of undirected graphs has
bounded tree depth include: (a) There is a constant that bounds the length of
the paths from the graphs of C. (b) The graphs of C have only bounded-depth
depth-first search trees. In contrast, graphs with bounded-depth breath-first
search trees are exactly the graphs with bounded diameter; like cliques, which
have diameter 1, such graphs may have an unbounded tree depth. (c) A third
alternative definition in terms of tree decompositions of bounded width whose
underlying trees have bounded depth will be discussed and used in Section 4.2.

For defining tree depth using first-order formulæ, we use one direction of
alternative definition (a). The maximum length of a path in a graph G is called
its longest path length and denoted by lpl(G).

Fact 3.15 (Nešetřil and Ossona de Mendez (2008)). For undirected graphs G
we have lpl(G) ≤ 2td(G) − 2.

First-Order Definability of Tree Depth. In this section we prove that,
for any vocabulary τ and d ∈ N, the class of τ -structures of tree depth at
most d is first-order definable. The formulæ we construct mimic the recursive
definition of tree depth. In order to work with the components that arise
during the element deletion process, we define descriptors: Let A be a structure
and w ∈ N0 a width bound. A width-w descriptor D in A consists of w bag
elements b1, . . . , bw ∈ A and a (component) selector s ∈ A. It selects the
component CD with universe CD of A[A \ {b1, . . . , bw}] that contains s and
describes AD := A[CD ∪ {b1, . . . , bw}] with universe AD := CD ∪ {b1, . . . , bw}.
If, in addition, a variable assignment α for A is given, we define the restriction
of α to AD by αD(X) := α(X) ∩AD for each set variable X of α’s domain.

Lemma 3.16 (Compare Components). Let ` ∈ N0 be a path length bound
and w ∈ N0 a width bound. For every vocabulary τ , there is a first-order
formula compare`(x1, . . . , xw, ys, yt) over τ , such that for all τ -structures A with
lpl(G(A)) ≤ `, width-w descriptors D = (b1, . . . , bw, s) in A and elements t ∈ A,
we have A |= compare`(b1, . . . , bw, s, t) if, and only if, t ∈ CD(b1, . . . , bw, s).



36 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

Proof. The formula tests whether there is a path from s to t in the Gaif-
man graph G(A) that does not go through the elements b1 to bw. Since the
length of simple paths in G(A) is bounded by the constant `, this reachability
test can be defined using first-order formulæ. The formula has access to G(A)
since, for any vocabulary τ , there is a first-order formula ϕE(x, x

′) over τ that
defines the Gaifman graph of τ -structures A. That means, for every pair of
elements (a, a′) ∈ A × A we have A |= ϕE(a, a

′) exactly if (a, a′) is an edge of
G(A). �

The previous lemma can also be seen as testing, for two descriptors D =
(b1, . . . , bw, s) and D

′ = (b1, . . . , bw, t) with the same bag elements, but possibly
different selectors, whether CD = CD′ and, thus, AD = AD′ holds.

Lemma 3.17 (Define Tree Depth for Selected Components). Let ` ∈ N0 be a
path length bound and τ be a vocabulary. For every tree depth bound d ∈ N and
width bound w ∈ N0, there is a first-order formula ϕd(x1, . . . , xw, ys) over τ ,
such that for all τ -structures A with lpl(G(A)) ≤ ` and width-w descriptors D =
(b1, . . . , bw, s) in A, we have A |= ϕd(b1, . . . , bw, s) if, and only if, td(CD) ≤ d.

Proof. Consider any vocabulary τ and path length bound ` ∈ N0 that
are fixed throughout the proof. We prove the lemma by induction over d
for all w. The formula for d = 1 is ϕd(x1, . . . , xw, ys) := ¬∃yt(ys 6= yt ∧
compare`(x1, . . . , xw, ys, yt)), which tests whether CD contains only the single
element s. For d > 1, we use ϕd(x1, . . . , xw, ys) :=

∃xw+1

(
compare`(x1, . . . , xw, ys, xw+1)∧

∀yt
(
compare`(x1, . . . , xw, ys, yt) ∧ xw+1 6= yt → ϕd−1(x1, . . . , xw+1, yt)

))
,

where compare`(x1, . . . , xw, ys, xw+1) and compare`(x1, . . . , xw, ys, yt) require
that the element bw+1 that is chosen for xw+1 and the element t that is chosen
for yt are from C(b1,...,bw,s). The first-order formula ϕd−1(x1, . . . , xw+1, yt) from
the induction hypothesis correctly decides whether C(b1,...,bw,bw+1,t) ≤ d−1 holds.
Correctness for the whole formula follows from the observation that it exactly
mimics the recursive definition of the tree depth of connected structures: A con-
nected structure, in our case the selected component C(b1,...,bw,s), has tree depth
at most d exactly if there exists an element, in our case bw+1, whose deletion
produces components, in our case the selected components C(b1,...,bw,bw+1,t), of
tree depth at most d− 1. �

Lemma 3.18 (First-Order Definability of Tree Depth). For every vocabu-
lary τ and every d ∈ N, there is a first-order formula ϕtd≤d over τ , such that
for every τ -structure A we have A |= ϕtd≤d if, and only if, td(A) ≤ d.

Proof. The formula first tests if all paths in G(A) have length at most
2d − 2. If this does not hold, then, by Fact 3.13 and Fact 3.15, the tree depth
of A exceeds d and we are done. Otherwise, consider the formula ϕd(xs) for the
width bound w = 0 and path length bound ` = 2d − 2 from Lemma 3.17. The
lemma is proved by the formula ϕtd≤d := ∀xs ϕd(xs), which tests whether all
components of A, the components that are selected by any width-0 descriptor
D = (s) in A, have tree depth at most d. �



3.3. EVALUATING MONADIC SECOND-ORDER FORMULÆ 37

3.3. Evaluating Monadic Second-Order Formulæ

If we could just translate tree-depth-bounded structures into equivalent
depth-bounded trees using first-order formulæ, we would be able to simulate
any mso-formula by a first-order formula using Lemma 2.21. Unfortunately,
this is not possible using first-order formulæ: Defining, for example, a unique
root element for a tree from a graph cannot be done with first-order formulæ
since there may be multiple nodes having the same properties with respect to
first-order formulæ. An example of such graphs are cliques: Every first-order
formula that is constructed with the intention to define a unique root element
is true either for all or none of the vertices in a clique. In the present sec-
tion, we work around this problem and, instead of constructing trees, evaluate
mso-formulæ on top of the element deletion process from the previous section
that defines tree depth.

We start with a technical lemma that shows how to test first-order prop-
erties for substructures that are described. Then, we use this lemma to prove
Theorem 3.1 for described structures and, finally, prove Theorem 3.1, itself.

Lemma 3.19 (From Structures to Described Structures). Let ` ∈ N0 be
a path length bound and w ∈ N0 a width bound. For every first-order for-
mula ϕ(X1, . . . , Xk) over some vocabulary τ , there is a first-order formula
ϕ`(x1, . . . , xw, ys, X1, . . . , Xk), such that for all τ -structures A with lpl(G(A)) ≤
`, width-w descriptors D = (b1, . . . , bw, s) in A, and variable assignments α with
domain {X1 . . . , Xk}, we have

(A, α[x1 7→ b1] . . . [xw 7→ bw][ys 7→ s]) |= ϕ` if, and only if, (AD, αD) |= ϕ .

Proof. The formula ϕ` needs to ensure that the evaluation of ϕ only de-
pends on the elements of AD. For this, we inductively replace every subformula
∃y ψ of ϕ by ∃y((y = x1∨ · · · ∨ y = xw ∨ compare`(x1, . . . , xw, ys, y))∧ψ) where
compare` is from Lemma 3.16. With this modification all valid interpretations
of y are elements of AD. �

Lemma 3.20 (Define Type of Described Structures). Let ` ∈ N0 be a path
length bound. For every tree depth bound d ∈ N, width bound w ∈ N0, and type
θ ∈ Θk,q[τ ] for some k, q ∈ N0 and vocabulary τ , there is a first-order formula
ϕd,θ(x1, . . . , xw, ys, X1, . . . , Xk) over τ , such that for every τ -structure A with
lpl(G(A)) ≤ `, variable assignment α with domain {X1, . . . , Xk} for A, and
every width-w descriptor D = (b1, . . . , bw, s) in A with td(CD) ≤ d, we have

tpq(AD, αD) = θ if, and only if, (A, α[x1 7→ b1] . . . [xw 7→ bw][ys 7→ s]) |= ϕd,θ .

Proof. Let ` ∈ N0. The proof is by induction over the tree depth bound d
for all width bounds w and types θ.

For the induction start consider d = 1. Let w ∈ N0, and θ ∈ Θk,q[τ ]. By
Lemma 3.4, we can define the set of structures and variable assignments of
type θ using an mso-formula. Since CD contains exactly one element in this
case, which is s, the universes of the considered structuresAD have at most w+1
elements, which is a constant. When considering only structures of constant
size, mso-formulæ can be transformed into equivalent first-order formulæ via
replacing set quantifier by equivalent sequences of element quantifiers. Using
Lemma 3.19, we know that ϕ1,θ exists.



38 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

For the induction step, let d > 1. The formula we construct computes the
type of (AD, αD) based on recursively computing types for substructures and
combining them with the composition theorem. We take the formula ρθ from
Theorem 3.10 and adjust it to work on A instead of a type indicator. For
w ∈ N0 and θ ∈ Θk,q[τ ], we set ϕd,θ(x1, . . . , xw, ys, X1, . . . , Xk) :=

∃xw+1

(
compare`(x1, . . . , xw, ys, xw+1)∧

∀yt
(
compare`(x1, . . . , xw, ys, yt) ∧ xw+1 6= yt → ϕd−1(x1, . . . , xw+1, yt)

)
∧

ηd,θ(x1, . . . , xw+1, ys, X1, . . . , Xk)
)
.

The first part of the formula tests whether there is an element bw+1 ∈ CD whose
removal makes CD having tree depth at most d − 1. Since CD is a connected
structure of tree depth at most d, we know that such an element exists.

To describe the construction of the formula ηd,θ and prove its correctness,
we use the following notations: For any bw+1 that is chosen for xw+1, we let B
be the rooted structure that arises from AD by adding the monadic relations
BB

1 = {b1} to BB
w+1 = {bw+1} to it. Let F be the rooted partition of B

whose parts are exactly the structures that can be described by some descriptor
D′ = (b1, . . . , bw+1, t) with t ∈ CD. Together with an assignment α, let I be
the corresponding indicator structure.

The formula ηd,θ(x1, . . . , xw+1, ys, X1, . . . , Xk) arises by rewriting the for-
mula ρθ over τk,q,w+1 from Theorem 3.10 into a formula over τ . For this, we
start to replace the atomic formulæ of ρθ by atomic formulæ over τ : We re-
place every occurrence of x = y by the formula compare`(x1, . . . , xw+1, x, y)
from Lemma 3.16. The original formula x = y is true if the indices from
I that are assigned to x and y are the same and, hence, Ax = Ay. The
replaced formula tests the same property based on elements from the parts
of F . It is true for two elements ti and tj from C(b1,...,bw,s) that are not
bw+1 if we have A(b1,...,bw,bw+1,ti) = A(b1,...,bw,bw+1,tj). Next, we replace ev-

ery atomic formula Rθ′(x) by the formula ϕd−1,θ′(x1, . . . , xw+1, x,X1, . . . , Xk)
from the induction hypothesis; instead of accessing the type of some part
of F via an index and the type indicator I, this formula defines the type
on the structure itself. Finally, recursively replace every subformula ∃y ϕ by
∃y(compare`(x1, . . . , xw, ys, y)∧xw+1 6= y∧ϕ); with this adjustment we transfer
quantifications over indices of the type indicator I that address components of
F to quantifications of elements from CD that the formula uses to select com-
ponents. Correctness follows from the induction hypothesis, that the types of
the parts of F are defined correctly, and Theorem 3.10, that the types of the
parts are combined correctly. �

Lemma 3.21. For every tree depth bound d ∈ N, and type θ ∈ Θk,q[τ ], there
is a first-order formula ϕd,θ(X1, . . . , Xk) over τ , such that for every τ -structure
A and variable assignment α with domain {X1, . . . , Xk} for it we have

tpq(A, α) = θ if, and only if, (A, α) |= ϕd,θ.

Proof. The formula ϕd,θ(X1, . . . , Xk) is constructed like the formula from
the previous lemma, except that we do not use a variable xw+1 that binds an
element bw+1 whose removal decreases the tree depth. Instead, we take the
formula ρθ for w = 0 from the composition theorem and rewrite it, such that it
defines the types of the components of A using formulæ ϕd,θ′(ys, X1, . . . , Xk),



3.4. APPLICATION TO EVALUATING GUARDED SECOND-ORDER FORMULÆ 39

which work on the structure A, instead of using predicates Rθ′(x), which work
on an indicator structure I. �

Proof of Theorem 3.1. We set ψ(X1, . . . , Xk) :=∨
θ∈Θk,q [τ ] s.t. ϕ∈θ

ϕd,θ(X1, . . . , Xk)

where the formulæ ϕd,θ(X1, . . . , Xk) are from the previous lemma. �

3.4. Application to Evaluating Guarded Second-Order Formulæ

In this section we extend Theorem 3.1 from mso-logic to guarded second-
order logic (gso-logic). We first review the definition of gso-logic and, then,
discuss how results from the literature can be used to generalize Theorem 3.1.

Getting Familiar with Guarded Second-Order Logic. Like monadic
second-order logic, guarded second-order logic can be defined by considering
second-order formulæ of a restricted syntax. Guarded second-order formulæ
(gso-formulæ) are all second-order formulæ where free and bound second-
order variables of arity higher than 1 are guarded. For any vocabulary τ and
second-order variable X with ar(X) ≥ 2, we define

guard(X) := ∀x1, . . . , xar(X)

(
X(x1, . . . , xar(X))→

∨
R∈τ
∃y1, . . . , yar(R)

(
R(y1, . . . , yar(R)) ∧

ar(X)∧
i=1

ar(R)∨
j=1

xi = yj

))
.

Each quantification of a second-order variable X with ar(X) ≥ 2 in a guarded
second-order formulæ must be of the form ∃X(guard(X) ∧ ϕ), and formulæ
with free second-order variables X1 to Xk of arity at least 2 must be of the
form

∧
i∈{1,...,k} guard(Xi) ∧ ϕ. The formula guard(X) restricts the interpre-

tation of the variable X in the following way: Whenever a tuple of elements
(a1, . . . , aar(X)) is part of the relation that is assigned to X, then the elements
a1 to aar(X) are present in a single tuple that is part of a relation of the in-
put structure; such interpretations of X are called guarded relations. Equiv-
alently, gso-logic can be defined by taking all formulæ of second-order logic
without restricting the syntax, but defining the semantics via guarded variable
assignments that assign only guarded relations to free and bound second-order
variables (Grädel et al., 2002).

gso-logic restricted to graph structures over τgraph = {E2} is sometimes
denoted by mso2-logic, and mso-logic for graph structures by mso1-logic, to
indicate that gso-formulæ are able to quantify over 2-ary subsets of edges, while
mso-formulæ can quantify only over 1-ary subsets of the vertices. The following
examples show gso-formulæ that define matchings and paths in graphs.

Example 3.22 (Defining Matchings with gso-formulæ). We define match-
ings in undirected graphs G = (V,EG). LetM be a 2-ary second-order variable,
for which guarded relations are always subsets of the edges EG . To define that
M is a guarded set of undirected edges we use the formula undirected(M) :=
guard(M) ∧ ∀x∀y (M(x, y) ↔ M(y, x)). Then the formula ϕmatching(M) :=
undirected(M) ∧ ∀x∀y∀z (M(x, y) ∧M(x, z) → y = z) defines matchings; that
means sets of edges with pairwise disjoint end vertices. This formula can be



40 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

extended to define perfect matchings, sets of edges that partition the vertices,
using the formula ϕperfect-matching(M) := ϕmatching(M) ∧ ∀x∃yM(x, y). Finally
∃M ϕperfect-matching(M) is a gso-formula without free variables that defines the
undirected graphs with a perfect matching.

Example 3.23 (Defining Paths with gso-formulæ). We build gso-formulæ
that define paths in graphs. Let W be a set variable and F be a 2-ary second-
order variable. Let ϕpath(W,F ) :=

guard(F )∧

∀v
(
∃w (F (v, w) ∨ F (w, v))↔W (v)

)
∧ (1)

∃s ∃t
(
W (s) ∧W (t) ∧ ¬∃wF (w, s) ∧ ¬∃wF (t, w)∧

∀v
(
W (v)→ (v 6= s→ ∃!wF (w, v)) ∧ (v 6= t→ ∃!wF (v, w))

)
∧ (2)

∀C
(
C(s) ∧ ∀x∀y (C(x) ∧ F (x, y)→ C(y))→ subset(W,C)

))
, (3)

where the formula subset(W,C) tests whether W is a subset of C. The formula
ϕpath(W,F ) defines all paths inside graphs that are not cycles. That means,

for a given graph G = (V,EG) and assignment α, we have (G, α) |= ϕpath(W,F )
exactly if there is a path with vertex set α(W ) and edge set α(F ) in G. This is
due to the following reasons: Part (1) of the formula states that α(W ) is exactly
the set of vertices that are present in the tuples of α(F ). Thus, (α(W ), α(F ))
is a subgraph of G. Part (2) states that (α(W ), α(F )) contains a vertex s with
in-degree 0 and out-degree 1 and a vertex t with in-degree 1 and out-degree 0,
and all other vertices have in-degree 1 and out-degree 1. Thus, using the parts
(1) and (2) in conjunction, we know that (α(W ), α(F )) is the disjoint union
of a single path that starts in s and ends in t, and cycles. Together with part
(3), we know that α(W ) equals the set of vertices that are reachable from s
using edges from α(F ). As a result, cycles are not possible anymore and, thus,
(α(W ), α(F )) is a path from s to t.

We can play around with ϕpath(W,F ) to define paths of various kind. For
example, we can define Hamiltonian paths using the formula

ϕham-path := ϕpath(W,F ) ∧ ∀wW (w) ,

which requires that all vertices are present in α(W ). By extending it to the
formula ∃W∃F ϕham-path(W,F ) without free variables, we can define the set of
graphs that contain Hamiltonian paths.

We can also use the basic path-defining formula to define paths between
given vertices. For this, we consider structures G = (V,EG , SG , T G) over the
vocabulary τs-t-graph = τgraph ∪ {S1, T 1} with |SG | = |T G | = 1. For such struc-
tures, we can build formulæ that make statements about paths that start in
the unique vertex s ∈ SG and end in the unique vertex t ∈ SG . The formula

ϕs-t-path(W,F ) := ϕpath(W,F )∧∀s
(
S(s)→W (s) ∧ ¬∃wF (w, s)

)
∧

∀t
(
T (t)→W (t) ∧ ¬∃wF (t, w)

)
defines exactly the paths from s ∈ SG to t ∈ SG .



3.4. APPLICATION TO EVALUATING GUARDED SECOND-ORDER FORMULÆ 41

From Guarded to Monadic Second-Order Logic. As shown in the
previous examples, gso-formulæ can define graphs with perfect matchings and
graphs with Hamiltonian paths. These properties are not definable by mso-for-
mulæ in general (see the book of Libkin (2006) for detailed arguments), but
become mso-definable when formulæ have access to incidence representations
of graphs. The following definition is adapted from Grädel et al. (2002) and
Blumensath et al. (2007): Let τ be a vocabulary. The incidence representation
of a τ -structure A is another structure Ainci that is defined as follows: The uni-
verse of Ainci contains all elements a ∈ A and an element t(a1,...,ar) for each tuple

(a1, . . . , ar) ∈ RA with Rr ∈ τ . The relations are as follows: It has two monadic
relations UAinci and TAinci to distinguish between the elements from the uni-
verse and the tuples from the relations. That means, UAinci := A and TAinci

contains all elements from the universe of Ainci that are not in A. Moreover, it
has binary relations RAinci

1 to RAinci
r for each Rr ∈ τ with (a, t(a1,...,ar)) ∈ R

Ainci
i

exactly if (a1, . . . , ar) ∈ RAinci and a = ai. Variable assignments α for A are
adjusted accordingly to assignments αinci for Ainci: αinci(X) is just α(X) if X is
a set variable and the set {t(a1,...,aar(X)) | (a1, . . . , aar(X)) ∈ α(X)} if ar(X) ≥ 2.

The difference between usual structures and their incidence representation is
best seen for graphs: While a graph structure G = (V,EG) encodes the ad-
jacency relation among vertices, Ginci encodes the incidence relation between
vertices and edges. mso-formulæ with access to the incidence representation of
graph structures are able to define matchings and paths.

Example 3.24 (Defining Matchings and Paths with mso-formulæ). The
gso-formulæ on graphs G = (V,EG) from the Examples 3.22 and 3.23 can be
turned into mso-formulæ on incidence representations Ginci that define the same
properties: For this, we replace every 2-ary second-order variable X by a 1-ary
second-order variable X ′ and replace each subformula guard(X) by the formula
subset(X ′, T ), which ensures that only edge-representing elements can be part
of the set for X ′. Moreover, each query Z(x, y) to a 2-ary second-order variable
or relation is replaced by ϕZ(x, y) := ∃t (Z(t)∧E1(x, t)∧E2(y, t)). Using these
replacements, every gso-formula ϕ over graph structures is transformed into
an equivalent mso-formula ϕ′ over incidence representations of graphs. For
example, for every graph G and assignment α, we have (G, α) |= ϕmatching if,
and only if, (Ginci, αinci) |= ϕ′

matching. In the same way, we can define all other
properties from the Examples 3.22 and 3.23 by mso-formula that access the
incidence representations of graphs.

The phenomenon discussed in the previous example can be generalized to
structures and gso-formulæ over any vocabulary, as formally proved by Grädel,
Hirsch, and Otto (2002):

Fact 3.25. For every gso-formula ϕ(X1, . . . , Xk) over structures of some
vocabulary τ , there exists an mso-formula ϕ(X ′

1, . . . , X
′
k) over incidence rep-

resentations of τ -structures, such that for every τ -structure A and variable
assignment α we have (A, α) |= ϕ(X1, . . . , Xk) if, and only if, (Ainci, αinci) |=
ϕ(X ′

1, . . . , X
′
k).

For evaluating gso-formulæ by logspace Turing machines or uniform circuit
families, we can always restrict to prove evaluating mso-formulæ, since each of
these computing devices can easily turn the encoding of a given structure into



42 3. BOUNDED TREE DEPTH AND FIRST-ORDER LOGIC

the encoding of its incidence representation and, then, consider the equivalent
mso-formula from the previous fact on such structures. Moreover, the tree
depth (tree width) of an incidence representation Ainci is bounded by 1 plus
the tree depth (tree width) of its original structure A. Thus, all theorems that
are proved in the upcoming Chapters 4 to 6 for mso-logic directly generalize to
gso-logic. In contrast, it is far from being obvious how to translate structures
into their incidence representation when the only device available is first-order
logic without any build-in ordering or arithmetic predicates. Fortunately, we
are able to plug-in the following result from the literature for this, which is
proved for graphs by Courcelle (2003) and for structures over any vocabulary
by Blumensath, Colcombet, and Löding (2007) via defining the incidence rep-
resentation of a structure from the structure itself using mso-formulæ. A struc-
ture A with universe A is uniformly s-sparse for s ∈ N if the following holds:
for each subgraph G of the Gaifman graph G(A) we have |E(G)| ≤ s |V (G)|.

Fact 3.26. For every vocabulary τ , every s ∈ N, and every gso-formula
ϕ(X1, . . . , Xk) over τ , there is an mso-formula ψ(X1, . . . , Xk) (where the X1

to Xk may be higher-ary second-order variables) over τ , such that for every
uniformly s-sparse τ -structure A and guarded variable assignment α, we have

(A, α) |= ϕ if, and only if, (A, α) |= ψ .

Since structures of tree depth d are uniformly (d−1)-sparse (which is a well
known fact that can be proved by induction over the tree depth), we can apply
Theorem 3.1 to the previous fact and get the following:

Theorem 3.27. For every vocabulary τ , every tree depth bound d ∈ N,
and every gso-formula ϕ(X1, . . . , Xk) over τ , there is a first-order formula
ψ(X1, . . . , Xk) (where the X1 to Xk may be higher-ary second-order variables)
over τ , such that for every τ -structure A of tree depth at most d and guarded
variable assignment α, we have

(A, α) |= ϕ if, and only if, (A, α) |= ψ .

Elberfeld, Grohe, and Tantau (2012a) prove Theorem 3.27 for graph struc-
tures using a composition theorem that is based on types with respect to
gso-logic, instead of using the results of Courcelle (2003) and Blumensath,
Colcombet, and Löding (2007).



CHAPTER 4

Bounded Tree Depth and Constant-Depth Circuits

In this chapter we prove the theorems from the introduction that are re-
lated to tree-depth-bounded structures and constant-depth circuits. We will
show how to solve mso-definable decision, counting, and optimization problems
on tree-depth-bounded structures using constant-depth DLOGTIME-uniform
Boolean, arithmetic, and threshold circuits, respectively.

In Section 4.1, we review the definition of DLOGTIME-uniform constant-
depth circuit families and their equivalent definition in terms of first-order for-
mulæ that have access to ordering and arithmetic predicates defined on input
strings. Since relational structures can be extracted from their string encodings
using such first-order computations, Theorem 1.6—solving mso-definable deci-
sion problems on tree-depth-bounded structures using constant-depth Boolean
circuits—follows from Theorem 1.9.

Section 4.2 starts to define the notion of tree decompositions. Then we
show how tree decompositions of bounded width whose underlying trees have
bounded depth are computed using first-order computations. Once tree decom-
positions are available, we can adjust the original mso-formula to an equivalent
formula on the computed tree. This allows us to replace the task of computing
solution histograms for mso-formulæ on structures over any vocabulary by the
more manageable problem of computing solution histograms for mso-formulæ
on trees.

Section 4.3 contains the proof of how to reduce computing the number
of ways in which multiset tree automata accept an input tree to evaluating
arithmetic circuits. Since counting solution histograms for mso-formulæ on
trees can be reduced to the problem of evaluating multiset tree automata, this
leads to the proof of Theorems 1.7 and 1.8, computing number and string
representations, respectively, of histograms on tree-depth-bounded structures.
In the course of Section 4.3, we address the problem of how histograms can be
encoded as numbers. As we will see, by using an appropriate encoding, we may
assume that the formulæ in the theorems from the introduction are all of the
form ϕ(X1, . . . , Xk). That is, we may assume that no variables Yi are present.
This is why the lemmas and theorems of the present chapter, and Chapters 5
and 6, are all formulated without references to any Yj .

In Section 4.4, we apply the theorems to concrete problems. In particular, it
is shown that integer linear equation systems with any constant number of equa-
tions whose coefficients are encoded in unary can be solved in DLOGTIME-uni-
form TC0. This implies the TC0-completeness of such well studied problems
like subsetsum and knapsack for input numbers that are given in unary.

43



44 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

4.1. Review of Uniform Circuits

In the present section, we first review the definition of uniform circuit com-
plexity classes inside logspace. Beside constant-depth circuits that are used in
the present chapter, we define logarithmic-depth circuits that are used in Chap-
ter 5. Then we have a look at used reducibility notions. Finally, we discuss
how to encode relational structures as strings.

Circuit Classes. In the present and the next chapter, we are concerned
with uniform circuit complexity classes that are inside logspace. The most
widely known language classes we consider are NC1, the class of decision prob-
lems L ⊆ {0, 1}∗ that are decidable by Boolean circuit families of logarith-
mic depth and polynomial size with input gates {x1, . . . , xn,¬x1, . . . ,¬xn} and
bounded fan-in inner gates from {∧,∨, 0, 1}; AC0, the class of decision problems
L ⊆ {0, 1}∗ decidable by Boolean circuit families of constant depth and poly-
nomial size with input gates {x1, . . . , xn,¬x1, . . . ,¬xn} and unbounded fan-in
inner gates from {∧,∨, 0, 1}; and TC0, whose definition is the same as AC0,
except that we also allow unbounded fan-in gates that decide majority :=
{y1 . . . yn ∈ {0, 1}∗ |

∑
i∈{1,...,n} yi > n/2}. Note that we do not allow ¬-gates

to be located in the inner part of the circuit; they are only applied to input
gates directly, but this does not restrict the computational power of the uniform
circuit classes we consider. We also consider the function class variants of AC0,
TC0, and NC1, known as FAC0, FTC0, and FNC1, respectively. Each function
class is defined in the same way as its corresponding language class, but with
Boolean circuit families computing general mappings f : {0, 1}∗ → {0, 1}∗ in-
stead of characteristic functions χL : {0, 1}∗ → {0, 1} of languages L ⊆ {0, 1}∗.
Circuits whose inputs are strings over non-binary alphabets Σ access atomic
predicates [xi = σ] for σ ∈ Σ, instead of the xi directly; such a predicate
evaluates to 1 if xi = σ holds and to 0, otherwise (Vollmer, 1999).

The classes AC0 and NC1 are arithmetized by replacing, in the definition
of each class, the admitted input gates by {x1, . . . , xn, 1 − x1, . . . , 1 − xn} and
the Boolean inner gates by arithmetic gates {×,+, 0, 1}. This leads to circuit
families that compute functions f : {0, 1}∗ → N0; the resulting classes are called
#AC0 and #NC1. If we also allow the constant −1 as an inner gate, the circuit
families compute functions f : Σ∗ → Z; the corresponding classes are known as
GapAC0 and GapNC1. Vollmer (1999) calls these circuits counting arithmetic
circuits and the classes counting arithmetic classes due to their equivalent def-
initions in terms of counting the number of accepting proof trees of Boolean
circuits. To study the relation between language classes defined via Boolean
circuits and their arithmetic variants, the following language classes are known
from the literature: PNC1 is the class of all languages L ⊆ {0, 1}∗, such that
there exists a function f ∈ GapNC1 with x ∈ L if, and only if, f(x) > 0 for all
x ∈ {0, 1}∗. The corresponding variant of AC0, the class PAC0, is defined in
the same way, but with respect to GapAC0. Note that, if we would define such
classes with respect to arithmetic circuits from #AC0 and #NC1, we get AC0

and NC1, respectively, again; the question of whether a #NC1-circuit has a non-
zero output can be answered by an NC1-circuit that arises from it via replacing
×- and +-gates by ∧- and ∨-gates, respectively. We use this fact in Chapter 5
where we first prove Theorem 1.5 for #NC1 and, then, get Theorem 1.4 for NC1

as a corollary.



4.1. REVIEW OF UNIFORM CIRCUITS 45

Uniformity. We use the above complexity classes in their DLOGTIME-uni-
form variants, as defined by Mix Barrington et al. (1990). For constant-depth
circuit families with gates of unbounded fan-in, this corresponds to the no-
tion that their direct connection languages, a language of tuples that describe
the type of gates and their adjacencies, can be decided by random-access
logarithmic-time deterministic Turing machines (Mix Barrington et al., 1990).
For logarithmic-depth circuit families with bounded fan-in gates this corre-
sponds to the fact that their extended connection languages, a language that ex-
tends the direct connection language to include tuples describing paths between
gates in the circuits, can be decided by random-access logarithmic-time alter-
nating Turing machines (Ruzzo, 1981; Buss, 1987; Mix Barrington et al., 1990).

The equality PAC0 = TC0 (and GapAC0 = FTC0) was first shown in the
P-uniform setting (Agrawal et al., 2000; Ambainis et al., 1998), and later refined
to also hold in the DLOGTIME-uniformity setting (Hesse et al., 2002). The
classes #NC1, GapNC1, and PNC1 where introduced by Caussinus et al. (1998)
who showed PNC1 ⊆ L and FNC1 ⊆ #NC1. The classes of functions can be
arranged into the following chain of inclusions:

FAC0 ( #AC0 ⊆ GapAC0 = FTC0 ⊆ FNC1 ⊆ #NC1 ⊆ GapNC1 ⊆ FL ,

where GapNC1 ⊆ FL follows from the work of Chiu et al. (2001), see also (Hesse
et al., 2002). Note that, in order to state inclusion relations between classes of
functions that compute numbers and classes of functions that compute strings,
binary string representations of numbers are considered. Each of the above
function classes is closed under composition. The language classes that are
defined via Boolean and counting arithmetic circuits are related as follows:

AC0 ( PAC0 = TC0 ⊆ NC1 ⊆ PNC1 ⊆ L .

For a general introduction to the field of uniform circuit complexity, we refer
to the book of Vollmer (1999) and the survey article of Allender (2004).

Reducibility Notions and Descriptive Complexity. We will use re-
ducibility notions based on DLOGTIME-uniform FAC0- and FTC0-circuit fami-
lies to compare the complexity of problems and state intermediate algorithmic
steps. In terms of stating hardness of a problem for a complexity class, we use
DLOGTIME-uniform AC0-Turing-reductions for TC0, and their many-one ver-
sion for logarithmic-depth circuits and L. Intermediate algorithmic steps are
stated in terms of functions from DLOGTIME-uniform FAC0 and FTC0 in the
present and the next chapter.

Mix Barrington et al. (1990) proved that the DLOGTIME-uniform version of
AC0 equals the class of problems that can be defined by first-order formulæ with
build-in ordering and bit predicates (DLOGTIME-uniform AC0 = FO), and an
analog characterization holds for TC0 by additionally using majority-quantifi-
ers that decide whether the majority of assignments of elements to a variable
make a formula satisfy a given input structure (DLOGTIME-uniform TC0 =
FOM). The same holds for circuits that compute functions: The functions in
DLOGTIME-uniform FAC0 are exactly the FO-computable functions, used, for
example, by Immerman (1999); the functions in DLOGTIME-uniform FTC0 are
exactly the FOM-computable functions. They are used, for example, by Lohrey
(2001) and Gottlob et al. (2005). While the theorems of this thesis are stated



46 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

in terms of DLOGTIME-uniform circuit classes, we use this descriptive com-
plexity framework as a convenient tool for stating intermediate algorithmic
results; that means, we argue that some function or the circuit it computes, is
FO-computable, instead of talking about DLOGTIME-computations.

It is important to not mix up first-order formulæ as used in the preceding
chapters and the concept of FO-computations: While the former is used to
define properties of relational structures (and can only access the relations
that are part of the structure), the later is used as a model of computation
that works on the string input of a computational problem (and has access to
build-in predicates whose power corresponds to the DLOGTIME preprocessing
done to verify circuits). The input string might, as in the case of this thesis,
contain, or exactly be, the encoding of some relational structure.

Encoding Relational Structures as Strings. In order to consider re-
lational structures as inputs and outputs of Turing machines and circuits, we
encode them as strings. We do this in the usual way as, for example, de-
scribed by Immerman (1999): Without loss of generality, we only consider
finite structures A whose universes are sets A = {1, . . . , n} for some n ∈ N. Let
A = {A,RA

1 , . . . , R
A
m} be a structure over {Rr11 , . . . , Rrmm }. The string encoding

of A is the string str(A) = str(RA
1 ) . . . str(R

A
m) over the alphabet {0, 1} where

each relation RA
i is represented by a bitstring str(RA

i ) of length |A|ri whose
jth bit is 1 if, and only if, the jth ri-tuple (in lexicographic order) of elements
of the universe is an element of the relation. Extracting the structure A from
str(A) is FO-computable (Immerman, 1999).

For some problems, the input and output structures are given along with
numbers that encode, for example, a solution size. Unless stated otherwise,
we assume these numbers to be encoded in binary. For example, an input
(str(G), s) to dominating-set consists of the string encoding of a graph G and
a solution size s given in binary.

Proof of Theorem 1.6. Since extracting a relational structure from its
string encoding is FO-computable, definability of a property of structures in
terms of first-order formulæ translates to the FO-computability of deciding
whether the structure encoded in an input string has this property. Thus,
Theorem 1.6 follows from Theorem 1.9. �

4.2. Getting Familiar with Tree Decompositions

The first step toward our goal of proving Theorem 1.7 is to turn struc-
tures of bounded tree depth and mso-formulæ on them into equivalent depth-
bounded s-trees and mso-formulae on s-trees. The construction of s-trees
and equivalent formulæ is done in two steps: First, tree decompositions of
bounded width whose underlying trees have bounded depth are constructed
using FO-computations. Then tree decompositions are turned into s-trees and
formulæ are adjusted accordingly. We start with the definition of tree decom-
positions.

Definition of Tree Decompositions. Robertson and Seymour (1986)
define the concept of tree width of graphs through tree decompositions; we
use the following generalized definition of tree decompositions that is used, for



4.2. GETTING FAMILIAR WITH TREE DECOMPOSITIONS 47

example, by Flum and Grohe (2006). It applies to relational structures of any
signature and, thus, also graphs.

Definition 4.1 (Tree Decomposition). A tree decomposition (T,B) of a
structure A over some vocabulary τ is a tree T together with a labeling function
B : V (T )→ P(A), where P(A) is the power set of A, that satisfies the following
two properties:

– Connectedness condition: For all a ∈ A, the induced subtree T
[
{n ∈

V (T ) | a ∈ B(n)}
]
is nonempty and connected.

– Cover condition: For every symbol Rr ∈ τ and every tuple (a1, . . . , ar) ∈
RA, there is an n ∈ V (T ) with {a1, . . . , ar} ⊆ B(n).
The sets B(n) are called the bags of the tree decomposition. The width of the
tree decomposition is maxn∈V (T ) |B(n)| − 1.

Since a tuple of r elements of a structure gives rise to a clique of size r
in its Gaifman graph and in a tree decomposition every clique is completely
contained in some bag, the following holds:

Fact 4.2. Let A be a structure. Every tree decomposition of the Gaifman
graph G(A) is also a tree decomposition of A, and vice versa.

Definition 4.3 (Tree Width). The tree width tw(A) of a structure A is
the minimum width of a tree decomposition for it.

A class C of structures over some vocabulary τ has bounded tree width (is
tree-width-bounded) if there exists a constant w ∈ N, such that td(A) ≤ w for
every A ∈ C.

Fact 4.4. For every structure A, we have tw(A) = tw(G(A)).

Example 4.5 (Tree Decompositions and Tree Width).

5 4 3
2

1

Tree T

{5, 4}
{3, 1}

{4, 3}
{3, 2}

(T,B)

While tree depth can be seen as measuring the distance of
a graph to a star graph and grows for graphs that have long
paths, tree width measures the distance of a graph to trees and
grows for graphs with cycles that are intertwined. All trees have
tree width 1, like the undirected tree T on the right for which a
tree decomposition (T,B) of width 1, which witnesses this fact, is
given. An undirected cycle like 1

2 3

4 has tree decompositions like

{1, 2}
{1, 2, 3} {1, 3, 4}

{1, 4} of width 2. Note how vertex 1 is carried
along the tree decomposition to satisfy the cover condition for its edges to 2
and 4, and, at the same time, satisfy the connectedness condition for it.

A graph class of unbounded tree width is the class of all cliques. Every
n-vertex clique has tree width n − 1 (thus, tw( ) = 4). Another example are

n × n grids, which have tree width n (thus, tw( ) = 3). In fact, Robertson
and Seymour (1984) showed that a class of graphs has unbounded tree width
exactly if its graphs contain grids of any size as minors.

The graph problem tree-width = {(str(G), w) | tw(G) ≤ w}, which is the
same problem as deciding whether embeddings into k-trees exist, is NP-complete
in general (Arnborg et al., 1987). In contrast, for any constant w, the prob-
lem tree-width-w = {str(G) | tw(G) ≤ w} is shown to be L-complete in
Section 6.3. While in Chapter 6, we construct tree decompositions of any con-
stant width in logspace, for the results of the present chapter it is enough to



48 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

construct tree decompositions of bounded width whose underlying trees have
bounded depth. It turns out that this task has a much lower complexity; it
is FO-computable (Lemma 4.6). Just deciding whether an input structure has
some constant tree depth d ∈ N, that means solving tree-depth-d = {str(G) |
td(G) ≤ d}, can be done in DLOGTIME-uniform AC0 by extracting G from
str(G) and applying Lemma 3.18. In contrast, the problem tree-depth =
{(str(G), d) | td(G) ≤ d}, where d is part of the input, is NP-complete (Bod-
laender et al., 1995; Nešetřil and Ossona de Mendez, 2006).

Computing Width- and Depth-Bounded Tree Decompositions. In
the present section, we show how to construct tree decompositions of bounded
width whose underlying trees have bounded depth for structures whose tree
depth is bounded by some constant. We already worked with structures of
bounded tree depth in Chapter 3. What prevented us from defining trees
based on graphs in Chapter 3 was the fact that a first-order formula, which
has only access to the graph structure itself, cannot distinguish between ver-
tices that have the same properties with respect to first-order formulæ. Thus,
they cannot single out a root element that serves as a starting point to build
a tree. FO-computations are different: In addition to the expressive power of
first-order logic on the encoded structure, they are able to compute properties
based on ordering and arithmetic predicates defined on the input string. For
example, if there are many candidates for the root element of a tree, then an
FO-computation just chooses the one with the smallest index. In the following,
whenever we talk about the fact that computing devices (like FO-computations,
circuits, or Turing machines) choose an element, tuple, or relation, we mean
that a uniquely determined one among all candidates is chosen, like the one
with the smallest index.

Lemma 4.6. Let τ be a vocabulary and d ∈ N. There is a FO-computable
function that, on input of the encoding str(A) of a τ -structure A of tree depth
at most d, outputs a tree decomposition (T,B) for A of width at most d − 1
where T has depth at most d+ 1.

Proof. On input of A, we first construct the first-order definable Gaifman
graph G = G(A). By Fact 3.13, we know that the tree depth of G is bounded by
d ∈ N. We proceed to build a tree decomposition (T,B) of width at most d− 1
and depth at most d+1 for G; by Fact 4.2, this is also a tree decomposition for
the input structure A. We first prove the existence of the decomposition and,
then, discuss how to implement its construction using FO-computations.

Existence of the tree decomposition: We start to prove the existence of
decompositions for graphs that are described by descriptors and, then, gener-
alize to graphs of any kind. First, we recall the definition of descriptors from
the previous chapter: A width-w descriptor D in G consists of w bag vertices
b1 to bw, and a component selector vertex s; D selects the component CD of
G[V (G) \ {b1, . . . , bw}] that contains s and describes GD = G[CD ∪{b1, . . . , bw}].

Claim. Let d ∈ N and w ∈ N0. For every graph G and width-w descriptor
D = (b1, . . . , bw, s) in G with td(CD) ≤ d, there exists a tree decomposition
(T,B) for GD of width at most w + d − 1, where T has depth at most d, and
{b1, . . . , bw} ⊆ B(r) holds for the root r of T .



4.2. GETTING FAMILIAR WITH TREE DECOMPOSITIONS 49

We prove the claim by induction over d for all w. For d = 1, CD contains
only a single element, which is s. We build a tree decomposition with a single
node r whose bag is B(r) = {b1, . . . , bw, s}; the size of r’s bag is w + 1 and T
has depth 1. For d > 1, we know that the connected graph CD contains a vertex
bw+1 whose removal produces a graph of tree depth at most d− 1. Let (Ci)i∈I
be the family of components of CD without bw+1. Each component Ci can be
selected by a descriptor Di = (b1, . . . , bw, bw+1, si). Since the tree depth of each
Ci is at most d− 1, we know from the induction hypothesis that there exists a
tree decomposition (Ti, Bi) for GDi of width at most w+ 1+ d− 2 = w+ d− 1
where Ti has depth at most d−1, and whose root bag Bi(ri) contains the vertices
b1 to bw+1. To construct a tree decomposition for GD, we add a new root node
r with bag {b1, . . . , bw+1} and connect it to the nodes (ri)i∈I . The width bound
remains the same and the depth bound increases by one. The resulting tree with
the bag labeling is a tree decomposition for GD: The connectedness condition
is satisfied for all vertices that only live inside a single GDi by induction. The
only vertices that are shared by multiple GDi are the vertices b1 to bw+1. The
connectedness condition is satisfied for them because they are part of the bags
Bi(ri), and part of r’s bag. Each edge of GD is part of some GDi and, thus, the
cover condition is satisfied for it by the induction hypothesis.

To prove the existence of tree decompositions for a graph G that is not
described, we build a tree decomposition (Ti, Bi) of width d − 1 and depth d
for each component Gi of G using width-0 descriptors Di = (si) with GDi = Gi.
Then we put the decompositions together using a new root node r with bag
B(r) = ∅ that is connected to the root nodes of the decompositions (Ti, Bi).
With this construction, the width bound remains the same and the depth in-
creases by one. The combined decomposition satisfies connectedness and cover
conditions since the Gi are connected components.

FO-computability: Considering the recursion from the proof of the claim,
the task of choosing a unique vertex bw+1 is FO-computable with the help of the
first-order definition of tree depth for selected components from Lemma 3.17,
and Fact 3.15; the length of paths in tree-depth-bounded graphs is bounded.
The task of putting depth-bounded tree decompositions together and appending
a new root node is also FO-computable. Finally, since we only need a constant
number of recursions, we connect a constant number of FO-computations for
(1) dividing the input graph into components, and (2) combining the output of
the recursions. This computes a tree decomposition of bounded width whose
underlying tree has bounded depth for described graphs. To construct decom-
positions for an input graph that is not described, we first partition it into its
connected components, which are FO-computable since the longest path length
in the graph is bounded. Then we construct tree decompositions for the com-
ponents and, finally, put the decompositions together. �

From Structures With Tree Decompositions to Trees. Using the
previous lemma, we can construct tree decompositions (T,B) of bounded width
where T has bounded depth for logical structures A of bounded tree depth using
FO-computations. Our aim is to work with these tree decompositions rather
than the original structures. However, the formula ϕ for which we wish to
compute a histogram refers to A, not to (T,B). Thus, our objective is to
transform the formula ϕ into an equivalent formula ψ that refers to a tree



50 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

structure T based on this tree decomposition rather than the structure A.
Proofs of transforming structures into trees with the help of tree decompositions
are used a lot in the literature; see, for example, (Arnborg et al., 1991). The
proof presented in this thesis is adjusted to (1) ensure that the depth of the tree
only grows by a constant additive factor, (2) the solution histogram remains
the same, and (3) the transformation is FO-computable.

Note that the lemma does not restrict the depth of the tree that underlies
the input decomposition. In fact, while in the present chapter we will only
consider input decompositions whose underlying trees have bounded depth, in
Chapter 5 we will also translate tree decompositions of any depth into equiva-
lent s-trees.

Lemma 4.7. Let ϕ(X1, . . . , Xk) be an mso-formula over some vocabulary
τ and w ∈ N a width bound. There is an s ∈ N0, and an mso-formula
ψ(X1, . . . , Xk) over τs-tree, and a FO-computable function that, on input of any
τ -structure A with universe A and a width-w tree decomposition (T,B) for A,
produces an s-tree structure T , such that

(1) the depth of T equals the depth of T plus 1, and
(2) we have histogram(A, ϕ)[s] = histogram(T , ψ)[s] for all indices s ∈

{0, . . . , |A|}k and all other entries in the array histogram(T , ψ) are 0.

Proof. The node set of T is the union of two disjoint sets VB and VE of
nodes, which we call the bag nodes and the element nodes, respectively. The
set VB is exactly V (T ). The set VE is the disjoint union of the sets {en1 , . . . , enrn}
for n ∈ V (T ) with attached bag B(n) = {e1, . . . , ern}, where some ordering is
chosen for each bag. For an element node x = eni , we write n(x) for the node
n ∈ V (T ), we write i(x) for the index i, and we write e(x) for the element ei ∈ A.
The edges of T are as follows: All edges of T are also present in T . Additionally,
for each x ∈ VE there is an edge from n(x) to x.

The unary predicates of T fall into the following four groups:
(1) Node type predicates: We define predicates P T

B := VB and P T
E := VE .

(2) Element ordering predicates: We use w + 1 predicates P T
1 , . . . , P T

w+1

to record the chosen total ordering for the element nodes of each bag: That
means, for each bag node n with attached element nodes {x1, . . . , xr} we set
x1 ∈ P T

i(x1)
to xr ∈ P T

i(xr)
.

(3) Structure predicates: These predicates are used to represent the rela-
tions from the structure A. To represent a relation RA of arity r of A, we
introduce new predicates P T

i1,...,ir
for all i1, . . . , ir ∈ {1, . . . , w+1}. They locally

encode the tuples of RA at the bags with (i1, . . . , ir) being the local indices of
the elements of a tuple of RT : For every tuple (x1, . . . , xr) ∈ V r

E with n(x1) =
· · · = n(xr) and (e(x1), . . . , e(xr)) ∈ RA, we let xj ∈ P T

i(x1),...,i(xr)
for each

j ∈ {1, . . . , r}. Since a tree decomposition puts the elements of a tuple com-
pletely into at least one bag, for all tuples (e1, . . . , er) ∈ RA there are element
nodes x1, . . . , xr with n(x1) = · · · = n(xr) and x1 ∈ P T

i(x1),...,i(xr)
∧ x1 ∈ P T

i(x1)
,

. . . , xr ∈ P T
i(x1),...,i(xr)

∧ xr ∈ P T
i(xr)

.

(4) Equivalence predicates: These predicates are used to relate element
nodes that stand for the same element in the structure. We introduce w + 1
predicates NT

1 , . . . , N
T
w+1 and put an element node x into NT

j if e(x) = e(y) for
some y with i(y) = j and n(y) is the parent node of n(x) in T . If an element



4.3. FROM AUTOMATA EVALUATION TO ARITHMETIC CIRCUIT EVALUATION 51

node is in none of the predicates NT
i , we insert it into the predicate P T

repr, the
set of representative element nodes. By this construction, there is a one-to-one
correspondence between P T

repr and the universe of A. For each element e ∈ A,
the unique element node x with e = e(x) that is nearest to the root of T is part
of P T

repr. All steps of the reduction are FO-computable.
The formula ψ is build on top of the following subformulæ:
(a) The mso-formula ψequ(x, y) over τs-tree. It is true if x and y are element

nodes with e(x) = e(y). This formula quantifies over element nodes that are
attached to the bag nodes on the path between x and y and uses the element
ordering predicates and the equivalence predicates to make sure that all chosen
element nodes stand for the same element of the universe of A.

(b) For every Rr ∈ τ , the mso-formula ψR(x1, . . . , xr) over τs-tree, where
the xi are first-order variables. It is true for representative element nodes xi
if, and only if, (e(x1), . . . , e(xr)) ∈ RA: The formula tests whether there are
element nodes y1, . . . , yr such that ψequ(x1, y1) ∧ · · · ∧ ψequ(xr, yr), the yi are
children of the same bag node, and there is an index tuple (i1, . . . , ir) with
Pi1,...,ir(y1) ∧ y1 ∈ Pi1 ∧ · · · ∧ Pi1,...,ir(yr) ∧ yr ∈ Pir .

To build ψ, we first extend the formula ϕ such that only elements and
subsets of P T

repr are permissible for the free and bounded variables. Second,
substitute x = y with ψequ(x, y). Third, substitute every R(x1, . . . , xr) with
the formula ψR(x1, . . . , xr). �

Lemma 4.6 and Lemma 4.7 together provide a transformation from evalu-
ating mso-formulæ on structures of bounded tree depth to s-tree structures of
bounded depth.

4.3. From Automata Evaluation to Arithmetic Circuit Evaluation

Theorem 2.19 on page 23 establishes a link between formulæ and multiset
tree automata that is solution-preserving in the sense that there is a one-to-
one correspondence between satisfying assignments to the free variables of the
formulæ and labelings of the trees that make the automaton accept. Using
this theorem, we can translate the task of computing a solution histogram for
a formula on s-trees to the task of evaluating automata. In the present sec-
tion we pick up the later problem and solve it as follows: First, we replace
the evaluation of multiset tree automata by the evaluation of convolution cir-
cuits, see Lemma 4.10, such that the outputs of the circuits are the sought
solution histograms. Then we reduce the evaluation of convolution circuits to
the evaluation of arithmetic circuits.

From Formula Histograms to Multicoloring Histograms. In order to
talk more easily about the number of labelings that makes an automaton accept
a tree, we define the notion of multicolorings. An [r]k-array is an k-dimensional
array of integers where all indices s = (s1, . . . , sk) are elements of the index set
[r]k = {0, . . . , r − 1}k. We call r the range. Given a set S, a multicoloring
of S is a tuple (S1, . . . , Sk) of subsets Sj ⊆ S for j ∈ {1, . . . , k}. Given a

set X of multicolorings of S, let histogram(X) denote the [|S|+1]k-array whose
entry at index s = (s1, . . . , sk) is the number of multicolorings (S1, . . . , Sk) ∈
X with |S1| = s1, . . . , |Sk| = sk. For instance, for S = {1, 2} and X =

{({1}, {1}), ({2}, {2}), ({2}, ∅)}, we have histogram(X) =
(

0 0 0
1 2 0
0 0 0

)
.



52 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

The connection between multicolorings and tree automata is as follows:
Given a multiset tree automaton A = ({0, 1}s+k, Q,Qa,∆), P ⊆ Q, and an
s-tree structure T with universe V , let us write SA(T , P ) for the set of tuples
(S1, . . . , Sk) with Si ⊆ V for which A reaches a state q ∈ P at the root of
T (T , S1, . . . , Sk). Clearly, SA(T , P ) is a set of multicolorings of V . In particu-
lar, for the automaton A constructed in Theorem 2.19 for a formula ϕ we have
histogram(T , ϕ) = histogram(SA(T , Qa)). This means that all we have to do
in the following is to devise a way of computing histogram(SA(T , Qa)).

Before we proceed, it will be useful to define some simple operations on
sets of multicolorings and see how these operations change their histograms.
First, for two disjoint sets of multicolorings X1 and X2 of the same set S, we
have histogram(X1 ∪ X2) = histogram(X1) + histogram(X2) where the addi-
tion of arrays is just the component-wise addition. Second, given two disjoint
sets S and U and sets of multicolorings X and Y of S and U , respectively,
let us write X ⊗ Y for the set of multicolorings {(S1 ∪ U1, . . . , Sk ∪ Uk) |
(S1, . . . , Sk) ∈ X, (U1, . . . , Uk) ∈ Y }. To understand its effect, consider the
case where k = 1. Then X ⊗ Y = {S ∪ U | S ∈ X, U ∈ Y } and con-
sider, say, histogram(X ⊗ Y )[3]. This is number of ways we can choose sets
S ∈ X and U ∈ Y with |S ∪ U | = 3. It is not hard to see that this is ex-
actly histogram(X)[0] · histogram(Y )[3] + histogram(X)[1] · histogram(Y )[2] +
histogram(X)[2] · histogram(Y )[1] + histogram(X)[3] · histogram(Y )[0]. This
sum is also known as the convolution of the two histogram arrays at position 3.
In general, given two arrays B and C with the same dimension k and ranges r
and s, respectively, their convolution is the [r + s− 1]k-array D = B ∗ C with

D[`] =
∑

i∈[r]k,j∈[s]k with `=i+j

B[i]C[j].

With these definitions, histogram(X ⊗ Y ) = histogram(X) ∗ histogram(Y ).

Turning Automata Computations Into Convolution Circuits. Our
ultimate goal is to compute (number encoded) solution histograms using arith-
metic circuits. We postpone the problem of computing number encodings for
the moment, leaving us with the computation of histograms. To this end, we
now introduce convolution circuits, which instead of passing around Boolean
values (like AC0 circuits) or numbers (like GapAC0 circuits) pass around whole
number arrays (that is, histograms).

Definition 4.8 (Convolution Circuit). A convolution circuit is a circuit C
where each inner gate is labeled with +, −, or ∗. The addition and convolution
gates have unbounded fan-in, the subtraction gates have fan-in 2 and their
inputs are ordered. Constant gates can be labeled with arbitrary arrays. A
convolution circuit without subtraction gates is positive.

In slight abuse of notation, when describing the structure of circuits, we
will sometimes just write down formulæ involving addition and convolution
operators. For instance, B ∗C+D denotes the circuit starting with an addition
gate at the top, one convolution gate as a child, and the three leaves B, C, and
D. When a gate has many input gates C1, . . . , Cn, we use the notation

∑
iCi

for addition gates and
∏
iCi for convolution gates.

Definition 4.9 (Computation of a Convolution Circuit). The input for
a convolution circuit C with n inputs is a sequence (B1, . . . , Bn) of arrays.



4.3. FROM AUTOMATA EVALUATION TO ARITHMETIC CIRCUIT EVALUATION 53

The value val(g, C[B1, . . . , Bn]) of a gate g is the component-wise addition,
component-wise difference, or convolution of the arrays that are the values of
the gate’s inputs. For the ith input gate, val(g, C[B1, . . . , Bn]) is Bi; while for
constant gates its value is the constant attached to it. The array produced at
the output gate will be denoted val(C[B1, . . . , Bn]) or, if there are no input
gates, just val(C).

We are now ready to state a lemma that shows how the histograms of multi-
set tree automata on labeled trees can be computed using convolution circuits.
In its proof addition gates are used to unite histograms that arise from disjoint
sets of solutions: For instance, suppose that for some deterministic multiset tree
automaton A we have found a way to compute hq = histogram(SA(T , {q}))
for all states q ∈ Qa. Then the sum over all of these histograms will be
the histogram of all multicolorings that make A accept. Convolution gates
are used to combine solution histograms for different child trees: Suppose the
root of a tree has exactly two children c1 and c2 and suppose the only way
to reach a state q at the root is to reach q1 at c1 and q2 at c2. Then the set
of multicolorings SA(T , {q}) is exactly SA(T1, {q1}) ⊗ SA(T2, {q2}), where T1
and T2 are the subtrees rooted at c1 and c2, because every multicoloring of T1
that makes A reach {q1} can be combined with every multicoloring of T2 that
makes A reach {q2}. But then, as we saw above, the desired solution histogram
histogram(SA(T , {q})) is given by the convolution of the subtrees histograms.
If there are different ways to reach q, we sum them up. Subtraction gates come
into play if the degree of the tree is too high to enumerate all possible ways in
which the automaton can reach a state.

Lemma 4.10. Let A = ({0, 1}s+k, Q,Qa, δ) be a deterministic multiset tree
automaton with multiplicity bound m ∈ N. Then there is an FO-computable
function that maps every s-tree structure T = (V, P T

1 , . . . , P
T
s ) to a convolution

circuit C such that

(1) val(C) = histogram(SA(T , Qa)),
(2) the depth of C is bounded by a function that depends on A and linearly

on the depth of T , and
(3) the fan-in of C is bounded by a function that depends on A and linearly

on the degree of T .
Furthermore, if the degree of T is less than m, then C is positive.

Proof. Let A = ({0, 1}s+k, Q,Qa, δ) be a deterministic multiset automa-
ton with multiplicity bound m ∈ N. Let T = (V, P T

1 , . . . , P
T
s ) be an s-tree

structure. We will first describe a transformation that turns T and A into a
convolution circuit C by locally transforming the root of every subtree T ′ into
a subcircuit whose inputs are the outputs of the subcircuits for the child trees
of T ′. Then we will prove that C satisfies the claimed properties.

Before we go into the details of the construction, we introduce some new
terminology regarding multisets of states (multisets and related set-theoretic
terms are defined on page 16). Given a multiset M ∈ Pω(Q) of states, let us
say that a state q ∈ Q is rare in M , if #M (q) < m and let us say that it is
plentiful in M if #M (q) ≥ m. Let us write rare(M) and plenty(M) for the set
of rare and plentiful states, respectively.

Construction and its complexity: For every subtree T ′ = (V ′, P T ′
1 , . . . , P T ′

s )
of T we build two groups of subcircuits, called the transition circuits Ctrans,



54 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

which depend on the transition function, and the multiset circuits Cmulti, which
combine histograms for specific multisets of states at the child trees:

(1) For the transition circuits, let z ∈ {0, 1}s be the label of the root of
T (T ′). Then for every state set P ⊆ Q let Ctrans(T ′, P ) have the form∑

x∈{0,1}k, M∈Pm(Q) s.t.
|M |≤n and δ(zx,M)∈P

Cmulti(T1, . . . , Tn,M) ∗ χ(x),

where χ(x) is the k-dimensional array with a 1-entry at position x and 0-entries
at all other positions. The Cmulti(T1, . . . , Tn,M) are the multiset circuits defined
next. Each Ctrans has depth 2.

(2) Let T1, . . . , Tn be the child subtrees of T ′ and consider any M ∈
Pm(Q) with |M | ≤ n. Then the circuit Cmulti(T1, . . . , Tn,M) is of the form
Cuncap − Ccorrect, where Cuncap is the uncapped circuit and Ccorrect is the cor-
rection circuit.

The uncapped circuit Cuncap starts with an addition gate that sums up a
large number of subcircuits. There is one subcircuit for each function

f : {1, . . . , n} → {{q} | q ∈ rare(M)} ∪ {plenty(M)} ,
with

M |rare(M) =
⋃

i∈{1,...,n} s.t.
f(i)6=plenty(M)

f(i) .

In other words, for each rare state q ∈M , the state must be present inM exactly
as often as f maps some i to {q}; in contrast, f can map an arbitrary number
of i to a plentiful state. The subcircuit has the form

∏n
i=1Ctrans(Ti, f(i)).

The correction circuit also starts with an addition gate. This gate is directly
connected to all circuits Cmulti(T1, . . . , Tn, N) where N ( M and M |rare(M) =
N |rare(M). (In other words, N is obtained from M by deleting some elements
from states that used to be plentiful inM and by leaving rare states untouched.)
Note that, since N is a proper subset of M , this definition is not cyclic.

Subtraction gates: If the number n of children is less than the multiplicity
bound of m, we have |M | ≤ n < m. In this case, M contains only rare states
and there is no N ( M with M |rare(M) = N |rare(M). This, in turn, means
that the correction circuit is empty and can be left out. Hence, the circuit is
positive.

The output of the whole circuit C is Ctrans(T , Qa). Since we transfer T
into C by making only local changes that depend on the fixed automaton A,
the construction is FO-computable.

Correctness: To show the first property of the lemma, we prove the following
two claims:

Claim (Correctness of Transition Circuits). For each P ⊆ Q we have
val(Ctrans(T ′, P )) = histogram(SA(T ′, P )).

Claim (Correctness of Multiset Circuits). For eachM ∈ Pm(Q) with |M | ≤
n we have

val(Cmulti(T1, . . . , Tn,M)) =
∑

q1,...,qn∈Q s.t.
{q1,...,qn}|m=M

n∏
i=1

val(Ctrans(Ti, {qi})) .



4.3. FROM AUTOMATA EVALUATION TO ARITHMETIC CIRCUIT EVALUATION 55

The proof of these claims is based on two nested inductions. The outer
induction is an induction over the structure of the tree T ′. Thus, in this outer
induction we assume that both claims have already been proved for the child
trees Ti of T ′ and we must show that they both hold for T ′. The second inner
induction is over the size of the multisets M . Recall that the definition of the
correction circuits Ccorrect refers to the circuits Cmulti(T1, . . . , Tn, N) for proper
subsets N of M . We show that the second claim holds for a given M under the
assumption that it holds for all N (M .

For the outer inductions, first observe that if the claims hold for the child
trees T1 to Tn of a subtree T ′, then the first claim holds for this particular
subtree: By the second claim and the outer induction hypothesis, we know
that the array val(Cmulti(T1, . . . , Tn,M)) stores the number of multicolorings
making A reach a particular capped multiset M ∈ Pm(Q) at the children of
the root of T ′. Note that for each pair of different multisets the underlying
sets of multicolorings are distinct. But, then, the circuit Ctrans(T ′, P ) sums up
exactly over those histograms that contribute to reaching a state from P at the
root. The convolution with χ(x) ensures that the histogram for the children is
shifted to accommodate for the contribution of the root’s label x to the sizes of
the multicolorings.

Next, to prove the second claim, in addition to the outer induction hypoth-
esis we have the inner induction hypothesis that the second claim holds for all
proper subsets N ( M . For the empty M there is nothing to prove. We give
names to sequences (q1, . . . , qn) of states qi ∈ Q: Let us say that the sequence
is perfect if {q1, . . . , qn}|m = M . Let us call it good if {q1, . . . , qn}|rare(M) =
M |rare(M). Clearly, every perfect sequence is good, but not necessarily the
other way round, namely when a plentiful state of M is present less than m
times in the sequence. Let us call a sequence superfluous if it is good, but not
perfect. Note that the second claim states that we can express the value of the
multiset circuits as a sum over all perfect sequences. In the following, we show
that the uncapped circuit Cuncap computes the sum over all good sequences
while the correction circuit computes the sum over all superfluous sequences.
Then, since the multiset circuit is just Cuncap−Ctrans, we get the second claim.

The uncapped circuit Cuncap computes, by definition, the first line of the
following equation and we claim that it can be rewritten as the second line:

∑
f :{1,...,n}→{{q}|q∈rare(M)}∪{plenty(M)} s.t.

M |rare(M)=∪i∈{1,...,n} s.t. f(i)6=plenty(M)f(i)

n∏
i=1

val(Ctrans(Ti, f(i)))

=
∑

(q1,...,qn)∈Qn s.t.
(q1,...,qn) is good

n∏
i=1

val(Ctrans(Ti, qi)) .

To prove this equality, first fix a function f . Let us say that a sequence
(q1, . . . , qn) of states is good for f , if {qi} = f(i) for all i with f(i) 6= plenty(M)
and qi ∈ plenty(M) for all i with f(i) = plenty(M). Observe that for the
latter kind of i, the set of sequences good for f will range over all possible
combinations of states qi ∈ plenty(M) for these positions. By construction of
the transition circuits, we have Ctrans(Ti, f(i)) =

∑
q∈f(i)Ctrans(Ti, {q}). This



56 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

implies that we can rewrite
∏n
i=1 val(Ctrans(Ti, f(i))) as follows:∑

(q1,...,qn)∈Qn s.t.
(q1,...,qn) is good for f

n∏
i=1

val(Ctrans(Ti, {qi})) .

Since every sequence (q1, . . . , qn) is good for exactly one f and since

{q1, . . . , qn}|rare(M) =
⋃

i∈{1,...,n} s.t.
f(i)6=plenty(M)

f(i)

holds for this f , we get the claimed equality.
Let us now analyse the correction circuit Ccorrect. By definition, it computes

the following value: ∑
N(M s.t.

M |rare(M)=N |rare(M)

val(Cmulti(T1, . . . , Tn, N)) .

By applying the inner induction hypothesis to N for the second claim, we
can rewrite this as∑

N(M s.t.
M |rare(M)=N |rare(M)

∑
(q1,...,qn)∈Qn s.t.
{q1,...,qn}|m=N

n∏
i=1

val(Ctrans(Ti, {qi}))

=
∑

(q1,...,qn)∈Qn s.t.
ex. N(M s.t.

M |rare(M)=N |rare(M) and

{q1,...,qn}|m=N

n∏
i=1

val(Ctrans(Ti, {qi})) .

Consider the set of sequences (q1, . . . , qn) for which there exists an N ( M
with M |rare(M) = N |rare(M) and {q1, . . . , qn}|m = N . This is exactly the set of
superfluous sequences: These are the sequences where the number of rare states
is the same as in M , but where at least one plentiful state of M is not present
m times in the sequence. This concludes the correctness proof.

Depth and Fan-in: The second and third properties of the lemma follow
since the construction of the circuit makes only local changes to the tree that
only depend on the automaton. �

Turning Convolution Circuits Into Arithmetic Circuits. We now
tackle the problem of evaluating convolution circuits using GapAC0 circuits
and, at the same time, address the problem of how histograms are encoded as
numbers.

In order to represent a one-dimensional histogram h for a structure A us-
ing a single number, we imagine h to be stored in computer memory. Then
numb(h) =

∑
i∈{0,...,|A|} h[i]b

i, where log2 b is the word size of the memory, is

a single number that represents the whole of the memory contents. For suffi-
ciently large b, the bit representation of each h[i] can be retrieved easily from a
bitstring representation of numb(h). For multidimensional histograms, we use a
vector b = (b1, . . . , bk) of bases and define the number encoding of h with respect



4.3. FROM AUTOMATA EVALUATION TO ARITHMETIC CIRCUIT EVALUATION 57

to b as

numb(h) :=
∑

(i1,...,ik)∈{0,...,|A|}k
h[i1, . . . , ik]b

i1
1 · · · b

ik
k .

The bitstring representation of h with respect to b, denoted by strb(h), arises
from viewing numb(h) as a binary number that starts with the most significant

bit. By choosing ever larger bases bi, namely b1 = 2|A|, b2 = 2|A|
2
, b3 = 2|A|

3
,

all histogram entries can be retrieved from strb(h). However, we can also set
a bi to just 1. If we do so for all bi, then the number numb(h) is just the sum
over all entries of the histogram. Setting the last ` many bi to 1 while setting
the first k many to ever larger values, we get a number that encodes for each
index into the first k dimensions of the histogram the sum over all entries for
the last ` dimensions.

Given two k-dimensional arrays C and D with ranges r and s, respec-
tively, we have numb(C +D) = numb(C) + numb(D) and also numb(C −D) =
numb(C)−numb(D). More importantly, we also have numb(C ∗D) = numb(C) ·
numb(D) from the derivation

numb(C ∗D)

=
∑

`1,...,`k∈[r+s−1](C ∗D)[`1, . . . , `k]b
`1
1 · · · b

`k
k

=
∑

`1,...,`k∈[r+s−1]

∑
i1+j1=`1,...,ik+jk=`k

C[i1, . . . , ik]D[j1, . . . , jk]b
`1
1 · · · b

`k
k

=
∑

i1,...,ik∈[r] and j1,...,jk∈[s]C[i1, . . . , ik]D[j1, . . . , jk]b
i1+j1
1 · · · bik+jkk

=
∑

i1,...,ik∈[r]C[i1, . . . , ik]b
i1
1 · · · b

ik
k

∑
j1,...,jk∈[s]D[j1, . . . , jk]b

j1
1 · · · b

jk
k

=numb(C) · numb(D).

With these observations, we can turn a convolution circuit into an arithmetic
circuit for given bases, as stated by the following lemma:

Lemma 4.11. There is a FO-computable function that gets a convolution
circuit C with n input gates as input and outputs an arithmetic circuit D with
n+ k input gates, such that for all b = (b1, . . . , bk) the following holds:

numb

(
val(C[B1, . . . , Bn])

)
= val(D[numb(B1), . . . , numb(Bn), b1, . . . , bk]).

The circuit D will have the same topology as C, except that each constant gate
gets replaced by a circuit of constant depth with O(rk logm) gates where r is the
range of the constant gate’s arrays and m is the largest number in these arrays.

Proof. The circuit D is obtained from C by replacing every addition gate
of the convolution circuit by a normal addition gate in the arithmetic circuit,
replacing every convolution gate by a multiplication gate, and replacing ev-
ery constant gate with the constant array X attached to it by an arithmetic

circuit evaluating the formula numb(X) =
∑

`1,...,`k∈[r]X[`1, . . . , `k]b
`1
1 · · · b

`k
k .

The above circuit has constant depth and each number X[`1, . . . , `k] can be
expressed in constant depth using logm gates. �

To prove Theorem 1.7 (and, hence, Theorem 1.8) from the introduction we
prove the following more general theorem:



58 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

Theorem 4.12. For every mso-formula ϕ(X1, . . . , Xk) over some vocabu-
lary τ and every d ∈ N, there is a DLOGTIME-uniform GapAC0-circuit family
that, on input of a τ -structure A of tree depth at most d and a vector b ∈ Nk
of bases, outputs numb(histogram(A, ϕ)).

Proof. Let us recapitulate the sequence of transformations introduced in
this chapter: Starting with an mso-formula ϕ over a vocabulary τ and d ∈ N, by
Lemmas 4.6 and 4.7 and Theorem 2.19 we can turn ϕ into a fixed multiset tree
automaton A and we can turn (using an FO-computation) any logical structure
A of tree depth at most d into an s-tree structure T of constant depth with
histogram(A, ϕ) = histogram(SA(T , Qa)). By Lemma 4.10, we can turn the
s-tree structure into a convolution circuit whose output is exactly the desired
histogram. This circuit will have constant depth and polynomial size and,
furthermore, all constants are from [2]k = {0, 1}k. By the preceding lemma,
we can turn the convolution circuit into an arithmetic circuit that takes bases
as (additional and only) inputs. The resulting arithmetic circuit has constant
depth. In particular, it can be evaluated in GapAC0 as claimed. �

4.4. Applications to Solving Number Problems

The theorems proved in the present section put problems into constant-
depth circuit classes by using mso-based definitions and considering their re-
striction to structures of bounded tree depth, or reductions to such problems.

Finding Matchings. In Example 3.24 we used an mso-formula ϕ′
matching

to define matchings on incidence representations of graphs. That means, for
the incidence representations Ginci of a graph and a variables assignment αinci

for it, we have (Ginci, αinci) |= ϕ′
matching if, and only, if αinci(M) is a set of

elements from the universe of Ginci that stands for a set of edges that is a
matching. By restricting the admissible inputs to have bounded tree depth,
we can apply Theorem 1.7 to show that the problem of counting the number
of perfect matchings in tree-depth-bounded graphs lies in DLOGTIME-uniform
GapAC0. Moreover, deciding whether a given graph of bounded tree depth has
a matching of some given size is TC0-complete; in contrast, the same problem
on tree-width-bounded graphs is L-complete (Section 6.4).

Theorem 4.13. For every d ∈ N, the language

exact-matching-tree-depth-d :=

{(G, s) | td(G) ≤ d and G has a matching of size s}

is TC0-complete under AC0-Turing-reductions.

Proof. For proving containedness, the TC0-circuit first checks whether
the tree depth of G is at most d, which can even be done in AC0. Next, the
circuit computes the incidence representation of G and computes the solution
histogram h of Ginci and ϕ′

matching. If h[s] > 0, it accepts and rejects, otherwise.

We are only left to prove TC0-hardness under AC0-Turing-reductions; we
will do this by a transformation from majority. For an input x1 . . . xn ∈
{0, 1}n to majority, build a graph G that is the union of n components G1 to
Gn. Each component Gi is either just a single vertex, if xi = 0, or the graph
, if xi = 1. The graph contains a matching of size bn/2c + 1 exactly if more

than half of the entries of x1 . . . xn are 1. �



4.4. APPLICATIONS TO SOLVING NUMBER PROBLEMS 59

From Numbers to Structures. Even when problems are not directly
definable in mso, we may use reductions to problems that are in order to place
them in uniform constant-depth circuit classes by using theorems related to
tree-depth-bounded input structures. An example are problems whose inputs
are sequences of numbers and we ask whether we can add up the numbers in
a certain way. In the introduction we saw that majority can be reduced to
a problem that fits to Theorem 1.8. Similar arguments work for the unary
versions of the subset sum problem, unary-subsetsum :=

{1a10 1a20 . . . 1an00 1b | ∃I ⊆ {1, . . . , n} with
∑

i∈I ai = b} ,

and the knapsack problem, unary-knapsack :=

{1w10 1w20 . . . 1wn00 1v10 1v20 . . . 1vn00 1w00 1v |

∃I ⊆ {1, . . . , n} with
∑
i∈I

wi ≤ w and
∑
i∈I

vi ≥ v} .

The quest of resolving the complexity of these problems has a long history:
If the input numbers are encoded in binary, both problems are known to be
NP-complete. They become polynomial time solvable using dynamic tables if
the numbers are encoded in unary as above; in fact, they can be shown to lie in
NL in this setting via solving a reachability problem that is related to the tables.
Inspired by a conjecture of Cook (1985) that “a problem in NL which is probably
not complete is the knapsack problem with unary weights,” a line of research
began to capture the complexity of unary-subsetsum and unary-knapsack
with specialized complexity classes lying between L and NL (Ibarra et al.,
1988; Cho and Huynh, 1988; Jenner, 1995), see also the earlier work of Monien
(1980). Elberfeld, Jakoby, and Tantau (2010) proved unary-subsetsum ∈ L,
which was independently also shown by Kane (2010). While the later paper
presents a direct algebraic approach for solving unary-subsetsum, the earlier
paper maps an instance 1a10 1a20 . . . 1an00 1b of unary-subsetsum to a forest
F = (V,EF ) consisting of n stars where the ith star has ai vertices and uses an
mso-formula ϕ(X) that forces solution sets S ⊆ V to cover each star either com-
pletely or not at all. Since this reduction is FO-computable and the forest has
tree depth 2, we can apply Theorem 1.8 to get unary-subsetsum ∈ TC0; we
have 1a10 1a10 . . . 1an00 1b ∈ unary-subsetsum exactly if histogram(F , ϕ)[b] >
0. unary-subsetsum is also hard for TC0 since asking whether the majority
of entries of a binary string of length n are set to 1 is equivalent to ask whether
we can single out a subset of positions whose entries add up to bn/2c+ 1.

Number problems like subsetsum can be phrased as the task of solving a
constant number of linear equations where the solution values that are assigned
to the variables are bounded by some threshold: For example, subsetsum is
the problem of deciding, for a given vector a ∈ {0, 1}n and a target value
b ∈ N0 whether there exists a vector s ∈ {0, 1}n with aT s = b. The application
of Theorem 1.8 to unary-subsetsum can be adjusted to solve systems of a
constant number of linear equations where the entries of the solution vector are
bounded by a number given in the input. Formally, the input to this problem,
which we call `-integer-linear-equations, is a linear equation system with
integer coefficients (A, b) ∈ Z`×m×N`0 and an upper bound t ∈ N. The problem
asks whether there is an s ∈ {0, . . . , t}m with As = b. Like subsetsum, this
problem is well known to be NP-complete for any ` if the input numbers are



60 4. BOUNDED TREE DEPTH AND CONSTANT-DEPTH CIRCUITS

encoded in binary and solvable in polynomial time if the input numbers are
encoded in unary (this fact is discussed, for example, by Papadimitriou (1994)).
Its unary version, proven to lie in L by Stockhusen (2011), is TC0-complete.

Theorem 4.14. For each ` ∈ N, `-integer-linear-equations with input
numbers given in unary is complete for TC0 under AC0-Turing-reductions.

Proof. For the upper bound, reduce `-integer-linear-equations with
coefficients that are given in unary to an mso-definable problem on structures
of tree depth 4, which can be solved in TC0 by applying Theorem 1.8. We first
discuss the case that the coefficients of the equation system are from N0 and
later extend this to coefficients from Z.

Given an equation system (A, b) ∈ N`×m0 ×N`0 and a bound t ∈ N, we build
a forest F of m trees T1, . . . , Tm. Each tree Ti has a root ri to which we attach
t + 1 child nodes vi,0, . . . , vi,t. Choosing a node vi,j will later correspond to
choosing the value j for the variable xi. To each vi,j we attach ` children ai,j,1,
. . . , ai,j,`. We establish ` unary predicates PF

1 , . . . , PF
` and put each node ai,j,k

into the predicate PF
k . To each ai,j,k, we attach j ·A[k, i] leaf nodes.

To define the problem, we use an mso-formula ϕ(X1, . . . , X`) whose solu-
tions S1, . . . , S` must satisfy the following properties: There exists a set of
vertices {v1,j1 , . . . , vm,jm} (that means, a value for each variable), such that for
each k ∈ {1, . . . , `} (each equation with index k), exactly the leaves below the
nodes ai,j1,k, . . . , am,jm,k are in Xk. The last property can be defined in mso

using the predicates PF
k . As a result, the number of elements in each set Sk

equals the value of the k’s equation when evaluated for the assignment of values
x1 = j1 . . .xm = jm to the variables. Thus, histogram(F , ϕ)[b] > 0 exactly if
(A, b) ∈ `-integer-linear-equations.

To solve the general problem with integer coefficients (and not only positive
integers) we first consider the absolute value of all coefficients and construct the
structure as described above. Then we establish two unary predicates PF

+ and

PF
− that are used to label the ai,j,k nodes that stand for positive and negative

coefficients, respectively. This means, if A[k, i] is a positive coefficient, we set
ai,j,k ∈ PF

+ for all j ∈ {0, . . . , t}, and ai,j,k ∈ PF
− otherwise. We extend the

previous formula to the formula ϕ(X1,+, . . . , X`,+, X1,−, . . . , X`,−) that forces

the same requirements, except that we put leaves below nodes from PF
+ into the

Xk,+ sets and leaves below nodes from PF
− into the Xk,− sets. The equation

system has a solution if there exists an index i = i1, . . . , i`, i`+1, . . . , i2` with
histogram(F , ϕ)[i] > 0 and b[1] = i1 − i`+1, . . . , b[`] = i` − i2`.

Hardness follows by encoding unary-subsetsum instances as 1-integer-
linear-equations instances. �

By using AC0-Turing-reductions to query for the existence of a solution in
the histogram that satisfies the optimization criterion imposed by the knapsack
problem, the previous theorem makes it easy to prove unary-knapsack ∈ TC0.

Papadimitriou (1981) showed that the dynamic-programming-based tech-
nique of solving a constant number of linear equations with integer coefficients
that are given in unary still works if there is no bound t on the entries of the
solution vector. His key argument states that if (A, b) is solvable, then also by
a vector whose entries are polynomial in the length of the unary encoding of
(A, b). By equipping inputs with this bound and applying the previous theorem,
we can also solve this problem variant in TC0.



CHAPTER 5

Tree Decompositions as Terms and
Logarithmic-Depth Circuits

In the present chapter we prove the theorems that involve circuits of loga-
rithmic depth and structures that are given together with width-bounded tree
decompositions whose underlying trees are encoded as terms. In the context
of research on logarithmic-depth circuits, trees in term representation are a
natural form of input because many problems on trees, including problems
studied in the present thesis, become L-complete if the input tree is given as
a pointer structure, but are solvable in logarithmic depth if it is given as a
term. A problem of this kind is evaluating Boolean sentences; it is L-complete
if the tree underlying the input sentence is encoded as a pointer structure and
NC1-complete if it is given as a term.

In many works on logarithmic-depth circuits (including the present), a cen-
tral problem is that a logarithmic-depth circuit cannot work on the term rep-
resentation directly when the encoded tree has large depth. Instead, some sort
of balancing must be done. To deal with this issue, the most common approach
is to recursively divide the tree into parts of almost the same size, compute
intermediate values for the different parts, and put them together. Finding
appropriate recursive separators of the tree in a uniform manner is a highly
involved problem; and even when the separators have been found, it is difficult
to implement the recursion in such a way that intermediate values are passed
around in the correct way. This way of simultaneously balancing and processing
the input was developed by Buss, Cook, Gupta, and Ramachandran (1992) and
applied to the problem of evaluating Boolean and arithmetic sentences. It was
later extended by Krebs, Limaye, and Mahajan (2010) to count the number of
accepting computations of visible pushdown automata in #NC1. While Krebs
et al. left the balancing approach of Buss et al. untouched, they adjusted the
way of how partial solutions are combined based on automaton-dependent al-
gebraic operations. Instead of trying to push this approach even further to
the needs of solving mso-definable problems, we will attack the balancing issue
at an earlier stage: We balance the tree decomposition before evaluating the
problem-defining mso-formula. For this we adapt an NC-approach of Bodlaen-
der (1989) that is based on the classical tree contraction method and show that
it can be implemented in FTC0 in case of trees that are given as terms. This has
the advantage that it separates the balancing from the actual problem-solving
step and, thus, results in simpler proofs.

The proofs of Theorems 1.4 and 1.5 almost follow along the same lines as
those of the previous chapter, which involved the following steps: (1) Com-
pute tree decompositions of the input structures. (2) Move from formulæ on
the input structures to formulæ on trees. (3) Move from formulæ on trees to
equivalent tree automata. (4) Move from the evaluation of tree automata to

61



62 5. TREE DECOMPOSITIONS AS TERMS AND LOGARITHMIC-DEPTH CIRCUITS

evaluating (arithmetic) circuits. Clearly, the first step is no longer necessary in
the setting of the present section since the tree decomposition is already part
of the input, but instead of constructing a tree decomposition, we balance an
existing one. All of the other steps are still possible when the depth of the tree
is no longer bounded. Moreover, since they increase the depth and degree of
the considered trees only by a constant factor, we will get the desired Boolean
and arithmetic circuits of logarithmic depth.

The present chapter is organized as follows: In Section 5.1 we review term
representations. In Section 5.2 we prove the technical result on how a balanced
width-3 tree decomposition of any tree can be computed in FTC0, and how this
can be used to balance tree decompositions. At the end of this section we prove
Theorems 1.4 and 1.5. In Section 5.3 we describe how the theorems can be used
to simulate computations of different kinds of automata.

5.1. Representing the Ancestor Relation of Trees by Terms

Up to now, the details of how tree decompositions are encoded as strings
was not important; indeed, in the context of bounded tree depth almost any
encoding of the input graph and of tree decompositions will work since they
can easily be transformed into one another. In the context of logarithmic-depth
circuits, however, it is well known that it is crucial that the ancestor relation of
the tree is made accessible to the circuits, rather than just a pointer structure
or an adjacency matrix. There are two different ways of encoding this relation:
Explicitly as a list of pairs or implicitly as a bracket structure. The two repre-
sentations can be transformed into one another using TC0-circuits and we will
use both of them.

Definition of Ancestor and Term Representations. In the fol-
lowing, let T be a tree like the one shown right. The set of term repre-
sentations of T is the set of all strings over the two-letter alphabet { [ , ] }
that can be obtained recursively as follows: If the subtrees rooted at the
children of T ’s root are T1, . . . , Tn (in some arbitrary order) and if t1 to tn
are term representations of T1 to Tn, respectively, then [t1 . . . tn] is a term rep-
resentation of T . For instance, the tree right has the two term presentations
[ [ ] [ [ ] [ ] ] ] and [ [ [ ] [ ] ] [ ] ].

An ancestor representation of a tree T whose nodes are encoded as bitstrings
is a strings over the alphabet { ( , ) , 0, 1,#} that is a concatenation of all strings
(u#v) where u is an ancestor of v in T . For the tree above with nodes labeled
with bitstrings a to e according to an in-order traversal (so b is the root), a
possible ancestor representation is (b#a)(b#c)(b#d)(b#e)(d#c)(d#e).

In order to encode a tree decomposition using either term representations
or ancestor representations, we must also encode the bags. For term represen-
tations, this can be done, for instance, by first encoding individual bags in some
sensible way as strings, and then encoding the bag function B as a string of
blocks, such that the ith block encodes the bag B(n) exactly if the ith symbol
of the term representation is the opening bracket of the node n. (The contents
of blocks at positions of closing brackets are arbitrary and ignored.) For an-
cestor representations, we use the same encoding, only i is now the number of
bitstrings different from n that precede n in the ancestor representation.



5.1. REPRESENTING THE ANCESTOR RELATION OF TREES BY TERMS 63

Converting Representations. In a term representation t, the elements
of the set V (T ) are not explicitly encoded anywhere; we only access them
indirectly through the fact that each node n has a unique position L(n) in t were
the opening bracket of this node is located. For this reason, for convenience we
may assume that V (T ) = {1, . . . , q} is just a set of numbers and we may assume
that L is a monotone function. For a node n with exactly two children, let us call
the child of n that comes first in the term representation the left child and the
one that comes second the right child. For each node n, let R(n) be the position
of the closing bracket of its representation in t. For instance, if t = [ [ [ ] [ ] ] [ ] ],
for the first child c of the root we have L(c) = 2 and R(c) = 7. It is well known
that L and R are computable in FTC0; see, for example, (Gottlob et al., 2005):
The number L(n) for n ∈ {1, . . . , q} is the position of the opening bracket for
which there are exactly n − 1 opening brackets to its left. The number R(n)
is the first position to the right of L(n) such that between L(n) and R(n) the
number of opening and closing brackets is balanced (that is, equal). Given a
node n ∈ V (T ), using L(n) and R(n) we can easily determine whether a node n
is a left or a right child or the root. Provided they exist, we can also compute its
parent node p(n), its grandparent node g(n) = p(p(n)), and also its sibling node
s(n) in FTC0. We can also decide the ancestor relation for two nodes n and m
by testing whether [L(m), R(m)] is contained in [L(n), R(n)]. The least common
ancestor lca(n,m) is the least node (with respect to the ancestor relation) that
is an ancestor of both n and m. These observations imply Lemma 5.1; also the
other direction is possible (Lemma 5.2).

Lemma 5.1. There is a function in DLOGTIME-uniform FTC0 that maps
every term representation of a tree T to an ancestor representation of T (for
an appropriate naming of the nodes of T ).

Lemma 5.2. There is a function in DLOGTIME-uniform FTC0 that maps
every ancestor representation of a tree T to a term representation of T .

Proof. It suffices to show that a TC0-circuit can compute, for every node
n ∈ V (T ), two positions L(n) and R(n) such that the string t that has an open-
ing bracket at each L(n) and a closing bracket at each R(n) is a term representa-
tion of T . Let us order the nodes of T as follows: For each node n let the children
of n be ordered according to the order in which they first appear in the ancestor
representation. This induces a specific term representation t of T and we will
compute this particular representation. Observe that with respect to this order-
ing, the position L(n) of a node n can be expressed as follows: Consider the path
n1, n2, . . . , nk from the root to the parent of n. For each node on this path there
is one opening bracket to the left of L(n). Furthermore, for every sibling s of any
ni that comes before ni with respect to the ordering we fixed earlier, every node
in the subtree rooted at s contributes an opening and a closing bracket to the
left of L(n). For the computation of L(n) using FTC0-circuits, first observe that
given a node n ∈ V (T ) we can compute the number dn of nodes of T that are de-
scendants of n. Next, we can also compute the parent node of n in T and, thus,
also the set of all of its siblings and also which siblings are before n with respect
to the ordering. For a node n, let pn be the number of nodes in the subtrees
rooted at the siblings of n that precede n in the ordering of the siblings. Then
L(n) is the sum of the numbers 2pni+1, where the ni are all ancestors of n, plus 1
for the opening bracket of n. The number R(n) is given by L(n)+ 2dn+1. �



64 5. TREE DECOMPOSITIONS AS TERMS AND LOGARITHMIC-DEPTH CIRCUITS

5.2. Balancing Tree Decompositions in Constant Depth

A tree is binary if every inner node has exactly two children. In a binary
tree, we may wish to distinguish between the left and the right child of a node.
In such a case, we call T a binary tree with distinguished left and right children.
Formally, T is a labeled tree where for every inner node exactly one of the chil-
dren has the label “is left child.” A tree is balanced if all root-to-leaf paths have
the same length. Note that balanced binary trees have depth

⌊
log2(|V (T )|)

⌋
+1.

In the present section we prove the following lemma:

Lemma 5.3. Let w ∈ N be any tree width bound. There is a DLOGTIME-uni-
form TC0-circuit family that gets a term-represented width-w tree decomposition
(T,B) of a graph G as input and outputs a term-represented width-(4w+3) tree
decomposition (T ′, B′) of G where T ′ is a binary and balanced tree.

In order to prove this lemma, we adapt the NC-approach of Bodlaender
(1989) for computing balanced tree decompositions for trees and show that it
can be implemented using constant-depth threshold circuits if the input tree is
given as a term. The approach of Bodlaender is based on the classical method
of tree contraction (Miller and Reif, 1985; Abrahamson et al., 1989). Thus, we
first review the tree contraction method and discuss its complexity, before we
use it to balance trees.

Contracting Trees in Constant Depth. The tree contraction method
is commonly used in the context of pram algorithms to solve problems on
tree structures in logarithmic parallel time. We review this method and show
how to implement it using FTC0-circuits for input trees that are given in term
representation. The tree contraction method starts with a binary input tree T
and iteratively proceeds as follows: Consider every second leaf (with respect
to the left-to-right ordering induced by the term representation of T ). Among
these leaves, (conceptually) build two sets Lleft and Lright of leaves that are left
and right children, respectively. Starting with, say, Lleft, apply the following
prune-and-bypass operation (also known as the rake operation) in parallel to all
its members.

Definition 5.4. Let T be a tree and let n be a leaf of T . Let p be its
parent, s its sibling, and g its grandparent. We call the tuple (n, s, p, g) the
contraction tuple of n. The tree resulting from the prune-and-bypass operation
applied to this tuple is the tree in which we remove both the node n (this is
called pruning) and its parent node p, making the sibling s the new child of g,
taking the place of p (this is called bypassing).

. . .

g

p

n s

. . .

. . .

g

s

. . .

An example of the prune-and-bypass operation is shown
right. Note that, because only every second leaf is considered
and since all leaves are left children, the contractions can be
applied in parallel to all members of Lleft. Next, apply the
prune-and-bypass operation to all leaves in Lright in parallel.
The tree that results obviously has half the number of leaves
as T used to have and we can reapply the contraction opera-
tion. After a logarithmic number of steps, the tree will have shrunk to a single
node.

Let T be a tree withm = 2k leaves. Number the leaves of T from left to right
as {l1, . . . , lm}. The leaves to be deleted in round i are all that have an even



5.2. BALANCING TREE DECOMPOSITIONS IN CONSTANT DEPTH 65

number among those that remain. Thus, in the first round, {l2, l4, l6, . . . , lm}
will be removed, in the second round {l3, l7, l11, l15, . . . , lm−1}, and so on. In
general, in round ith we remove the leaves {l2i−1+1+j2i | j ∈ {0, . . . , 2k−i − 1}}.

For each set S of leaves to be removed, we first compute the contraction
tuples of all leaves in S that are left children and apply the contraction step
to them. In the resulting tree, we compute the contraction tuples in S that
are right children and, again, apply the contraction step to all of them. Thus,
it actually takes two rounds to halve the number of leaves. Let us call the
sequence of trees generated in this way T1, T2, T3, . . . , Tt, where T1 = T and
in Tt there are exactly two leaves, and in every second tree the number of leaves
has exactly halved. For a leaf l, let rank(l) be the maximal number i such that l
is still an element of Ti. Clearly, this rank function is computable in FTC0. An
example is given in Figure 5.1.

a

1 b

c

2 3

d

4 e

f

5 6

g

7 8

a

1 b

3 e

5 7

f

6

g

8

a

1 b

3 e

5 7

a

1

e

5 7

a

1

5

Tree T1: Tree T2: Tree T3: Tree T4: Tree T5:

Figure 5.1. Example of a tree T = T1 and the trees T2, T3, T4
and T5. In T1 and T2 the prune-and-bypass operation is applied
to the even-numbered leaves that are left children (2 and 4) or
right children (6 and 8) of their parents in T1, respectively. In
T3 and T4 the operation is applied to the even-numbered leaves
that are left children (3) or right children (5) of their parents in
T3, respectively. The gray nodes indicate the nodes that will be
pruned and bypassed in each tree.

r

1 . . .

For technical reasons, in the following we require that T has the
following properties: (a) Every inner node has exactly two children,
(b) the number of leaves is m = 2k for some k, (c) the left child of the
root is a leaf, like shown on the right. This ensures that the root’s left
child comes first in the leaf ordering and that it will never be pruned. Thus, all
pruning is done on the right subtree of the root. This implies, however, that
in all trees up to Tt, the root is not the parent of a pruned node. Thus, by
stopping our construction at Tt, we ensure that g(l) is always well-defined for
all pruned leaves l.

The following observations concerning the trees Ti are due to Buss (1993).

(1) The leaves of each Ti are precisely the leaves of T with rank at least i.
(2) If x and y are nodes in Ti, then their least common ancestor in Ti is

the same as their least common ancestor in T .
(3) An inner node of T is a node of Ti if, and only if, it is the least common

ancestor of two leaves of rank at least i.

Buss infers from these properties that the Ti can be computed in NC1. However,
since computing ranks and least common ancestors can even be done in FTC0,
as we argued earlier, the Ti can actually be computed in FTC0.



66 5. TREE DECOMPOSITIONS AS TERMS AND LOGARITHMIC-DEPTH CIRCUITS

Balancing Trees via Tree Contractions. Before applying the tree con-
traction method to balance trees, we prove two technical lemmas that help us
to make trees of bounded degree and logarithmic depth binary and balanced.

For this, we define embeddings of trees into trees: An embedding of a tree
T into a tree T ′ is an injective mapping ι : V (T ) → V (T ′) such that for every
pair of nodes a, b ∈ V (T ) there is a path from a to b in T if, and only if, there
is a path from ι(a) to ι(b) in T ′, and the root of T is mapped to the root of T ′.
Given two embeddings ι : V (T )→ V (T ′) and κ : V (T ′)→ V (T ′′), note that the
composition κ ◦ ι : V (T ) → V (T ′′) is also an embedding. Given an embedding
ι : V (T ) → V (T ′), we call a node w ∈ V (T ′) a white node if there is no node
n ∈ V (T ) with ι(n) = w. An example of an embedding is shown in Figure 5.2.

Tree T :
a

b c d

e f

Tree T ′ :
a

b

c

d

e

f

Figure 5.2. The embedding maps each node of the left tree to
the node with the same label in the right tree. The unlabeled
nodes are exactly the white nodes.

Lemma 5.5. There is a function in DLOGTIME-uniform FTC0 that maps
the ancestor representation of any tree T of bounded degree to an ancestor
representation of a tree T ′ together with an encoding of an embedding ι : T → T ′

such that T ′ is binary.

Proof. For every node n of too high degree d > 2, introduce d − 2 new
white nodes and connect them so that they form a path starting at n and make
the children of n children of these nodes in such a way that n and all new nodes
have degree 2. For nodes of degree 1, just add a second child that is white. �

Lemma 5.6. For every c, there is a function in DLOGTIME-uniform FTC0

that maps the ancestor representation of any tree T of degree c and depth
c log2 |V (T )| to an ancestor representation of a tree T ′ together with an en-
coding of an embedding ι : T → T ′ such that T ′ is binary and balanced.

Proof. First, using Lemma 5.5, we may assume that the degree of all inner
nodes of T is 2. We compute the height h of the tree (the maximum length of
a path from the root to a leaf). Now, for every leaf l of T with distance h′ < h
to the root, we add a new binary balanced tree of depth h − h′ with l as its
root. All added nodes are white. The added trees themselves do not depend
on the input and they inherit their ancestors from the leaf l. �

The upcoming lemma follows almost immediately from the FTC0 computa-
tion of tree contractions observed above in conjunction with ideas from Bodlaen-
der (1989) who showed how to compute logarithmic-depth tree decompositions
with the help of the tree contraction method in NC. Thus, the proof of the
following lemma is mostly added to give a complete picture of why the stated
claims hold, rather than presenting new techniques.



5.2. BALANCING TREE DECOMPOSITIONS IN CONSTANT DEPTH 67

Lemma 5.7. There is a function in DLOGTIME-uniform FTC0 that, on
input of a term representation of a tree T , outputs a term representation of a
width-3 tree decomposition (S,B) of T where S is a balanced binary tree.

Proof. Our input is a term representation t of a tree T . As a preprocessing
step, we compute an embedding of T into another tree T ′ such that the three
technical properties from above are satisfied: (a) Every inner node has exactly
two children, (b) the number of leaves is m = 2k for some k, (c) the left child
of the root r is a leaf. To achieve this, we apply Lemma 5.5 and add some
additional white nodes as needed. Clearly, this can be done using TC0-circuits.
Note that T ′ now has exactly 2m− 1 nodes.

Our objective is to compute a width-3 tree decomposition (S,B) of T that is
balanced. In the following, we only describe how we can compute a width-3 tree
decomposition of T ′ that has bounded degree and logarithmic depth. However,
Lemma 5.6 allows us to embed S into a balanced tree and extending the bag
labeling to the white nodes w of this balanced tree can be done, for instance,
by setting B(w) = B(n) for the first non-white ancestor n of w. Thus, we must
now compute an ancestor representation of a width-3 tree decomposition (S,B)
of T of constant degree and logarithmic depth.

I(u, v)
. . .

u

. . .

v

. . .

We start with some observations concerning how contraction
tuples can be related. Given two nodes u, v ∈ V (T ′) such that u
is an ancestor of v let I(u, v) be the set of nodes n ∈ V (T ′), such
that u is an ancestor of n, but not v; an example of I(u, v) is
shown on the right. For every contraction tuple c = (n, s, p, g),
observe that the sets I(g, p), I(p, n), and I(p, s) are disjoint be-
cause p is the least common ancestor of n and s in T . Further-
more, because n is a leaf, I(g, s) = I(g, p)∪ I(p, n)∪ I(p, s). Let
us also write I(c) for this disjoint union, see Figure 5.3 for an example.

g1

p1

n1 s1

g2

p2

n2 s2

g3

p3

s3 n3

Figure 5.3. Three contraction tuples c1 = (n1, s1, p1, g1) to
c3 = (n3, s3, p3, g3) of the tree T from Figure 5.1. Note how in
each tree the sets I(pi, ni), I(pi, si), and I(gi, pi) are disjoint and
that their union I(ci) is exactly one of the sets for the next tuple.

When moving from Ti to Ti+1, each edge is either copied or contracted.
This implies that for all i ≤ j and all edges (u, v) ∈ E(Ti) there is a unique
edge (x, y) ∈ E(Tj) such that I(u, v) ⊆ I(x, y). Given two different contraction
tuples c = (n, s, p, g) and c′ = (n′, s′, p′, g′), the sets I(c) and I(c′) are either
disjoint or one is contained in the other. To see this, let r = rank(n), r′ =
rank(n′), and assume r < r′. Then I(c) = I(g, s) and as we just argued there
is a unique edge (x, y) in E(Tr′) with I(g, s) ⊆ I(x, y). If (x, y) = (g′, s′),



68 5. TREE DECOMPOSITIONS AS TERMS AND LOGARITHMIC-DEPTH CIRCUITS

then I(c) ⊆ I(c′); and if (x, y) and (g′, s′) are different edges, then I(x, y) and
I(g′, s′) are disjoint and hence also I(g, s) and I(g′, s′) since I(g, s) ⊆ I(x, y).

Let the nodes of the decomposition’s tree S be exactly the contraction
tuples. There is an edge (c, c′) ∈ E(S) if I(c′) ( I(c) and there is no c′′ with
I(c′) ( I(c′′) ( I(c). By the above properties of contraction tuples, S is, indeed,
a tree. We attach the bag B(c) = {n, s, p, g} to each tuple c = (n, s, p, g).

We claim that (S,B) is a width-3 tree decomposition of T ′. First, its width
is clearly at most 3. Second, it has the covering property: Except for two special
edges, for every edge (u, v) ∈ E(T ) there is a first i such that (u, v) ∈ E(Ti), but
(u, v) /∈ E(Ti+1), because edges are copied from each Ti to the next until they
become part of a contraction tuple c. But, then, by definition, u, v ∈ B(c). (The
only two exceptional edges are those still present in the last Tt. To cover these,
we can add one additional bag at the very end to the root. We ignore these
edges in the following discussion.) Third, we have to prove the connectedness
condition: For this, let v ∈ V (T ) be a fixed node and let c = (n, s, p, g) be a
node of S with v ∈ B(c). Then v is one of n, s, p, or g by construction. Consider
the parent c′ of c in S. Suppose c was contracted in tree Ti and c

′ = (n′, s′, p′, g′)
was contracted in some later Tj . Then in Tj there is still the edge (g, s) and
we have (g, s) = (g′, p′) or (g, s) = (p′, n′) or (g, s) = (p′, s′). This means that
if v was either n or p, we have v /∈ B(c′) and if v was either g or s, we have
v ∈ B(c′). Repeating this argument, let c0 = (n0, s0, p0, g0) be the first ancestor
of c such that v ∈ {n0, p0}. Then v ∈ B(c′′) holds for all ancestors of c up to
c0, but not for any ancestors of c0. Now, starting from any two nodes c and d
with v ∈ B(c) and v ∈ B(d), suppose we had c0 6= d0. Then v ∈ I(g(c0), s(c0))
would hold and also v ∈ I(g(d0), s(d0)), but these sets are disjoint. This shows
that v lies in every bag on the path from both c and d to a common ancestor.
Hence, the set of all nodes of S whose bags contain v is connected.

We already saw that the ancestor relation of S is computable in TC0. The
maximum degree of any node of S is three: A contraction tuple c = (n, s, p, g)
can only be a direct child of another contraction tuple c′ if the edge (g, s)
resulting from contracting c is one of the three edges contracted by c′. �

Lemma 5.8. Let G be a graph, let (T,B) be a width-w tree decomposition
of G, and let (T ′, B′) be a width-w′ tree decomposition of T . Then (T ′, B′′) with
B′′(n) =

⋃
x∈B′(n)B(x) is a width-(ww′ + w + w′) tree decomposition of G.

Proof. The width bound of (T ′, B′′) holds by its definition. To prove the
covering property, note that every bag B(x) that is present in (T,B) is a subset
of some B′′(n) for some n ∈ V (T ′). To prove the connectedness property,
consider any node v ∈ V (G). By the connectedness condition for (T,B), the
subgraph Tv = T [{x | v ∈ B(x)}] is connected. By the connectedness condition
for (T ′, B′), for each node x ∈ V (Tv) the subgraph Tx = T ′[{n | x ∈ B′(n)}] is
also connected, and by the covering property of (T ′, B′) for every {x, y} ∈ E(Tv)
the trees Tx and Ty share at least one node. Hence, since Tv is connected, the
union of all Tx for x ∈ V (Tv) is connected and this union is exactly T [{n | v ∈⋃
x∈B′(n)B(x)}]. �

Finally, we get the proof of Lemma 5.3 as a corollary.

Proof of Lemma 5.3. Apply Lemma 5.8 to Lemma 5.7. �



5.2. BALANCING TREE DECOMPOSITIONS IN CONSTANT DEPTH 69

Decision and Counting Using Logarithmic-Depth Circuits. We are
now ready to prove the Theorems 1.4 and 1.5 from the introduction. The
proofs follow the exact same lines as for the theorems related to constant-depth
circuits, except that we no longer need to compute a tree decomposition, but
balance an existing one. The crucial point is to show the following modified
version of Lemma 4.7:

Lemma 5.9. Let ϕ(X1, . . . , Xk) be an mso-formula over some vocabulary τ
and w ∈ N. There is an s ∈ N0, an mso-formula ψ(X1, . . . , Xk) over τs-tree, and
a function in DLOGTIME-uniform FTC0 that, on input of any τ -structure A
with universe A and a width-w tree decomposition (T,B) for A where T is given
in term representation, produces an s-tree structure T and a term representation
of T , such that

(1) the depth of T equals the depth of T plus 1, and
(2) we have histogram(A, ϕ)[s] = histogram(T , ψ)[s] for all indices s ∈

{0, . . . , |A|}k and all other entries in the array histogram(T , ψ) are 0.

Proof. The proof structure is identical to that of Lemma 4.7. The only
difference is that the input tree is given as a term representation and we must
output the resulting tree also as a term representation. For this, we must adjust
the representation so that the same number of w+1 leaves (the element nodes)
are added to all nodes of the tree. This can be achieved in TC0 using ancestor
representations. �

Just as in the proof of Theorem 4.12, in order to prove Theorem 1.5, we
actually prove a stronger theorem were the bases are part of the input:

Theorem 5.10. For every mso-formula ϕ(X1, . . . , Xk) over some vocabu-
lary τ and every w ∈ N, there is a DLOGTIME-uniform #NC1-circuit family
that, on input of a τ -structure A along with a width-w tree decomposition in
term representation for A and bases b ∈ Nk, outputs numb(histogram(A, ϕ)).

Proof. After balancing the given tree decomposition using Lemma 5.3, we
use Lemma 5.9 to turn A into an s-tree structure T and ϕ into an equivalent
mso-formula ψ. The node degree of T is bounded in terms of the width of
(T,B). We use Theorem 2.19 and consider an equivalent tree automaton A for
ψ and extend its multiplicity bound to be higher than the degree of T . Using
Lemmas 4.10 and 4.11, we can reduce to the problem of evaluating bounded
fan-in arithmetic circuits without subtraction gates, a problem that can be
solved in #NC1. The resulting circuit family produces a number representation
of the histogram. �

Proof of Theorem 1.4. For the proof we just need the fact that testing
whether a function from #NC1 outputs a value greater than 0 is an NC1-com-
putable property. �

An alternative proof of Theorem 1.4 that is based on the approach of Buss
et al. (1992) works as follows: First make the decomposition binary. Then
transform the input structure into a degree-bounded s-tree structure and con-
sider an equivalent mso-formula over s-trees. Finally, translate the formula into
a classical tree automaton for degree-bounded labeled trees. Since simulating
the acceptance behaviour of such tree automata is in NC1 (Lohrey, 2001), the
theorem follows.



70 5. TREE DECOMPOSITIONS AS TERMS AND LOGARITHMIC-DEPTH CIRCUITS

5.3. Applications to Evaluating Automata

In this section, we show some examples of how to use the theorems for
logarithmic-depth circuit classes to put decision and counting problems into
NC1 and #NC1, respectively. Problems will be shown to lie in these classes
by reductions to problems that are covered by Theorems 1.4 and 1.5; that
means, mso-definable decision and counting problems on tree-width-bounded
structures. In order to apply the theorems, the reductions also need to compute
term representations of width-bounded tree decompositions.

Evaluating Boolean and Arithmetic Sentences. One of the well stud-
ied problems in the area of logarithmic-depth circuits is the evaluation of
Boolean and arithmetic sentences. Evaluating Boolean sentences that are given
as a term like ((0 ∧ 1) ∨ (1 ∨ 1)) can be done using pebbling-based evaluation
strategies that recursively split the input into sentences of almost the same size.

Fact 5.11 (Buss (1987); Buss et al. (1992)). Evaluating Boolean sentences is
complete for DLOGTIME-uniform NC1 under DLOGTIME-uniform AC0-many-
one-reductions.

Theorem 1.4 provides a different route to prove the containedness in NC1 by
using an mso-formula that existentially guesses truth values for all operations in
the sentence and locally checks whether the value of each operation is consistent
with its child values. Theorem 1.5, in turn, can be used to count the number
of proof trees of Boolean sentences. A proof tree T of a Boolean sentence S is
a subsentence that (a) contains the output gate of S, (b) for each ∨-operation
in T contains exactly one of its children from S, (c) for each ∧-operation in T
contains all its children from S, and (d) evaluates to true. Since proof trees
are mso-definable, we can use Theorem 1.5 to count them. The evaluation of
arithmetic sentences whose inputs are 0 and 1 is closely related to the problem of
counting proof trees: If we replace, in an arithmetic sentence like ((0·1)+(1+1)),
each + by an ∨ and each · by an ∧, then the number of proof trees of the
resulting Boolean formula equals the value of the arithmetic sentence (Caussinus
et al., 1998). Thus, by replacing operands in this way, Theorem 1.5 provides an
alternative mso- and tree-decomposition-based way to reprove the upper bound
from the following fact.

Fact 5.12 (Krebs et al. (2010)). Evaluating arithmetic sentences with in-
puts 0 and 1 is complete for DLOGTIME-uniform #NC1 under DLOGTIME-uni-
form AC0-many-one-reductions.

Evaluating Visible Pushdown Automata. Buss (1987) extended his
NC1-approach for the evaluation of Boolean sentences to also cover the mem-
bership problem for parenthesis languages. This approach, in turn, was later
generalized to cover context-free languages that are accepted by visible push-
down automata.

Definition 5.13 (Visible Pushdown Automaton). A visible pushdown au-
tomaton (vpa) is a pushdown automaton A = (Σ,Γ,⊥, Q, q0, Qa,∆) with input
alphabet Σ, stack alphabet Γ that contains a distinguished empty stack symbol
⊥ ∈ Γ, state set Q with a distinguished initial state q0 ∈ Q, a set Qa ⊆ Q
of accepting states, and transition relation ∆ ⊆ Σ × Γ × Q × Γ∗ × Q that de-
scribes how to observe the current input symbol, the topmost stack symbol and



5.3. APPLICATIONS TO EVALUATING AUTOMATA 71

the current state, and replace the topmost stack symbol by a string and the
current state by a new state. In case of vpas, the transition relation satisfies
the following properties: Σ can be partitioned into three sets Σpush, Σpop, and
Σno-change, such that (a) when reading a symbol from Σpop, the automaton
pushes exactly one symbol on the stack, (b) when reading a symbol from Σpop,
it pops the topmost symbol from the stack or leaves an empty stack unchanged,
and (c) when reading a symbol from Σno-change, it does not alter the stack.

Given some input string, the height of the stack at all positions of the string
(a) is the same for any nondeterministic computation and (b) can be computed
by observing the type of the input symbols without simulating the automaton
explicitly.

Fact 5.14 (Dymond (1988)). Let A be a vpa. The acceptance behaviour of
A can be simulated in NC1.

Beside deciding whether a string is accepted by a fixed vpa, recently the
problem of counting the number of accepting computation paths of nondeter-
ministic vpas was studied in the context of logarithmic-depth circuits.

Fact 5.15 (Krebs et al. (2010)). Let A be a vpa. Counting the number of
accepting computations of A can be done in #NC1.

We will show how Theorems 1.4 and 1.5 can be used to reprove the re-
sults of Krebs et al. and Dymond. For this, consider any fixed vpa A =
(Σ,Γ,⊥, Q, q0, Qa,∆). We use a FTC0-computation to translate input strings
for A into a structure S of tree width 1 that represents the input string and
a skeleton of the stack at the input positions. In order to apply Theorems 1.4
and 1.5, the reduction also computes a width-1 tree decomposition in ances-
tor representation for the structure. The vocabulary of the structure and the
mso-formula that describes accepting computations will only depend on the
fixed automaton A.

Let x = x1 . . . xn ∈ Σ∗ be an input string. We start to define the height
function h(x, i) := |{j ≤ i | xj ∈ Σpush}| − |{j ≤ i | xj ∈ Σpop}|. Note that the
height function does not always equal the height of A’s stack since A may pop
on empty stacks during its computation.

The structure S we construct is a tree whose nodes are labeled by monadic
predicates; it has the vocabulary τ = {E2} ∪ {P 1

σ | σ ∈ Σ} ∪ {P 1
⊥}. Let

min-height := min{0, h(x, 1), . . . , h(x, n)}. The universe of S consists of the
tuples (i, h(x, i)) for i ∈ {1, . . . , n}, and (0, h) for h ∈ {min-height, . . . , 0}. The
monadic relations are build as follows: For each position i ∈ {1, . . . , n}, we
put the node (i, h(x, i)) into PS

xi . For each h ∈ {min-height, . . . , 0}, we put the

node (0, h) into PS
⊥ . The edge relation E

S is build as follows: For each position
i ∈ {1, . . . , n} an edge is added in dependence of which part of the alphabet xi
belongs to. If xi ∈ Σpush, we insert an edge from (i−1, h(x, i)−1) to (i, h(x, i)).
If xi ∈ Σpop, let i

′ < i be the largest index such that (i′, h(x, i)) is a node of S.
We insert an edge from (i′, h(x, i)) to (i, h(x, i)). If xi ∈ Σno-change, we insert
an edge from (i − 1, h(x, i)) to (i, h(x, i)). In each case the node from which
the edge starts from exists. For each h ∈ {min-height, . . . ,−1}, we insert an
edge from (0, h) to (0, h + 1). Using FTC0-computable arithmetic operations,
the height function h and the structure S that is defined in terms of the string
x and the height function h can be computed in FTC0.



72 5. TREE DECOMPOSITIONS AS TERMS AND LOGARITHMIC-DEPTH CIRCUITS

As an example for the construction consider a vpa with alphabet Σ =
{u, o, n} and partition Σpush = {u}, Σpop = {o}, and Σno-change = {n}. For
the input string x = unoouuoo, the reduction computes the structure that is
shown below, where the indices of the nodes are given by their coordinates on
the grid. The information whether a node is in some unary predicate (each
element is in exactly one of the |Σ|+1 unary predicates) is depicted by labeling
the node with the corresponding symbol.

−1

0

1

0 1 2 3 4 5 6 7 8

⊥

⊥

u n

o

o

u

u

o

o

Since the edges of the structure only go from left to right or upwards,
the structure does not contain a directed cycle. Moreover, since every node
has exactly one ingoing edge, the directed graph underlying the structure is a
directed tree with root (0,min-height). It is straightforward to define a tree
decomposition of width 1 whose bags are the edges from the structure. An
ancestor representation for this decomposition can be computed in FTC0 by
using the fact there is a path from a node (i, h) to a node (i′, h′) in S exactly
if (a) i = i′ = 0 and h < h′, or (b) i < i′, h ≤ h′, and for all i′′ with i < i′′ < i′

we have h(x, i′′) ≥ h.
To define accepting computation paths we use an mso-formula ϕ that con-

sists of two collections of free set variables. The first collection is made up
by monadic state labeling predicates Q1, . . . , Q|Q| used to define a partition
of all nodes that are labeled with symbols from Σ and the node (0, 0). A
partition corresponds to guessing the states of the automaton at the input po-
sitions. The second collection is made up by monadic stack content predicates
P1, . . . , P|Γ\{⊥}| used to guess a single stack symbol for every push node (that
means, nodes that are labeled with unary predicates for symbols from Σpush).
The mso-formula evaluates to true if the sets assigned to the free variables sat-
isfy these conditions and describe a valid and accepting computation. For that,
(0, 0) must be labeled by the initial state and the last node must be labeled
by an accepting state. Moreover, a state that is assigned to a push node is
verified with respect to its labeling symbol from the input alphabet and the
state at its predecessor; states at no-change node are evaluated in the same
way. For a state at a pop node n we observe the stack symbol that labels its
sibling node s (the node that is reached by going a single step backwards to
its direct predecessor and then following the edge to the other child of the pre-
decessor) and the state that labels the node r that one reaches from s by only
going along edges to no-change and pop nodes. For the last verification step,
the mso-formula existentially guesses a path through the structure. Applying
Theorem 1.5 proves that counting the number of accepting paths of vpas lies
in #NC1. Extending ϕ to a formula that existentially guesses sets for its free
variables and applying Theorem 1.4 proves that membership testing for vpas
is in NC1.



5.3. APPLICATIONS TO EVALUATING AUTOMATA 73

a

a

b b

a b b

Evaluating Automata for Unranked Ordered
Trees. At the beginning of Chapter 2, we discussed tree
automata for different kinds of trees. An important automa-
ton notion we discussed, but could not use in the context of
constant-depth circuits, works on labeled trees whose nodes
have an unbounded number of children that are ordered like
shown on the right. For every node, such an automaton for unranked ordered
trees determines its state based on the label of the node and the outcome of
the computation of a finite automaton that works on the sequence of states
assigned to the children of the node (Brüggemann-Klein et al., 2001). Gottlob
et al. (2005) showed that simulating the acceptance behaviour of a fixed au-
tomaton is L-complete if the tree is given as a pointer structure like shown on the
right, and NC1-complete if it is given as a term [ a [ a [ a ] [ b ] [ b ] ] [ b ] [ b ] ].
Note that the term representation of ordered trees is unique. It represents the
hierarchical information explicitly using bracket symbols and the ordering on
siblings implicitly using the order of symbols in the string.

Fact 5.16 (Gottlob et al. (2005)). Let A be an automaton for unranked
ordered trees. The acceptance behaviour of A on trees that are given as terms
can be simulated in NC1.

This NC1 upper bound can be reproved using tree decompositions and The-
orem 1.4: On input of a term representation of an unranked ordered tree, build
a width-2 tree decomposition whose underlying tree is build from the input tree
as follows: (1) Use all (solid) edges that lead from a parent node to its left-most
child, and (2) use all (dotted) edges between siblings. For every node, put the
node itself, its parent node (if it exists), and its right sibling (if it exists) into
its bag. A term representation of the tree underlying the decomposition can
be constructed in FTC0 by moving the closing bracket of each node directly in
front of the closing bracket of its parent node. Finally, we use an mso-formula
that guesses and checks computations of the automaton; both the horizontal
transition relation computed by the finite automaton on the ordered children
and the vertical transition relation. Like in the case of counting the number
of accepting computations of visible pushdown automata, this also gives the
following:

Theorem 5.17. Let A be an automaton for unranked ordered trees. Count-
ing the number of accepting computation paths of A on trees that are given as
terms can be done in #NC1.





CHAPTER 6

Bounded Tree Width and Logarithmic Space

In the previous chapter we showed that number representations of solution
histograms can be computed in DLOGTIME-uniform #NC1 for input structures
that are accompanied by tree decompositions of bounded width whose under-
lying trees are given as terms. Our goal in the present chapter is to develop
a similar result for logspace and compute histograms for input structures of
bounded tree width without given tree decompositions (hence, proving Theo-
rem 1.2 from the introduction). We will invest our main effort in restoring the
comfortable situation from the previous chapter. That means, we will show how
to compute width-bounded tree decompositions in logspace. After computing
decompositions and making them available in term representation, we can plug
in the results from the previous chapter to compute number representations
of solution histograms using DLOGTIME-uniform #NC1-circuit families. Since
logarithmic-space-bounded Turing machines can simulate such circuits in the
sense that they compute the binary string encoding of the number computed
by the arithmetic circuit (see Section 4.1 for details on how the considered com-
plexity classes are related), Theorem 1.2 follows directly once we are able to
compute tree decompositions of any bounded width in logspace. Thus, most of
the content of this chapter is devoted to this task.

The research on the difficulty of computing width-bounded tree decompo-
sitions originally focused on providing fast sequential and parallel algorithms:
Bodlaender (1996) presented a linear-time sequential algorithm for construct-
ing tree decompositions of any constant width w. Similarly, the time used by
parallel pram algorithms was reduced to O(log n) (Bodlaender and Hagerup,
1998). Concerning the computational complexity of computing width-w tree
decompositions, Bodlaender (1989) showed how to do this using NC-circuits,
which was later improved by Gottlob et al. (2002) to functional LOGCFL. For
the special case of computing width-2 tree decompositions, a logspace algo-
rithm can be deduced from the work of Jakoby et al. (2006) using the result
of Reingold (2008).

The linear time bound of Bodlaender (1996) on constructing tree decom-
positions of any constant width w is typically proved in two steps: First, a
linear-time algorithm is presented that, on input of a graph of tree width at
most w, computes a tree decomposition of approximate width at most O(w).
Second, another linear-time algorithm is used to turn the decomposition into
one that has exact width w. The proofs from the present chapter follow the
same plan, but compute all steps using logarithmic space instead of linear time:
We first show how to compute tree decompositions of approximate width in
logspace. Constructing such decompositions and a term representation of their
underlying trees is enough to apply the theorems for logarithmic-depth circuits
from the previous chapter and prove Theorem 1.2, constructing string-encoded

75



76 6. BOUNDED TREE WIDTH AND LOGARITHMIC SPACE

solution histograms in logspace. This implies Theorem 1.1 as a special case.
Using Theorem 1.1 in conjunction with approximate tree decompositions will
prove Theorem 1.3 on constructing tree decompositions of exact width.

The construction of tree decompositions of both approximate and exact
width rests on the development of the notion of descriptor decompositions,
which are vertex-labeled acyclic directed graphs that contain tree decomposi-
tions as subgraphs. Using this notion, we face two technical problems: (1) how
to compute tree decompositions from descriptor decompositions in logspace,
and (2) how to construct descriptor decompositions in logspace. We will only
describe how to construct tree decompositions for undirected connected graphs
instead of arbitrary relational structures in the present chapter. This is no
restriction since structures and their Gaifman graphs have the same tree de-
compositions (Fact 4.2) and different components of a graph can be decomposed
independently.

The chapter is organized as follows: In Section 6.1, we discuss the basic tech-
niques available to design logarithmic-space-bounded dtms. In Section 6.2 the
notion of descriptor decompositions is introduced and it is shown how to con-
struct tree decompositions from given descriptor decompositions. Section 6.3
contains the proofs of how to construct descriptor decompositions of approxi-
mate and exact width in logspace. Section 6.4 shows how to apply the Theo-
rems 1.1 and 1.2 to solve problems related to finding paths and matchings in
graphs.

6.1. Review of Logarithmic-Space-Bounded Computations

Formally, the class FL, called functional logspace, contains all functions
f : {0, 1}∗ → {0, 1}∗ that are computable by a deterministic Turing machine
(dtm) M whose working space is bounded by a logarithm of the input length.
That means, there exists a constant c ∈ N, such that M outputs f(s) on
input s ∈ {0, 1}∗ using at most c · log |s| cells of its work tapes. The class L,
called logspace, contains all languages L ⊆ {0, 1}∗ whose characteristic functions
χL : {0, 1}∗ → {0, 1}, with χL(s) = 1 if s ∈ L and χL(s) = 0 if s /∈ L, are in FL

(see the textbook of Papadimitriou (1994) for more details on Turing machines
and resource bounds).

In Section 4.1, we discussed that all functions from DLOGTIME-uniform
#NC1 are also in FL if the task is to compute binary string representations of
output numbers. To prove conditional lower bounds against logarithmic-depth
circuit families, L-hardness proofs are commonly used. They are based on many-
one reductions computable in DLOGTIME-uniform FNC1 (Cook and McKenzie,
1987) or FAC0 (Immerman, 1999); we use the later reducibility notion in the
present chapter for proving L-hardness.

Restricting the work space of Turing machines to be logarithmic results in a
clean and elegant notion for studying the space complexity of problems that are
already known to be polynomial-time solvable: logspace computations always
run in polynomial time, while more space needs more than polynomial time
a priori, and less space does not allow to store pointers to input entries, like
pointers that address vertices in graphs.

While logspace computations seem to be very restrictive at first sight, one
can still use basic design patterns to develop algorithms that can be imple-
mented in logarithmic space: It is possible to compose any constant number



6.2. FROM DESCRIPTOR TO TREE DECOMPOSITIONS 77

of logspace-computable functions since FL is closed under composition (Stock-
meyer and Meyer, 1973). Moreover, one can always call logspace subroutines
since FL is closed under logspace Turing reductions that query characteristic
functions of languages from L (Ladner and Lynch, 1976). These techniques al-
ready suffice to prove L upper bounds for the reachability problem in undirected
forests or directed graphs whose underlying undirected graphs are forests (Cook
and McKenzie, 1987). Much more involved problems can be solved in logspace
using the algorithm of Reingold (2008) for solving the reachability problem in
undirected graphs of any kind. Nowadays this can be seen as a basic algorith-
mic technique for designing logspace dtms: Query Reingold’s Algorithm to find
paths in undirected graphs.

6.2. From Descriptor to Tree Decompositions

In the algorithms for computing tree decompositions, the decomposition
tree will be a subgraph of a larger graph in which it is hidden. These graphs
are called descriptor decompositions. In the following, we will first define the
notion of a descriptor decomposition. Then we show how to compute tree
decompositions from descriptor decompositions in logspace. Descriptor decom-
positions are build from the following descriptors; they are similar to the ones
used in the Chapters 3 and 4, but use constant size sets to store bag vertices
instead of sequences of bag vertices.

Definition 6.1 (Descriptors for Descriptor Decompositions). Let G =
(V,E) be an undirected connected graph. A descriptor D in G is either

(1) a bag B ⊆ V and called simple, or
(2) a pair (B, v) consisting of a bag B ⊆ V and a component selector

v ∈ V \B.

We write B(D) for the bag of D.

V (D)

I(D)
b1

b3 v

b2

We say that D describes the following graph G(D):
If D is simple, G(D) := G[B]. Otherwise let G(D) :=
G
[
V (C) ∪ B

]
where C is the component of G[V \ B]

that contains v. We write V (D) for the vertex set of
the graph G(D). The interior I(D) of G(D) is V (D)\
B(D). Let DG denote the descriptor (∅, v0) where v0 is
a chosen vertex of G. Note that G(DG) = G since we
assumed G to be connected. An example of a graph G,
a descriptor D = ({b1, b2, b3}, v), and the sets V (D) and I(D) is shown right.
The graph G(D) is the induced subgraph G[V (D)].

Definition 6.2 (Descriptor Decomposition). Let G be an undirected con-
nected graph. A descriptor decomposition M of G is a directed graph M whose
vertices are descriptors in G, such that exactly one of them is DG, and for every
node with descriptor D of M and children with descriptors D1, . . . , Dm the
following holds:

(1) For each child descriptorDi, we have V (Di) ⊆ V (D) and I(Di) ⊆ I(D)
and at least one inclusion is proper.

(2) For each child descriptor Di, the set V (Di) contains at least one vertex
from I(D).



78 6. BOUNDED TREE WIDTH AND LOGARITHMIC SPACE

(3) For each child descriptor Di, the set I(Di) is disjoint from all V (Dj)
for j 6= i.

(4) Each edge in G(D) that is not between two vertices in B(D) must be
present in some G(Di).

For a descriptor D with children D1, . . . , Dm, we let Dinteract be the simple
descriptor whose bag contains all vertices present in at least two of the sets
in B(D), B(D1), . . . , B(Dm). The width of a descriptor decomposition is the
maximum size over all bags B(D) and B(Dinteract) for descriptors D in M
minus 1.

With Lemma 6.3 we prove that the graphs underlying
descriptor decompositions are mangroves. A mangrove is
a dag as shown on the right in which there is at most one
path between any two vertices. In a mangrove, the sub-
graph Tr induced on all vertices reachable from a given
vertex r is a tree rooted at r. Thus, like a forest, man-
groves are unions of trees, but the union is not necessarily disjoint and the trees
can merge in complex ways—hence the name mangrove.

Lemma 6.3 (Descriptor Decompositions are Mangroves). Let M be a de-
scriptor decomposition of some graph G. The graph underlying M is a man-
grove.

Proof. By property (1) of descriptor decompositions, M is a dag. To
prove that there is at most one path between any two vertices of M , suppose
there is a node with descriptor Ds and two different child descriptors D1 and
D2 such that a node with descriptor Dt is reachable from both. By property (2)
of descriptor decompositions, G(Dt) contains at least one v ∈ I(D1). By prop-
erty (3), G(D2) does not contain v, but G(Dt) must be a subgraph of G(D2)
by property (1), which is a contradiction. �

{a, b}

{a, c} {a, d} {c, d}

D

D1 D2 D3

Descriptors and bags in M

{a, b}

{a, c, d}

{a, c} {a, d} {c, d}

D

Dinteract

D1 D2 D3

Nodes and bags in T (M)

We next prove that given a descriptor decom-
positionM of a graph G, the graphM [W ] where
W is the set of all nodes reachable from DG in
M nearly forms a tree decomposition of G: We
only need to add an internal vertex between each
node and its children whose bag contains all in-
teractions between the children of the node. For-
mally, we define a graph T (M) as follows: For
each node D reachable from DG in M , it con-
tains two vertices D and Dinteract. If D1, . . . ,
Dm are the children of D in M , then there are
edges from D to Dinteract and from Dinteract to
each Di. Label Dnormal with the bag B(D) and
Dinteract with B(Dinteract). On the right an ex-
ample of a descriptor D, its children D1, D2, and
D3 in M , and their bags is shown; as well as the
resulting nodes and bags in T (M).

Lemma 6.4 (From Descriptor to Tree Decompositions). If M is a width-w
descriptor decomposition of G, then T (M) is a width-w tree decomposition of G.



6.2. FROM DESCRIPTOR TO TREE DECOMPOSITIONS 79

Proof. We claim that T (M) is a tree decomposition of G. By Lemma 6.3,
we know that M is a mangrove, M [W ] where W is the set of all vertices
reachable from DG in M is a tree and, thus, also T (M). The width of the tree
decomposition follows directly from the definition of the width of descriptor
decompositions. We need to check the two properties of a tree decomposition
from Definition 4.1.

Proof of the connectedness condition: Consider the set of all nodes of T (M)
whose bags contain some vertex v. It suffices to prove that there is a unique
node of T (M) whose bag contains v, but whose parent node’s bag does not
contain v. To see this, consider the set P of all nodes D of M [W ] for which
v ∈ I(D). This set includes at least the root DG. By properties (1) and (3)
of the descriptor decomposition M , the set P forms a path in M , ending at a
uniquely specified node D. Since v is not an isolated vertex (G is connected),
for at least one child Di of D the graph G(Di) must contain v. Since v is no
longer an interior vertex of Di, it must be in the bag B(Di). Now, if there is
exactly one child Di of D whose bag contains v, then B(Di) will be the only
bag that contains v but whose parent’s bag does not. Otherwise, if there are
several children whose bags contain v, then B(Dinteract) will be the only bag
containing v whose parent’s bag does not.

Proof of the cover condition: Consider any edge e of G. Since e is contained
in G(DG) = G, there must be some node D ofM [W ] such that e is contained in
G(D), but not in G(Di) for any of its children Di (at the latest, this is the case
for some leaf of M [W ]). Then by property (4) of descriptor decompositions,
the edge e must be between two vertices in B(D). �

Mangrove M

Template for graphs R

Computing T (M) fromM can be done by solving
the reachability problem in mangrove graphs. The
best upper space bound on the reachability prob-
lem for mangroves is O(log2 n/ log log n) from Allen-
der and Lange (1998), which is far from logarithmic.
Thus, our algorithm needs access to some kind of
additional information. This information will be in
the form of what we call transitive closures of re-
lated vertices. Let us say that two vertices a and b
of a mangrove are related if they are both present in
some Tr, which is the tree of all nodes reachable from
r in M . We say that a graph R is a transitive closure of the related vertices
of M if the following holds: Whenever a and b are related in M , then there is
an edge from a to b in R if, and only, if there is a nonempty path from a to b
inM . The example on the right shows a mangroveM at the top. All transitive
closures R of M ’s related vertices can be obtained by arbitrarily adding edges
in the lower template graph along the dotted lines, which connect exactly the
unrelated vertices of M .

Lemma 6.5. There is a logspace dtm that, on input of a mangrove M and a
transitive closure R of M ’s related vertices, outputs the transitive closure of M .

Proof. Let a mangrove M and a transitive closure R of M ’s related ver-
tices be given as input as well as two vertices s, t ∈ V (M) = V (R). We claim
that the following algorithm, which clearly needs only logarithmic space, cor-
rectly decides whether there is a nonempty path from s to t in M :



80 6. BOUNDED TREE WIDTH AND LOGARITHMIC SPACE

1 c← s
2 while not (c, t) ∈ E(M) do
3 if there is exactly one v ∈ V (M) with (c, v) ∈ E(M) ∧ (v, t) ∈ E(R)
4 then c← v
5 else reject
6 accept

The current vertex stored in c is always reachable from s in M and, thus, if
the algorithm accepts, there is a nonempty path from s to t in M . For the
other direction suppose there is a path from s to t in M . Starting with c = s,
consider each child v of c in M . All of these children are related to t via the
common ancestor c. Thus, (v, t) ∈ E(R) holds if, and only if, there is a path
from v to t in M . This in turn holds for exactly one child v of c since M is a
mangrove—namely for the child on the unique path from s to t. This means
that the variable c will successively be set to the vertices on the path from s
to t and the algorithm will accept. �

In light of the previous lemma, all we need to do to compute T (M) from
M is to compute a transitive closure of M ’s related vertices, which is done in
the proof of the following lemma.

Lemma 6.6 (From Descriptor to Tree Decompositions in Logspace). There
is a logspace dtm that, on input of any graph G together with a descriptor
decomposition M of G, outputs T (M).

Proof. In Lemma 6.3 we proved that M is a mangrove. We claim that
the following graph R is a transitive closure of M ’s related vertices: Its vertex
set is V (M) and there is an edge from D to D′ in R if, and only if, D and D′

satisfy property 1 of Definition 6.2, that is, V (D′) ⊆ V (D) and I(D′) ⊆ I(D)
and at least one of these two inclusions is proper. Then R is clearly a superset
of the transitive closure of M . Second, if there are two disjoint paths leading
from a vertex Ds to two vertices D1 and D2, then, as argued in Lemma 6.3,
G(D1) and G(D2) each contains at least one vertex not contained in the other
graph. Thus, there is no edge between them in R.

Observe that the graph R is logspace-computable: The algorithm of Rein-
gold (2008) allows us to check in logarithmic space on input of G, D, and a
vertex v whether v ∈ G(D). This allows us to apply Lemma 6.5 to M and R
in order to compute the set of vertices reachable from DG in M in logarithmic
space, yielding T (M). �

6.3. Computing Tree Decompositions in Logarithmic Space

In the present section we show how to construct tree decompositions of
approximate and exact width in logspace. We start to prove the construction
of tree decompositions of approximate width and show how they can be used
to prove Theorem 1.2. In light of the previous section, all we need to do
to construct tree decompositions of a certain width is to construct descriptor
decompositions of this width.

Computing Tree Decompositions of Approximate Width. Algo-
rithms for constructing tree decompositions often employ a specific notion of
separators, which are used to split a graph into smaller subgraphs for which



6.3. COMPUTING TREE DECOMPOSITIONS IN LOGARITHMIC SPACE 81

tree decompositions can be computed recursively. When one wants to transfer
this idea to logarithmic space, one faces the problem that both the recursion
stack and the intermediate subgraphs are too large to store. We overcome these
problems in two ways: First, instead of avoiding deep recursions, we construct
descriptor decompositions from which tree decompositions can be singled out
in logspace. Second, we pick a notion of separators that allows us to represent
subgraphs in logarithmic space.

Lemma 6.7. For every w ∈ N, there is a logspace dtm that, on input of
any graph G, either

(1) outputs a tree decomposition (T,B) for G whose width is at most 3w+
3, or

(2) outputs “no” and tw(G) > w holds in this case.

By Lemmas 6.4 and 6.6, in order to compute a tree decomposition of a
graph, it suffices to compute a descriptor decomposition. We next show that
such a descriptor decomposition can be obtained in logarithmic space. As
remarked earlier, algorithms for computing tree decompositions internally use
different kinds of separators. The ones we use are also known as balanced
separators.

Definition 6.8 (Separators). Let G be an undirected graph and let U ⊆
V (G). A separator S ⊆ V (G) separates U in G if each component ofG[V (G)\S]
contains at most |U |/2 vertices of U . An s-separator is a separator of size at
most s.

The following folklore separator property (proved, for example, in the book
of Flum and Grohe (2006)) of tree-width-bounded graphs shows that the exis-
tence of a separator of size w + 1 is necessary for graphs of tree width at most
w.

Fact 6.9 (Separator Property). Let G be an undirected graph with tw(G) ≤
w and let U ⊆ V (G). Then there exists a (w + 1)-separator S ⊆ V (G) for U
in G.

Definition 6.10 (Child Descriptors). Let G be an undirected connected
graph with tw(G) ≤ w. We define the child descriptors of a non-simple de-
scriptor D with B(D) ≤ 2w + 2 in G as follows: Choose a set W ⊆ V (G) with
B(D) ⊆W that has size 2w+3 if |V (G)| ≥ 2w+3, and W = V (G), otherwise.
Then choose a (w + 1)-separator S of W in the graph G(D). Let C1 to Cm be
the components of G[I(D)\S] = G

[
V (D)\(S∪B(D))

]
. For each i ∈ {1, . . . ,m}

choose a vertex vi ∈ Ci and let Bi be the set of all vertices in W ∪ S that are
adjacent in G(D) to a vertex from Ci. Then the descriptors (Bi, vi) are the
child descriptors of D and, unless S ⊆ W , additionally the simple descriptor
D0 =W ∪ S.

Lemma 6.11 (Size Lemma). Let D′ be a child descriptor of a non-simple
descriptor with |B(D)| ≤ 2w + 2. Then

(1) If D′ is simple, then |B(D′)| ≤ 3w + 4.
(2) If D′ is non-simple, then |B(D)| ≤ 2w + 2

Proof. The claim for simple D′ follows from the fact that its bag is of
the form W ∪ S with |W | ≤ 2w + 3 and |S| ≤ w + 1. For the case that D′



82 6. BOUNDED TREE WIDTH AND LOGARITHMIC SPACE

is non-simple, each Bi can contain at most |W |/2 vertices from W and, hence,
must have size at most |W |/2 + |S| ≤ w + 1 + w + 1. �

We are now ready to define the desired descriptor decomposition and to
show that it is logspace-computable.

Definition 6.12. Let G be an undirected, connected graph with tw(G) ≤
w. Let M(G) be the graph whose vertex set contains all descriptors D in G
with |B(D)| ≤ 2w + 2 for non-simple D and |B(D)| ≤ 3w + 4 for simple D
and where there are edges from each non-simple descriptor exactly to its child
descriptors.

Lemma 6.13. The graph M(G) is a descriptor decomposition of G of width
3w + 3.

Proof. By the size lemma, M is well-defined, that is, the child descriptors
do, indeed, have the maximum sizes 2w + 2 or 3w + 4. Next, M contains
DG. Concerning the four properties of a descriptor decomposition, we argue
as follows. Consider the child descriptors D1, . . . , Dm, and possibly D0 of a
descriptorD. First, by construction eachG(Di) is clearly a subset ofG(D). The
set I(D0) is empty and the other interiors I(Di) are exactly the components Ci
and, thus, subsets of I(D). The construction also ensures that V (Di) ( V (D)
for i ∈ {1, . . . ,m} and, if D0 is present, ∅ = I(D0) ( I(D). Second, each G(Di)
contains the vertex vi, which is from the interior of D, and V (D0) also contains
an interior vertex. Third, no Ci is connected to a vertex in another component.
Hence, the interior vertices of the Di are not part of any other V (Dj). Fourth,
every edge in G(D) that is not between two vertices from B(D) is either inside
a component Ci and thus included in G(Di); or it is between a vertex in a
component Ci and a vertex in B(D) ∪ S and thus, again, included in G(Di);
or it is between a vertex in S \ B(D) and a vertex in B(D) and thus included
in G(D0).

For the width bound, we need to show |B(D)| ≤ 3w+4 and |B(Dinteract)| ≤
3w + 4 for each descriptor D in M . This property holds for each B(D) by
definition. Moreover, the bag of each interaction descriptor is a subset of some
W ∪ S with |W | ≤ 2w + 3 and |S| ≤ w + 1. �

Proof of Lemma 6.7. The logspace dtm either outputs M(G) or “no”,
and in this case tw(G) > w holds. Since the size of the vertex set of M(G) is
polynomially bounded, all we need to show is that a logspace dtm can compute
the set of child descriptors of a descriptor D. For this, it finds the set W and
the separator S by choosing some W and testing for each possible set S of
size w + 1 whether it separates the correct set in G(D). For this, the machine
uses the algorithm of Reingold (2008) to determine the components into which
S separates G(D). The machine then picks one such S and then determines,
again using Reingold’s algorithm, the sets Bi and outputs the desired child
descriptors. If, at some point, the machine does not find a separator S, it
outputs “no” since the separator property is violated. �

Proof of Theorem 1.2. On input of a structure A of tree width at most
w, we first construct a tree decomposition (T,B) of width at most 3w + 3 for
its Gaifman graph G(A) using Lemma 6.7. By Fact 4.2, (T,B) is also a tree
decomposition for A. Moreover, a term representation of T can be computed



6.3. COMPUTING TREE DECOMPOSITIONS IN LOGARITHMIC SPACE 83

in logspace by traversing it. Since #NC1 ⊆ FL in the sense that the bitstring
representation of numbers that are computed by functions from #NC1 can be
computed in FL, we can plug in Theorem 1.5 to compute str(histogram(A, ϕ))
in logspace. �

Computing Tree Decompositions of Exact Width. In the present
section we prove Theorem 1.3 from the introduction. For its proof we first
show that tree-width-w, the language of all graphs whose tree width is at
most w, is L-complete for each w ∈ N.

Theorem 6.14. For every w ∈ N, the language tree-width-w is complete
for L under DLOGTIME-uniform AC0-many-one-reductions.

Proof. First, we need to show that tree-width-w ∈ L holds for all w. The
work of Robertson and Seymour (2004) implies that for every w the graphs
in tree-width-w can be characterized by a finite set of forbidden minors.
Furthermore, it is also well known (see, for example, (Arnborg et al., 1991)),
that the question of whether a graph contains any fixed graph as a minor can
be defined using an mso-formula. This allows us to decide tree-width-w
as follows: On input of a graph G, use Lemma 6.7 to obtain an approximate
tree decomposition T of G. If such a tree decomposition does not exist, the
machine rejects; in this case we know from Lemma 6.7 that the tree width of G
exceeds w. If the tree decomposition exists, we know that G’s tree width is at
most 3w + 3 and we can apply Theorem 1.1 with an mso-formula that defines
the set of graph of tree width w.

Second, we need to show that for every w ≥ 1 the problem tree-width-w is
hard for L. For a fixed w ≥ 1, we reduce the L-complete problem acyclicity
for undirected graphs to tree-width-w via the following FO-computation:
On input of an undirected graph G with V (G) = {v1, . . . , vn}, build a new
undirected graph G′ as follows: For each vertex vi ∈ V (G) the set V (G′)
contains w vertices v1i , . . . , v

w
i . In the edge set E(G′) they are connected so

that they form a w-clique. Next, for each edge (vi, vj) ∈ E(G) with i < j, the
following edges are present in E(G′): For all p ∈ {1, . . . , w} and q ∈ {p, . . . , w}
there is an edge between vqi and vpj . As an example, the graph v1 v2 v3

v4 is

mapped to the following graph for w = 3:

v11

v21

v31

v12

v22

v32

v13

v23

v33

v14

v24

v34

We claim that G is acyclic if, and only if, G′ has tree width w. To prove this,
first assume that G is acyclic. Then each component of G′ has tree width w.
To see this, note that a tree decomposition of a component of G′ can be ob-
tained from G as follows: Attach the bag {v1, . . . , vw} to each vertex v of G.
Then, for each edge (vi, vj) of G with i < j, replace the edge by a path of
length w and attach the following bags to the new vertices: {v1i , . . . , vwi , v1j },



84 6. BOUNDED TREE WIDTH AND LOGARITHMIC SPACE

{v2i , . . . , vwi , v1j , v2j }, . . . , {vwi , v1j , . . . , vwj }. The resulting graph is clearly still

acyclic, its bags cover all edges of G′, and the subgraphs of all vertices whose
bags contain a given vertex are connected.

Second assume that G contains a cycle. We show that G′ contains a
(w + 2)-clique as a minor and, since the tree width of a graph does not in-
crease by taking minors (Diestel, 2005) and for every tree decomposition each
clique is completely contained in at least one bag, this implies tw(G′) > w.
Let (v1, . . . , vr, v1) be a cycle of G. In the subgraph G′[{v11, . . . , vw1 } ∪ · · · ∪
{v1r , . . . , vwr }], for each j ∈ {2, . . . , r} merge the clique {v1j , . . . , vwj } to a single

node v′j . In the resulting minor both nodes v′2 and v′r have edges to all ver-

tices of the clique {v11, . . . , vw1 }. By merging the path (v′2, . . . , v
′
r) into the edge

(v′2, v
′
r), we obtain the (w + 2)-clique {v11, . . . , vw1 , v′2, v′r}. �

Proof of Theorem 1.3. First test whether the tree width of G = (V,E)
is at most w using Theorem 6.14. If the tree width of G exceeds w, we output
“no”. Otherwise, we proceed to construct a tree decomposition of width w
for G in logarithmic space. Recall that, by the Lemmas 6.4 and 6.6, on input of
a graph G together with a width-w descriptor decomposition M of G, we can
compute a width-w tree decomposition of G in logarithmic space. Thus, in the
following it suffices to explain how a descriptor decomposition M of G of width
w can be obtained in logarithmic space. Clearly, M has to be different from
the one constructed for Lemma 6.7 since we can no longer allow bags larger
than w + 1. As we define the new descriptor decomposition M below, we also
explain how M can be constructed via some logspace dtm.

We start with some preprocessing and trivial cases. If G is not connected,
we decompose the components individually. In case |V | ≤ w + 1, we just
output a single bag containing all of V and are done. So, in the following, we
may assume that G is connected, tw(G) ≤ w, and |V | > w + 1.

The following notations will be useful: Let us write KB for the clique with
vertex set B. Given two graphs G = (V,E) and G′ = (V ′, E′), let G ∪ G′ =
(V ∪ V ′, E ∪ E′).

The vertex set V (M) of descriptors contains DG and all descriptors D
with |B(D)| = w + 1 such that there is a tree decomposition T of G(D) in
which B(D) is attached to some bag of T . Given a descriptor D, we can test
whether it is an element of V (M) in logarithmic space as follows: We apply
Lemma 6.14 to the graph G(D) ∪KB(D) and include D if this graph has tree
width at most w. Observe that, indeed, if there is a tree decomposition T of
G(D) in which B(D) is attached to some bag of T , then this tree decomposition
is also a tree decomposition of the same width of G(D) ∪ KB(D). The other
way round, in every tree decomposition of G(D)∪KB(D) there must be a node
whose bag contains the clique KB(D) (this is a fundamental property of tree
decompositions proved, for example, by Flum and Grohe (2006)).

To define the edge set E(M), we explain, in the same spirit as in Defi-
nition 6.10, which descriptors are the child descriptors of a given descriptor
D ∈ V (M). If D is simple, it has no child descriptors. Otherwise, we search
for a bag B′ ⊆ V (D) with the following properties.

(1) |B′| = w + 1 and B′ ∩ I(D) 6= ∅.
(2) There is no edge between a vertex in B(D) \B′ and a vertex in I(D).



6.4. APPLICATIONS TO FINDING PATHS AND MATCHINGS 85

(3) Let C1, . . . , Cm be the components of the graph G[I(D) \ B′]. Then
for each i ∈ {1, . . . ,m} the graph G[V (Ci)∪B′]∪KB′ must have tree
width at most w.

Clearly, if B′ with the above properties exists, we can find it in logarithmic
space by iterating over all possible B′ and each time invoking Lemma 6.14 on
G[V (Ci) ∪ B′] ∪ KB′ . We choose one such B′ and for every component Ci of
G[I(D) \B′] we choose a vertex vi ∈ Ci and let all (B′, vi) be child descriptors
of D; additionally, the simple descriptor B′ is a child descriptor of D.

We first show that a set B′ with the above properties always exists: Consider
a tree decomposition T of G(D) of width exactly w in which there is a node
whose bag is B. Without loss of generality we can assume that T has the
following properties: For every pair (n, n′) ∈ E(T ) we have B(n) * B(n′)
and B(n′) * B(n), and every bag has size w + 1. Together with the fact
that I(D) is connected, this implies that B has exactly one neighboring bag B′;
otherwise, there are two vertices v and v′ from different neighboring bags that
are connected in G(D), but not in I(D). Using the decomposition T one can
see that B′ satisfies all the above properties.

It remains to argue that the resulting graphM is a descriptor decomposition
of width w. To see thatM is a descriptor decomposition, first note thatDG is an
element of V (M). Concerning the four properties of a descriptor decomposition,
properties 1 to 3 follow for exactly the same reasons as in Lemma 6.13. For
property 4, we can account for all edges as follows: Edges inside the Ci and
between Ci and B

′ are covered by the graphsG(Di). Edges inside B
′ are covered

by the simple descriptor B′. Edges inside B need not be covered. Edges between
B \B′ and I(D) do not exist. To prove that the width of M is w+1, first note
that all bags B(D) attached have size at most w + 1 by construction. Second,
note that the bag of an interaction descriptor Dinteract is a subset of B′. Hence,
the size of interaction bags is at most w + 1. �

In conjunction with Lemma 5.3 from the previous chapter, Theorem 1.3 im-
plies that balanced tree decompositions can be computed in logarithmic space:

Lemma 6.15. For every w ∈ N, there is a logspace dtm that, on input of a
graph G of with tree width at most w, outputs a width-(4w+3) tree decomposition
(T,B) of G where T is a binary and balanced tree.

6.4. Applications to Finding Paths and Matchings

We distinguish two ways of applying the Theorems 1.1 and 1.2. The first
way is to consider problems that are defined by mso-formulæ on input structures
of bounded tree width. The second way is to use the theorems as subroutines
in algorithms that solve problems whose input structures have unbounded tree
width.

Finding Paths and Matchings in Graphs of Bounded Tree Width.
Two of the widely studied problems in the area of logarithmic space compu-
tations are the problems of testing whether there is a path from some start
vertex some target vertex in a graph, the problem reachability, and the
problem of detecting whether a graph has a perfect matching, the problem
perfect-matching.



86 6. BOUNDED TREE WIDTH AND LOGARITHMIC SPACE

While reachability for undirected graphs is known to be solvable in L (Rein-
gold, 2008) and NL-complete for directed graphs (Jones, 1975), it is widely open
to understand the complexity of reachability in restricted classes of directed
graphs. Das et al. (2010) showed that, for any k ∈ N, the directed reachability
problem can be solved in L for orientations of k-trees, a result which is also
known for tree-width-2 directed graphs (Jakoby et al., 2006). Applying The-
orem 1.2 to an mso-definition of paths on incidence structures of graphs, as
developed in Section 3.4, gives the following result:

Theorem 6.16 (Path Problems on Tree-Width-Bounded Graphs). For ev-
ery tree width bound w ∈ N and each of the following problems, there exists
a logspace dtm that solves the problem for input graphs G with tw(G) ≤ w,
vertices s, t ∈ V (G), and (for the case where it applies) a length bound ` ∈ N:

– Decide whether there is a directed path from s to t in G.
– Count the number of directed paths from s to t in G.
– Decide whether there is a directed path of length ` from s to t.

Note that the above theorem can also be extended to other problems that
are based on computing solution histograms, like the problem of counting the
number of paths of a given length ` from s to t.

Testing whether a graph has a perfect matching can be done in polynomial
time, but it is not known whether it is solvable in parallel using polylogarithmic-
depth Boolean circuits. For some restricted classes of graphs, though, the com-
plexity of perfect-matching is known. For example, for k-trees it is known
to be L-complete (Das et al., 2010). As for the case of solving the reachability
problem, the theorems for logspace can be used to extend this result to any
tree-width-bounded graph class by using the mso-definition of matchings on
incidence structures of graphs from Example 3.24.

Theorem 6.17 (Matching Problems on Tree-Width-Bounded Graphs). For
every tree width bound w ∈ N and each of the following problems, there exists a
logspace dtm that solves the problem for input graphs G with tw(G) ≤ w, and
(for the case where it applies) a solution size m ∈ N:

– Decide whether G has a perfect matching.
– Count the number of perfect matchings of G.
– Decide whether there is a matching in G that contains exactly m edges.

Finding Cycles of Even Length in Undirected Graphs. The problem
of whether an undirected graph G contains a cycle of odd length is well known to
lie in logspace. The L upper bound can be proved by transforming an n-vertex
input graph into a layered graph that results from copying the vertices of G
into n layers, and connecting consecutive layers be edges like in the original
graph. Then Reingold’s logspace algorithm is used to test whether there exists
a path from any vertex s in the first layer to a copy of it that lies in a layer of
odd distance. There exists such a path exactly if there is an odd-length cycle
that contains s in G. When trying to use this approach for finding cycles of
even length we run across the problem that an even-length path in the layered
graph does not necessarily give us an even-length cycle in the original graph.
Surprisingly, the logspace construction of tree decompositions allows us to solve



6.4. APPLICATIONS TO FINDING PATHS AND MATCHINGS 87

this problem in logspace; even the following generalized version for any m ∈ N:
mod-m-cycle := { str(G) | G is an undirected graph without loops, and

contains a cycle whose length is a multiple of m}.

Theorem 6.18. For any m ∈ N, mod-m-cycle is complete for L under
DLOGTIME-uniform AC0-many-one-reductions.

Proof. The work of Thomassen (1988) implies that there exists a constant
w := w(m), such that every undirected graph without loops whose tree width
exceeds w contains a cycle whose length is a multiple of m. Thus, to prove
the theorem, we use a logspace dtm that first applies Theorem 1.3 with tree
width bound w. If the tree width of the input graph exceeds w, we output
“yes”. If the tree width is at most w, we apply Theorem 1.2 with tree width
bound w and an mso-formula that defines edge sets of cycles on the incidence
representation of graphs. If the corresponding histogram contains an entry that
is greater than 0 at any index that is a multiple of m, we output “yes” and, no,
otherwise.

Hardness for L follows from the fact that we can reduce the question of
whether a graph contains a cycle (has tree width at least 2) to the question of
whether a reduced graph in which we replace each edge by a length-m path has a
cycle whose length is a multiple ofm. This reduction is, clearly, FO-computable.

�





CHAPTER 7

Conclusion

The thesis at hand resolved the computational complexity of mso-definable
problems on tree-decomposable structures. It was shown that these problems
are complete for complexity classes defined via logarithmic-space-bounded Tur-
ing machines and circuit families of logarithmic and constant depth. Transfer-
ring the framework of mso-based problem definitions to these classes resolved
the complexity of a number of problems and yielded elegant proofs of known
results using mso-formulæ and tree decompositions. The developed techniques
where either transferred from the area of time-efficient algorithms to the needs
of space-bounded and circuit-based computations or developed newly.

7.1. Summary

The first set of results from the thesis spanned input structures of bounded
tree width. It was shown that string-encoded solution histograms can be com-
puted in logspace and that there are L-complete path and matching problems
covered by this result. The main technique that was developed to prove this
is the construction of tree decompositions of bounded width in logspace. For
structures that are accompanied by tree decompositions of bounded width in
term representations, the thesis presented refined results: number-encoded his-
tograms can be computed in #NC1, and mso-defined decision problems lie in
NC1. These results covered #NC1- and NC1-complete problems, respectively.
The technique of balancing tree decompositions in FTC0 allowed to separate
the input balancing from the actual problem-solving step, in contrast to the
more involved common approach of combining these steps.

For input structures of bounded tree depth, the logspace result was trans-
ferred to constant-depth circuits: It was shown that mso-definable decision
problems can be solved in AC0, number representations of solution histograms
can be computed in GapAC0, and string representations of solution histograms
can be computed in TC0. For the results related to GapAC0 and TC0 the main
technical development was the definition of multiset tree automata and an alge-
braic representation of their computations. The results where applied to show
the TC0-completeness of unary versions of number problems like subsetsum,
knapsack, and solving integer linear equation systems with a constant num-
ber of equations. The AC0 result followed as a consequence of the pure model-
theoretic result that first-order and gso-formulæ express the same properties
on any tree-depth-bounded class of structures. For proving this result, a new
constructive Feferman–Vaught-type theorem for unbounded partitions was de-
veloped.

89



90 7. CONCLUSION

7.2. Outlook

There are a number of open questions that arise from the results of the
present thesis:

Construct and enumerate solutions. All theorems and intermediate results
in the thesis talk about either deciding whether solutions exist or counting
the number thereof. It would be interesting to extend the results to construct
solutions, instead of just deciding their existence, and enumerate solutions,
instead of just counting them. Preliminary findings indicate that constructing
some solution is quite easy, but enumerating all of them systematically appears
to be difficult. Before diving into the development of such results, it would be
helpful to have a clear and compelling complexity-theoretic application in mind
that uses the construction and enumeration of solutions.

Generalizations of monadic second-order logic. It would be interesting to
know for which kind of generalizations of mso-logic the main results of the
thesis still hold: Courcelle and Engelfried (2012) consider counting mso-logic,
which extends the expressive power of mso to also test whether the cardinality
of relations is a multiple of constants. Thus, properties like “is there a domi-
nating set of even length” are directly definable in the logic without the need
to refer to a solution histogram. While there is no difference in solving mso-
and counting mso-properties in the case of bounded tree width—bounded tree
width structures can always be enriched by an ordering on the elements of the
universe, and on such structures the expressive power of mso and counting mso
coincides—, there is a difference in the case of tree-depth-bounded structures.
Adding an order to a structure of bounded tree depth increases the longest
path length in its Gaifman graph and, thus, its tree depth. I believe that, while
mso-definable decision problems are solvable in AC0, counting mso-definable
decision problems is solvable (only) in ACC (that means in AC0[m] for some m
depending on the formula at hand). Moreover, as the result on mso-formulæ
and AC0 is the consequence of a pure model-theoretic result, this might also
hold for counting mso-formulæ and ACC.

A challenging task seems to be counting the number of solutions that are
defined by counting mso-formulæ. Is this still possible in TC0 for tree-depth-
bounded structures?

Number versus string representations of histograms. There is a subtle, but
important, difference between the results that are developed for logspace and
constant-depth circuits on the one hand and logarithmic-depth circuits on the
other hand. In the first case, we have theorems that compute string represen-
tations of histograms, while in the second case the result for #NC1 computes
number representations only. This means, for example, that we cannot solve
mso-definable optimization problems in #NC1 based on the computation of
histograms since it is not known whether #NC1-circuits can look up individual
bits of string representations of their computed numbers. More could be said
about this if the long-standing open question of whether FNC1 equals #NC1

would be resolved.
From bounded tree width to bounded clique width. Beside the notion of

bounded tree width, which is based on width-bounded tree decompositions,
another widely studied width notion is bounded clique width, which is based on



7.2. OUTLOOK 91

clique expressions that use a bounded number of colors (Courcelle and Engel-
fried, 2012). Since clique width is more general than tree width in the sense
that any graph class of bounded tree width has bounded clique width, it would
be interesting to know whether clique expressions can be computed in logspace.
Once they are available as terms, the techniques related to logarithmic-depth
circuits can also be used in this setting.

Parameter-dependent complexity-theoretic results. The theory of parame-
terized complexity studies how parameters that are defined on input instances
influence the complexity of problems. For example, one can view the tree width
of a graph G as a parameter p := tw(G) and ask what kind of algorithms exist

to compute its tree width. Is there an algorithm with running time |G|f(p) for
some function f (then the problem tree-width lies in the parameterized class

XP), or is there an algorithms that runs in time f(p)|G|O(1) (then tree-width
is in FPT)? While both algorithms solve the problem for any constant p in poly-
nomial time, an algorithm of the later kind, which exists (Bodlaender, 1996),
is more desirable since the degree of the polynomial that depends on the size
of the input is fixed. The notions of varying and fixed polynomial degrees can
also be transferred to the logspace case (Flum and Grohe, 2003): The class
XL covers problems that can be solved using space f(p) log |G|, and the class
para-L covers problems that only need space f(p) + O(log |G|). While for XL

the amount of logarithmic space needed varies for different p, the amount of
logarithmic space needed for para-L is fixed. The theorems for logspace from
this thesis put problems into the class XL. For example, Theorem 6.14 can be
rephrased to prove tree-width ∈ XL with respect to the parameter tw(G),
but does also tree-width ∈ para-L hold?

More applications. The aim of my thesis was to present the main results on
solving mso-definable problems. Moreover, applications of these results where
given to illustrate their unifying character. Building on the conference papers
that found their way into this thesis, applications to problems related to graph
isomorphism (Wagner, 2011) and logics for non-monotonic reasoning (Meier
et al., 2012) have already been observed. Seeing the large impact of Courcelle’s
Theorem for designing algorithms, it seems likely that there are many more
complexity-theoretic applications of the results of this thesis.





List of Terms
This list describes standard terms that are used in the main text without

definition, and terms that are used in the introduction and in the introductory
parts of other chapters before their formal definition.

Terms that solely base on non-latin characters appear first in the list, fol-
lowed by terms that are sorted in accordance with the latin characters they
contain; for example #NC1 is sorted using the key NC.

δ Transition function of an automaton. For the case of mul-
tiset tree automata see Section 2.1.

τ A finite relational vocabulary, see Section 2.2 for details.
|= The model relation, see Section 2.2 for details.

ϕ, ψ, ρ Denote logical formulæ, see Section 2.2 for details.
α A variable assignment, see Section 2.2 for details and re-

lated terms.
A A finite relational structure, see Section 2.2 for details.

AC0 The class of languages decidable by constant-depth Boole-
an circuits with unbounded fan-in gates.

AC1 The class of languages decidable by logarithmic-depth
Boolean circuits with unbounded fan-in gates.

Ainci The incidence representation of a structure A, see Sec-
tion 3.4 for details.

DLOGTIME The class of languages decidable by random-access loga-
rithmic-time deterministic Turing machines. The notion
of DLOGTIME-uniform circuit families is based on this
class, see Section 4.1 for details.

dtm Deterministic Turing machine.
FO The class of languages decidable by first-order formulæ

with build-in ordering and arithmetic predicates. The
notion of FO-computations is based on this class, see Sec-
tion 4.1 for details.

G, G Graphs are structures G = (V,EG) over the vocabulary
τgraph = {E2}. Hence, by definition they are directed;
undirected graphs are structures G with a symmetric edge
relation. The shorter notation G = (V,E) is also used.
Graph-theoretic terms are given in Definition 2.2, see Def-
inition 2.13 for graphs as logical structures.

G(·) The Gaifman graph of a structure, see Definition 3.11.
GapAC0 The class of functions f : {0, 1}∗ → Z computable by

constant-depth arithmetic circuits with unbounded fan-
in gates from {+,−, ·}.

histogram(A, ϕ) The solution histogram of a structure A and a formula
ϕ; an array that stores the number of solutions to the
formula with respect to their cardinalities.

k-tree An undirected graph of tree width k that is maximal in
the sense that adding any edge increases its tree width.

L The class of languages decidable by logarithmic-space-
bounded deterministic Turing machines.

93



94 LIST OF TERMS

LOGCFL The class of languages decidable by logarithmic-depth
Boolean circuits with ∨-gates of unbounded fan-in and
∧-gates of bounded fan-in.

lpl(·) The length of a longest path in a graph. Graphs with
bounded longest path length have bounded tree depth,
and vice versa (see Section 3.2).

mso Monadic second-order.
multiset Multisets generalize the notion of sets; they can contain

the same element more than once. Terms regarding mul-
tisets are defined on page 15.

N Denotes {1, 2, 3, . . . }, the set of positive integers.
N0 Denotes {0, 1, 2, 3, . . . }, the set of nonnegative integers.
NC The class of languages decidable by polylogarithmic-depth

Boolean circuits.
NC1 The class of languages decidable by logarithmic-depth

Boolean circuits with bounded fan-in gates.
#NC1 The class of functions f : {0, 1}∗ → N0 computable by

logarithmic-depth arithmetic circuits with bounded fan-in
gates from {+, ·}.

NL The class of languages decidable by logarithmic-space-
bounded nondeterministic Turing machines.

NP The class of languages decidable by nondeterministic Tur-
ing machines that are polynomial-time-bounded.

num(h) The number encoding of a histogram h, see pages 56f. for
details.

P The class of languages decidable by deterministic Turing
machines that are polynomial-time-bounded.

perfect-matching The language of string-encoded graphs str(G) that have
a perfect matching.

reachability The language of string-encoded graphs str(G) and vertices
s, t ∈ V (G) with a directed path from s to t.

str(·) The string encoding of a structure A or a histogram h.
See page 46 in the first and pages 56f. in the second case.

subsetsum The problem unary-subsetsum, which is formally de-
fined on page 59, but with binary-encoded input numbers.

T , (T, l), T Graph-theoretic terms related to trees T are given in Def-
inition 2.3, for labeled trees (T, l) see Definition 2.4. For
trees as logical structures T and their extension to s-tree
structures see Definition 2.12.

(T,B) A tree decomposition with tree T and bag labeling func-
tion B, see Definition 4.1.

TC0 The class of languages that are decidable by constant-
depth Boolean circuits with unbounded fan-in threshold
gates.

td(·) The tree depth of a structure, see Definition 3.12.
T (T , S1, . . . , Sk) A labeled tree that arises from an s-tree structure and k

solution sets as defined on page 23.
tw(·) The tree width of a structure, see Definition 4.3.



Bibliography

K. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka. A simple
parallel tree contraction algorithm. Journal of Algorithms, 10(2):287–302,
1989. doi:10.1016/0196-6774(89)90017-5.

M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic circuits.
Journal of Computer and System Sciences, 60(2):395–421, 2000. doi:10.1006/
jcss.1999.1675.

E. Allender. Arithmetic circuits and counting complexity classes. In J. Kraj́ıček,
editor, Complexity of Computations and Proofs, volume 13 of Quaderni di
Matematica, pages 33–72. Seconda Universita di Napoli, 2004. http://ftp.cs.
rutgers.edu/pub/allender/quaderni.pdf.

E. Allender and K.-J. Lange. RUSPACE(log n) ⊆ DSPACE(log2 n/ log log n).
Theory of Computing Systems, 31(5):539–550, 1998. doi:10.1007/
s002240000102.

A. Ambainis, D. A. Mix Barrington, and H. LêThanh. On counting AC0 circuits
with negative constants. In Proceedings of the 23rd International Symposium
on Mathematical Foundations of Computer Science (MFCS 1998), volume
1450 of Lecture Notes in Computer Science, pages 409–417. Springer, 1998.
doi:10.1007/BFb0055790.

S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM Journal on Algebraic and Discrete Methods, 8(2):
277–284, 1987. doi:10.1137/0608024.

S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-
6774(91)90006-K.

A. Blumensath, T. Colcombet, and C. Löding. Logical theories and compat-
ible operations. In J. Flum, E. Grädel, and T. Wilke, editors, Logic and
Automata: History and Perspectives, volume 2 of Texts in Logic and Games,
pages 73–106. Amsterdam University Press, 2007. http://automata.rwth-
aachen.de/download/papers/loeding/blcolo07.pdf.

H. L. Bodlaender. NC-algorithms for graphs with small treewidth. In Pro-
ceedings of the 14th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 1988), volume 344 of Lecture Notes in Computer
Science, pages 1–10. Springer, 1989. doi:10.1007/3-540-50728-0 32.

H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:
10.1137/S0097539793251219.

H. L. Bodlaender and T. Hagerup. Parallel algorithms with optimal speedup
for bounded treewidth. SIAM Journal on Computing, 27(6):1725–1746, 1998.
doi:10.1137/S0097539795289859.

H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of
Algorithms, 18(2):238–255, 1995. doi:10.1006/jagm.1995.1009.

A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and regu-
lar hedge languages over unranked alphabets: Version 1. Technical Report
HKUST-TCSC-2001-05, The Hongkong University of Science and Technol-
ogy, 2001. http://hdl.handle.net/1783.1/738.

J. R. Büchi. Weak second-order arithmetic and finite automata. Mathematical
Logic Quarterly, 6(1–6):66–92, 1960. doi:10.1002/malq.19600060105.

95

http://dx.doi.org/10.1016/0196-6774(89)90017-5
http://dx.doi.org/10.1006/jcss.1999.1675
http://dx.doi.org/10.1006/jcss.1999.1675
http://ftp.cs.rutgers.edu/pub/allender/quaderni.pdf
http://ftp.cs.rutgers.edu/pub/allender/quaderni.pdf
http://dx.doi.org/10.1007/s002240000102
http://dx.doi.org/10.1007/s002240000102
http://dx.doi.org/10.1007/BFb0055790
http://dx.doi.org/10.1137/0608024
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://dx.doi.org/10.1016/0196-6774(91)90006-K
http://automata.rwth-aachen.de/download/papers/loeding/blcolo07.pdf
http://automata.rwth-aachen.de/download/papers/loeding/blcolo07.pdf
http://dx.doi.org/10.1007/3-540-50728-0_32
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539795289859
http://dx.doi.org/10.1006/jagm.1995.1009
http://hdl.handle.net/1783.1/738
http://dx.doi.org/10.1002/malq.19600060105


96 BIBLIOGRAPHY

S. Buss, S. Cook, A. Gupta, and V. Ramachandran. An optimal parallel algo-
rithm for formula evaluation. SIAM Journal on Computing, 21(4):755–780,
1992. doi:10.1137/0221046.

S. R. Buss. The boolean formula value problem is in ALOGTIME. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987),
pages 123–131. ACM, 1987. doi:10.1145/28395.28409.

S. R. Buss. Algorithms for boolean formula evaluation and for tree contrac-
tion. In P. Clote and J. Kraj́ıček, editors, Arithmetic, Proof Theory, and
Computational Complexity, pages 95–115. Oxford University Press, 1993.
http://math.ucsd.edu/∼sbuss/ResearchWeb/Boolean3/.

H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic
NC1 computation. Journal of Computer and System Sciences, 57(2):200–212,
1998. doi:10.1006/jcss.1998.1588.

A. Chiu, G. Davida, and B. Litow. Division in logspace-uniform NC1. RAIRO -
Theoretical Informatics and Applications, 35:259–275, 2001. doi:10.1051/ita:
2001119.

S. Cho and D. T. Huynh. On a complexity hierarchy between L and NL. Infor-
mation Processing Letters, 29(4):177–182, 1988. doi:10.1016/0020-0190(88)
90057-9.

S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64(1–3):2–22, 1985. doi:10.1016/S0019-9958(85)80041-3.

S. A. Cook and P. McKenzie. Problems complete for deterministic logarithmic
space. Journal of Algorithms, 8(5):385–394, 1987. doi:10.1016/0196-6774(87)
90018-6.

B. Courcelle. On recognizable sets and tree automata. In H. Aı̈t-Kaci and
M. Nivat, editors, Resolution of Equations in Algebraic Structures, volume 1,
pages 93–126. Academic Press, Inc., 1989.

B. Courcelle. Graph rewriting: An algebraic and logic approach. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: For-
mal Models and Semantics, pages 193–242. Elsevier and MIT Press, 1990.

B. Courcelle. The monadic second-order logic of graphs xiv: uniformly sparse
graphs and edge set quantifications. Theoretical Computer Science, 299(1–3):
1–36, 2003. doi:10.1016/S0304-3975(02)00578-9.

B. Courcelle and J. Engelfried. Graph structure and monadic second-order
logic, a language theoretic approach. Cambridge University Press, 2012. http:
//hal.archives-ouvertes.fr/hal-00646514/fr/.

B. Das, S. Datta, and P. Nimbhorkar. Log-space algorithms for paths and
matchings in k-trees. In Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science (STACS 2010), volume 5 of Leibniz
International Proceedings in Informatics, pages 215–226. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2010. doi:10.4230/LIPIcs.STACS.2010.
2456.

R. Diestel. Graph Theory. Springer, 2005. http://diestel-graph-theory.com/
index.html.

J. Doner. Tree acceptors and some of their applications. Journal of Computer
and System Sciences, 4(5):406–451, 1970. doi:10.1016/S0022-0000(70)80041-
1.

P. Dymond. Input-driven languages are in log n depth. Information Processing
Letters, 26(5):247–250, 1988. doi:10.1016/0020-0190(88)90148-2.

http://dx.doi.org/10.1137/0221046
http://dx.doi.org/10.1145/28395.28409
http://math.ucsd.edu/~sbuss/ResearchWeb/Boolean3/
http://dx.doi.org/10.1006/jcss.1998.1588
http://dx.doi.org/10.1051/ita:2001119
http://dx.doi.org/10.1051/ita:2001119
http://dx.doi.org/10.1016/0020-0190(88)90057-9
http://dx.doi.org/10.1016/0020-0190(88)90057-9
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1016/0196-6774(87)90018-6
http://dx.doi.org/10.1016/0196-6774(87)90018-6
http://dx.doi.org/10.1016/S0304-3975(02)00578-9
http://hal.archives-ouvertes.fr/hal-00646514/fr/
http://hal.archives-ouvertes.fr/hal-00646514/fr/
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2456
http://dx.doi.org/10.4230/LIPIcs.STACS.2010.2456
http://diestel-graph-theory.com/index.html
http://diestel-graph-theory.com/index.html
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.1016/S0022-0000(70)80041-1
http://dx.doi.org/10.1016/0020-0190(88)90148-2


BIBLIOGRAPHY 97

M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of
bodlaender and courcelle. In Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2010), pages 143–152, 2010.
doi:10.1109/FOCS.2010.21.

M. Elberfeld, M. Grohe, and T. Tantau. Where first-order and monadic second-
order logic coincide. In Proceedings of the 27th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS 2012). IEEE Computer Society,
2012a. http://www.tcs.uni-luebeck.de/downloads/papers/2012/msofo.pdf.
to appear.

M. Elberfeld, A. Jakoby, and T. Tantau. Algorithmic meta theorems for
circuit classes of constant and logarithmic depth. In Proceedings of the
29th International Symposium on Theoretical Aspects of Computer Science
(STACS 2012), volume 14 of Leibniz International Proceedings in Informat-
ics, pages 66–77. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012b.
doi:10.4230/LIPIcs.STACS.2012.66.

C. C. Elgot. Decision problems of finite automata design and related arith-
metics. Transactions of the American Mathematical Society, 98(1):21–51,
1961. doi:10.2307/1993511.

S. Feferman and R. Vaught. The first order properties of algebraic systems. Fun-
damenta Mathematicæ, 47:57–103, 1959. http://matwbn.icm.edu.pl/ksiazki/
fm/fm47/fm4715.pdf.

J. Flum and M. Grohe. Describing parameterized complexity classes. Informa-
tion and Computation, 187:291–319, 2003. doi:10.1016/S0890-5401(03)00161-
5.

J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin
Heidelberg, 2006. doi:10.1007/3-540-29953-X.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates.
Theoretical Computer Science, 270(1–2):761–777, 2002. doi:10.1016/S0304-
3975(01)00108-6.

G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of XPath
query evaluation and xml typing. Journal of the ACM, 52(2):284–335, 2005.
doi:10.1145/1059513.1059520.

E. Grädel, C. Hirsch, and M. Otto. Back and forth between guarded and
modal logics. ACM Trans. Comput. Logic, 3:418–463, 2002. doi:10.1145/
507382.507388.

M. Grohe and S. Kreutzer. Methods for algorithmic meta theorems. In Model
Theoretic Methods in Finite Combinatorics, volume 558 of Contemporary
Mathematics, pages 181–206. American Mathematical Society, 2011. http:
//www2.informatik.hu-berlin.de/∼grohe/pub/grokre11.pdf.

W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal of Com-
puter and System Sciences, 65(4):695–716, 2002. doi:10.1016/S0022-0000(02)
00025-9.

O. H. Ibarra, T. Jiang, B. Ravikumar, and J. H. Chang. On some languages
in NC1. In Proceedings of the Aegean Workshop on Computing: 3rd In-
ternational Workshop on Parallel Computation and VLSI Theory, volume
319 of Lecture Notes in Computer Science, pages 64–73. Springer, 1988.

http://dx.doi.org/10.1109/FOCS.2010.21
http://www.tcs.uni-luebeck.de/downloads/papers/2012/msofo.pdf
http://dx.doi.org/10.4230/LIPIcs.STACS.2012.66
http://dx.doi.org/10.2307/1993511
http://matwbn.icm.edu.pl/ksiazki/fm/fm47/fm4715.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm47/fm4715.pdf
http://dx.doi.org/10.1016/S0890-5401(03)00161-5
http://dx.doi.org/10.1016/S0890-5401(03)00161-5
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1016/S0304-3975(01)00108-6
http://dx.doi.org/10.1016/S0304-3975(01)00108-6
http://dx.doi.org/10.1145/1059513.1059520
http://dx.doi.org/10.1145/507382.507388
http://dx.doi.org/10.1145/507382.507388
http://www2.informatik.hu-berlin.de/~grohe/pub/grokre11.pdf
http://www2.informatik.hu-berlin.de/~grohe/pub/grokre11.pdf
http://dx.doi.org/10.1016/S0022-0000(02)00025-9
http://dx.doi.org/10.1016/S0022-0000(02)00025-9


98 BIBLIOGRAPHY

doi:10.1007/BFb0040374.
N. Immerman. Descriptive complexity. Springer, New York, 1999.
A. Jakoby and T. Tantau. Logspace algorithms for computing shortest and
longest paths in series-parallel graphs. In Proceedings of the 27th Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS 2007), volume 4855 of Lecture Notes in Computer Science,
pages 216–227. Springer, 2007. doi:10.1007/978-3-540-77050-3 18.

A. Jakoby, M. Lískiewicz, and R. Reischuk. Space efficient algorithms for
series-parallel graphs. Journal of Algorithms, 60(2):85–114, 2006. doi:
10.1016/j.jalgor.2004.06.010.

B. Jenner. Knapsack problems for NL. Information Processing Letters, 54(3):
169–174, 1995. doi:10.1016/0020-0190(95)00017-7.

N. D. Jones. Space-bounded reducibility among combinatorial problems. Jour-
nal of Computer and System Sciences, 11(1):68–85, 1975. doi:10.1016/S0022-
0000(75)80050-X.

D. M. Kane. Unary subset-sum is in logspace. CoRR, abs/1012.1336, 2010.
http://arxiv.org/abs/1012.1336.

A. Krebs, N. Limaye, and M. Mahajan. Counting paths in vpa is complete
for #NC1. In Proceedings of the 16th Annual International Conference on
Computing and Combinatorics (COCOON 2010), volume 6196 of Lecture
Notes in Computer Science, pages 44–53. Springer, 2010. doi:10.1007/978-3-
642-14031-0 7.

R. E. Ladner and N. A. Lynch. Relativization of questions about log space
computability. Theory of Computing Systems, 10:19–32, 1976. doi:10.1007/
BF01683260.

L. Libkin. Elements Of Finite Model Theory. Springer, 2004.
L. Libkin. Logics for unranked trees: An overview. Logical Methods in Computer
Science, 2(3), 2006. doi:10.2168/LMCS-2(3:2)2006.

M. Lohrey. On the parallel complexity of tree automata. In Proceedings of 12th
International Conference on Rewriting Techniques and Applications (RTA
2001), volume 2051 of Lecture Notes in Computer Science, pages 201–215.
Springer, 2001. doi:10.1007/3-540-45127-7 16.

J. Makowsky. Algorithmic uses of the Feferman–Vaught theorem. Annals of
Pure and Applied Logic, 126(1–3):159–213, 2004. doi:10.1016/j.apal.2003.11.
002.

A. Meier, J. Schmidt, M. Thomas, and H. Vollmer. On the parameterized com-
plexity of default logic and autoepistemic logic. In 6th International Con-
ference on Language and Automata Theory and Applications (LATA 2012),
volume 7183 of Lecture Notes in Computer Science, pages 389–400. Springer,
2012. doi:10.1007/978-3-642-28332-1 33.

G. L. Miller and J. H. Reif. Parallel tree contraction and its application.
In Proceedings of the 26th Annual Symposium on Foundations of Com-
puter Science (FOCS 1985), pages 478–489. IEEE Computer Society, 1985.
doi:10.1109/SFCS.1985.43.

D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within
NC1. Journal of Computer and System Sciences, 41(3):274–306, 1990. doi:
10.1016/0022-0000(90)90022-D.

B. Monien. On a subclass of pseudopolynomial problems. In Proceedings of the
9th Symposium on Mathematical Foundations of Computer Science (MFCS

http://dx.doi.org/10.1007/BFb0040374
http://dx.doi.org/10.1007/978-3-540-77050-3_18
http://dx.doi.org/10.1016/j.jalgor.2004.06.010
http://dx.doi.org/10.1016/j.jalgor.2004.06.010
http://dx.doi.org/10.1016/0020-0190(95)00017-7
http://dx.doi.org/10.1016/S0022-0000(75)80050-X
http://dx.doi.org/10.1016/S0022-0000(75)80050-X
http://arxiv.org/abs/1012.1336
http://dx.doi.org/10.1007/978-3-642-14031-0_7
http://dx.doi.org/10.1007/978-3-642-14031-0_7
http://dx.doi.org/10.1007/BF01683260
http://dx.doi.org/10.1007/BF01683260
http://dx.doi.org/10.2168/LMCS-2(3:2)2006
http://dx.doi.org/10.1007/3-540-45127-7_16
http://dx.doi.org/10.1016/j.apal.2003.11.002
http://dx.doi.org/10.1016/j.apal.2003.11.002
http://dx.doi.org/10.1007/978-3-642-28332-1_33
http://dx.doi.org/10.1109/SFCS.1985.43
http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://dx.doi.org/10.1016/0022-0000(90)90022-D


BIBLIOGRAPHY 99

1980), volume 88 of Lecture Notes in Computer Science, pages 414–425, 1980.
doi:10.1007/BFb0022521.

J. Nešetřil and P. Ossona de Mendez. Tree-depth, subgraph coloring and ho-
momorphism bounds. European Journal of Combinatorics, 27(6):1022–1041,
2006. doi:10.1016/j.ejc.2005.01.010.

J. Nešetřil and P. Ossona de Mendez. Grad and classes with bounded expansion
I. Decompositions. European Journal of Combinatorics, 29(3):760–776, 2008.
doi:10.1016/j.ejc.2006.07.013.

C. H. Papadimitriou. On the complexity of integer programming. Journal of
the ACM, 28(4):765–768, 1981. doi:10.1145/322276.322287.

C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):
1–24, 2008. doi:10.1145/1391289.1391291.

N. Robertson and P. Seymour. Graph minors. III. Planar tree-width. Journal
of Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-
8956(84)90013-3.

N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of
tree-width. Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-
6774(86)90023-4.

N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture.
Journal of Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.
1016/j.jctb.2004.08.001.

W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System
Sciences, 22(3):365–383, 1981. doi:10.1016/0022-0000(81)90038-6.

C. Stockhusen. Anwendungen monadischer Logik zweiter Stufe auf Prob-
leme beschränkter Baumweite und deren Platzkomplexität. Diploma Thesis,
2011. http://www.tcs.uni-luebeck.de/downloads/papers/2011/Christoph
Stockhusen Diplomarbeit.pdf. In German.

L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time
(preliminary report). In Proceedings of the 5th annual ACM symposium on
Theory of computing (STOC 1973), pages 1–9. ACM, 1973. doi:10.1145/
800125.804029.

H. Straubing. Finite automata, formal logic, and circuit complexity. Birkhäuser,
1994.

J. W. Thatcher and J. B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical
Systems Theory, 2(1):57–81, 1968. doi:10.1007/BF01691346.

C. Thomassen. On the presence of disjoint subgraphs of a specified type. Journal
of Graph Theory, 12(1):101–111, 1988. doi:10.1002/jgt.3190120111.

B. A. Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady
Akademii Nauk SSSR, 140:326–329, 1961. In Russian.

H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer,
Berlin Heidelberg, 1999.

F. Wagner. Graphs of bounded treewidth can be canonized in AC1. In 6th
International Computer Science Symposium in Russia (CSR 2011), volume
6651 of Lecture Notes in Computer Science, pages 209–222. Springer, 2011.
doi:10.1007/978-3-642-20712-9 16.

E. Wanke. Bounded tree-width and LOGCFL. Journal of Algorithms, 16(3):
470–491, 1994. doi:10.1006/jagm.1994.1022.

http://dx.doi.org/10.1007/BFb0022521
http://dx.doi.org/10.1016/j.ejc.2005.01.010
http://dx.doi.org/10.1016/j.ejc.2006.07.013
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/0022-0000(81)90038-6
http://www.tcs.uni-luebeck.de/downloads/papers/2011/Christoph_Stockhusen_Diplomarbeit.pdf
http://www.tcs.uni-luebeck.de/downloads/papers/2011/Christoph_Stockhusen_Diplomarbeit.pdf
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1007/BF01691346
http://dx.doi.org/10.1002/jgt.3190120111
http://dx.doi.org/10.1007/978-3-642-20712-9_16
http://dx.doi.org/10.1006/jagm.1994.1022

	Preface
	Abstract
	1. Introduction
	1.1. Definable Problems on Tree-Decomposable Structures
	1.2. Main Results and Their Applications
	1.3. Technical Contributions
	1.4. Organization of This Dissertation

	2. Unbounded Degree Trees and Automata
	2.1. Definition and Closure Properties of Multiset Tree Automata
	2.2. Review of Monadic Second-Order Logic
	2.3. A Büchi–Elgot–Trakhtenbrot-type Theorem for Unordered Trees

	3. Bounded Tree Depth and First-Order Logic
	3.1. A Feferman–Vaught-type Theorem for Unbounded Partitions
	3.2. Getting Familiar with Tree Depth
	3.3. Evaluating Monadic Second-Order Formulæ
	3.4. Application to Evaluating Guarded Second-Order Formulæ

	4. Bounded Tree Depth and Constant-Depth Circuits
	4.1. Review of Uniform Circuits
	4.2. Getting Familiar with Tree Decompositions
	4.3. From Automata Evaluation to Arithmetic Circuit Evaluation
	4.4. Applications to Solving Number Problems

	5. Tree Decompositions as Terms and Logarithmic-Depth Circuits
	5.1. Representing the Ancestor Relation of Trees by Terms
	5.2. Balancing Tree Decompositions in Constant Depth
	5.3. Applications to Evaluating Automata

	6. Bounded Tree Width and Logarithmic Space
	6.1. Review of Logarithmic-Space-Bounded Computations
	6.2. From Descriptor to Tree Decompositions
	6.3. Computing Tree Decompositions in Logarithmic Space
	6.4. Applications to Finding Paths and Matchings

	7. Conclusion
	7.1. Summary
	7.2. Outlook

	List of Terms
	Bibliography

