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Abstract

Haplotyping, also known as haplotype phase prediction, is the problem of predicting likely
haplotypes based on genotype data. One fast haplotyping method is based on an evolutionary
model where a perfect phylogenetic tree is sought that explains the observed data. Unfortunately,
when data entries are missing, which is often the case in laboratory data, the resulting formal
problem ipph, which stands for incomplete perfect phylogeny haplotyping, is NP-complete. Even
radically simplified versions, such as the restriction to phylogenetic trees consisting of just two
directed paths from a given root, are still NP-complete; but here, at least, a fixed-parameter
algorithm is known. Such drastic and ad hoc simplifications turn out to be unnecessary to make
ipph tractable: we present the first theoretical analysis of a parametrized algorithm, which we
develop in the course of the paper, that works for arbitrary instances of ipph. This tractability
result is optimal insofar as we prove ipph to be NP-complete whenever any of the parameters we
consider is not fixed, but part of the input.

Classification: computational biology, computational complexity, fixed-parameter algorithms, hap-
lotyping, phylogenies

1 Introduction

Haplotype phase prediction is a preprocessing step in genomic disease and medical condition associ-
ation studies. In these studies two groups of people are considered, where one group has a certain
disease or medical condition while the other has not, and one tries to find correlations between group
membership and the genomic data of the individuals in the groups. The genomic data typically con-
sists of information about which bases are present in an individual’s dna at so-called snp sites (single
nucleotide polymorphism sites). While the dna sequences of different individuals are mostly identical,
at snp sites there may be variations. Low-priced methods for large-scale inference of genomic data
can read out, separately for each snp site, the bases present, of which there can be two since we inherit
one chromosome from our father and one from our mother. However, since the bases at different sites

∗This is the accepted author manuscript of the article http://dx.doi.org/10.1016/j.tcs.2012.01.015. A preliminary version
of this paper was presented at the tamc 2009 conference [8].
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are determined independently, we have no information to which chromosome a base belongs to. For
homozygous sites, where the same base is present on both chromosomes, this is not a problem, but for
heterozygous sites this information, called the phase of a snp site, is needed for accurate correlations.
The idea behind haplotype phase prediction or just haplotyping is to predict likely phases computa-
tionally based on the laboratory data (which misses this information). For an individual, the genomic
input data without phase information is called the genotype while the two predicted chromosomes are
called haplotypes.

From a mathematical point of view, haplotypes can conveniently be coded as strings over the
alphabet {0,1}, where for a given site 0 stands for one of the bases that can be observed in practice,
while 1 encodes a second base that can also be observed. (The case that three bases are observed
happens so seldom that it can be ignored.) A genotype g is, conceptually, a sequence of sets that arises
from two haplotypes h1 and h2 as follows: The ith set in the sequence g is {h1[i],h2[i]}. However, it
is customary to encode the set {0} as 0, to encode {1} as 1, and {0,1} as 2, so that a genotype is
actually a string over the alphabet {0,1,2}. For example, the two haplotypes 0110 and 0101 give rise
to (we also say explain) the genotype 0122; and so do 0100 and 0111.

Since different haplotype pairs can explain the same genotype and any single haplotype is equally
likely a priori, haplotyping is not possible if only a single genotype is given. However, for a whole
set of genotypes from a larger group of different individuals, certain sets of haplotypes that explain
these genotypes are more likely than others. For instance, a small set of explaining haplotypes is more
likely than a large set since haplotypes mutate only rarely. One important method of haplotyping
is based on the perfect phylogeny approach proposed by Gusfield [15]. The underlying idea is that
the probability of a mutation in a single snp site is so small that we may safely assume that another
(backward) mutation at the same site will not have happened. Accordingly we seek a set of haplotypes
that can be arranged in a tree in which every edge marks a mutation of some snp site. This means that
the edge connects two components of the phylogenetic tree where in one component all haplotypes
have a 0-entry at this site and in the other component all haplotypes have a 1-entry there. A tree with
this property is called a perfect phylogeny and the computational question of whether a given set of
genotypes can be explained by haplotypes that can be arranged in a perfect phylogeny is the perfect
phylogeny haplotyping problem (pph).

Numerous results on the complexity of pph and its variants are known. Gusfield showed that the
problem can be solved in polynomial time [15], further papers first presented simpler polynomial-time
algorithms [1, 10] and later even linear-time algorithms [3, 5, 18, 20]. In [7] the first author showed
that pph is complete for logarithmic space. However, in practice, laboratory data is never perfect and
some entries may be missing in the input genotypes. In this case, the input matrices may contain
?-entries in addition to the 0-, 1-, and 2-entries. The objective is then to replace the missing entries by
normal entries such that the resulting genotypes are elements of pph. This problem is known as ipph,
where the i stands for incomplete. Unfortunately, ipph is NP-complete [23]. A heuristic is known for
solving it [21], but no guarantees can be made concerning its runtime.

The problems pph and ipph both have a directed variant. In real data, some genotype is typically
completely known and is completely homozygous, which means that one of the sought explaining
haplotypes is already known. This problem variant is called “directed” because the position of the
known haplotype in the phylogenetic tree singles out a node, which is then regarded as the root and
gives an orientation to the tree. The resulting problems are called dpph and idpph, with d standing
for “directed.” Although directedness is a simplification, idpph is still NP-complete [17].

In order to tackle the complexity of ipph, one possible approach is to study its fixed-parameter
tractability. The idea behind the framework of fixed-parameter complexity, initially developed by
Downey and Fellows [6], is that many NP-complete problems can in fact be solved efficiently when
we allow only input instances for which a certain problem-specific parameter is small. We consider
two parameters of instances for ipph: The first parameter is the maximum number of missing entries
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at any single snp site in the input. We expect this number to be small in real data – otherwise the
relevance of the data would be questionable – and this expectation is backed by real genotype data,
see [13] for a detailed analysis. The second parameter does not regard the input, but the topology of
the phylogenies that are sought: we restrict the number of leaves in an explaining phylogenetic tree.
This generalizes the concept of path phylogenies from Gramm et al. [13] which are phylogenies with
only two leaves. The study of path phylogenies is motivated by the discovery that the human genome
contains many so-called yin-yang haplotypes, see [24], which enforce explaining phylogenies to be
path phylogenies, see [13] for details. In practice, path phylogenies are, indeed, common in the human
genome, but it also happens that the underlying phylogenies have more than just two leaves.

Our Contributions. We present an algorithm that decides in time f (k, l)n2mO(l), where f is an at
most double-exponential function, n is the number of genotypes in the input, and m is the length of
those genotypes, whether a given set of incomplete genotypes with at most k missing entries for each
snp site belongs to ipph via a phylogeny having at most l leaves. This algorithm allows us to make
formal statements about the fixed-parameter tractability of ipph. First, ipph lies in the class XP for
the parameter pair (k, l). Second and more importantly, for each fixed l ≥ 2 the problem ipphleaves≤l
(which is ipph restricted to instances that can be explained by a perfect phylogeny having at most l
leaves) is fixed-parameter tractable with respect to the number of unknown entries per snp site.

We show that this double parametrization is necessary, in the sense that we can not set either one
of the parameters aside. Our first hardness result states that ipph is NP-complete for inputs where the
number of missing entries per column and also per row is restricted by the constant 15. Our second
hardness result implies that ipphleaves≤l is NP-complete for every l ≥ 2. In fact we show that the much
more restricted problem idppleaves≤l (given a set of incomplete haplotypes and one complete haplotype,
can the missing entries be filled with regular entries such that the input haplotypes can be arranged
in a perfect phylogeny with at most l leaves?) is NP-complete. To cover both variants, directed and
undirected, we show all hardness results for the directed case and give the fixed-parameter algorithm
for the undirected case. (Note that there is a trivial reduction from the directed to the undirected case:
just make a directed instance undirected and add the root genotype to the set of input genotypes.)

These results completely settle the questions left open in [13], namely whether the fixed-parameter
algorithm given there for idpphleaves≤2 can be extended to the cases where we allow a larger number
of leaves (indeed, we can), look at undirected variants (again, an extension is possible), or make no
restrictions on the number of leaves at all (the problem then becomes NP-complete even for a fixed
number of missing entries per site).

Methods. Our fixed-parameter algorithm generalizes Gramm et al.’s result [13] that idpphleaves≤2 is
fixed-parameter tractable. The algorithm from [13] relies strongly on Gusfield’s characterization [15]:
Given a set of genotypes A, a directed perfect phylogeny T for it with the all-0-haplotype as its root,
and any genotype g of A, the 1-entries of g label a path from the root to some node v of T and the
2-entries of g label a path containing v. Most algorithms for pph and its variants from the literature
exploit this necessary property as follows: They first reduce the problem to the directed version dpph
and then build the phylogeny by placing columns with many 1-entries and 2-entries near to the root
and columns with fewer such entries far from the root. The notions “should be placed near to the
root” and “should be placed far from the root” can be quantified more precisely by using Gusfield’s
notion of the leaf count of a column [15].

When the data is incomplete, no reduction from the undirected to the directed case is known.
(Indeed, ipp is NP-complete while idpp ∈ P.) To solve the undirected problem variant ipphleaves≤l , we
need a replacement for the notion of leaf count and a characterization of sets of genotypes admitting
undirected perfect phylogenies. We present such a replacement, which we call the light component
size, and also a characterization in terms of the new notion of mutation trees. This characterization
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allows us to construct phylogenies in a stepwise fashion from the “outside” of the phylogeny (columns
having a small light component size) to the “inside” of the phylogeny (columns having a large light
component size). In each step, we only need to remember the inner part of the partial phylogeny
constructed so far, making a dynamic program feasible.

Related Work. Haplotyping methods can be split into two groups: Statistical, see [11] for a lit-
erature starting point, and combinatorial. There are two main combinatorial methods: Maximum
parsimony haplotyping [4, 14] and the more recent perfect phylogeny approach that was introduced
by Gusfield [15] and later explored by numerous authors [1, 3, 5, 10, 18, 20].

The idea of considering restricted tree topologies to speed up haplotyping is due to Gramm et
al. [13] and was recently also investigated in the context of finding block partitions [12]. A different
approach to deal with the NP-completeness of ipph is due to Halperin and Karp [16]. They present a
polynomial-time algorithm for ipph that works for special instances satisfying the so-called “rich data
hypothesis.”

The influence of restricting the tree topology on the complexity of haplotyping problems has, prior
to the findings of the present paper, always been benign: In [13] it is shown that idpphleaves≤2 has
a fixed-parameter algorithm. In [12] it is shown that partitioning a complete genotype matrix into
a minimal number of column sets such that each set admits a perfect path phylogeny is equivalent,
in complexity theoretic terms, to finding maximal matchings; while the same problem for arbitrary
perfect phylogenies is NP-hard and even very hard to approximate. Finally, in [9] it is shown that
dpphleaves≤2 lies in AC0, while dpph is L-complete [7].

Organization of the Paper. In Section 2 we formally introduce perfect phylogeny haplotyping prob-
lems. Section 3 is devoted to our fixed-parameter algorithm, whose runtime properties are stated in
Theorem 3.1. We first develop the techniques needed for its proof in Section 3.1, then we present
the actual fixed-parameter algorithm in Section 3.2. Section 4 contains our two hardness results: the
NP-completeness of idpph with a fixed number of missing entries per snp site (Theorem 4.1) and the
NP-completeness of idppleaves≤2 (Theorem 4.2).

2 Preliminaries

Haplotypes, Genotypes, and Perfect Phylogenies. A haplotype h is a string over the alphabet {0,1},
a genotype g is a string over the alphabet {0,1,2}. Two haplotypes h1 and h2 of length m explain a
genotype g of length m, if for every i∈ {1, . . . ,m} we have g[i] = 2 if h1[i] 6= h2[i] and g[i] = h1[i] = h2[i]
otherwise. It is customary to formalize sets of genotypes (haplotypes) as matrices in which each row
is a genotype (haplotype). The columns represent snp sites. We say that a haplotype matrix B explains
a genotype matrix A, if for every row r the genotype in row r of A is explained by the haplotypes in
rows 2r−1 and 2r of B.

Haplotyping is the task, given a genotype matrix, to determine an explaining haplotype matrix
that correctly predicts the chromosome pairs from which the genotypes have been extracted. Since
there may be several explaining haplotype matrices, biological assumptions are used to come up with
criteria that narrow down the solution space. Gusfield [15] proposed to use phylogenetic trees for
this purpose: A haplotype matrix B admits a perfect phylogeny if there exists a tree (an undirected,
connected, acyclic graph) TB such that:

1. Each column of B labels exactly one edge of TB and each edge is labeled by at least one column.
2. Each row of B labels exactly one node of TB.
3. For every two rows h1 and h2 of B and every column i, we have h1[i] 6= h2[i] if, and only if, i

lies on the path from h1 to h2 in TB.
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B =



a
1

b
1

c
0

d
0

e
1

f
1

g
1

h
1 h1

1 0 0 0 1 0 1 1 h2
0 1 0 0 1 1 0 1 h3
0 1 0 1 1 1 0 1 h4
1 0 0 0 0 1 1 1 h5
1 1 0 0 1 1 0 1 h6
0 1 0 0 1 1 0 0 h7
0 1 1 0 1 1 0 1 h8



TB : h6

h3

h4

d

h7

h

h8

c

a

h1

h5

e

h2

f

b

g

Figure 1: An example haplotype matrix B admitting a perfect phylogeny TB.

We give an example in Figure 1. The intuition behind the above definition is as follows. The
nodes of the tree TB correspond to haplotypes. The edges between the nodes correspond to mutation
events: When we move from one node to another node along a single edge, the label(s) of the edge
name exactly those columns in which the node labels differ. This means that when we remove an
edge labeled by a column c, the two resulting components have the property that all nodes in one
component have a 0 in column c and all nodes in the other component have a 1 in that column.

When a haplotype matrix B admits a perfect phylogeny TB and, at the same time, explains a
genotype matrix A, we also say that A admits a perfect phylogeny. In this case, it is useful to define
a tree TA as follows: Its topology is the same as TB’s and so are the node labels, but the edges are
labeled by the columns of A (which may contain 2-entries) instead of the columns of B (where each
2-entry is replaced by a 0-entry and a 1-entry). We call TA a perfect phylogeny for A.

Formal Haplotyping Problems. The formal perfect phylogeny haplotyping problem (pph) is the set
of all genotype matrices that admit a perfect phylogeny:

Problem pph
Input A genotype matrix A

Question Does A admit a perfect phylogeny?

If the input matrix contains only haplotypes, no haplotyping needs to be done and the question is
just whether they can be arranged in a perfect phylogeny. The resulting problem is known as pp.

If the input genotype matrix A contains at least one genotype that is completely homozygous, then
we immediately know one of the sought haplotypes. We can regard the haplotype h as the root of the
phylogeny and thereby give the edges an orientation. Since the roles of 0-entries and 1-entries can be
exchanged individually for each site, we may assume that h is the all-0-haplotype (just flip 0 and 1 in
the columns where h contains 1). Perfect phylogenies containing the all-0-haplotype as a node label
are called directed perfect phylogenies. The resulting haplotyping problem is called directed perfect
phylogeny haplotyping (dpph).

Problem dpph
Input A genotype matrix A

Question Does A admit a directed perfect phylogeny?

Analogously we define:

Problem dpp
Input A haplotype matrix B

Question Does B admit a directed perfect phylogeny?
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To model the imperfectness of the laboratory methods for extracting genotype data we use the
symbol “?” to indicate sites where we do not know whether the correct entry is 0, 1, or 2. An
incomplete genotype g or an incomplete haplotype h is a string over the alphabet {0,1,2,?} or {0,1,?},
respectively. A completion of g is a string that is obtained by replacing all ?-entries with 0-, 1-, or
2-entries.

Problem ipph
Input An incomplete genotype matrix A

Question Can A be completed to become a genotype matrix that admits a perfect phylogeny?

The problems idpph, ipp, and idpp are defined analogously. Note that, while pp and dpp are nearly
the same problems and can easily be reduced to each other, ipp and idpp differ more strongly: ipp is
NP-complete [23], but idpp is solvable in polynomial time [2, 19].

Problem Parameters. We parametrize the perfect phylogeny haplotyping problem by two param-
eters: First, the parameter k denotes the maximum number of ?-entries in any column of the input
matrix. Second, the parameter l denotes the maximum number of allowed leaves in an explaining
perfect phylogeny for the haplotype matrix.

In order to analyze more easily which influence these parameters have individually and jointly
on the complexity of problems like ipph, we introduce an additional notation: We add the index
“leaves≤l” to a problem to indicate that only those input instances are in the language for which
an explaining perfect phylogeny having at most l leaves can be found. For instance, the problem
pphleaves≤l can formally be defined as follows:

Problem pphleaves≤l
Input A genotype matrix A

Question Does A admit a perfect phylogeny with at most l leaves?

Note that in some papers, such as [15], the definition of a phylogenetic tree requires all nodes
that represent haplotypes to be leaves. Then the number of leaves is exactly the number of different
haplotypes in the explaining matrix. In contrast, our definition of a perfect phylogeny, also used in
[10], forbids unlabeled edges, and haplotypes may label inner nodes. Here the number of leaves
corresponds to the number of different lineages that have developed when interpreting the perfect
phylogeny as a pedigree.

Four Gamete Property. For an n×m matrix S and a matrix A, we say that S is a submatrix of A
if there are row indices g1, . . . , gn and column indices c1, . . . , cm such that for all i ∈ {1, . . . ,n} and
j ∈ {1, . . . ,m} it holds that S[i, j] = A[gi,c j]. Note that a submatrix is not necessarily a connected
block in A. The following fact characterizes pp and dpp in terms of submatrices. Part 1 is the well
known four gamete property, part 2 is its translation to the directed case, which we call the three
gamete property.

Fact 2.1. Let B be a haplotype matrix.

1. B admits a perfect phylogeny if, and only if, B does not contain the submatrix
[ 0 0

0 1
1 0
1 1

]
.

2. B admits a directed perfect phylogeny if, and only if, B does not contain the submatrix
[

0 1
1 0
1 1

]
.

Resolving Heterozygous Sites. The four gamete property has implications for the question of how
heterozygous entries (2-entries) of a genotype can be resolved when a perfect phylogeny for the ex-
plaining haplotypes is sought. In order to choose two explaining haplotypes h1 and h2 for a genotype g
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we have to decide for each 2-entry, for which haplotype we put 0 in its place and for which a 1. If for
two 2-entries we put the 0’s in its place in the same haplotype, we say that the pair is resolved equally,
otherwise unequally. If g and g′ are rows in a genotype matrix A that both have a pair of 2-entries
in columns c and d, then both pairs must be resolved in the same way (otherwise, the four gamete
property would be violated). Thus we always have to resolve the pairs of 2-entries in the columns c
and d in the same way and speak about resolving columns c and d equally or unequally.

The pattern in the following proposition plays an important role in the hardness proofs in Section 4.

Lemma 2.2. Let A be an incomplete genotype matrix with submatrix S =
[

1 0 ?
0 ? 1
? 1 0

]
in columns c1, c2, and

c3. Let A′ be a completion of A that admits a directed perfect phylogeny via an explaining haplotype
matrix B. Then

1. either the ?-entries in S are replaced by three 0-entries in A′ and every pair of columns from
{c1,c2,c3} is resolved unequally in B,

2. or the ?-entries in S are replaced by two 0-entries and one 1-entry in A′ and exactly one pair
of columns from {c1,c2,c3} is resolved equally in B.

Proof. First note that none of the ?-entries can be set to 2, since then we get the submatrix
[

0 1
1 2

]
which

does not admit a directed perfect phylogeny because it can only be explained by the forbidden matrix[
0 1
1 0
1 1

]
from Fact 2.1. Also, setting two missing entries to 1 produces the same submatrix. Thus, there

are only two possibilities: either filling all ?-entries with 0, or setting one to 1 and the remaining two
to 0. In the first case all pairs of columns are resolved unequally. In the second case two column pairs
are resolved unequally, the other pair is resolved equally.

3 Fixed-Parameter Tractability Result

In this section we show that, for every fixed l ≥ 2, the problem ipphleaves≤l is fixed-parameter tractable
with respect to the maximal number of missing entries per column:

Theorem 3.1. For each l ≥ 2, the problem ipphleaves≤l is fixed-parameter tractable with respect to the
maximal number of ?-entries per column.

In the following two sections, we first introduce the new notion of the light component size as
a generalization of Gusfield’s leaf count [15], and an alternative characterization for ipph. Then we
show how this can be used in an algorithm.

3.1 A Characterization of Undirected Perfect Phylogeny Haplotyping

A major tool in the development of efficient algorithms for the dpph problem has been the leaf count
of a column, which is twice the number of its 1-entries plus the number of its 2-entries. The name
“leaf count” stems from the following observation: In a directed perfect phylogeny for a genotype
matrix A, the number of haplotypes below the edge labeled by a column equals exactly its leaf count.
This means that if two columns occur on a path from a leaf to the root (recall that this is always the
all-0-haplotype in a directed perfect phylogeny), the column with a greater leaf count is located nearer
to the root.

For undirected perfect phylogenies the leaf count is no longer meaningful since there is no dis-
tinguished root node that is known in advance. To tackle this problem, we introduce the new notion
of light component sizes. For a column c, let n0(c), n1(c), and n2(c) denote the number of 0-entries,
1-entries, and 2-entries in c, respectively.

7



Definition 3.2. For a column c of a genotype matrix A its light component size and heavy component
size are defined as follows:

lcs(c) := n2(c)+2 ·min{n0(c),n1(c)},
hcs(c) := n2(c)+2 ·max{n0(c),n1(c)}.

A =


a
1

b
2

c
0

d
0

e
1

f
2

g
1

h
1

0 1 0 2 1 1 0 1
1 2 0 0 2 1 2 1
0 1 2 0 1 1 0 2


column x a b c d e f g h

lcs(x) 4 2 1 1 1 1 3 1
lcv(x) 1 0 1 1 0 0 1 0

b� e, f

b� a,g

b⊥ c,d,h

Figure 2: Example of a genotype matrix A with the light component sizes and values of its columns.
For column b we show how it relates to the other columns. The matrix A can be explained by the
haplotype matrix B from Figure 1 and therefore admits the perfect phylogeny TB from Figure 1.

The key observation is that when we remove an edge labeled by a column c from a perfect
phylogeny TA, then two components result and the number of node labels in one of these components
will be lcs(c) and we call the component the light component, the other will contain hcs(c) labels and
we call it the heavy component. (In case lcs(c) = hcs(c), the choice is arbitrary.) To see this, recall
that in one component all node labels have a 0 in column c (and a 1 in the other component). Each
of the n0(c) many 0-entries of c contributes two node labels to this component, while each 2-entry
contributes one node label, which means that the number of node labels in this component is either
lcs(c) or hcs(c). The argument is similar for the other component and for 1-entries.

We have just seen that the value in column c of all node labels of the light component is the
same. Let us call this value the light component value lcv(c). Clearly, lcv(c) = 0 if n0(c) < n1(c)
and lcv(c) = 1 if n0(c)> n1(c). For n0(c) = n1(c) we remarked earlier that the light component can
be chosen arbitrarily; at this point we implicitly fix that choice by setting lcv(c) = 1. Symmetrically,
the value in column c of the node labels of the heavy component are all the same and equal to
hcv(c) = 1− lcv(c). See Figure 2 for an explaining example.

Our next aim is to define a quasi-ordering � on columns that helps us to arrange them in perfect
phylogenies. Suppose that for two columns c and d we know that the light component of d is a superset
of the light component of c. Consider a node label l and suppose the value of l at the position of
column c happens to be the light component value of c. Then we know that l must lie in the light
component of c and, thus, also in the light component of d, which in turn means that at position d in
l we must have the light component value of d. Phrased more succinctly: for every i ∈ {1, . . . ,n} we
have c[i] = lcv(c) =⇒ d[i] = lcv(d) and, by a similar argument, also d[i] = hcv(d) =⇒ c[i] = hcv(c).
Let us write c � d whenever these two implications hold for every i. Then c � d is a necessary,
but not a sufficient, condition for c’s light component being contained in d’s light component. We
remark that c� d implies lcs(c)≤ lcs(d). We can similarly consider the case of columns whose light
components are disjoint: then for every i ∈ {1, . . . ,n} we have c[i] = lcv(c) =⇒ d[i] = hcv(d) and
d[i] = lcv(d) =⇒ c[i] = hcv(c). We write c ⊥ d whenever these two implications hold for every i.
The introduced notions are related to Gusfield’s leaf count. Consider the haplotype that, at each
site, has the column’s corresponding heavy component value. The proof of Lemma 3.4 shows that
adding this haplotype as a root r to a perfect phylogeny and rearranging some columns locally, implies
the following properties: (1) If we consider the columns on a path c1, c2, . . . , ck from r to a leaf,
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then on this path, the columns with greater light component size are located nearer to the root and
c1 � c2 � ·· · � ck. (2) If two columns c and d label edges that are incident to a common node v and
do not lie on the path from r to v, then c ⊥ d. (3) Moreover, the 2-entries of each genotype that is
explained by the perfect phylogeny still make up a path in it.

Our algorithm is only concerned with building a tree whose edges are labeled with columns of the
input genotype matrix; the nodes of the tree are not labeled and the rows of the explaining haplotype
matrix B are irrelevant to the algorithm. Since edge labels correspond to mutation events, we call the
tree constructed by the algorithm a mutation tree.

Mutation tree for A:
r

d h c

e f

b

g

a

Perfect phylogeny TA for A:
h3

h4

d

h7

h
h8

c
h6

h1

h5

e

h2

f

b

g

a

Figure 3: The mutation tree for genotype matrix A from Figure 2 and the obtained perfect phylogeny
explaining A. One can see that TA equals TB from Figure 1.

Definition 3.3. Let A be a genotype matrix. A mutation tree T for A is an undirected tree whose
edges are bijectively labeled by A’s columns and which has a distinguished root node r such that:

1. Ordering condition: For every path originating at the root with edge labels c1, c2, . . . , ck we
have c1 � c2 � ·· · � ck.

2. Compatibility condition: For every two columns c and d that are incident to a common node v
and that do not lie on the path from r to v we have c⊥ d.

3. Two-path condition: For every three columns c, d, and e that are incident to the same node,
there is no i ∈ {1, . . . ,n} such that c[i] = d[i] = e[i] = 2.

For an example we refer to Figure 3.

Lemma 3.4. A genotype matrix A admits a perfect phylogeny with l leaves if, and only if, there exists
a mutation tree for A with l leaves.

Proof. For the only-if-direction let A be a genotype matrix, TA a perfect phylogeny for A, and B an
explaining haplotype matrix. We may assume that each edge of TA is labeled exactly once, otherwise
replace edges with multiple labels by paths of appropriate lengths in which each edge has a unique
label. We argue that TA with an appropriate root and without node labels (and, in some cases, some
minor additional changes) is a mutation tree for A.

Let {d1, . . . ,ds} be the set of all columns with maximal light component size. We claim that this set
forms a connected component in TA and lcs(d1)= · · ·= lcs(ds). For the proof, we distinguish two cases.
First, if lcs(d1) = · · ·= lcs(ds)< hcs(d1) = · · ·= hcs(ds), there are no two columns di and d j such that
di belongs to the light component of d j and vice versa (otherwise lcs(di)≥ hcs(d j) = hcs(di), which
contradicts lcs(di)< hcs(di)). This assures the existence of a column c ∈ {d1, . . . ,ds} that lies in the
heavy component of every other column di. Second, if lcs(d1)= · · ·= lcs(ds)= hcs(d1)= · · ·= hcs(ds),
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assume there are di, d j, and dk with maximal light component size such that all three of them
are incident to a common node v. Then the component of di that contains v also contains the
components of d j and dk that do not contain v. So lcs(di) ≥ lcs(d j) + lcs(dk), which contradicts
lcs(di) = lcs(d j) = lcs(dk). Thus, the di’s form a path and no haplotypes label its inner nodes. Hence,
the columns on this path can be rearranged so that one of the columns, call it c, lies in the heavy
component of every other column. In both cases let r be the node incident to c in its heavy component.
Then r lies in the heavy component of each column di. For columns d with lcs(d)< lcs(c) the light
component of d contains neither the light component nor the heavy component of c. Thus, regardless
of whether d lies in the light component or heavy component of c, the node r lies in the heavy
component of d.

We show that TA with the edges di possibly rearranged as described earlier, and with root r is a
mutation tree when we disregard the labeling of its nodes. To show that the ordering condition is
satisfied, consider two columns c1 and c2 where c1 lies on the path from r to c2. Since r lies in the
heavy component of each column, the heavy component of c1 is a subtree of the heavy component
of c2 and the light component of c2 is a subtree of the light component of c1, which implies c1 � c2.
For the compatibility condition consider two edges c and d that are incident to a node v and that do
not lie on a path from r to v. Then the light components of c and d are disjoint and, thus, c ⊥ d.
Finally, we verify the two-path condition. Consider a genotype in A with a 2-entry in column d. One
of the explaining haplotypes in B contains 0 and the other one contains 1 in column d, so in TA one
of them labels a node in the light component and the other labels a node in the heavy component
of d. If we have three columns c1, c2, and c3 incident to a common node v, then the components of
the columns that do not include v are disjoint. Hence, if A contains a genotype g with 2-entries in
these columns, we have three disjoint components which must each contain a label for one of the two
explaining haplotypes for g. Since this is a contradiction, the 2-path condition is true.

To prove the if-direction, let T be a mutation tree with root r. We show that the following node
labeling makes T a perfect phylogeny for A: For each column c and node v, we set the label of v in
column c to lcv(c) whenever c lies on the path between r and v and to hcv(c), otherwise. It suffices
to show that for every genotype g ∈ A there are two labels explaining it. Let g be a genotype from A
and let Alcv

g := {c | c is column of A, g[c] = lcv(c)} and A2
g := {c | c is column of A, g[c] = 2}. In the

following we show that (a) there is a node v that is connected to r via a path labeled exactly by the
columns in Alcv

g , (b) there are two nodes w and w′ connected by a path that goes through v and is
labeled exactly by the columns in A2

g, and (c) the labels of w and w′ explain g.
Since T satisfies the ordering condition, the columns from Alcv

g form a connected component in
T that contains r. The compatibility condition ensures that this component is a single path from r to
some node v. Thus, (a) is true. Let Tv be the subtree of T rooted at v. Assume there is a c ∈ A2

g that
labels an edge not belonging to Tv. Let v′ be the least common ancestor of c and v. Let d1 and d2
be the columns connected to v′ such that d1 starts the path from v′ to v and d2 starts the path from
v′ to c. Then, due to the compatibility condition, it holds d1 ⊥ d2 and therefore g[d2] = hcv(d2). The
ordering condition gives d2 � c, which implies g[c] = hcv(c), a contradiction to the choice of c. So,
all columns in A2

g are in Tv. With the property that all columns from Tv have a heavy component value
or a 2-entry in g, the columns in A2

g form a connected component in Tv that contains v. The two-path
condition implies that this component is a path, so (b) holds. Finally, to prove (c) let w and w′ be the
two vertices that are connected by this A2

g-path. The path from r to v contains exactly the columns
with light component value in g, so the labels both have a light component value in these columns.
The columns from c ∈ A2

g are distributed among the paths from v to w and v to w′. Therefore one
label has lcv(c) and the other hcv(c) in column c. All columns not belonging to Alcv

g or A2
g do not

appear in either path, thus the labels contain heavy component values in these columns. Hence, the
labels of w and w′ explain g.
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3.2 The Fixed-Parameter Algorithm

Our fixed-parameter algorithm for ipphleaves≤l works in two stages. The first stage is a preprocessing
of the input matrix. After the preprocessing, the maximal number of columns with the same light
component size is bounded by a function in l and k, where k is the maximum number of missing
entries per column. The basic idea is that if there are many different columns with the same light
component size, they must lie on many different branches and, thus, at some point it is no longer
possible to arrange them in a perfect phylogeny with only l leaves. The following lemma states the
effect of the preprocessing precisely.

Lemma 3.5. There is an algorithm preprocess that gets an incomplete n×m genotype matrix A with
at most k many ?-entries per column as input and outputs, in time O(k4km3n), a genotype matrix A′

such that:

1. A ∈ ipphleaves≤l if, and only if, A′ ∈ ipphleaves≤l .
2. There are no duplicate columns in A′ and no columns that can be completed to a constant

column.
3. For every i there are at most (2k+1)l(3l)kk! columns in A′ with light component size i.

Proof. We just give a brief sketch because both, algorithm and proof, are straightforward generaliza-
tions of those given by Gramm et al. [13] for the case l = 2. The main idea we exploit is as follows:
if the input matrix contains many columns whose missing entries can be filled such that all obtained
columns are equal, we make no mistake in filling them that way. More precisely, one proves the
following:

Let A be a genotype matrix with at most k missing entries per column. Let h≥ 0 be the minimal
number such that there is a subset C of columns from A with |C| > (3l)hh and a (possibly new)
“consensus genotype” c with exactly k−h missing entries that can be obtained from every genotype
in C by filling some of its missing entries. Let A′ be the incomplete genotype matrix obtained from A
by deleting all columns from C and adding c. Then A ∈ ipphleaves≤l if and only if A′ ∈ ipphleaves≤l .

In the preprocessing phase columns are replaced according to this rule to obtain a genotype matrix
that satisfies the properties stated in the lemma.

The second stage is the main part of the algorithm. By Lemma 3.4, in order to decide whether the
preprocessed version A has the property A∈ ipphleaves≤l , it suffices to test whether A can be completed
in such a way that it admits a mutation tree with at most l leaves.

For the presentation of our algorithm we need some additional terminology: Given a set of
columns A or a matrix A, let A|lcs=i, A|lcs≤i, and A|lcs>i denote the set of all columns c of A with
lcs(c) = i, lcs(c)≤ i, and lcs(c)> i, respectively. A completion of a set of columns with ?-entries is
obtained by replacing all ?-entries by 0-, 1-, or 2-entries. Note that a completion of a column with
light component size i can have a light component size between i and i+2k, where k is, as always,
the number of ?-entries in the column. The inner part of a mutation tree T is the set inner(T ) of
edges that are incident to the root of T .

The mutation tree construction algorithm works in iterations i= 1,2, . . . ,n. In iteration i it processes
all completions of the set A|lcs=i. The algorithm keeps track of what it has already found out about
completions of A|lcs<i in previous iterations in what we call tree records (I,λ ,U). Such a record
consists of an inner part I, a number λ ∈ {0, . . . , l} of leaves, and a set of unprocessed columns U .
The following definition formalizes the properties that tree records should have:

Definition 3.6. Let A be an incomplete n×m genotype matrix and let i ∈ {1, . . . ,n}. A tree record
(I,λ ,U) is good for A and i if there exists a completion Si of A|lcs≤i such that (a) I = inner(Ti) for
some mutation tree Ti for Si|lcs≤i, (b) λ is the number of leaves of Ti, and (c) U = Si|lcs>i.
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The job of the algorithm is to compute in each iteration i the set Ri of all good tree records
for A and i. Clearly, if Rn is nonempty after the last iteration, there exist a completion for A and a
mutation tree for it with at most l leaves; and otherwise no such completion exists. Figure 4 shows
the pseudo-code of the algorithm, Figure 5 shows an example of the algorithm in action.

Algorithm solve-ipphleaves≤l .
Input: An n×m genotype matrix A with at most k missing entries per column.
1 A← preprocess(A)
2 R0←{(∅,0,∅)}
3 for increasing light component sizes i← 1,2, . . . ,n do
4 Ri←∅
5 for each completion C of A|lcs=i do
6 for each tree record (I,λ ,U) ∈ Ri−1 do
7 for each mutation tree T for I∪C|lcs=i∪U |lcs=i

with λ ′−λ + |I| leaves for some λ ′ ≤ l
where all columns from I are incident to leaves of T do

8 Ri← Ri∪
{
(inner(T ),λ ′,C|lcs>i∪U |lcs>i)

}
9 if Rn is nonempty then output “A ∈ ipphleaves≤l” else output “A /∈ ipphleaves≤l”

Figure 4: Our decision algorithm for ipphleaves≤l .

The following two lemmas imply that the algorithm is correct and that it is a fixed-parameter
algorithm for ipphleaves≤l . Together, they prove Theorem 3.1.

Lemma 3.7. After each iteration i of algorithm solve-ipphleaves≤l , the set Ri contains exactly the good
tree records for A and i.

Proof. We prove the claim by induction over i. For i = 0 the initialization R0 = {(∅,0,∅)} is correct
because the preprocessing ensures that A|lcs=0 = ∅, see the second property of Lemma 3.5.

For the inductive step from i−1 to i, we first argue that the algorithm adds only good tree records
to Ri. Suppose the algorithm adds some tree record (I′,λ ′,U ′) to Ri. Then there exists a completion C
of A|lcs=i and some tree record (I,λ ,U)∈Ri−1, such that there is a mutation tree T passing the test from
line 7. By the inductive hypothesis, (I,λ ,U) is good as witnessed by some Ti−1 and Si−1. Our objective
is to combine Ti−1 and T into a a mutation tree Ti for all of Si|lcs≤i = Si−1|lcs≤i−1∪C|lcs=i∪U |lcs=i.
First, we split Ti−1 at the root, which leads to | inner(Ti−1)| many subtrees. We then identify the top
edges of these subtrees with the edges that are labeled by columns from inner(Ti−1) in T . Remember
that these columns label edges that are incident to leaves. Figure 6 shows the construction of Ti from
T and Ti−1. The tree Ti is a mutation tree since the local properties at incident edges and edges around
nodes are satisfied by construction. Since T has λ ′−λ + |I| ≤ l−λ + |I| leaves and Ti−1 has λ leaves,
Ti has λ ′ ≤ l leaves.

It remains to argue that all good tree records (I′,λ ′,U ′) are added to Ri. Let Si and Ti witness
that the tree record is good for A and i. Partition Si into two sets Si−1 and C, such that Si−1 is a
completion of A|lcs≤i−1 and C is a completion of A|lcs=i. Let Ti−1 be obtained from Ti by contracting
all edges labeled by columns with light component size i.

We claim that Ti−1 is a mutation tree for the columns from Si−1|lcs≤i−1. To prove this, we show
that for every mutation tree T ′ and every edge {v,w} labeled d, where v lies on the path from the root
to w, if we contract the edge {v,w}, the resulting tree T ′′ still satisfies the ordering, compatibility, and
two-path conditions:

1. T ′′ clearly still satisfies the ordering condition.
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Input matrix:

A =

(a
2

b
?

c
1

d
0

e
2

f
2

1 2 ? 0 ? 2
? 0 2 2 2 ?
? 0 ? 2 ? 2

)

Iteration:
(picked in line 3)
i← 3

Completion:
(picked in line 5)

C←
{ f ′

2
2
0
2

}

A|lcs=1

A|lcs=2

A|lcs=3

Tree record from R2:
(picked in line 6)

({b′

0
2
0
0
,

d′

0
0
2
2
,

e′
2
1
2
1

}
,3,

{c′
1
2
2
2

})

This is a tree record for
the following tree T2 and
completion S2 of A|lcs≤2:

T2: r

b′
0
2
0
0

d′
0
0
2
2

a′
2
1
1
1

e′
2
1
2
1

S2 =

{a′
2
1
1
1
,

b′

0
2
0
0
,

c′
1
2
2
2
,

d′

0
0
2
2
,

e′
2
1
2
1

}

Mutation tree T :
(picked in line 7)

T : r

f ′
2
2
0
2

e′
2
1
2
1

b′
0
2
0
0

d′
0
0
2
2

c′
1
2
2
2

Tree record added to R3:
(added in line 8)({c′

1
2
2
2
,

e′
2
1
2
1
,

f ′
2
2
0
2

}
,4,∅

)
This is a tree record for
the following tree T3 and
completion S3 of A|lcs≤3:

T3 : r

f ′
2
2
0
2

a′
2
1
1
1

e′
2
1
2
1

b′
0
2
0
0

d′
0
0
2
2

c′
1
2
2
2

S3 =

{a′
2
1
1
1
,

b′
0
2
0
0
,

c′
1
2
2
2
,

d′

0
0
2
2
,

e′
2
1
2
1
,

f ′
2
2
0
2

}

Figure 5: Example of the third iteration of solve-ipphleaves≤l for the indicated input matrix A. We
depict a set of possible values for the loop variables for which a new tree record is added to R3.

Ti−1 :
r

a
b c

d

λ leaves

T :
r

a

b c d

λ ′−λ + |I| leaves

Ti :
r

a

b c d

λ ′ leaves

Figure 6: Example of the construction of Ti from T and Ti−1. In line 7, the algorithm combines
edges that are labeled with columns inner(Ti−1) (thin lines) and edges that are labeled with columns
in C|lcs≤i∪U |lcs≤i (thick lines) to construct a mutation tree T for them, such that the columns from
inner(Ti−1) label edges that are incident to leaves. Since the ordering, compatibility and two-path
conditions are satisfied locally in trees Ti−1 and T , there exists the depicted combined mutation tree
Ti for Si−1|lcs≤i−1∪C|lcs=i∪U |lcs=i. We also know that Ti has λ ′ ≤ l leaves since Ti−1 has λ leaves
and T has λ ′−λ + |I| ≤ l−λ + |I| leaves.
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2. For the compatibility condition, let u be a node of T ′′. If u is neither v nor w, the compatibility
condition is still true at u. Otherwise, u = v = w. Suppose for sake of contradiction, that u is
incident to two columns c and c′ that are not on the path to the root and where c ⊥ c′ does
not hold. Without loss of generality, we may assume c[g] = lcv(c) and c′[g] 6= hcv(c′) for a
genotype g. Since the compatibility condition holds for T ′, we know that neither v nor w is
incident to both c and c′ in T ′. First, consider the case that v is incident to c and w is incident to
c′. Since c[g] = lcv(c), we have d[g] = hcv(d). Together with the ordering condition it follows
that c′ must have a heavy component value in genotype g, a contradiction. Second, assume
that v is incident to c′ and w is incident to c. From the ordering condition we can deduce that
d has a light component value in genotype g. Thus, c′ and d at node v in T ′ contradict the
compatibility condition.

3. For the two-path condition, let u be a node of T ′′. Again, if u is neither v nor w, the two-path
condition is still satisfied at u, so assume u = v = w. For the sake of contradiction, assume
that u is incident to three columns c, c′, and c′′ with c[g] = c′[g] = c′′[g] = 2 for a genotype g.
Since the two-path condition holds in T ′, the nodes v and also w are incident to at least one
of these columns. First, we assume that v is incident to c and w is incident to c′ and c′′. The
ordering condition implies that d has either a 2-entry or a light component value in g. If d has
a 2-entry in g, the two-path condition is not satisfied at node w. If d has a light component
value in g, we distinguish the cases that c labels the path between v and the root in T ′ and that
c does not label this path. In the first case, the ordering condition is not satisfied for c and d,
and in the second case the compatibility condition is not satisfied at node v. If we assume that
two columns c and c′ are incident to v and one column c′′ is incident to w, we can analogously
deduce a contradiction. Thus, the two-path condition holds for every node of T ′′.

We have now proved that Ti−1 is a mutation tree for Si−1|lcs≤i−1. By the inductive assumption,
there must be good tree record (inner(Ti−1),λ ,Si−1|lcs>i−1) ∈ Ri−1 for Ti−1 and Si−1. Since light
component sizes only increase as we near the root, in Ti there can be no column c with lcs(c)≤ i−1
that labels an edge between the root and a column c′ with lcs(c′) = i. With this property in mind,
we combine inner(Ti−1) and the columns with light component size exactly i from Si to a tree T with
inner(T ) = inner(Ti) that has λ ′−λ + | inner(Ti−1)| ≤ l−λ + | inner(Ti−1)| leaves. This construction is
the converse of the construction in Figure 6. Then T will pass the test of line 7 and (inner(Ti),λ

′,U ′)
will, indeed, be inserted into Ri.

Lemma 3.8. Algorithm solve-ipphleaves≤l runs in time O
(

f (k)mln2
)
, where f is an at most double

exponential function depending only on k.

Proof. By Lemma 3.5 the preprocessing takes time O(k4km3n). The number of completions of A|lcs=i

considered in round i is bounded by 3k(2k+1)l(3l)kk! since Lemma 3.5 limits the size of A|lcs=i by
(2k+1)l(3l)kk!. We now argue that the number of good tree records over which the algorithm iterates
can be at most 3k

∣∣A|i−2k≤lcs≤i−1
∣∣. A tree record consists of a set I of at most l complete columns for

which there are at most ml3kl possibilities, a value λ ≤ l, and a set U of unprocessed completions.
The set U contains complete columns from the preceding iterations that have light component size at
least i. When we complete a column, its light component size can only increase by at most 2k and,
thus, a complete column corresponds to an incomplete column from the last 2k rounds. Thus there are
at most 3k

∣∣A|i−2k≤lcs≤i−1
∣∣ possibilities, which is also bounded by a function in k and l. Finally, for the

runtime of the inner loop, just note that the size of I∪C|lcs=i∪U |lcs=i depends only on l and k.
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4 Hardness Results

In this section we show that both parameters, the number of ?-entries per column and the number
of leaves in the phylogeny, cannot be used individually, but only in tandem to arrive at an efficient
ipph-algorithm. We show that ipph is neither fixed-parameter tractable when parametrized by the
number of leaves, nor when parametrized by the number of missing entries per column, unless P=NP.
In fact, we show that ipph stays NP-hard if we fix one of the parameters to a constant and is, thus,
not even in XP unless P = NP.

In the proofs we use the following NP-complete [22] variants of the satisfiability problem to reduce
from.

Problem monotone 1in3sat 3occ
Input A propositional formula φ =

∧m
i=1Ci, where each clause Ci = (xi

0∨xi
1∨xi

2) consists of three
variables and every variable occurs at most three times

Question Is there a satisfying truth assignment for the variables, mapping exactly one variable per
clause to 1?

Problem monotone nae3sat
Input A propositional formula φ =

∧m
i=1Ci, where each clause Ci = (xi

0∨xi
1∨xi

2) consists of three
variables

Question Is there a satisfying truth assignment for the variables, such that not all variables in a clause
share the same value?

Our first hardness result improves upon a result by Kimmel and Shamir, who have shown in [17]
that idpph is NP-complete. Our aim is to show that the completeness still holds when the number of
?-entries per row and per column is restricted by a constant, which implies that idpph parametrized
by the number of missing entries per column is not in XP (unless P = NP). In order to analyze the
number of ?-entries in the genotype matrices generated during the reduction, we need to abandon the
graph-theoretic methods used by Kimmel and Shamir and, instead, use a more direct approach based
on specifically constructed submatrices.

Theorem 4.1. idpph for instances with up to 15 missing entries per column and up to 5 missing
entries per row is NP-complete.

Proof. Membership in NP is clear. For the NP-hardness we reduce from monotone 1in3sat 3occ.
Let φ =

∧m
i=1Ci be an instance of monotone 1in3sat 3occ with m clauses Ci = (xi

0 ∨ xi
1 ∨ xi

2) and
variables from V = {v1, . . . ,vn}. We construct a genotype matrix A with 2n+12m columns and 31m
rows. The columns are named as follows:

• For each variable v ∈V there are two columns v and v′.
• For each clause Ci there are columns ci

j,d
i
j,e

i
j, f i

j with j ∈ {0,1,2}.

We now define the rows of A. For each clause Ci there is a row ri with 2-entries in columns ci
0,

ci
1, ci

2 and 0-entries in all other columns. Additionally, for every clause Ci = (xi
0∨ xi

1∨ xi
2) and every

j ∈ {0,1,2} there are ten rows containing the following submatrix Ai
j and being 0 in all other columns:
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Ai
j =

xi
j xi

j
′ di

j ei
j f i

j ci
j ci

j′ ci
j′′

2 2 2 2 0 ? 0 ?
? ? 2 2 2 ? ? ?
? 0 2 0 2 2 2 ?
? 0 1 0 0 ? 0 ?
? 1 0 0 0 0 0 0
0 0 0 0 0 ? 1 0
0 ? ? 1 0 ? 0 ?
1 0 0 0 0 0 0 0
? 0 ? 0 1 0 ? 0
0 0 0 0 0 1 0 ?

Here j′ = ( j+ 1)mod 3 and j′′ = ( j+ 2)mod 3. From now on we interpret all lower indices in
this proof modulo 3.

The idea of this construction is as follows: depending on how we resolve the 2-entries in columns
xi

j and xi
j
′, there is only one possibility (depicted in Figure 7) to fill the missing entries (except

those in column ci
j+2) and resolve the 2-entries in the rest of a submatrix Ai

j without producing the
submatrix

[
1 0
0 1
1 1

]
.

Resolving xi
j and xi

j
′ equally or unequally will correspond to setting xi

j to 0 or 1, respectively.
In Figure 7 one can see that ci

j and ci
j+1 are resolved equally if and only if xi

j and xi
j
′ are resolved

unequally.
For the correctness of the reduction we first show that if φ has a solution, then A can be completed

to admit a directed perfect phylogeny. Let τ : V → {0,1} be an assignment that maps exactly one
variable of each clause in φ to 1. In the submatrices Ai

j with corresponding clause Ci = (xi
0∨xi

1∨xi
2)

we resolve the 2-entries in columns xi
j and xi

j
′ equally if τ(xi

j) = 0, and unequally if τ(xi
j) = 1. Then

we fill and resolve the matrix according to Figure 7. Without loss of generality we assume τ(xi
0) = 1

and τ(xi
1) = τ(xi

2) = 0. In ci
0 we fill the remaining ?-entries by copying the entries from ci

1. The
remaining ?-entries of ci

1 and ci
2 we set to 0. Finally we resolve the 2-entries in row ri by resolving

(ci
0,c

i
1) equally and (ci

1,c
i
2) and (ci

2,c
i
0) unequally. The resulting haplotype matrix admits a perfect

phylogeny with the all-0-haplotype as root.
Now we prove that, if A admits a directed perfect phylogeny, then φ has a solution. Let B be

the haplotype matrix that explains a genotype matrix A′, which can be obtained from A by filling its
missing entries. Let τ : V → {0,1} be an assignment with τ(v) = 0 if columns v and v′ are resolved
equally and τ(v) = 1 otherwise. We show that τ maps exactly one variable per clause to 1. We
consider the clause Ci = (xi

0∨ xi
1∨ xi

2). The columns ci
0,c

i
1,c

i
2 contain the following submatrix in A:

ci
0 ci

1 ci
2

2 2 2
1 0 ?
0 ? 1
? 1 0

The first row is ri, the others are the last rows of Ai
0, Ai

1, and Ai
2. Due to Lemma 2.2 the last three

rows ensure that at least two of the three possible column pairs (ci
0,c

i
1), (c

i
1,c

i
2), and (ci

2,c
i
0) must

be resolved unequally. Because of the first row, it is not possible to resolve all three pairs unequally,
therefore exactly one pair must be resolved equally. Thus, τ maps exactly one variable per clause to
1.
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xi
j xi

j
′ di

j ei
j f i

j ci
j ci
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Figure 7: The submatrix Ai
j filled and resolved when (xi

j,x
i
j
′
) are resolved unequally (left) and equally

(right). Positions that are ?-entries in Ai
j are indicated by circles.

Finally we count the number of ?-entries. It is easy to see that there are at most five ?-entries in
each row. For the columns we first consider ci

j for i ∈ {0, . . . ,m−1}, j ∈ {0,1,2}. This column has
four ?-entries in submatrix Ai

j, six in Ai
j+1, and two in Ai

j+2, which makes a total of 12 ?-entries. For
a variable v ∈V the columns v and v′ appear in a submatrix Ai

j if and only if v is the jth variable in
clause Ci, therefore we have five ?-entries in v and three in v′ for every occurrence of v in φ . Since
every variable occurs at most three times, we get at most 15 ?-entries in column v and at most nine
in v′. All columns di

j,e
i
j, f i

j contain only up to two ?-entries. Hence, in each column there are at most
15 missing entries.

Our second hardness result is the NP-completeness of idppleaves≤l . This problem reduces to many
other problems. First, it is easy to see (but not trivial) that idppleaves≤l reduces to idpphleaves≤l via the
identity mapping. Thus, the next theorem implies that idpphleaves≤l is also NP-complete, which was
previously proved by Gramm et al. [13] for l = 2.

Next, it is also easy to see that any directed problem reduces to the undirected version by adding
an all-0-row. Thus, ippleaves≤l is also NP-complete. Indeed, all previously known NP-completeness
results for variants of ipph follow from Theorem 4.2, except for the NP-completeness of ipp.

Since idpp ∈ P, this is a first example of a perfect path phylogeny problem being harder than the
corresponding problem for general perfect phylogenies. Our proof is based on a reduction from the
NP-complete problem monotone nae3sat and is similar to the reduction presented in [13], which
starts, however, from nae3sat. By starting our reduction from a (conceptually) simpler problem we
are able to prove a stronger result than the one presented in [13].

Theorem 4.2. idppleaves≤l is NP-complete for every l ≥ 2.

Proof. Fix an l ≥ 2. We reduce monotone nae3sat to idppleaves≤l . Let φ =
∧m

i=1Ci be an instance
of monotone nae3sat with m clauses Ci = (xi

0 ∨ xi
1 ∨ xi

2) and variables from V = {v1, . . . ,vn}. We
construct an incomplete (n+3m+ l−2)×(3m+ l−2) haplotype matrix B. The first n rows, which we
call variable rows, are identified with the variables of φ . The next 3m rows and the first 3m columns
are called literal rows and literal columns, respectively. They consist of rows ci

j for i ∈ {1, . . . ,m}, j ∈
{1, . . . ,3} and columns with the same names. The remaining l− 2 columns are marked by b1, . . . ,
bl−2. First, we describe the non-?-entries of the upper left (n+3m)×(3m) submatrix: For each clause
Ci = (xi

1 ∨ xi
2 ∨ xi

3) we put in each literal column ci
j a 1-entry in variable row xi

j. Then we put the

submatrix
[

1 0 ?
0 ? 1
? 1 0

]
in columns ci

1, ci
2, and ci

3 and rows ci
1, ci

2, and ci
3. Finally, we set the lower right

(l−2)× (l−2) submatrix to the identity matrix and all entries in the upper right (n+3m)× (l−2)
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submatrix and the lower left (l−2)×3m submatrix to 0. An example of this construction for l = 4 is
depicted in Figure 8.

φ =C1∧C2∧C3 with

C1 = ( v1︸︷︷︸
x1

1

, v2︸︷︷︸
x1

2

, v3︸︷︷︸
x1

3

),

C2 = ( v2︸︷︷︸
x2

1

, v3︸︷︷︸
x2

2

, v4︸︷︷︸
x2

3

),

C3 = ( v2︸︷︷︸
x3

1

, v4︸︷︷︸
x3

2

, v5︸︷︷︸
x3

3

)

is mapped to

c1
1 c1

2 c1
3 c2

1 c2
2 c2

3 c3
1 c3

2 c3
3 b1 b2

v1 1
v2 1 1 1
v3 1 1
v4 1 1
v5 1

c1
1 1 0 ?
c1

2 0 ? 1 ? 0
c1

3 ? 1 0
c2

1 1 0 ?
c2

2 0 ? 1
c2

3 ? 1 0
c3

1 1 0 ?
c3

2 ? 0 ? 1
c3

3 ? 1 0
1 00 0 1

Figure 8: Example of the reduction from monotone nae3sat to idppleaves≤4.

It remains to prove that φ ∈ monotone nae3sat if, and only if, B ∈ idppleaves≤l .
First, let B′ be a completion of B that admits a directed perfect phylogeny T with at most l leaves.

Our first claim is that the columns b1, . . . , bl−2 lie on l−2 different branches, each of which contains
only this one column bi. To see this, just note that for any column bi, no other column of B′ can lie
on the same root-to-leaf path as bi since these columns contain the submatrix

[
1 0
0 1

]
. The remaining

columns, which are the literal columns, must then lie on at most two further branches T0 and T1 (recall
that T has at most l leaves). Both branches must be nonempty since B contains in its literal columns
the submatrix

[
1 0 ?
0 ? 1
? 1 0

]
, whose missing entries, due to Lemma 2.2, must be filled with at least two

1-entries and therefore its columns lie on at least two different branches. The first n rows assure that
all literal columns that correspond to the same variable lie on the same path: they contain 1-entries
in the same row. The next 3m rows enforce that the literal columns of any given clause do not all lie
on the same root-to-leaf path. We can now construct the desired truth assignment τ for the variables
of φ that witnesses φ ∈ monotone nae3sat: For a variable vi, we set τ(vi) = 0, if the corresponding
literal columns lie on T0, and τ(vi) = 1, if they lie on T1.

For the other direction let τ : {v1, . . . ,vn} → {0,1} be an assignment of the variables of φ such
that the literals of a clause do not all share the same truth value. We describe, simultaneously, a
completion B′ for B and a directed perfect phylogeny T with at most l leaves for B′. First, T contains
l−2 branches, each of which contains exactly one column bi. The leaves at the ends of these branches
are labeled with one of the lower l− 2 rows of B. Next, there are two further paths T0 and T1 in T
and these paths contain the completions of all of the remaining columns.

The path T0 contains all literal columns whose corresponding variables are set to 0 by τ . The
ordering of the columns on the path in root-to-leaf order is as follows: First, all literal columns for a
clause Ci come earlier than all literal columns for clause Ci+1. For a single clause Ci = (xi

1∨xi
2∨xi

3), we
only need to explain what happens when there are exactly two xi

j and xi
k inside Ci with τ(xi

j)= τ(xi
k)= 0.

In this case, we may assume that k ≡ j + 1 (mod 3) holds (otherwise exchange the meanings of j
and k). Then column ci

j comes before ci
k on the path T0. Each edge on the path T0 is now labeled with

some column ci
j. We label the node following this column by the row ci

j; note that this positioning
implicitly yields a completion for this row. The branch T1 is constructed in the same way, but we now
consider only variables with τ(xi

j) = 1. The last node on the path T0 is labeled by all variable rows vi
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with τ(vi) = 0, similarly for T1 and variables with τ(vi) = 1. Again, the positioning implicitly assigns
completions to these rows. This completes the construction of the completion B′ and of the sought
directed perfect phylogeny with at most l leaves.

5 Conclusion

We have shown that restrictions on the topologies of perfect phylogenies can greatly influence the
complexity of ipph and its variants. While restrictions can make the complexity jump from P to
NP-complete (as for idpp), we showed that tree topologies provide the first parameter for which a
theoretical analysis is possible of an algorithm that works on arbitrary instances of the ipph problem.
Our new notions of mutation trees and light and heavy component sizes have turned out to be useful in
the study of undirected perfect phylogenies; we suggest trying to apply them to other problem versions
as well.

The main open problem is to improve the runtime of the fixed-parameter algorithm since the
runtime is in the range of 3O(k!), which is not feasible even for small values like k = 5 that are
common in practice. One could argue that, in practice, the algorithm will be much quicker because
the bound is only a rather pessimistic worst-case bound, but a faster fixed-parameter algorithm would
be a much better alternative.
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