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Abstract

Parameterized complexity theory measures the complexity of compu-
tational problems predominantly in terms of their parameterized time
complexity. The purpose of the present paper is to demonstrate that
the study of parameterized space complexity can give new insights
into the complexity of well-studied parameterized problems like the
feedback vertex set problem. We show that the undirected and the
directed feedback vertex set problems have different parameterized
space complexities, unless L = NL. For a number of further natural
parameterized problems, including the longest common subsequence
problem, the acceptance problem for multi-head automata, and the
associative generability problem we show that they lie in or are com-
plete for different parameterized space classes. Our results explain
why previous attempts at proving completeness of different problems
for parameterized time classes have failed.

Keywords: parameterized complexity theory, logarithmic space, fixed-
parameter tractability, feedback vertex set

1 Introduction

When designing classical or parameterized algorithms, the focus often
lies on the time complexity of a problem rather than its space complexity.
Nevertheless, the study of space classes like logarithmic space is an integral
part of classical complexity theory since many natural problems (like
reachability and distance problems in graphs or satisfiability problems for

∗This is the technical report version of the conference paper [11].
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powerful logics) do not appear to be complete for time classes like P or NP,
rather they turn out to be complete for space classes like L, NL, or PSPACE.

It stands to reason that we may also expect some parameterized prob-
lems to be complete not for standard parameterized time classes like FPT

or W[1] or XP, but rather for parameterized space classes. Furthermore,
by analogy to findings from classical complexity theory, we may expect
that parameterized problems with low space complexity can be solved
quickly. A typical result supporting this reasoning is that the parameter-
ized vertex cover problem has low space complexity—it lies in the class
para-L [5, 12]—and, indeed, this problem can be solved very quickly in the
parameterized setting.

In the present paper we investigate the space complexity of a number of
natural parameterized problems whose space complexity has not yet been
studied in this context. We will argue that the differences in their space
complexities are the reasons why the problems could not be shown to be
complete for standard parameterized time classes. Moreover, our results
suggest a possible explanation of why the problems vary with respect to
how quickly they can be solved in practice even though they lie in the
same parameterized time class. As prominent examples, we compare the
directed and the undirected version of the feedback vertex set problem as
well as the treewidth problem. All of these problems are indistinguishable
with respect to the parameterized time classes they belong to (namely FPT),
but with regard to their space complexity they can be classified using new
natural complexity classes that reflect their different complexities. As a
corollary of these efforts we obtain that the directed and the undirected
feedback vertex set problem have different parameterized space complexity,
unless L = NL.

Previous research on parameterized space complexity [5, 7, 12] was
directed at the logspace analogues para-L and para-NL of para-P, which is
commonly known as FPT, as well as at the logspace analogues XL and XNL

of XP. When one tries to determine the parameterized space complexity of
natural parameterized problems, it quickly turns out, however, that these
space classes do not suffice to paint a complete picture of the complexity
landscape of the parameterized world. For this reason, we introduce new
classes that are motivated by parameterized versions of natural reacha-
bility problems. An overview of the classes and our containment and
completeness results is given in Figure 1.

Related Work. In 1997, Cai et al. [5] introduced the class uniform-
logspace+advice, which is the same as para-L, and they also considered its
nondeterministic version. They showed that several problems in para-P also
belong to para-L or para-NL, including the naturally parameterized vertex
cover problem, which lies in para-L, and the parameterized k-leaf spanning
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Figure 1: Overview of the parameterized space classes studied in this paper
and parameterized problems that lie in them. A filled circle indicates that
the problem does not only lie in the class, but is even complete for it under
para-L-reductions.

tree problem, which lies in para-NL. In 2003, Flum and Grohe [12] contin-
ued the study of para-L and para-NL by showing that the parameterized
model-checking problem of first-order formulas on graphs of bounded de-
gree lies in para-L. This implies that many standard parameterized graph
problems belong to para-L when we restrict our attention to bounded-
degree graphs. In this context they asked, which other problems in para-P

also belong to para-NL or para-L, and whether there are problems that are
contained in para-P but are not contained in para-L or para-NL under the
assumption that para-P 6= para-L. In this paper, we answer this question
affirmatively by presenting natural problems that belong to para-P, but are
not contained in para-L under standard assumptions.

Organization of this Paper. In Section 2 on preliminaries we fix the
terminology and review the definitions of parameterized space classes
from the literature as well as of parameterized reductions. In Section 3
we investigate parameterized problems that are known to be tractable (that
is, they are known to lie in para-P = FPT), but whose space complexity
has not yet been investigated. The objective of this section is to get a
deeper understanding of why some problems inside para-P appear more
difficult than others even though they are all tractable. Here we focus
on the distance problem in directed graphs, and the directed and the
undirected version of the feedback vertex set problem. We show that
the distance problem characterizes a parameterized complexity class that
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captures the complexity of many well-known problems of the class NL with
respect to natural parameters. For the feedback vertex set problems we are
able to show that the directed and the undirected version are of provable
different complexity, unless L = NL, which reflects the different approaches
required to prove that these problems are fixed parameter tractable. For this,
we introduce two new parameterized complexity classes, para-L-cert and
para-NL-cert. In Section 4 we turn our attention to parameterized problems
that presumably lie outside of para-P. This time, our findings on the space
complexity of natural problems provide explanations why researchers have
failed to prove completeness of these problems for natural parameterized
time classes like W[1] or XP: The problems turn out to lie in or to be complete
for parameterized space classes. To be more concrete, we show that the
longest common subsequence problem parameterized via the number of
given strings is contained in XNL and therefore will not be complete for
XP. For both XL and XNL we present natural complete problems, namely
the problem of deciding whether a multi-head (nondeterministic) finite
automaton accepts a given word. Moreover, we show that the problem of
finding a set of colors of an edge-colored directed graph such that there
is an s-t path made up from these colors is complete for para-NL-cert (or
para-L-cert if we require the s-t path to be deterministic). Furthermore, we
prove para-NL-cert-completeness for the associative generability problem,
i.e. given a binary and associative operation, a universe, and a natural
number k, answering the question whether there is a set of k elements of
the universe such that the whole universe can be generated from these
elements by the given operation.

2 Preliminaries

A parameterized problem is a pair (Q, κ) of a language Q ⊆ Σ∗ and a pa-
rameterization κ : Σ∗ → N that maps input instances to natural numbers,
their parameter values. In the classical definition, Downey and Fellows [9]
require the parameterization to be computable, while Flum and Grohe [13]
require it to be computable in polynomial time. In this paper we need
the binary representation of the parameter number to be computable in
logarithmic space. This is the case, in particular, when the parameter is
specified explicitly within the input.

For a classical complexity class C, a parameterized problem (Q, κ)
belongs to the para-class para-C if there is an alphabet Π, a computable
function π : N → Π∗, and a language A ⊆ Σ∗ × Π∗ with A ∈ C such that
for all x ∈ Σ∗ we have x ∈ Q ⇐⇒

(
x, π

(
κ(x)

))
∈ A. Flum and Grohe [13]

phrase this as “(Q, κ) is in C after a precomputation on the parameter”. In
particular, FPT is the same as para-P and all fixed-parameter tractable
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problems are in P after a precomputation on the parameter. Analogously,
we can define the classes para-L and para-NL as the family of problems that
are in L and in NL after a precomputation on the parameter, respectively.
Equivalently, a parameterized problem (Q, κ) over Σ is in para-L (para-NL),
if there is a function f : N → N such that the question x ∈ Q can be
decided within (nondeterministic) space f

(
κ(x)

)
+ O

(
log |x|

)
.

A different way of defining a parameterized version of a classical
complexity class C is to consider its so-called X-class [9]. A problem (Q, κ) is
in XC if for every number w ∈ N the slice Qw = { x | x ∈ Q and κ(x) = w }
lies in C. It is immediate from the definition that para-C ⊆ XC holds. The
class XP is widely used in parameterized complexity theory; the logarithmic
space classes XL and XNL have previously been studied by Chen, Flum, and
Grohe [7, 12].

In order to compare the complexity of parameterized problems, we use
parameterized logspace reductions, called para-L-reductions in the follow-
ing. Following Flum and Grohe, we define them similarly to FPT-reductions:
Let (Q1, κ1) and (Q2, κ2) be parameterized problems over some alphabets Σ1
and Σ2. A para-L-reduction is a mapping R : Σ∗

1 → Σ∗
2 such that

1. for all x ∈ Σ∗
1 we have x ∈ Q1 ⇐⇒ R(x) ∈ Q2,

2. κ2
(

R(x)
)
≤ g

(
κ1(x)

)
for some computable function g : N → N,

3. R is para-L-computable with respect to κ1.
By standard arguments one can show that all classes in this paper are
closed with respect to para-L-reductions.

3 Space Complexity of Tractable Problems

From the perspective of classical FPT-theory, the complexity of a param-
eterized problem is “settled in principle” once it has been shown to be
solvable in time f

(
κ(x)

)
· O(nc); further research then focuses on making

f as slowly growing as possible. In the following, instead of trying to
differentiate between problems in para-P through their f -functions, we try
to determine differences caused by their different space complexities. For
this we can use complexity classes that are contained in para-P, but also
the intersections with classes that are not fully contained in para-P. In the
following, we give examples for such classes and their applications.

3.1 Parameterized Distance Problems

We start our exploration with a deceptively simple problem, namely the
distance problem with the distance as the parameter:
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Problem 1 (p-distance).
Instance. A directed graph G, two vertices s and t of G, and a natural

number l.
Parameter. l.
Question. Is there a path from s to t in G of length at most l?

This problem is clearly in para-P and, since the distance problem lies
in NL, also in para-NL. It might also seem like a good candidate for a
para-NL-complete problem. Flum and Grohe [12] showed that classes like
para-P, para-NL, and para-L are “uninteresting” from the parameterized
point of view in the sense that complete problems for the underlying
classical complexity classes are always complete for the parameterized
versions when considering the trivial parameterization. In particular, the
standard distance problem for directed graphs is complete for para-NL

with the trivial parameterization κ(x) = 1. However, this argument does
not carry over to the above version of the distance problem with its more
natural parameterization.

In order to describe the complexity of p-distance precisely, it turns out
that a new class is needed that is derived from transferring the definition of
the class W[P] to the space setting in a certain way. A classical definition of
W[P] is as the para-P-reduction closure of the weighted circuit satisfiability
problem [1, 9]. Alternatively, W[P] is also the class of all problems (Q, κ)
that are solvable by ntms deciding Q in para-P-time, making at most
f
(
κ(x)

)
· O

(
log |x|

)
nondeterministic steps on any input x. Finally, W[P]

also contains exactly the problems decidable via dtms that are provided
with a proof certificate of length f

(
κ(x)

)
· O

(
log |x|

)
(the certificate is on

a special read-only tape and the machine must accept all x ∈ Q for some
certificate and must reject x /∈ Q for all certificates).

In the context of parameterized time complexity all of the three char-
acterizations of W[P] yield the same classes. When we look at the space
analogues of these classes, the situation is somewhat different: First, the
para-L-reduction closure (rather than the para-P-reduction closure) of the
parameterized weighted circuit satisfiability problem is still W[P], which
can be seen from a result of Chen et al. [7]. Second, when we replace the
para-P time bound in the second characterization by a para-L space bound,
a subclass of para-NL arises. Third, when we make the same replacement
in the third definition, a presumably different class arises that is a subclass
of XNL.

Definition 2. A parameterized problem (Q, κ) is in the class para-NL[ f log]
if it can be decided by a para-NL Turing machine that makes at most
f
(
κ(x)

)
· O

(
log |x|

)
many nondeterministic steps.
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Definition 3. A parameterized problem (Q, κ) is in the class para-L-cert if
it can be decided by a para-L Turing machine which is provided with proof
certificates of length f

(
κ(x)

)
· O

(
log |x|

)
.

It turns out that para-NL[ f log] is precisely what we need to characterize
the complexity of the distance problem with its natural parameterization:

Theorem 4. p-distance is complete for para-NL[ f log] with respect to para-L

reductions.

Proof. To see that p-distance ∈ para-NL[ f log] consider the following al-
gorithm: Starting from s, guess l times a node v that is reachable from the
currently considered node. Accept if after at most l steps the target node is
reached, otherwise reject. This algorithm is correct because it only accepts
if there is a path from s to t of length at most l, and if there is such a path,
it will be found by the nondeterministic guessing.

A Turing machine that computes this algorithm needs logarithmic
space to store the currently considered node and the next node. Checking
whether two nodes are connected can also be done in logarithmic space.
For storing the current value of the counter for the at most l steps, the
machine needs polynomial many bits (if l is encoded in binary in the
input) which is captured by the para-L space bound f

(
l
)
+ O

(
log |x|

)
if

f is chosen accordingly. Furthermore, the machine has to guess l times a
next node which results in O

(
l · log |x|

)
nondeterministic steps. Altogether,

this is a para-NL[ f log] Turing machine.
For hardness, let (Q, κ) be a parameterized problem that is contained

in para-NL[ f log] via a machine M. Using standard techniques, we may
assume that M has exactly one accepting and one rejecting configuration,
respectively. Furthermore, we can assume that the configuration graph is a
directed acyclic graph. The configuration graph of M on an input x has the
size

O(1) f
(

κ(x)
)
+O

(
log |x|

)
= f ′

(
κ(x)

)
· |x|c

for some function f ′ and some constant c. In order to transform the
configuration graph into an instance for p-distance, we must tackle the
problem that the length of the path from the initial configuration to the
accepting configuration is at most the size of the configuration graph
and, therefore, not exclusively bound by the parameter, but also by the
length of the input x. However, the number of nondeterministic steps
of M is bounded by f

(
κ(x)

)
· O

(
log |x|

)
, on every path from the initial

configuration, so there are at most this many nodes with out-degree greater
than 1. Let us call the nodes with out-degree greater than 1 and the nodes
corresponding to the initial and the accepting configuration the red nodes
and the other nodes the black nodes of the graph.
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In a first processing step, we iterate over the nodes of the configuration
graph and replace every outgoing edge of every red node ur that points
to a black node ub by a new edge from ur to the first red node vr that is
reachable from ub. Now we drop the black nodes. In the resulting graph,
every path from the initial to the final configuration has length at most
f
(
κ(x)

)
·O

(
log |x|

)
. In a second step, we shorten the paths in the resulting

graph by augmenting the graph with edges from nodes u to v if there is
a path from u to v of length at most log |x|. Since the outdegree of the
nodes is bounded by some constant that only depends on M, every path
of length log |x| can be described by O

(
log |x|

)
bits. The augmentation

can then be done by an iteration over all the nodes v of the graph and
enumerating all paths of length log |x| starting from v. In the resulting
graph, there is a path of length f

(
κ(x)

)
from the initial configuration to

the accepting configuration if, and only if, there is a path from the initial
configuration to the accepting configuration in the original configuration
graph. Hence, we obtain the desired para-L-reduction, as the processing
steps can be done by para-L Turing machines.

In general, para-NL[ f log] seems to contain many parameterized versions
of problems that are contained in NL in the classical sense and that follow
the guess-and-forget approach, i.e. guessing an element from the input,
processing this element, and guessing the next element while forgetting the
previous one. With this observation, many NL-complete problems can be
shown to be complete for para-NL[ f log] with natural parameterizations, e.g.
many problems from [18]. On the other hand, para-NL[ f log] and para-NL

do not coincide under standard assumptions. This can be shown with the
observation that every NL-complete problem is complete for para-NL with
respect to the trivial parameterization.

Theorem 5. para-NL[ f log] = para-NL if, and only if, L = NL.

Proof. Recall that the reachability problem for directed graphs is complete
for NL and therefore its parameterized version is complete for para-NL to-
gether with the trivial parameterization κ0(x) = 0. First assume that
L = NL holds. From the definition of the para-classes we then have
para-L = para-NL which implies para-NL[ f log] = para-NL. Now assume
para-NL[ f log] = para-NL. Then the reachability problem can be solved
by a para-NL[ f log] Turing machine within space f

(
κ(x)

)
+ O

(
log |x|

)
making only f

(
κ(x)

)
· O

(
log |x|

)
nondeterministic choices. For the trivial

parameterization this is a constant amount which can be simulated within
logarithmic space. This implies L = NL.
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3.2 Feedback Vertex Set Problems

While it is useful to know that para-NL[ f log] has many natural complete
problems, our original goal for looking at parameterized space classes was
to study the parameterized space complexity of well-studied problems in
para-P that do not come from the logspace world in the way p-distance

does. We now look at the problem of identifying a set S of vertices of a
given graph G such that G − S has treewidth at most w for small natural
numbers w. For w = 0 this is the vertex cover problem. For w = 1 we
obtain the (undirected) feedback vertex set problem p-fvs. We also look
at the problem of deciding whether a given graph has treewidth w for a
given w.

The first problem of this “treewidth hierarchy” has been studied in the
context of parameterized space complexity theory by Cai et al. [5], who
showed that p-vertex-cover ∈ para-L. We look at the next problem of this
hierarchy, the feedback vertex set problem p-fvs. It does not seem to lie in
para-L nor even in para-NL. However, it turns out that the class para-L-cert
contains it:

Theorem 6. p-fvs ∈ para-L-cert.

Proof. On input of an undirected graph G, our para-L-cert Turing ma-
chine M interprets its certificate of length κ(x) ·

⌈
log |V|

⌉
as the description

of the k vertices of the feedback-vertex set. Then M removes these vertices
and its incident edges from G and checks whether the resulting graph G′

is acyclic. Both, removal and test for acyclicity can be done by logspace
Turing machines [8]. With the fact that para-L-cert is closed with respect to
para-L-reductions, we obtain the result.

While the classes para-NL[ f log] and para-NL are contained in para-P, this is
not the case for para-L-cert under the standard assumption para-P ( W[sat]
since the weighted satisfiability problem for propositional formulas belongs
to para-L-cert.

Theorem 7. If para-L-cert ⊆ para-P, then W[sat] = para-P.

Proof. Recall that W[sat] is defined as the para-P-reduction closure of the
weighted satisfiability problem for propositional formulas [9]. Also note
that the weighted satisfiability problem for propositional formulas itself
is contained in para-L-cert: For a given formula F and a parameter k,
a weight-k satisfying assignment can be encoded within a certificate of
length k · dlog ne if F has n variables. Therefore, a para-L-cert Turing
machine only has to verify the given certificate by evaluating F which can
be done in logarithmic space [19]. Clearly, if p-weighted-sat ⊆ para-P, we
also have W[sat] = para-P.
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In particular, p-fvs is not complete for para-L-cert, unless para-P = W[sat],
which is considered to be unlikely (para-L-cert does, however, have natural
complete problems as shown in Section 4). Nevertheless, para-L-cert turns
out to be useful for contrasting the complexity of the feedback vertex set
problem for undirected graph to the version for directed graphs.

The undirected version was shown to be fixed-parameter tractable
in 1993 by Bodlaender [2]. The fixed-parameter tractability of the di-
rected version remained an open problem until Chen et al. [6] presented
a para-P-algorithm in 2008. So far, these apparently different complexities
could only be felt by looking at the complexity of the proofs. In the setting
of parameterized logarithmic space, the different complexities are not only
mirrored, we are even able to prove that p-fvs and p-dfvs are of different
complexity (under standard assumptions):

Theorem 8. p-dfvs ∈ para-L-cert if, and only if, L = NL.

Proof. To prove the forward direction, we show that the parameterized
problem p-unreach, the complement of the reachability problem where
we ask whether there does not exist a path from a given vertex s to another
vertex t in a directed graph parameterized by the trivial parameterization,
para-L-reduces to p-dfvs. The reduction works in two steps: The first step
takes the n-vertex input graph and makes it acyclic by producing n copies
of its vertices, conceptually arranging them as n layers from left to right,
and drawing edges between consecutive layers from left to right in the
same way as they are present in the original graph. The second step inserts
an edge from t’s copy in the last layer to s’s copy in the first layer. The
resulting directed graph remains acyclic (has a feedback vertex set of size
0) exactly if there is no path from s to t in the input graph.

Now assume p-dfvs ∈ para-L-cert. This implies the existence of a
para-L Turing machine that, provided with an appropriate certificate of
length f

(
κ(x)

)
· O

(
log |x|

)
, decides p-unreach. But because p-unreach

is parameterized in the trivial way, this Turing machine is in fact a determin-
istic logspace Turing machine that decides the NL-complete unreachability
problem in directed graphs. This implies L = NL.

For the backward direction assume L = NL. Then the algorithm used
above for p-fvs also works for p-dfvs because cycle detection in directed
graphs is then possible in deterministic logarithmic space.

This raises the question, what class captures p-dfvs? The central differ-
ence between p-fvs and p-dfvs is the complexity of the underlying cycle
detection problem: In the undirected case this can be done in deterministic
logarithmic space, in the directed case nondeterministic logarithmic space
is required. Therefore, the natural approach is to consider a nondetermin-
istic version of para-L-cert, namely para-NL-cert: This class is defined in
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a similar way as para-L-cert, but here we allow para-NL Turing machines.
We immediately obtain the following result:

Theorem 9. p-dfvs ∈ para-NL-cert.

For the same reasons as in the undirected case, we will not be able to prove
that p-fvs is complete for para-L-cert.

Many more problems from para-P are contained in para-L-cert and its
nondeterministic version. In fact, every problem that can be decided via a
bounded search tree algorithm [9], where the aim is to find a root-to-leaf
path within a search tree whose depth depends on the parameter, is a
promising candidate to be contained in para-L-cert, because the certificate
of a para-L-cert Turing machine can describe the desired root-to-leaf path.

3.3 The Treewidth Problem and Slicewise Logarithmic Space

We conclude this section with a study of the treewidth problem: Given a
graph G and a natural number w as the parameter, the question is whether
G has treewidth at most w. This problem is fixed-parameter tractable [3],
and a recent result [10] showed that for every fixed w this problem is
decidable in deterministic logarithmic space. These theorems immediately
give us the following result:

Theorem 10. p-treewidth ∈ XL.

Note that we will not be able to show that p-treewidth is complete for XL

unless para-P = W[sat]. The following theorem relates XL and XNL to the
surrounding complexity classes.

Theorem 11.
1. para-L-cert ⊆ XL and para-NL-cert ⊆ XNL,
2. para-NL-cert ⊆ XL implies L = NL.

Proof. For the first statement consider any para-L-cert Turing machine M
and note that this machine can be simulated by an XL Turing machine via
enumeration of all possible certificates. The same argument works in the
nondeterministic case.

For the second statement just note that the NL-complete reachability
problem for directed graphs together with the trivial parameterization is
contained in para-NL. Therefore, para-NL ⊆ XL implies L = NL, which is
actually a stronger statement than the one stated above.

4 Space Complexity of Intractable Problems

Most of the classes discussed in the previous section are not known to be
contained in para-P. In fact, these classes contain problems that are far
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above of para-P inside the W-hierarchy, for example the clique problem
or the weighted satisfiability problem for propositional formulas, both of
which are contained in para-L-cert. Therefore, a natural question is to ask
for complete problems for these classes. In this section, we will give natural
complete problems for the classes that are not fully contained in para-P,
that is, para-L-cert, para-NL-cert, XL, and XNL.

4.1 Slicewise Logarithmic Space

So far, only few problems are known to be complete for XL or XNL. Chen,
Flum, and Grohe gave the first complete problems for these classes based
on Turing machine simulations. They studied the compact Turing ma-
chine computation problem for deterministic and nondeterministic Turing
machines, p-ctmc and p-cntmc, respectively [7]. The p-ctmc problem
is defined as follows: On input of an encoding of a deterministic Turing
machine M, a string x over M’s alphabet, and a natural number k in binary,
the question is if there is an accepting computation of M on x that uses at
most k work tape cells, where k is the parameter. The problem p-cntmc

is defined in the same way, but with respect to nondeterministic Turing
machines.

We add the following natural automata evaluation tasks to the list of
problems complete for XL and XNL.

Problem 12 (p-mdfa-acceptance).
Instance. The code of a deterministic finite two-way automaton A with k

heads and an input string x.
Parameter. k.
Question. Does A accept x?

The problem p-mnfa-acceptance is defined in the same way, but with
respect to nondeterministic automata.

Theorem 13.
1. p-mdfa-acceptance is complete for XL with respect to para-L reductions.
2. p-mnfa-acceptance is complete for XNL with respect to para-L reductions.

Proof. Hartmanis showed that A ∈ L holds if, and only if, there is a
deterministic multi-head automaton that decides A [15]. The basic idea
is that the position of an automata’s head on the input tape can be used
to store a number between 0 and n, where n is the input tape length, and,
thus, the position of a head can store up to log n bits of information. A
fixed number of heads hence suffice to store the information of the work
tape of a machine using O(log n) space and modifications of this work tape
correspond to appropriate sequences of auxiliary heads computing the
right number of steps to be made by one of the heads. The details of the
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construction are not important for proving the theorem; it suffices to note
that p-mdfa-acceptance lies in XL because the construction of Hartmanis
is uniform. To show hardness, given a parameterized problem (Q, κ) ∈ XL

that is solved by a machine in space f
(
κ(x)

)
· O

(
log |x|

)
+ f

(
κ(x)

)
, by

Hartmanis’s result there is a multi-head two-way automaton deciding Q
whose number of heads depends only on f (κ(x)). A para-L-reduction must
simply map the input x to this automaton together with x. The proof for
the nondeterministic version is analogous.

The next results show that, outside of para-P, the classes XL and XNL enable
us to make statements about problems that could not be classified within
the W-hierarchy. Consider the following well-known problem of finding a
longest common subsequence of k strings, parameterized by k:

Problem 14 (p-lcs).
Instance. A set {s1, . . . , sk} of strings over an alphabet encoded in the

input and a natural number l.
Parameter. k.
Question. Is there a subsequence of the given strings with length at least l?

Bodlaender et al. showed that p-lcs is hard for W[t] for every level t [4].
Pietrzak showed that the variant p-flcs, where the alphabet is fixed, is
hard for W[1] [20]. Pietrzak also conjectured that an exact classification of
this problem within the parameterized hierarchy is not possible, because
it seems not to be contained in W[P], the highest class of the W-hierarchy.
While classical dynamic-programming approaches show that the longest
common subsequence problem is contained in XP, completeness for XP

could not be shown. We give a strong argument that this is not possible
using the class XNL:

Theorem 15. p-lcs ∈ XNL.

Proof. To decide on a given input of k strings whether there exists a longest
common subsequence of length l, the XNL Turing machine scans the first
string from left to right and guesses the subsequence, using a pointer to a
symbol in the first string. Using k − 1 additional pointers on the remaining
strings, the machine verifies that the guessed subsequence is also contained
within the k − 1 remaining strings.

By definition, X-classes inherit their inclusion structure from their under-
lying complexity classes. From this, we immediately get the following
theorem:

Theorem 16. p-lcs is not complete for XP, unless NL = P.
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Because p-lcs is hard for every level of the W-hierarchy it is now tempting
to conclude W[t] ⊆ XNL for every t, but this is not the case. The error in
this argument is that the hardness of p-lcs has been shown with respect to
para-P reductions, but XNL is only closed with respect to para-L reductions.
On the other hand, this shows that under standard assumptions it will not
be possible to prove that p-lcs is hard for the levels of the W-hierarchy
using only para-L reductions, because this would imply NL = P. However,
it is an open question whether one can show that p-lcs is complete for XL

or XNL. Recently, Guillemot showed that p-lcs is complete for the class
WNL, a superclass of W[t] for every t [14]. However, this class is somehow
orthogonal to XL and XNL since WNL is defined as the para-P reduction
closure of an underlying machine acceptance problem and therefore not
contained in XL or XNL. Nevertheless, the presented reductions are in fact
para-L reductions and, hence, Guillemot also shows completeness for the
para-L version of WNL, where we consider the para-L reduction closure of
the underlying problem.

4.2 Problems for Parameterized Logspace with Certificates

In the previous section we used the classes para-L-cert and para-NL-cert to
upper bound the parameterized space requirements of the fixed-parameter
tractable problems p-fvs and p-dfvs, respectively. These problems are not
complete for the corresponding classes under standard assumptions; in
the present section we identify natural complete problems for the classes
para-L-cert and para-NL-cert.

The reachability problem, which asks whether there exists a path from a
start to a target vertex in a given directed graph, is among the most promi-
nent problems in the study of logarithmic space-bounded computations. Its
general version is NL-complete [16] and becomes L-complete if the path we
ask for is deterministic [8]; that means, every vertex on the path has only a
single outgoing edge in the graph. In the same way as one can understand
the transition from the classical complexity class P to its parameterized
version W[P] by considering the complete circuit evaluation problem for
the former and the complete parameterized weighted circuit satisfiability
problem for the later class, we use the following variant of the reachability
problem to better understand the transition from the classical classes L and
NL to their certificate-based parameterized counterparts para-L-cert and
para-NL-cert, respectively.
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Problem 17 (p-colored-reach).
Instance. A vertex set V, two vertices s, t ∈ V, a set of multi-colored edges

E ⊆ V × V, and a natural number k.
Parameter. k.
Question. Is there a set of k colors, such that there is a path from s to t that

uses only edges that have at least one of the chosen colors.

Let p-colored-det-reach denote the variant where the colors induce a
path from s to t whose inner nodes all have out-degree 1.

Theorem 18. p-colored-reach is complete for para-NL-cert with respect to
para-L reductions.

Proof. To prove p-colored-reach ∈ para-NL-cert, we use a Turing machine
that is given a binary certificate of length k ·O

(
dlog ne

)
along with its input.

It solves p-colored-reach by interpreting the certificate as a description
of how to choose k colors and nondeterministically guesses a path from s
to t in the graph whose edges have at least one of these colors.

For proving hardness of p-colored-reach for para-NL-cert, let M be a
para-NL-cert machine that, in addition to its input x, accesses a certificate of
length f

(
κ(x)

)
·O

(
log |x|

)
on a certificate tape. Since our para-L reduction

does not know the right certificate in advance nor can enumerate all
possible certificates due to its limited amount of space, it is not able to build
a configuration graph for M. Instead, it constructs a partial configuration
graph in the form of a p-colored-reach instance. For this graph, choosing
a certificate for M that leads to an accepting computation corresponds to
choosing k colors, such that there is a path from s to t.

The instance of p-colored-reach is constructed as follows: The set
of vertices V is made up by all partial configurations, each describing the
positions of M’s heads on the tapes and its contents, while we leave out
the content of the certificate tape. To encode the behavior of M on different
certificates we use different colored edges. We divide the certificate into
f
(
κ(x)

)
blocks of logarithmic length and assign to each block b and each

block content c a new color col(b, c). Now we insert directed, colored edges
into the partial configuration graph depending on the transitions of M:
Assume that M makes a transition from the configuration corresponding
to v to the one corresponding to w and that M requires the i-th symbol of
the certificate to be σ for this transition. Then, we insert an edge from v to
w that is colored with all the colors col(b, c) such that the i-th position of
the certificate is contained in block b and the block content c has symbol σ

at the according position. We proceed like this for all pairs of partial
configurations and its corresponding blocks and colors.

From this construction we have that if there is a certificate such that M
accepts on its input, then there is also a set of f

(
κ(x)

)
colors that encodes
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the certificate and that makes up a path from the vertex s that corresponds
to the initial configuration to the vertex t that corresponds to the accepting
configuration. (Note that we may assume that M has exactly one initial and
exactly one accepting partial configuration.) For the backward direction
we have to do some more work, because now there might be two colors
col(b, c) and col(b, c′) such that there is an accepting path in the graph if we
choose these colors, but these colors do not correspond to a single certificate
since this would mean that the certificate consists of two ore more contents
of a block. To tackle this, we insert a path of vertices v1, . . . , v f (κ(x))+1 into
the graph and identify v f (κ(x))+1 and s. Moreover, we connect the vertices vi
and vi+1 with an edge and color the edges (vi, vi+1) with the colors col(i, c)
for every possible block content c. Finally, we make v0 our new starting
node. In order to get from v0 to t, we now have to choose colors such that
we first get a path from v0 to s. These colors have to be colors col(i, ci) for
every i ∈ {1, . . . , f

(
κ(x)

)
}. By this, in the constructed graph there is a path

from v0 to t that requires f
(
κ(x)

)
colors if, and only if, there is a certificate

such that M accepts its input.
Since all partial configurations can be enumerated by a para-L machine

and there are only a polynomial number of possible strings for each block
of logarithmic length, the whole reduction can be computed by a para-L

machine.

The following theorem immediately follows from the proof of the previous
one and the fact that we consider deterministic instead of nondeterministic
Turing machines for para-L-cert.

Theorem 19. p-colored-det-reach is complete for para-L-cert with respect
to para-L reductions.

Note that, by slightly changing the reduction given above, we can show
that even the restrictions of p-colored-reach and p-colored-det-reach

to graphs where every edge has exactly one color is hard for para-NL-cert
and para-L-cert respectively. To see this, observe that we only have to
replace every edge u → w with colors c1, . . . , cl by a family of l nodes and
connect them with edges u → vi and vi → w where we color every edge
pair u → vi and vi → w with color ci. Also note that this construction
does not affect the property that in the para-L-cert case all nodes have
outdegree 1 for an appropriate choice of colors such that there is a path
from s to t, because every edge has only colors that correspond to the
content of a specific block and no two colors from the same block are
chosen due to the construction above. Therefore, we can conclude that
the problems p-colored-reach and p-colored-det-reach are complete
for para-NL-cert and para-L-cert respectively when restricting the family of
input graphs to graphs where every edge has exactly one color.
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4.3 Parameterized Generator Problems

The colored reachability problem introduced above is a convenient tool to
understand the difference between para-NL-cert and para-L-cert by consid-
ering the same problem with different kinds of paths. In the present section
study a problem whose variants characterize the computational power
of W[P] and para-NL-cert, the parameterized version of the generability
problem.

Problem 20 (p-gen).
Instance. A finite set U, a binary operation ◦ : U × U → U, and a natural

number k.
Parameter. k.
Question. Is there a subset G ⊆ U of size k, such that every element e ∈ U

can be generated by applying ◦ to elements of G.

The non-parameterized version of this problem where G is part of the
input and does not need to be computed, is central to the study of P

and its subclass NL: it is P-complete in general [17], and its restriction to
associative ◦, the problem agen, is NL-complete [18]. The parameterized
version of the generability problem exhibits a similar behaviour. Flum and
Grohe [13] showed that p-gen is complete for W[P] and we show that its
restriction to associative operations, the parameterized problem p-agen, is
complete for para-NL-cert. Note that the non-parameterized generability
problem where k is part of the input, but not G, is NP-complete; both in the
general and the associative variant.

Theorem 21. p-agen is complete for para-NL-cert with respect to para-L re-
ductions.

Proof. A para-NL-cert Turing machine for this problem interprets the k ·
O
(
dlog ne

)
bits of its certificate as the description of the k elements of G,

the set of generators. The machine iterates over all elements of the universe
and for each element e it successively guesses a sequence g1, . . . , gl , such
that g1 ◦ g2 ◦ · · · ◦ gl = e. Note that the maximum length of such a sequence
is at most |U|, because otherwise we could shorten the sequence. Therefore,
p-agen ∈ para-NL-cert.

For hardness, we para-L-reduce p-colored-reach to p-agen. The basic
idea is, like in [18], to encode the transitive closure of the given graph into
the universe of the p-agen instance. If it is possible to select k colors such
that there exists a path from s to t in the given graph that is made up
from these colors, then there is a set of k elements in the universe of the
p-agen instance that represent these colors and that enable us to create
all the edges that have at least one of these colors. These edge elements
can then be used to generate transitive edges. Moreover, if we are able
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to generate the edge from s to t, then we can generate all elements of the
universe. Now the crucial part is to force that the k elements have to be k
elements of the universe, that encode the corresponding colors and that
it is not possible to just choose the edge element from s to t that can be
used to generate the whole universe. To achieve this, we first apply some
preprocessing to the input graph and, then, reduce from the preprocessed
instance.

Recall that we can restrict our attention to graphs where every edge has
exactly one color. Let G be the currently considered input graph with the
two vertices s and t. We first add two vertices s′ and t′ with edges s′ → s
and t → t′. Then, for every vertex v of G − {s, t, s′, t′} we add edges t → v
and v → s if they are not already present. Moreover, we color all edges of
these two types and the edges s′ → s, t → t′ with a new, special color c+,
where we overwrite existing colors. Let us denote the resulting graph by G′.
With this construction there is a path from s to t in G if, and only if, there
is a path from s′ to t′ in G′ and the transitive closure of the edge relation of
G′ consists of the complete graph for the vertices of G − {s′, t′}, edges from
s′ to every other node, and edges from all nodes to t′. This construction
raises the number of colors that have to be chosen to obtain a path by 1,
i.e. this increases the parameter value only by a constant. In the following,
we only consider instances of p-colored-reach whose graphs are given
in this normal form, since the preprocessing steps can be computed in
logarithmic space.

We now list the basic elements of the p-agen instance and the results
from applying binary operations to them; this will define the remaining
elements and results implicitly.

1. The error element error. We will use this to create dead ends in the eval-
uation of expressions. Any expression that contains the error element is
evaluated to the error element. Moreover, any expression that does not
make sense is evaluated to error, e.g. an expression that contains two
end symbols (see below).

2. The end symbol C. No expression can be evaluated to C. Therefore, C
has to be an element of any generating set G. We require this element
for technical reasons that we will discuss later in the proof.

3. We define to be the counter element. Like in the case of the end symbol,
this symbol cannot be generated by any expression and has to be an
element of any generating set.

4. The elements si,j for i ∈ {1, . . . , k} and every color cj, except c+, are
called selectors and are conceptually arranged in k blocks. Here we
enumerate the colors starting with 0 while we enumerate the blocks of
selectors starting with 1 for technical reasons. We will enforce that, in
order to be able to generate every element of U, we have to pick one
element si,j from every block i. For the color c+ we define a special
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selector element s+. Like for the counter element, no expression will
evaluate to s+ and therefore this element has to be an element of the
generating set, too. We will discuss the generation of the other selector
elements later on.

5. For every pair u, v of vertices with u 6= v of the given graph, we have
an element 〈u → v〉. We simply call these elements edges. Let us
conceptually enumerate the l edges that share the same color cj (except
c+) by ui → vi for i ∈ {1, . . . , l}. Then we define si,j ◦ ◦ ◦ · · · ◦ =
〈uk → vk〉 for every j and k counter elements with k ≤ l. For k > l we
define that this expression evaluates to error. We define the analogous
operation for the special color c+ and its selector s+. This means that we
can generate an edge of a chosen color cj by applying the appropriate
amount of counters to an element si,j or s+. Moreover, we define
〈v1 → v2〉 ◦ 〈v2 → v3〉 = 〈v1 → v3〉, that is, concatenating two edges e1
and e2, where e1 points to the same vertex where e2 starts from, results
in the transitive edge from v1 to v3.

6. Because of the preprocessing, we do not need the edge element 〈s′ → t′〉
to generate any transitive edge and we can use it for some special
applications. Hence, we refer to this edge also as the star element ?.
We will use this element to generate the remaining selector elements
that have not been chosen into the generating set by defining si,j ◦ ? =
si,(j+1 mod c) where c is the number of colors in the graph, without c+.
This will be the only way to generate the selectors si,j and therefore, we
have to choose one of the selectors for each of the k blocks in order to
be able to generate all of them. By setting the parameter to k + 3 we
then may only choose exactly k normal selectors, the special selector s+,
the basic counter element , and the end symbol C. Otherwise we will
not be able to generate the universe.

Let us take a look at an example. Consider the following graph that has
the discussed normal form and whose underlying input graph contains
a path from s to t, namely s, v1, v2, t, that is made up from choosing
the colors c1 and c2. Let the original parameter, i.e. the number of colors
that can be chosen, be 2. Moreover, assume that the edge 〈s → v1〉 is the
conceptually first and 〈v2 → t〉 is the second edge with color c1, and that
the edge 〈s′ → s〉 is the first and 〈t → t′〉 is the second edge with the
special color c+.
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For this graph, the expression s+ s1,1 s2,2 s1,1 s+ C evaluates to the transi-
tive edge 〈s′ → t′〉. Note that the result of this expression is unambiguous.
Let us consider another, more involved example:

s1,1 s+︸︷︷︸
〈s′ → s〉

s1,1︸︷︷︸
〈s → v1〉

s2,2︸︷︷︸
〈v1 → v2〉

s1,1︸︷︷︸
〈v2 → t〉

s+︸︷︷︸
〈t → t′〉︸ ︷︷ ︸

?

s+ s1,1 s2,2 s1,1 s+︸ ︷︷ ︸
?

︸ ︷︷ ︸
s1,1+2 mod 2

C

Also in this example we have that the result of the expression is well-defined
and unambiguous. This is due to the special role of the edges 〈s′ → s〉 and
〈t → t′〉, since they can not be used to create a new transitive edge in the
graph.

Unfortunately, our operator ◦ is binary and, therefore, expressions like
s1,1 are not evaluated in one step. Moreover, because of the required
associativity of ◦, it has to be possible to completely evaluate an expression
like s1,1 s2,2. For this, we introduce subexpression elements, denoted by
[[ ]]. These new elements of our universe encode expressions that are
evaluated as far as possible. For example, the expression s1,1 s2,2 evaluates
(independently of the evaluation order) to [[ 〈s → v1〉s2,2]]. And, as another
example, the concatenation of [[ 〈s → v1〉s2,2]] and [[ s1,1 ]] results in the new
subexpression [[ 〈s → v2〉s1,1 ]]. This is also the reason why we require the
end symbol C: The end symbol marks the end of the considered expression
and allows the “internal” evaluation of the very last subexpression. For
instance, consider the following end of an expression and its result after
applying the binary operator to the subexpression a:

· · ·
a︷ ︸︸ ︷

s1,1 s2,2︸ ︷︷ ︸
b

s1,1︸︷︷︸
c

7→ · · · [[ 〈s → v2〉s1,1 ]]

While the subexpression b can be evaluated unambiguously, this is not the
case for subexpression c. The reason for this is, that b is followed by a
selector element that implicitly marks the end of the sequence of counter
elements that may follow s2,2. This is not the case for subexpression c.
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In the expression above, it is indistinguishable whether c is followed by
another counter element or c is at the very end of the expression. To fix
this, we use the end symbol C. It marks the right end of the expression
and enforces the unambiguous evaluation of the very last subexpression,
and therefore the whole expression.

Note that the required number of subexpression elements is polynomial
in the number of colors, vertices, and edges, and, therefore, the universe
and the table describing the results of applying the operator ◦ is computable
in para-L.

For correctness first consider a graph such that there are k colors that
make up a path from s to t. Then we can choose our generating set to
contain the counter element, a selector from each block such that these
selectors correspond to the k colors, the special selector element s+, and
the end element C. By appropriately using these elements we can generate
the complete transitive closure, the star element, and with this element all
the remaining selectors. Being able to generate these elements, we can also
generate every subexpression element. For the backward direction assume
that we can generate the whole universe from a generating set of size k + 3.
By the construction above, this set has to contain the counter element, the
end symbol, the special selector, and a selector element from each of the
k blocks of selectors. Being able to generate the whole universe implies
that we are able to generate the star element and therefore generate the
transitive edge from s to t, too. This implies the existence of a path from s
to t that is made up by choosing k colors.

5 Conclusion

We have introduced new parameterized space classes that capture the
complexity of parameterized problems and help in understanding the
complexity of fixed-parameter tractable problems. We have seen that,
under the assumption L 6= NL, well-known problems like p-fvs and p-dfvs

are separated. Moreover, classes like para-L-cert and para-NL-cert are not
fully contained in para-P, but capture natural problems that could not be
classified in an exact way before.

The next step is to reconsider other parameterized problems (both
fixed-parameter tractable and intractable under standard assumptions
like W[1] 6= para-P) with the presented framework in mind: How can
these problems be classified within this framework? What techniques
from classical space complexity help in the parameterized setting and
vice versa? In particular, it might be interesting to use the framework to
better understand the complexity of problems whose unparameterized
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versions are known to lie in P and, thus, are normally not studied from the
parameterized point of view.

One might even better understand the complexity of parameterized
problems whose slices are not P-hard by considering parameterized versions
of classical complexity classes based on parallel and circuit computations
like NC, NC1, TC0, and AC0.
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