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Abstract

In practice the vast majority of causal effect estimations from
observational data are computed using adjustment sets which
avoid confounding by adjusting for appropriate covariates.
Recently several graphical criteria for selecting adjustment
sets have been proposed. They handle causal directed acyclic
graphs (DAGs) as well as more general types of graphs
that represent Markov equivalence classes of DAGs, includ-
ing completed partially directed acyclic graphs (CPDAGs).
Though expressed in graphical language, it is not obvious
how the criteria can be used to obtain effective algorithms for
finding adjustment sets. In this paper we provide a new crite-
rion which leads to an efficient algorithmic framework to find,
test and enumerate covariate adjustments for chain graphs –
mixed graphs representing in a compact way a broad range of
Markov equivalence classes of DAGs.

1 Introduction
Covariate adjustment is one of the most widely used tech-
niques to estimate causal effects from observational data.
The causal effect is the probability distribution of some out-
comes in a post-treatment period resulting from the treat-
ment (Pearl 2009). The primary difficulty in application of
the adjustment approach is the selection of covariates one
needs to adjust to compute the post-treatment distribution.

The concept of covariate adjustments is well-understood
wben the structure encoding the causal relationships be-
tween variables of interest is fully known and represented
as a directed acyclic graph (DAG). Pearl’s back-door crite-
rion (Pearl 1995) is probably the most well-known method
of selecting possible sets for adjustment in DAGs. It is suf-
ficient but not necessary. Due to Shpitser, VanderWeele, and
Robins (2010) we know a criterion expressed in graphical
language that is necessary and sufficient in the sense that it
is satisfied if and only if the adjustment conditions are ful-
filled. This reduces the properties of probability distributions
to properties of causal graphs. Based on this criterion Textor
and Liśkiewicz (2011) and van der Zander, Liśkiewicz, and
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Figure 1: A chain graph (to the left) which represents two
Markov equivalent DAGs: D1 and D2. Relative to exposure
X and outcome Y , Z = {Z2} is an adjustment set in both
D1 and D2. Thus Z is an adjustment set in the chain graph.

Textor (2014) have proposed an algorithmic framework for
efficient testing and finding covariate adjustments in DAGs.

However, in practice most statistical data and background
knowledge can be explained by several causal DAGs equally
well, so the true underlying DAG remains unknown. For ex-
ample, the structure learning algorithm proposed by Verma
and Pearl (1990; 1992) constructs, for a given list of condi-
tional independence statementsM, a CPDAG (Andersson et
al. 1997) representing all DAGs which are complete causal
explanations ofM. Meek (1995) extends this algorithm pro-
viding a method to compute a complete causal explanation
forM which is consistent with background knowledge rep-
resented as a set of required and forbidden directed edges.
This results in a mixed graph, which might not be a CPDAG
anymore.

In our study we assume that the learned causal structure
is represented as a chain graph – a mixed graph containing
no semi-directed cycles (Lauritzen and Wermuth 1989). A
primary benefit of chain graphs is that they provide an ele-
gant framework for modeling and analyzing a broad range
of Markov equivalence classes of DAGs (Verma and Pearl
1990; Andersson et al. 1997).

Given a chain graph and the pre-intervention distribution
we can compute causal effects using the covariate adjust-
ment approach. However, the challenging task is now to find
an adjustment set which is common for every DAG repre-
sented by the chain graph. Figure 1 shows an example for
such an adjustment. The naive approach of searching for ad-
justment sets in all DAGs leads to exponential time algo-
rithms since the number of DAGs represented by a chain
graph can grow exponentially in the size of the graph.

Recently Perković et al. (2015) have presented a graph-
ical criterion that is necessary and sufficient for CPDAGs.



But the challenge remains to bridge the gap between their
criterion and algorithmic efficiency. In this paper we solve
a more general problem providing fast algorithms for ad-
justment sets in chain graphs. Thus, if a structure learning
algorithm gives a mixed graph then our algorithms are ap-
plicable in all cases when the resulting graph does not have
a semi-directed cycle.

Our algorithms reduce the problems of testing, finding,
and enumeration of adjustment sets to the d-connectivity
problem in a subclass of chain graphs, which we call re-
stricted chain graphs (RCGs). This class includes both
DAGs and CPDAGs, and seems to remain a powerful model
for analyzing causal relationships. We provide a new ad-
justment criterion for restricted chain graphs which leads to
an efficient algorithmic framework for solving problems in-
volving covariate adjustments.

The paper is organized as follows. The next two sec-
tions present definitions and backgrounds of covariate ad-
justments. In Section 4 we provide our algorithm for finding
adjustment sets in chain graphs. Sections 5 to 8 analyze the
correctness and complexity of the algorithm.

2 Definitions
We consider mixed graphs G = (V,E) with nodes (ver-
tices, variables) V and directed (A → B) and undirected
(A − B) edges E. By n we denote n = |V|, m = |E|. If
a graph contains only directed edges we call it a directed
graph and denote it as D. A DAG is a directed graph with
no directed cycles. Nodes linked by an edge are adjacent. If
there is an edge A → B, A is a parent of B and B a child
of A. A path is a sequence V0, . . . , Vk of pairwise distinct
nodes such that for all i, with 0 ≤ i < k, there exists an
edge connecting Vi and Vi+1. A node Vi on V0, . . . , Vk is a
collider if it occurs on the path as Vi−1 → Vi ← Vi+1, and
a non-collider otherwise. A path π = V0, . . . , Vk is called
possible directed (possible causal) from V0 to Vk if for ev-
ery 0 ≤ i < k, the edge between Vi and Vi+1 is not into Vi.
If such a π contains only directed edges it is called directed
or causal. A node X is a possible ancestor of Y , and Y is a
possible descendant of X , if X = Y or there exists a pos-
sible directed path π from X to Y . If π is a directed path,
then X is an ancestor of Y and Y a descendant of X . Given
node sets X and Y, a path from X ∈ X to Y ∈ Y is called
proper if it does not intersect X except at the endpoint. We
refer to the set of all ancestors or possible ancestors of X as
An(X), resp. possibleAn(X). Similarly, we use De(Y) and
possibleDe(Y) to denote the descendants, resp. possible de-
scendants of Y. For any subset of nodes W ⊆ V of a graph
G = (V,E) the induced subgraph of W, written as GW, is
the graph on nodes W that contains an edge e ∈ E if and
only if both end points of e are in W. The skeleton of any
mixed graph G is the undirected graph resulting from ignor-
ing the directionality of all edges. A v-structure in a mixed
graph G is an ordered triple of nodes (A,B,C) such they
induce the subgraph A→ B ← C.

To extend the notion of d-connectivity to mixed graphs we
use the definitions proposed by Zhang (2008). A node V on
a path π in a mixed graph G is called a definite non-collider,
if there is an induced subgraph A ← V or V → B or A −

V −B, where A and B are the nodes preceding/succeeding
V on π. A non-endpoint vertex on π is said to be of definite
status, if it is either a collider or a definite non-collider on π.
A path is said to be of definite status if all its non-endpoint
vertices are of definite status. Given a mixed graph, a path
π between nodes X and Y , and a set Z (possibly empty and
X,Y /∈ Z) we say that π is d-connecting relative to Z if
every non-collider on π is not in Z, and every collider on π
has a descendant in Z. Given pairwise different sets X,Y,
Z, set Z d-separates X and Y if there exists no d-connected
definite status path between any X ∈ X and Y ∈ Y.

A possible directed path V0, . . . , Vk in a mixed graph
G is a semi-directed cycle if there is an edge between Vk
and V0 in G and at least one of the edges is directed as
Vi → Vi+1 for 0 ≤ i ≤ k. Here, Vk+1 = V0. A chain graph
(CG) is a graph without semi-directed cycles (Lauritzen and
Wermuth 1989). A Bayesian network for a set of variables
V = {X1, . . . , Xn} consists of a pair (D, P ), where D is a
DAG with V as the set of nodes, and P is the joint probabil-
ity function over the variables in V that factorizes according
to D as follows P (v) =

∏n
j=1 P (xj |paj), where v denotes

a particular realization of variables V and paj denotes a par-
ticular realization of the parent variables of Xj in D. When
interpreted causally, an edge Xi → Xj is taken to represent
a direct causal effect of Xi on Xj (Pearl 2009). Two DAGs
are Markov equivalent if they imply the same set of condi-
tional independencies. Due to Verma and Pearl (1990) we
know that two DAGs are Markov equivalent if they have the
same skeletons and the same v-structures.

Given a DAG D = (V,E), the class of Markov equiv-
alent graphs to D, denoted as [D], is defined as [D] =
{D′ | D′ is Markov equivalent to D}. The graph represent-
ing [D], called a completed partially directed acyclic graph
(CPDAG) or an essential graph, is a mixed graph denoted
as D∗ = (V,E∗), with the set of edges defined as follows:
A → B is in E∗ if A → B belongs to every D′ ∈ [D] and
A−B is in E∗ if there existD′, D′′ ∈ [D] such thatA→ B
is an edge ofD′ andA← B an edge ofD′′ (Andersson et al.
1997). A mixed graph G is called a CPDAG if G = D∗ for
some DAG D. Note that in general, it is not true that a DAG
is a CPDAG. A simple counterexample is a DAG: A→ B.

Given a chain graph G a DAG D is a consistent DAG ex-
tension of G if and only if (1) G and D have the same skele-
tons, (2) if A → B is in G then A → B is in D, and (3) G
and D have the same v-structures. We refer to all consistent
DAG extensions of a mixed graph G as CE(G). Notice that
if G is a CPDAG for some DAG D then CE(G) = [D].

3 Covariate Adjustment in DAGs and CGs
We start this section with the formal definition of adjust-
ment. Next we present known results for adjustments in
DAGs and CPDAGs.

Let D = (V,E) be a DAG encoding the factorization
of a joint distribution for variables V = {X1, . . . , Xn}.
For disjoint X,Y ⊆ V, the (total) causal effect of X
on Y is P (y|do(x)) where do(x) represents an interven-
tion that sets X = x. This definition models an ideal-
ized experiment in which the variables in X can be set to
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Figure 2: Proper back-door graphs for a DAGD and a chain
graph G both with X = {X1, X2, X3},Y = {Y }.

given values. If v is consistent with x, the post-intervention
distribution can be expressed in a truncated factorization
formula: P (v|do(x)) =

∏
Xj∈V\X P (xj |paj). Otherwise

P (v|do(x)) = 0. For pairwise disjoint sets of nodes X,Y,
and Z in a DAGD, set Z is called adjustment relative to (X,
Y) if for every distribution P consistent with D we have
P (y|do(x)) =

∑
z P (y|x, z)P (z) (Pearl 2009).

For a chain graph G, a set Z is an adjustment relative to
(X,Y) in G, if Z is an adjustment relative to (X,Y) in any
consistent DAG extension of G.

Relying on the definition it is difficult to decide, if a given
set is an adjustment in a DAG or not. Fortunately due to
Shpitser, VanderWeele, and Robins (2010) we know a nec-
essary and sufficient criterion for this property.
Definition 1 (Adjustment Criterion (AC) for DAGs; (Sh-
pitser, VanderWeele, and Robins 2010; Shpitser 2012)). Let
D = (V,E) be a DAG and let X,Y,Z be pairwise disjoint
subsets of V. The set Z satisfies the adjustment criterion rel-
ative to (X,Y) in D if
(a) no element in Z is a descendant inD of anyW ∈ V\X

which lies on a proper causal path from X to Y and
(b) all proper non-causal paths in D from X to Y are

blocked by Z.
Most recently Perković et al. (2015) have generalized the

criterion to CPDAGs and they have proven necessity and
sufficiency of this generalized criterion for CPDAGs.

In (van der Zander, Liśkiewicz, and Textor 2014) a new
criterion is proposed for DAGs which is equivalent to the AC
(Definition 1). The crucial role here plays the proper back-
door graph, in which the first edge of every proper causal
path from X to Y is removed (see Fig. 2 for an example).
Based on this notion the so called constructive back-door
criterion for DAGs, is obtained from AC by replacing con-
dition (b) by the following one: Z d-separates X and Y in
the proper back-door graph. In this way the criterion reduces
adjustment problems to d-separation problems.

4 Main Results
In this section we propose a method to find adjustment sets
for a given chain graph. To describe our algorithm we in-
troduce first several auxiliary definitions and notations. We
refer to the nodes which lie on a proper possible causal path
from X to Y as PCP(X,Y). So we let PCP(X,Y) =

{W ∈ V \ X | W lies on a proper possible causal path
from X to Y} and generalize the proper back-door graphs
for CGs as follows (for an example see Fig. 2):

Definition 2 (Proper Back-Door Graph for CGs). Let
G = (V,E) be a chain graph, and X,Y be disjoint sub-
sets of nodes of G. The proper back-door graph, denoted as
GpbdXY, is obtained from G by removing all edges X → D in
E such that X ∈ X and D ∈ PCP(X,Y).

In order to create efficient algorithms for CGs, we define
a new, simpler kind of paths and provide a generalized back-
door criterion based on those paths.

Definition 3 (Almost Definite Status). Let π be a path in
a mixed graph G = (V,E). A node V on π is called an
almost definite non-collider, if it occurs as A ← V , V →
B or as A − V − B on π, where A and B are the nodes
preceding/succeeding V on π. A non-endpoint vertex V on π
is said to be of almost definite status, if it is either a collider
or an almost definite non-collider on π. A path π is said to
be of almost definite status if all non-endpoint vertices on
the path are of almost definite status.

The property of almost definite status only depends on
the edges in the paths, not on those outside the path, and is
so algorithmically easier to handle than definite status. For

example in the CG G: A B C D E the path A −
B − C → D ← E is of almost definite status. It is not
of definite status, because A and C are connected and thus
there exists a consistent DAG extension of G that contains a
collider A → B ← C. We state the following criterion by
using these paths.

Definition 4 (Constructive Back-Door Criterion for
CGs). Let G = (V,E) be a chain graph, and let X,Y,Z ⊆
V be pairwise disjoint subsets of variables. Z satisfies the
constructive back-door criterion relative to (X,Y) in G if
(a) Z ⊆ V \ possibleDe(PCP(X,Y)) and
(b) Z blocks every almost definite status path from X to Y

in the proper back-door graph GpbdXY.

Now we are ready to describe an algorithm to find in a
given chain graph G an adjustment set relative to a given
pair (X,Y). The rule used in Step 1 is applied to variables
A,B,C if the induced graph of {A,B,C} is A → B −
C. Moreover, recall, that a chain component of G (used in
Step 2) is a connected component of the undirected graph
obtained from G by removing all directed edges, and chordal
means that every cycle of length ≥ 4 possesses a chord i.e.
two nonconsecutive adjacent vertices.

Function FINDADJSET(G,X,Y)
1. Close G under the rule A → B − C ⇒ A → B → C.

If a new v-structure occurs then return ⊥ and exit.
2. If some chain component of the resulting graph is not

chordal then return ⊥ and exit.
3. LetR denote the resulting graph.
4. Return a set Z satisfying the constructive back-door

criterion forR.

Using this algorithm we get our main results.
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Figure 3: An execution of FINDADJSET on an input chain graph G with X = {X1, X2}, Y = {Y }. The RCGR is constructed
from G in Step 1 and it satisfies CE(G) = CE(R). The only chain component {V2, V3, V4} is chordal. Step 4 constructs the
proper back-door graphRpbdXY and possibleDe(PCP(X,Y)) = {V1, V2, V3, V4, Y }. The (only) adjustment set is Z = {V0}.

Theorem 5. Given a chain graph G and sets of disjoint
nodes X and Y in G the problem of finding an adjustment
set Z relative to (X,Y) can be solved in time O(n4).

Figure 3 illustrates the execution of the algorithm on an
example chain graph. To prove the theorem we first intro-
duce a subclass of chain graphs. Then the proof follows from
the propositions below.
Definition 6 (Restricted Chain Graph). A chain graph G
is a restricted chain graph (RCG) if and only if (1) every
chain component of G is chordal, and (2) the configuration
A→ B − C does not exist as induced subgraph of G.
Proposition 7. If CE(G) 6= ∅ then algorithm FINDADJSET
generates in Step 3 an RCGR with CE(G) = CE(R). Oth-
erwise the algorithm returns ⊥. Moreover the Steps 1-2 of
FINDADJSET can be implemented by an algorithm running
in time O(k2m) ≤ O(n4), where k describes the maximum
degree of nodes in G.
Proposition 8. If CE(G) 6= ∅ then algorithm FINDADJSET
computes in Step 4 an adjustment set relative to (X,Y) if
and only if such a set exists. Moreover the resulting adjust-
ment set can be computed in time O(n+m).

We prove Proposition 7 in Section 5. Next, in Section 6
and 7 we discuss properties of RCGs and provide a crite-
rion for covariate adjustments in RCGs which we apply in
Section 8 to prove Proposition 8.

Algorithm FINDADJSET requires O(n4) time in the gen-
eral case. But, if the input graph is already an RCG, only
Step 4 needs to be performed, and the problem can be solved
in linear time. It is easy to see that any DAG is an RCG.
Moreover, every chordal undirected graph is an RCG, too.
From the characterization of CPDAGs given by Andersson
et al. (1997) it follows that every CPDAG is also an RCG.

Using our method we can solve further problems involv-
ing covariate adjustment in chain graphs: testing, enumerat-
ing all adjustment sets, and finding a minimal or minimum
adjustment set. To this end we modify Step 4. Due to the
constructive back-door criterion the problems can be solved
by finding and enumerating separating sets in an RCG. Al-
gorithms for these generalizations are described in Section 8.

5 Reducing a CG to an RCG
The proof that algorithm FINDADJSET, for a given CG G,
computes in Step 3 an appropriate RCG R requires three
lemmas.
Lemma 9. Let G be a chain graph and let Gr be obtained
from G after a single application of the rule A→ B−C ⇒

A → B → C. If G and Gr have the same v-structures, then
CE(G) = CE(Gr); Otherwise, if G and Gr do not have the
same v-structures, then CE(G) = ∅.
Lemma 10. Let G be a chain graph and let G∗r be the closure
of G under the rule A → B − C ⇒ A → B → C. Then
G∗r is a chain graph.

Lemma 11. Every chain component of a chain graph G with
CE(G) 6= ∅ is chordal.

It follows from the above lemmas that the algorithm does
not abort with⊥, if CE(G) 6= ∅, and that CE(R) = CE(G).
It is also guaranteed thatR is an RCG.

The stated runtime follows from the straightforward im-
plementation of the algorithm. Chordality can be tested in
linear time by lexicographic breadth-first search (Rose, Tar-
jan, and Lueker 1976).

This completes the proof of Proposition 7.

6 Properties of RCGs
We first show that a possible directed path in an RCG can be
converted to a directed path, if it starts with a directed edge,
which is the key difference between general chain graphs
and RCGs.

Lemma 12. If in an RCG G a possible directed path π =
V1, . . . , Vk from V1 to Vk contains a node Vi with a subpath
Vi−1 → Vi − Vi+1 then in G there exists a possible directed
path π′ = V1, . . . , Vi−1 → Vi+1, . . . , Vk.

Proof. Let π be the shortest possible directed path from V
toW for which no such π′ exists. Then π contains a subpath
A→ B−C which must not occur as induced subgraph in an
RCG, so A and C are connected. If they are connected like

in A B C or A B C there exists a semi-directed

cycle. So they are connected as A B C

The lemma expresses that on every possible directed path,
if it contains as a subpath Vi−1 → Vi−Vi+1 then in the graph
there must exist a directed edge Vi−1 → Vi+1. Thus edge
Vi − Vi+1 can be removed from the path, which iteratively
results in a path in which no such subpaths exist.

From this simple lemma we can conclude properties
which are very useful to analyze RCGs. Particularly, that a
possible directed path between V and W implies the exis-
tence of a path between V and W with at most one undi-
rected subpath followed by a directed subpath. Moreover
we can get various invariances when transforming the initial
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path to the final one, like the fact that the possible descen-
dants do not change.

Let us now consider the relationship between definite sta-
tus and almost definite status paths in RCGs:

Lemma 13. Let G be an RCG, X and Y nodes, and let Z
be a subset of nodes of G with X,Y /∈ Z. Then there exists a
d-connected definite status path betweenX and Y given Z if
and only if there exists a d-connected almost definite status
path between X and Y given Z. Moreover both paths have
the same directed edges.

Proof. Let π be the shortest d-connected almost definite sta-
tus path betweenX and Y . If it is not a definite status path it
contains nodesU−V −W , such thatU andW are connected
by an edge. This edge cannot be directed or there would be
a semi-directed cycle. Thus we can replace U − V −W by
U − W . In both cases we get a shorter path. Since U and
W still have the same kind of adjacent edges, it is a shorter
d-connected almost definite status path. The proof of the op-
posite implication is trivial since every definite status path is
an almost definite status path.

Zhang (2008) proves the following lemma for PAGs, and
it is not hard to see that it also holds for RCGs:

Lemma 14. A d-connected given Z definite status path be-
tween X and Y exists in an RCG G if and only if there exists
a d-connected path betweenX and Y given Z in one (every)
DAG D ∈ CE(G).

In RCGs this lemma also holds for almost definite status
paths due to Lemma 13. Since every definite non-collider is
not a collider in any consistent DAG extension of G, the path
in a DAG corresponding to a definite status path in an RCG
G has exactly the same nodes. This is, however, not true for
the other direction or for almost definite status paths.

D-separation is not monotonic, i.e. adding a node to a sep-
arating set, can unblock a path and result in a non-separating
set. Thus it is helpful, e.g. for finding minimal sets, to con-
vert a d-separation problem to a vertex cut separation prob-
lem in an undirected graph. In DAGs such a conversion can
be done by moralization, which generalizes to RCGs in a
straightforward way:

Definition 15. The moral graph Gm of an RCG G is an undi-
rected graph with the same node set that results from con-
necting all unconnected parents of a common child with an
undirected edge, and replacing every directed edge with an
undirected edge.

Lemma 16. Given an RCG G and three disjoint sets X,Y,
and Z, set Z d-separates X and Y if and only if Z intersects
every path between X and Y in (GpossibleAn(X,Y,Z))

m.

This also shows that in RCGs separation based on (al-
most) definite status paths is equivalent to other definitions
of separation proposed for general chain graphs (Frydenberg
1990; Bouckaert and Studenỳ 1995) that are also equivalent
to separation in the moral graph.

7 Covariate Adjustments in RCGs
In this section we prove the first statement of Proposition 8,
i.e. the correctness of Step 4 of algorithm FINDADJSET,
showing the following:
Theorem 17. Let G be an RCG. Then the constructive back-
door criterion (Definition 4) holds in G for sets X,Y,Z, if
and only if Z is an adjustment set relative to (X,Y) in G.

To prove the theorem we show that the criterion holds for
an arbitrary RCG G if and only if it holds for every DAG
in CE(G). An alternative proof could show that the gener-
alized adjustment criterion (GAC) of (Perković et al. 2015)
can be stated for RCGs and that their proof also applies to
RCGs. The method of (van der Zander, Liśkiewicz, and Tex-
tor 2014) could then be used to transform the modified GAC
in terms of a constructive back-door graph. However, in both
proofs the technical difficulty emerges that not every proper
back-door graph GpbdXY of an RCG G is an RCG itself. To
cope with this problem we need two auxiliary lemmas. The
first one shows that the result of Lemma 13 holds in GpbdXY

even if GpbdXY is not an RCG.
Lemma 18. Let G = (V,E) be an RCG, and let X,Y,Z ⊆
V be pairwise disjoint subsets of variables. In the proper
back-door graph GpbdXY the set Z blocks every almost definite
status path between X and Y if and only if Z blocks every
definite status path between X and Y.

The second lemma shows that the proper back-door graph
always is an RCG, if there exists at least one adjustment set.

Lemma 19. If the proper back-door graph GpbdXY of an RCG
G is not an RCG, no adjustment set exists relative to (X,Y)
in G.

These lemmas are also useful to obtain fast algorithms.
Due to Lemma 19 the algorithms can assume that the proper
back-door graph RCG is an RCG, as soon as they have
found an adjustment set (possible in linear time) and do not
need to explicitly test the RCG-properties which would take
O(n2.373) time (see the next section).

With the help of Lemma 18 the algorithms can work with
almost definite status paths, which are more convenient to
handle than definite status paths because testing if a path is
of definite status requires O(nm) = O(n3) time to verify
that the nodes surrounding a definite non-collider with undi-
rected edges on the path are not adjacent.

This efficiency becomes relevant, if the input graph is al-
ready an RCG, e.g. a DAG or CPDAG, and we can skip the
O(n4) algorithm to transform it to an RCG.

8 Algorithms for RCGs
Recognition of RCGs. Several structure learning algo-
rithms return a mixed graph making no additional assump-
tions about its properties. Thus, before further processing
could be performed, it is necessary to verify if the returned
graph satisfies all required conditions. Our general algorithm
assumes that the input graph is a CG. However, if we know
that it is an RCG, Steps 1 and 2 can be omitted.

Because every class of Markov equivalent DAGs is repre-
sented by a unique CPDAG, it is possible to test if a given
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chain graph G is a CPDAG by finding one consistent DAG
extensionD of G, generating the CPDAG G′ forD and com-
paring the resulting graph G′ with G. Graph G is a CPDAG,
if and only if G = G′. Using the CG-to-DAG conversion
algorithm of (Andersson, Madigan, and Perlman 1997) and
the DAG-to-CPDAG conversion of (Chickering 1995) this
can be done in time O(m log n). Alternatively, if the de-
gree of the graph is bounded by a constant k, the algo-
rithm of (Chickering 2002) decreases the running time to
O((n+m)k2).

However, to recognize RCGs such an approach does not
work and one needs to test the conditions of Definition 6 di-
rectly. The first property – the chordality of components –
can be tested with lexicographic breadth-first search in lin-
ear time (Rose, Tarjan, and Lueker 1976). A naive test of
the second condition, that A→ B − C does not exist as in-
duced subgraph, is possible in timeO(nm). Here we present
a more sophisticated method: Let D, U , M be three adja-
cency matrices corresponding to directed, undirected, resp.
missing edges. I.e. D[i, j] = 1 if i → j ∈ E, U [i, j] = 1
if i − j ∈ E and M [i, j] = 1 if no edge exists between
i and j. All other matrix elements are 0. The trace of the
product Tr[D ·U ·M ] is zero if and only if the second condi-
tion is satisfied by the graph, since it corresponds to cycles
i → j − k -no-edge- i. Thus the second condition can be
verified in time O(nα), with α < 2.373 (Le Gall 2014), us-
ing a fast matrix multiplication algorithm. This dominates
the time complexity of the whole recognition algorithm.

There is no need to consider specific DAG-to-RCG or
RCG-to-DAG conversion algorithms since every DAG al-
ready is an RCG and every RCG is a chain graph, so the
algorithms cited above can be used for latter task. For the
task RCG-to-CPDAG the usual DAG-to-CPDAG algorithms
can be used, because they always generate and continue on
RCGs in intermediate steps.

Testing, computing, and enumerating separating sets.
Before we can describe the algorithms involving adjustment
sets, we need to describe the algorithms for separating sets,
since the constructive back-door criterion reduces adjust-
ment to separation.

A modified Bayes-Ball algorithm (Shachter 1998) can be
used to test if a given set Z d-separates X and Y. Thereby
a standard search is performed and the algorithm only con-
tinues through a node when the entering and leaving edge
form an almost definite status path. As there are only three
kinds of edges tracking the kind of the entering and leaving
edge requires a constant overhead and the algorithm runs in
O(n+m).

The algorithms to find or enumerate separating sets will
take as arguments an RCG, disjoint node sets X,Y, I,R and
will return one or more sets Z that d-separate X from Y un-
der the constraint I ⊆ Z ⊆ R. Later, using these algorithms
for adjustment sets, the constraint given by the set R cor-
responds to the nodes forbidden by the condition (a) of the
criterion (Definition 4). The constraint given by I helps to
enumerate all such sets.

A single d-separator can be found using a closed form
solution that can be constructed in time O(n+m):

Lemma 20. Let X,Y, I,R be sets of nodes with I ⊆ R,
R ∩ (X ∪ Y) = ∅. If there exists a d-separator Z0, with
I ⊆ Z0 ⊆ R then Z = possibleAn(X ∪Y ∪ I) ∩R is a
d-separator.

Observing certain variables can be very expensive, so it is
desirable to not just find any d-separator, but a d-separator Z
that contains a minimal number of nodes, in the sense that no
subset Z′ ⊂ Z is a d-separator. The above lemma implies:

Corollary 21. Let X,Y, I be sets of nodes. Every minimal
set over all d-separators containing I is a subset of Z =
possibleAn(X ∪Y ∪ I).

This means that every minimal d-separator Z is a vertex
cut in the moral graph (GpossibleAn(X∪Y∪I))m. Because this
moral graph is independent of Z, it is sufficient to search
a standard vertex cut within this undirected graph. van der
Zander, Liśkiewicz, and Textor (2014) provide the necessary
algorithms, and describe anO(n2) algorithm for testing and
finding a minimal d-separator by searching nodes that are
reachable from X as well as Y in the moral graph. Find-
ing a d-separator that is not just a minimal d-separator, but
a minimum d-separator with a minimum cost according to
some linear cost function that assigns a certain weight to ev-
ery node can be done in O(n3) using a max-flow algorithm.

After finding a single d-separator, it is also interesting
to know which other d-separators exist and enumerate all
of them. For this task the algorithms of van der Zander,
Liśkiewicz, and Textor can also be used, since they can enu-
merate any class of sets given a test for the existence of a
set Z in the class with I ⊆ Z ⊆ R by enumerating all sets
and aborting branches in the search graph that will not lead
to a solution. The runtime has a delay linear to the maximal
set size and complexity of the test, i.e. between every found
d-separator O(n(n + m)) time passes and O(n3) between
every minimal d-separator.

Testing, Computing, and Enumerating Adjustment Sets.
Now we are ready to describe algorithms to find, test and
enumerate arbitrary, minimal and minimum adjustment sets.
For each problem such an algorithm calculates the set
PCP(X,Y), constructs the proper back-door graph in lin-
ear time and solves the corresponding separator problem re-
stricted to R′ = R \ possibleDe(PCP(X,Y)). The algo-
rithm has a runtime that is the same as the runtime of the
corresponding algorithm for d-separation and even the run-
time of the corresponding algorithm for DAGs.

For the testing problems this means, we test if Z ∩
possibleDe(PCP(X,Y)) = ∅. If this is not true, Z is not
an adjustment set, otherwise it is an adjustment set, if and
only if it is a d-separator in the back-door graph.

For a singleton X the d-separation algorithms can be used
directly. For sets X with more than one element, it is also
necessary to test if the back-door graph GpbdXY is an RCG. If
not, no adjustment set exists. This test can be done as de-
scribed in Section 8, but it is faster to test in O(n + m)
if Z = possibleAn(X ∪ Y) \ possibleDe(PCP(X,Y)) is
an adjustment set, i.e. a d-separator in GpbdXY. This can be
tested with the Bayes-Ball-like search, which will work in
any chain graph, not just RCGs. We know from Lemma 19

6



that if Z is an adjustment set, the graph is an RCG. If Z is not
an adjustment set, no adjustment set exists and any further
search can be aborted.

This also completes the proof of Proposition 8.

9 Discussion
We have introduced restricted chain graphs as a new graph
class which includes DAGs and CPDAGs and still has an
algorithmic simple notion of d-separation. For these RCGs
we give a constructive back-door criterion that reduces prob-
lems related to adjustment sets to problems involving d-
separation. This leads to efficient algorithms to find, test
and enumerate adjustment sets as well as minimal and min-
imum adjustment sets in chain graphs. The algorithms are
easily implementable and our software is accessible online
at http://dagitty.net. It remains an open problem
to extend our methods to arbitrary mixed graphs.

If a given graph is a CPDAG or an arbitrary RCG, our al-
gorithms run in linear time. It is interesting that the problems
involving adjustment sets for such graphs are not harder than
for DAGs.
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A APPENDIX
A.1 Further notation
First we need to define additional graph preliminaries: The
neighbors of a node V are all the nodes connected to V by an
undirected edge. The parents of a node V are all the nodes
connected to V by a directed edge pointing to V . We use
Ne(V) or Pa(V) to refer to the set of neighbors or parents
of a node set V.

We abbreviate a directed path from A to B as A ∗→ B,
and as A +→ B if it has at least one edge, i.e. if A 6= B.
A path in the opposite direction, from B to A, is written
as A ∗← B, and as A +← B, if A 6= B. An undirected

path is similarly written as A +
B or A ∗

B. A possible

directed path is written as A
∗

(→ |−) B or A
+

(→ |−) B. A
single edge of unknown type is written as ∼, and a path of
unknown type as A ∗∼ B or A +∼ B. Paths written in this
combination can be arbitrarily combined, e.g. A→ B ← C

for a collider; or A ∗ +→ B for a path that starts with
(possible empty) undirected part and ends with a directed
path.

A.2 Generalized paths
The main paper gives a definition for d-connected paths
which is the definition usually used by the causality com-
munity, but it is not clear, why this definition was chosen.
What happens if a path is allowed to visit the same node
multiple times? Or if colliders are also opened by possible
descendants? In this section we examine these variations of
paths and show that almost all of them define the same con-
nectivities. This greatly simplifies the later proofs, since we
only need to show the existence of one kind of path, and then
can assume we have a path of a different kind, e.g. turning
an almost definite status path into a definite status path.

A walk is defined like a path, but it is allowed to visit the
same node multiple times. Walks are commonly used and
often d-connectedness of walks is defined such that a walk
is connected by a set Z, if every collider is in Z and every
non-collider is not in Z. We will call such connected walks
d-in-connected. The main paper defines d-connected paths,
which requires that colliders are ancestors of nodes in Z,
here we will call such paths d-An-connected. Correspond-
ingly, if all colliders are possible ancestors of nodes in Z
(and non-colliders are not in Z), the path is d-possibleAn-
connected. All d-·-connected definitions apply to walks and
paths. We will abbreviate definite status as ds- and almost
definite status as ads-.

We can show the following relationships between these
walks and paths:

Lemma 22. Given an RCG G, nodes X and Y , and a node
set Z the following statements are equivalent:
1. There exists a d-possibleAn-connected ads-walk between
X and Y given Z.

2. There exists a d-An-connected ads-walk between X and
Y given Z.

3. There exists a d-in-connected ads-walk between X and
Y given Z.

4. There exists a d-An-connected ads-path between X and
Y given Z.

5. There exists a d-possibleAn-connected ads-path between
X and Y given Z.

Proof. We will do a ring proof.
(1 → 2): Let π : X

+∼ Y be a d-possibleAn-connected
ads-walk. If π is not d-An-connected, there is a subwalk
U → C ← V , such that C is a possible ancestor of a node
in Z, but not an ancestor. Let Z be the first such node, i.e.
the path τ between C and Z does not contain any other node
of Z. From Lemma 12 it follows that there are paths U +→ Z

and V +→ Z that will not contain nodes not in τ . So we can
replace U → C ← V with U +→ Z

+← V in which the
collider is an ancestor of Z. This can be repeated, till every
collider is an ancestor.

(2 → 3): Let π : X
+∼ Y be a d-An-connected ads-walk.

If π is not d-in-connected, there is a subwalk U → C ← V ,
such that C is an ancestor of a node in Z, but not in Z. Let Z
be the first such node, i.e. the path C +→ Z does not contain
any other node of Z. So we can replace U → C ← V with
U

+→ Z
+← V . This can be repeated, till every collider is in

Z.
(3 → 4): Let π′ : X +∼ Y be the shortest d-in-connected

ads-walk for which no d-An-connected ads-path exists. If it
is not a path there is a node V that occurs more than once.
If V is X or Y we directly trim this walk to a shorter walk
π. Otherwise we can get a shorter walk π by replacing U ∼
V

+∼ V ∼W withU ∼ V ∼W . If this walk is not of almost
definite status, there occurs U → V −W or U − V ← W .
We can skip the undirected part of the walk due to Lemma 12
and get a d-An-connected ads-walk, because a node adjacent
to an undirected edge in π′ cannot be in Z and it cannot
introduce a new collider, because π′ is of almost definite
status.

If π was of almost definite status, V is either an almost
definite non-collider or a collider. In former case, it is not
in Z, since at least one of the edges of V in π′ does not
have an arrowhead. In latter case the original walk was U →
V

+∼ V ← W , so there occurs a direction swap → Z ←
in V +∼ V , and V is an ancestor of some Z ∈ Z. Thus π is
d-An-connected.

Either π is a path, has a corresponding path or is a con-
tradiction to π′ being the shortest walk for which no path
exists.

(4→ 5): This is trivial, since every ancestor is a possible
ancestor.

(5→ 1): This is trivial, since every path is a walk.

Corollary 23. Given an RCG G, nodes X and Y , and a
node set Z the following statements are equivalent:
1. There exists a d-possibleAn-connected ads-walk between
X and Y given Z.

2. There exists a d-An-connected ads-walk between X and
Y given Z.
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3. There exists a d-in-connected ads-walk between X and
Y given Z.

4. There exists a d-An-connected ads-path between X and
Y given Z.

5. There exists a d-possibleAn-connected ads-path between
X and Y given Z.

6. There exists a d-possibleAn-connected ds-walk between
X and Y given Z.

7. There exists a d-An-connected ds-walk betweenX and Y
given Z.

8. There exists a d-in-connected ds-walk between X and Y
given Z.

9. There exists a d-An-connected ds-path between X and Y
given Z.

10. There exists a d-possibleAn-connected ds-path between
X and Y given Z.

Proof. This follows from the combination of lemma 13 and
22: Lemma 22 shows that 1 to 5 are equivalent. Lemma 13
shows that 4 and 9 are equivalent. Since ds-* is a stronger
condition than ads-* each of 6. to 10. implies 1. to 5.. The
steps 9 → 10 → 6 are trivial. The steps 1 → 2 → 3 in the
proof of Lemma 22 do not depend on ads, so they also show
6→ 7→ 8 here. 8→ 9 follows from 8→ 3→ 4→ 9.

A.3 Proofs
Here we give proofs omitted from the main paper:
Proof of Lemma 11:

Proof. If G contains a chain component that is not chordal,
it has an undirected cycle V1−V2−. . .−Vk−V1 with k > 3,
such that Vi and Vj are not connected by an undirected edge,
unless Vj ∈ {Vi−1, Vi+1} (we set V0 = Vk, Vk+1 = V1).
No Vi, Vj are connected by a directed edge, otherwise there
would be a semi-directed cycle and G would not be a chain
graph. I.e. the subgraph induced by {V1, . . . , Vk} is exactly
the cycle V1 − V2 − . . . − Vk − V1. Thus every orientation
of this cycle that does not create a new v-structure creates a
directed cycle. So CE(H) = ∅.

Proof of Lemma 16:

Proof. “⇒”: Let π : X
+
Y be the shortest path in the

moral graph GmpossibleAn(X,Y,Z) connecting X ∈ X and
Y ∈ Y and not containing a node of Z. It corresponds to
a sequence π′ : X +∼ Y in the RCG with the same nodes. If
π′ contains nodes Vi, Vi+1 that are not connected, they are
moralized parents of a node C with Vi → C ← Vi+1 and
we can insert C after Vi.

If π′ is not a definitive status walk, it contains U → V −
W , U −V ←W or U −V −W with U −W . In every case
U and W are connected in G and GmpossibleAn(X,Y,Z), thus
replacing U − V −W by U −W in π creates a shorter path
and contradicts π being the shortest.

No node of π is in Z, so if π′ is not d-possibleAn-
connected, there is a collider Vi → C ← Vi+1, such that
C /∈ possibleAn(Z). Then C ∈ possibleAn(X ∪ Y) and
there exists a possible directed path from C to X ′ ∈ X or

Y ′ ∈ Y that does not intersect Z. From Lemma 12 it fol-
lows that there also exists a directed path from Vi and Vi+1

to X ′ or Y ′ not intersecting Z. We can replace the collider
C with this path and truncate the walk accordingly.

“⇐”: Assume there exists a d-connected definite status
path π : X

+∼ Y in G given Z between X ∈ X and Y ∈ Y.
Every node on this path is a possible ancestor of a node in
X, Y or Z, thus the path exists in GmpossibleAn(X,Y,Z). All
nodes in π ∩ Z are colliders U → V ← W , which can be
replaced in the path with the edge U −W inserted during
moralization.

Corollary 24. In RCGs d-separation of definite status paths
is equivalent to the c-separation of (Bouckaert and Studenỳ
1995).

Proof of Lemma 18

Proof. If there exists a definite status path between X and
Y, it is also an almost definite status path. On the other hand,
if there a exists a d-connected almost definite status path π
between X and Y in GpbdXY, π is also a d-connected almost
definite status path in G and due to Lemma 13 there exists
a d-connected definite status path π′ in G. Both paths have
the same directed edges and thus π′ is also a d-connected
definite status path in GpbdXY.

Proof of Lemma 19

Proof. It is easy to see that a back-door graph always sat-
isfies the first conditions for RCGness: It is a chain graph,
since removing an edge cannot introduce a cycle. All chain
components are still chordal, since they are unchanged.

If an induced subgraph X → B − P exists, an edge
X → P was removed, i.e. X ∈ X and P ∈ PCP(X,Y). So
there exists a possible directed path π from P to Y not in-
tersecting X in G and GpbdXY. Through the induced subgraph
there is a possible directed path B − π from B to Y, so
the edge X → B can only exist in the back-door graph, if
B ∈ X.

According to lemma 12 all non-leading undirected edges
can be removed from B− π, which creates a proper definite
status path from X to Y. Since this path starts with an undi-
rected edge, it exists in the back-door graph as well and must
be blocked by every adjustment set. But it can only blocked
by nodes in PCP(X,Y), so no adjustment set exists.

Proof of Lemma 20:

Proof. First we show that Z′0 = Z0∩possibleAn(X∪Y∪I)
is a d-separator. Assume it is not, then there exist a proper
definite status path π from X to Y with X ∈ X, Y ∈ Y. If
π does not contain a collider, every node on π is a possible
ancestor of X or Y , and thus Z′0 blocks π. If π does contain
colliders, it is blocked, unless every collider is in Z′0 and a
possible ancestor of X ∪Y ∪ I. Then every node on π is in
possibleAn(X ∪Y ∪ I) and π is blocked by Z′0. Hence Z′0
is a vertex cut in the moral graph GmpossibleAn(X∪Y∪Z0)

.
Since I ⊆ Z′0, we have possibleAn(X ∪ Y ∪ I) ⊆

possibleAn(X∪Y∪Z′0). But also Z′0 ⊆ possibleAn(X∪
Y ∪ I), so possibleAn(X ∪Y ∪ Z′0) ⊆ possibleAn(X ∪
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Y ∪ I). So Z′0 is also a vertex cut in the moral graph
GmpossibleAn(X∪Y∪I).

Since a vertex cut with added nodes is still a vertex cut
and Z includes every allowed node in the moral graph, Z is
also a d-separator.

Direct proof of the main result In this section we give a
direct proof of the main result by showing that our criterion
holds for an RCG G iff the criterions of (Shpitser 2012) and
(van der Zander, Liśkiewicz, and Textor 2014) hold in every
DAG D ∈ CE(G). This proof does not depend on the GAC
of (Perković et al. 2015) and is simpler as it only has to han-
dle a single class of graphs (RCGs) and not multiple graph
classes like DAGs, CPDAGs or PAGs.

Lemma 25. All nodes in a chain component of an RCG have
the same set of parents.

Proof. Assume there exist a node V that has a parent P that
is not a parent of a node W which is a neighbor of V in the
same component. Then P → V −W exists in the graph, so
according to Lemma 12 there exists an edge P →W and P
is a parent of W .

Since all neighbors have the same parents and the compo-
nent is connected, all nodes in the component have the same
parents.

Lemma 26. For every node V in a chain component C of an
RCG G, the edges of C can be oriented such that for every
other node W in C there exists a directed path V +→W .

Proof. Since all nodes in the chain component have the
same parents, we can start the MCS orientation algorithm
of (Andersson, Madigan, and Perlman 1997) at node V . It
returns a sequence α1, . . . , α|C| such that α1 = V and if ev-
ery edge αi − αj with i < j is oriented to αi → αj the
resulting graph is acyclic without immoralities.

Assume there exist a node W to which no directed path

V
∗→W exists. Let π : V

+
W be the shortest path between

V and W . The path starts with a directed edge V →, since
V = α1. Because the path is not directed, there is a collider
C with V ∗→ B → C ← D

∗∼ W . But this would be an
v-structure, unless B and D are connected, so V ∗→ B ∼
D
∗∼ W would be a shorter path than π, which is also open,

since B and D are ancestors of C.

Lemma 27. A definite non-collider V on a path (walk) π in
an RCG G is not a collider on π in any D ∈ CE(G).

Proof. If V was a collider→ V ← in D, it would occur as
→ V−, −V ← or −V− in G. Only in the last case it could
be a definite non-collider in G, but then the adjacent nodes
must be different and unconnected. So→ V ← is not a valid
orientation.

Lemma 28. If there exists a d-connected given Z definite
status path X

+∼ Y in an RCG G, then there exists a d-
connected path X +∼ Y given Z in every DAG D ∈ CE(G)
that contains exactly the same nodes.

Proof. In G all nodes on the definite status path are either
definite non-colliders not in Z or colliders in Z, so they are
non-colliders not in Z (due to lemma 27) or colliders in Z in
D.

The previous lemma does not hold for almost definite sta-
tus paths, which makes definite status paths an useful defini-
tion, despite the much simpler definition of almost definite
status paths.

Lemma 29. Let G be an RCG and D ∈ CE(G). If there
exists a d-connected path π : X

+∼ Y given Z in D, there
exists a d-connected given Z almost definite status path πG :

X
+∼ Y in G with the following properties:

Every node V on πG is a node on π, or occurs as V ← or
as V →W with W ∈ AnD(Z) in D.
πG is not a directed path, unless πD is one or a node other

than X of πG is in possibleAnG(Z).

Proof. Let π be the shortest d-connected path between X
and Y given Z in D. If this path is not an almost definitive
status path in G the path in G contains U → V − W or
U − V ← W . In the first case there has to exist an edge
U → W in G due to Lemma 12, so we can replace U ∼
V ∼ W by U → W to form a shorter path π′ in D. If the
edge V ∼ W is V → W in D, the node W is a collider on
π′ iff it is a collider on π, and π′ is a directed path iff π′ is
one. If the edge is V ← W , V is a collider and an ancestor
of Z, so W is an ancestor of Z in D and a possible ancestor
of Z in G. After the replacement π′ is a d-connected shorter
path than π.

The same can be shown in the second case, except that
there π′ will have an edge U ← W in G and thus cannot be
a directed path.

None of the above two cases removes edges without
adding a new edge and that edge is only directed from X
to Y , if the three node subpath of π is a directed path or the
last node of the edge is a possible ancestor of Z. These possi-
ble ancestors are preserved during later replacements in that
sense that the last node of the newly inserted edge will also
be a possible ancestors of Z.

It remains to show that there also exists a d-connected
almost definite status path with these properties, i.e. such
that all colliders are ancestors of Z. Let π be a path that is of
almost definite status in G and a d-connected path between
X and Y given Z in D, chosen such that it is the path with
the lowest number of blocked colliders in G. Let V be the
first such collider, i.e. π contains U → V ← W and V is
an ancestor of Z in D and not in G. Then there exist paths

U → V
+

(→ |−) Z and W → V
+

(→ |−) Z with Z ∈ Z
that do not contain any other node of Z. Due to Lemma 12
there are also d-connected paths U +→ Z and W +→ Z in
G and D. These paths intersect in a node V ′, and we can
replace U → V ← W by U +→ V ′

+← W , unless the paths
also intersect π in a node V ′′ /∈ {U, V,W}. If one of them
intersects X ∗∼ U , we can replace the beginning of the path
with X

∗∼ V ′′
+← U , and if they intersect W ∗∼ Y , we
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replace the end with V ′′ +← W
∗∼ Y , reducing the number

of blocked colliders.
This is the only step introducing new nodes, and they only

occur as V ← or as V →W with W ∈ AnD(Z) in D.

Proof of the main theorem 17:

Proof. Let G be an RCG.
If G does not contain an undirected edge, i.e. it is a DAG

and CE(G) = {G}, the criterion is equivalent to the crite-
rion given in (van der Zander, Liśkiewicz, and Textor 2014):
In the absence of undirected edges, the definition of descen-
dants and possible descendants are equal as well as the def-
inition of d-connected almost definite status paths and d-
connected paths.

Otherwise, we show if G does not satisfy the CBC, there
∃D ∈ CE(G) that does not satisfy the CBC; and that if
∃D ∈ CE(G) that does not satisfy the CBC, G does not
satisfy the CBC.

Assume G does not satisfy CBC(a), i.e. there exist nodes

Z ∈ Z,W ∈ PCPG(X,Y) with paths X
+

(→ |−)

W
∗

(→ |−) Y and W
∗

(→ |−) Z. Due to Lemma 12 we

can assume these paths have the form ∗ ∗→, using possibly
anotherW . The pathX +∼W ∗∼ Z has this form, too, unless

the paths are X ∗ +→ W
∗→ Y and W + ∗→ Z. If the first

path starts with an undirected edge X −W ′ ∗ +→W
+→ Y ,

we can useW ′ instead ofW and get a pathW ′ ∗ ∗→ Z with
Lemma 12.

In any case these paths contain only a single undirected

subpath, either X ∗ as common prefix or W ∗ . According
to lemma 26 there exist a DAG D ∈ CE(G) in which this
subpath is oriented to a directed path X ∗→ or W ∗→, so Z
is also a descendant of PCPD(X,Y) in D and D violates
CBC(a).

Assume G does not satisfy CBC(b), i.e. there exists a
(proper) d-connected almost definite status path π between
X and Y in GpbdXY. Let D ∈ CE(G) a DAG that does not vi-
olate CBC(a). Due to lemma 13 there exists a definite status
path π′ between X and Y in G that has the same directed
edges and thus exist in GpbdXY as well. Due to lemma 27 the
path π′ exists inD as d-connected path. If π′ starts withX−
in G, we can assume it starts with X ← in D, and the first
edge is not removed in DpbdXY.

Every directed edge of GpbdXY also exists in DpbdXY: Other-
wise there would be an edge X → D removed in DpbdXY,
which is not removed in GpbdXY, i.e. a node in PCPD that is
not a node in PCPG , i.e. a proper path X

+→ W
∗→ Y in

D which does not correspond to a proper path X
+

(→ |−)

W
∗

(→ |−) Y in G.
Since π′ is proper, no node of X occurs as a non-endpoint

node, so no removed edge occurs in π′ and the edges of π′
exists (oriented) in PCPD.

Also every node of Z that is an descendant of a collider
in GpbdXY is also a descendant of the collider in DpbdXY, π′ is
d-connected in DpbdXY, and D violates CBC(b).

Assume there is a DAG D that does not satisfy CBC(a).
Then there exist paths X +→ W

+→ Y and W ∗→ Z, which

exist in G as paths X
+

(→ |−)W
+

(→ |−) Y and W
∗

(→ |−)
Z. Thus G does not satisfy CBC(a).

Assume there is a DAG D that does not satisfy CBC(b).
Then there exists a proper d-connected path πD in DpbdXY
and D, which corresponds to a d-connected definite sta-
tus path πG in G. If any other edge of πG than the first
one does not exist in GpbdXY πD is not proper or an directed
edge X → PCP(X,Y)G was inserted in πG which violates
CBC(a) in D due to lemma 29. If πG does not start with
a directed edge X → PCP(X,Y)G , it also exist in GpbdXY
and G violates CBC(b). Every open collider C in G is also
an open collider in GpbdXY, otherwise there would be a path
C
∗→ X → PCP(X,Y)

∗→ Z in G, so G would violate
CBC(a).

If the path starts with an edge X → PCP(X,Y)G and
contains a collider, G violates CBC(a). If it does not contain
a collider, πD is a directed path X

+→ Y or it would contain
→ − and not be of definite status, so it does not exists in
DpbdXY, or πG in D is a directed path and one node other than
X has a node of Z as possible descendant due to lemma 29
and G violates CBC(b).

A.4 ALGORITHMS

TRANSFORM a CG to an RCG The first three steps of
FINDADJSET convert an arbitrary chain graph G to an RCG,
or abort with ⊥, if no equivalent RCG exists. The following
algorithm describes these steps in greater detail:

function TRANSFORM-TO-RCG(G = (V,E))
function PROCESS-EDGE(A→ B)

for C in Ne(B) do
if A and C are unconnected then

for X in Pa(C) do
if B and X are unconnected then

Abort and return ⊥
Change B − C to B → C
PROCESS-EDGE(B → C)

for edge A→ B ∈ E do
PROCESS-EDGE(A→ B)

for every connected, undirected component C do
if C is not chordal then

Abort and return ⊥
Return the changed graph

Algorithm 1: Transform-To-Rcg
The correctness follows from section 5, and the runtime

is O(mn2) = O(n4), since PROCESS-EDGE is called once
for every directed edge and takes O(n2) time assuming an
O(1) connectivity test.
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TESTING For a given RCG G the problem TESTSEP can
be solved with a modified Bayes-Ball algorithm in time
O(n+m).

In the Bayes-Ball algorithm a ball jumps along the edges
of the RCG. The ball enters a node through an “incoming”
edge and can either “pass”, i.e. move to all “outgoing” edges
of a certain type, or “bounce”, i.e. move back along the same
incoming edge.

The following table gives the possible combinations of
incoming/outgoing edges. The first 4 rows correspond to the
standard Bayes Ball algorithm:

incoming outgoing action /∈ Z action ∈ Z
→ → pass bounce
→ ← bounce pass
← → pass bounce
← ← pass bounce

→ − bounce bounce
← − pass bounce
− → pass bounce
− ← bounce bounce
− − pass bounce

Lemma 30. This modified Bayes-Ball algorithm sends a
ball from X to Y given Z iff a d-in-connected almost def-
inite status walk from X to Y given Z exists.

Proof. The edge pairs that can be passed by the ball in the
above table correspond exactly to the edge pairs that are al-
lowed in a d-in-connected almost definite status walk.

function TESTSEP(G,X,Y,Z)
Run modified Bayes-Ball from X
return (Y not reachable)

Algorithm 2: TestSep
The problem TESTMINSEP can be solved using Algo-

rithm 3 TESTMINSEP in O(|EmAn|) = O(n2) time. The
correctness of this algorithm can be shown by generalizing
the results presented in (Tian, Paz, and Pearl 1998) for d-
separation. 3 TESTMINSEP, runs in O(|EmAn|) because Rx
and Ry can be computed with an ordinary search that aborts
when a node in Z is reached.

function TESTMINSEP(G,X,Y,Z)
if Z \ possibleAn(X ∪Y) 6= ∅ then return false
if not TESTSEP(G,X,Y,Z) then

return false
G′m ← GmpossibleAn(X∪Y)

Rx ← {Z ∈ Z | ∃ path X − Z in G′m
not intersecting Z \ {Z}}

if Z * Rx then return false
Ry ← {Z ∈ Z | ∃ path Y − Z in G′m

not intersecting Z \ {Z}}
if Z * Ry then return false
return true

Algorithm 3: TestMinSep

FINDING A D-SEPARATOR The problem can be
solved using Algorithm 4 FINDSEP in O(n+m) time. The
correctness follows directly from Lemma 20

function FINDSEP(G,X,Y, I,R)
R′ ← R \ (X ∪Y)
Z← possibleAn(X,Y, I) ∩R′

if TESTSEP(G,X,Y,Z) then
return Z

else
return ⊥

Algorithm 4: FindSep

FINDING A MINIMAL D-SEPARATOR For a given
RCG G the problem FINDMINSEP can be solved with algo-
rithm 5 FINDMINSEP in O(|EmAn|) = O(n2) time.

function FINDMINSEP(G,X,Y, I,R)
G′ ← GpossibleAn(X∪Y∪I)
G′m ← GmpossibleAn(X∪Y∪I)
Z′ ← R ∩ possibleAn(X ∪Y)
Remove from G′m all nodes of I
if not TESTSEP(G′,X,Y,Z) then

return ⊥
Run BFS from X. Whenever a node in Z′ is met, mark

it, if it is not already marked and do not continue along
the path. When BFS stops, let Z′′ be the set of all marked
nodes. Remove all markings

Run BFS from Y. Whenever a node in Z′′ is met,
mark it, if it is not already marked and do not continue
along the path. When BFS stops, let Z be the set of all
marked nodes.

return Z ∪ I

Algorithm 5: FindMinSep

Algorithm 5 FINDMINSEP begins with the separating set
R ∩ possibleAn(X ∪ Y) and finds a subset satisfying the
conditions tested by algorithm 3 TESTMINSEP.
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FINDING A MINIMUM COST D-SEPARATOR The
problem MINCOSTSEP can be solved with algorithm 6
FINDMINCOSTSEP in O(n3).

function FINDMINCOSTSEP(G,X,Y, I,R, w)
G′m ← GmpossibleAn(X∪Y∪I)
Add a node Xm connected to all nodes in
X, and a node Y m connected to all nodes
in Y.
Assign infinite cost to all nodes in
X ∪Y ∪ (V \R) and cost w(Z) to every
other node Z.
Remove all nodes of I from G′m.
Change the graph to a flow network as
described in (Cormen et al. 2001) and return a
minimum cutset Z.

Algorithm 6: FindMinCostSep
The correctness without I follows from the fact that a min-

imum set is a minimal set and the minimal cut found in the
ancestor moral graph is therefore the minimal separating set.
The handling of I is shown in (Acid and De Campos 1996).

ENUMERATING ALLD-SEPARATORS The problem
LISTSEP is solved by the general enumeration algorithm
given in (van der Zander, Liśkiewicz, and Textor 2014) and
using the RCG FINDSEP algorithm in O(n(n+m)).

function LISTSEP(G,X,Y, I,R)
if FINDSEP(G,X,Y, I,R) 6= ⊥ then

if I = R then Output I
else

V ← an arbitrary node of R \ I
LISTSEP(G,X,Y, I ∪ {V },R)
LISTSEP(G,X,Y, I,R \ {V })

Algorithm 7: ListSep

ENUMERATING ALL MINIMAL D-SEPARATORS
The problem LISTMINSEP can be solved with algorithm 8
LISTMINSEP with O(n3) delay between every outputted Z.

function LISTMINSEP(G,X,Y, I,R)
G′m ← GmpossibleAn(X∪Y∪I)
Add a node Xm connected to all X nodes.
Add a node Y m connected to all Y nodes.
Remove all nodes of I.
Remove all nodes of V \R, but insert
additional edges connecting the neighbours.
of all removed nodes.
Use the algorithm in (Takata 2010) to list all sets
separating Xm and Y m.

Algorithm 8: ListMinSep
The correctness is shown by (Textor and Liśkiewicz 2011)

for adjustment sets and generalizes directly to d-separators,
because after moralization, both problems are equivalent to
enumerating vertex cuts of an undirected graph. The han-
dling of I is shown by (Acid and De Campos 1996).
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