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ABSTRACT
We present the first complexity-theoretic secure stegano-
graphic protocol which, for any communication channel, is
provably secure, reliable, and has nearly optimal bandwidth.
Our system is unconditionally secure, i.e. our proof does
not rely on any unproven complexity-theoretic assumption,
like e.g. the existence of one-way functions. This disproves
the claim that the existence of one-way functions and access
to a communication channel oracle are both necessary and
sufficient conditions for the existence of secure steganography,
in the sense that secure and reliable steganography exists
independently of the existence of one-way functions.
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1. INTRODUCTION
Digital steganography has received substantial interest in

modern computer science since it allows secret communica-
tion without revealing its presence. Therefore, the investi-
gation of steganography has recently become the subject of
intensive studies, both theoretical and experimental. In this
paper we provide a theoretical analysis on the existence of
secure universal steganography with optimal rate – a problem
which belongs to one of the most fundamental ones of this
area. In the scenario considered here, we assume secret-key
communication with the presence of a passive adversary and
the security defined in the computational setting.
A common computational model for secret-key steganog-

raphy, also used in this paper, was introduced by Hopper,
Langford, and von Ahn [13, 14, 15]. Independently, Katzen-
beisser and Petitcolas [16] provided a similar formulation. In
this setting, a stegosystem is defined as a pair of probabilis-
tic algorithms, called encoder and decoder, which share a
secret-key. The aim of the encoder (often called Alice or the
steganographer) is to hide a secret message in a document
and to send it to the decoder (Bob) via a public channel
C, which is completely monitored by an adversary (Warden

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

or steganalyst). The channel is modeled as a probability
distribution of legal documents, called cover-documents and
the adversary’s task is to distinguish those from altered ones
called stego-documents.
To hide a secret message m, the encoder can take sam-

ple cover-documents, based on past communication, and
manipulate them to embed m. The decoder, receiving stego-
documents, should be able to decode the hidden message
correctly. The stegosystem is called reliable if the decoder
succeeds with high probability. The adversary is a probabilis-
tic algorithm with access to additional knowledge about the
channel. A stegosystem is secure with respect to a channel C
if no adversary of polynomial time complexity is able to distin-
guish with significant probability between cover-documents
from C and stego-documents generated by the stegosystem’s
encoder. This implies in general that the distributions of
cover-documents and stego-documents have to be fairly close
in a complexity-theoretic sense. The insecurity of a stegosys-
tem is the advantage of the best adversary to distinguish
between cover- and stego-documents. Thus, a stegosystem is
secure if its insecurity is sufficiently small, i.e. negligible in
the security parameter κ defining the length of the shared
secret-key. This work deals with the construction of uncondi-
tional secure stegosystems of high rate and with the relation
between steganography and cryptography.

1.1 Steganography and Cryptography
Although there is a strong connection between these two

areas, steganography is not cryptography. Our example be-
low shows even more, namely that polynomial-time bounded
steganography is not cryptography. A commonly heard ar-
gument for the premise that steganography is cryptography
goes as follows:

Let m and m′ be two different secret messages and s and
s′ be stego-documents which embed m, resp. m′. If the
distributions of s and s′ are indistinguishable from the
distribution of the cover-documents, then by the triangle-
inequality, the distributions of s and s′ are also indistin-
guishable. Hence, a secure stegosystem is also a secure
cryptosystem.

While the argument concerning the triangle-inequality is
true, one can not simply use the stegosystem as a cryptosys-
tem, as the stegosystem needs access to samples from the
channel. Arguably, the most researched channel is those of
natural digital pictures (say in the JPEG-format). A typi-
cal stegosystem for this channel takes a sample picture and
modifies it in a way that is not detectable. A cryptosystem
that simulates this stegosystem thus needs a way to get a



sample picture. But the standard definition of cryptosystems
does not assume such access and it is highly unlikely that
an efficient algorithm to simulate sampling for this channel
can be constructed. We will note later on that ignoring this
access leads to misunderstandings, e.g. in the often cited
work of Hopper, Langford and von Ahn [15].

1.2 Secure and Reliable Universal Systems
Clearly, security and reliability are necessary attributes

of any reasonable stegosystem. If one forgoes one of these,
steganography becomes trivial: If one is not concerned about
security, we can simply send the secret message plainly over
the channel. If one is not concerned about reliability, we can
simply send a random sample of the channel.
The next property a reasonable stegosystem should sat-

isfy is the versatility of the system: it should be secure and
reliable with respect not only to a concrete channel C (like
e.g. images of a specific data set) but to a broad range of
channels (e.g. images of different sources and different char-
acteristics). In this paper we study the most general type of
systems, called universal1. Recall that a stegosystem is uni-
versal if the encoding method does not rely on knowledge of
the distribution for the channel C except that its min-entropy
is sufficiently large. The importance of the universality is
based on the fact that typically no good description of the
probability distribution on a channel is known. In this paper
we assume the standard definition for security of a universal
stegosystem S, i.e. we say S is secure (against a chosen
hiddentext attack) if it is secure with respect to any channel
C as long as C does not violate the hardness construction S
is based on [14, 15].
But, in addition to these fundamental properties, other

properties are also important. To reduce the overall overhead
of the protocol, the transmission rate, i.e. the number of
bits transmitted per single stego-document, should be as
high as possible. Next, the expected query complexity of the
stegosystem, i.e. the number of cover documents the encoder
needs to construct a single stego-document, should be as
small as possible since sampling large numbers of documents
from the communication channel is expensive in general.
High query complexity causes not only difficulties in true
sampling of documents but also a high total running time of
the encoder and/or decoder.
Obviously, for nontrivial systems, i.e. for such of small

insecurity and unreliability, there is a trade-off between these
requirements, as depicted exemplary in Fig. 1. We analyze
there three hypothetical universal stegosystems for cover
documents of length n. As usually, we assume that n := n(κ)
is specified as a function of security parameter κ and that n is
polynomially related with κ, i.e. n(κ) = pol(κ). To embed λ-
bit secret messages per document the systems need q samples
to achieve negligible insecurity and unreliability. InSec(κ)
denotes in our paper insecurity over all wardens of polynomial
time complexity andUnRel(κ) the unreliability of the system
(for definitions see next section). For channels of sufficiently
high entropy, S2 and S3 are scalable with respect to the rate,
but S1 is not. System S1 would illustrate e.g. a spread-
spectrum steganography: although, strictly speaking, not
universal, such systems are very general. They need just one
sample document to embed a secret message but their rate
is very limited (see e.g. [9] for more discussion). Systems S2
1In the literature universal stegosystems are also called
”black-box”.

and S3 achieve almost optimal rate but a drawback of S3 is
that its query complexity grows exponentially with respect
to the rate.

#queries q
(log scale)

rate λlogn
√
n n1−δ

pol(n)

S1

S2

S3

InSec+UnRel ≤ ε

Figure 1: Dependences between rate and number of
queries of three hypothetical stegosystems of small
insecurity and unreliability. The systems S2 and S3
are scalable with respect to the rate, but S1 is not.
However to increase the rate in S3 the number of
queries increases drastically.

In this paper we investigate the problem of existence of
provably unconditionally secure and reliably steganography,
i.e. without using unproven assumptions like existence of
one-way functions. The work emphasizes also on possible
trade-offs between rate and query complexity for universal
stegosystems. Particularly, we investigate if such scalable
systems as S2 and S3 discussed above may exist. We study
if it is possible to construct provable secure and reliable
systems which can achieve specific rates, like e.g. square root
rate, and analyze lower bounds on the query complexity for
achieving this rate.

1.3 Previous Work
Secure Steganography and One-Way Functions. Be-
side providing a rigorous definition for computationally se-
cure steganography, the main contribution of Hopper et
al.’s work [14, 15] is demonstrating that a widely believed
complexity-theoretic assumption – the existence of one-way
functions – and access to a channel oracle are both neces-
sary and sufficient conditions for the existence of secure and
reliable steganography (Corollary 1 in [15]):

Theorem 1 ([15], informal). Relative to an oracle for
channel C, secure (and reliable) stegosystems exist if and only
if one-way functions exist.

This claim is now widely circulated in the literature. In
her handbook [9] on steganography Fridrich writes: “One of
the most intriguing implications of this complexity-theoretic
view of steganography is the fact that secure stegosystems
exist if and only if secure one-way (hash) functions exist [...]”
Unfortunately, as we show in this work the proof of this

equivalence provided in [15] turns out to be incorrect in
the stated form (see Section 3 for details). Moreover, we
construct a universal stegosystem which is reliable and un-
conditionally secure, i.e. secure without any cryptographic



assumptions (see Theorem 4). This disproves the claim of
Theorem 1 in the sense that secure and reliable steganogra-
phy exists independently of the existence of one-way func-
tions. However, it should be noted that our construction
needs super-exponential time.

Upper Bounds on the Insecurity and Unreliability.
To provide secure and reliable steganography based on the
existence of one-way functions, Hopper et al. construct a
universal stegosystem using so called ”rejecting sampling”.
Roughly speaking, in order to transmit a bit β, the encoder
repeatedly samples from the cover-document distribution C
until she gets a document s which is mapped to the given
β by a pseudorandom function Fk indexed by the secret
key k. This encoding method has been extended to embed
multiple bit messages m per document in such a way that,
using rejecting sampling, one searches for a document s
with Fk(s) = m. The authors showed that the proposed
stegosystem is secure and reliable and, since the existence of
one-way functions implies pseudorandom functions (see [11])
they conclude the following:

Theorem 2 ([15], informal). There exists a univer-
sal stegosystem S(κ) with security parameter κ (describing
the length of the secret key) that hides a λ := λ(κ) bit message
in a sequence of ` stego documents of a channel C and
(a) S(κ) takes q(κ) = λ2λ sample sequences, each containing

` cover-documents and
(b) it achieves insecurity InSec(κ) bounded from above by

the term ΦC(pol(λ2
λ), κ) and unreliability UnRel(κ)

bounded by ΦC(λ2
λ, κ) + e−λ + λ2λ−H(C`),

where the function ΦC describes a term caused by the insecu-
rity of the pseudorandom function used by the encoder and
decoder and H(C`) denotes the min-entropy of ` consecutive
documents of the channel.

Importantly, ΦC in the theorem above is defined relative
to an oracle for channel C. This means that an adversary
that distinguishes between a randomly chosen function and
a pseudorandom function indexed by a secret-key has also
access to the oracle for C besides an access to the standard
challenging oracle (for a formal definition and a discussion on
this subject, see the next section). Thus, in the estimation

InSec(κ) +UnRel(κ) ≤
ΦC(pol(λ2

λ), κ) + e−λ + λ2λ−H(C`) (1)

the upper bound on the insecurity and unreliability of Hopper
et al.’s system is negligible if and only if the term involving ΦC
is negligible. We notice that, if the transmission rate exceeds
the logarithm of the key length κ, then the proofs provided
in [15] do not guarantee that unreliability and insecurity
(recall, even against polynomial-time bounded warden) of
the proposed stegosystems are negligible.
More precisely, in case the number of bits λ := λ(κ) em-

bedded in a single document grows asymptotically faster
than log κ, the term ΦC(pol(λ2

λ), κ) in the right hand side
of Eq. (1) is not guaranteed to be negligible in κ even if
the existence of pseudorandom functions is assumed. This
is due to the fact that one assumes security of pseudoran-
dom functions only against polynomial-time attacker and
the term λ2λ is super-polynomial for λ ∈ ω(log κ). Thus,
if a channel C allows to embed up to n bits per document,
i.e. if its min-entropy H(C) is very high, the stegosystem of
Hopper et al. is not scalable to meet optimum rate: for any

λ ≤ n its query complexity is q = λ2λ but its insecurity and
unreliability is guaranteed negligible only for λ ∈ O(logn)
since n(κ) = pol(κ). We illustrate this in Fig. 2.

#queries q
(log scale)

rate λlogn
√
n n1−δ

pol(n)

InSec+UnRel ≤ ε

?

Figure 2: Known results (under cryptographic as-
sumptions): the green line shows the dependence
between the rate and number of queries to ensure
negligible insecurity and unreliability of Hopper et
al.’s system (Eq. (1)). This bound is sharp: any sys-
tem of rate and with number of queries in the red
area is insecure or unreliable (due to Eq. (2) by Dedić
et al.). The situation for λ ∈ ω(logn) has remained
open so far.

Dedić et al. [6] proposed two new universal stegosystems
with the upper bounds on the insecurity and unreliability
similar to Eq. (1). Particularly, the bounds involve the term
ΦC(`2

b, κ), where b denotes the number of bits encoded per
document, i.e. b = λ/`. Similarly to Hopper et al.’s system,
if the number of bits b per document grows asymptotically
faster than log κ then ΦC(`2

b, κ) can grow faster than any
negligible function, even if the encoder and decoder use
pseudorandom functions.

Lower Bounds on the Insecurity and Unreliability.
In [6], Dedić et al. prove (under cryptographic assumptions)
the existence of channels such that the number of samples
the encoder of any secure and reliable universal stegosystem
must obtain from those channels is exponential in the number
of bits embedded per document. In our terms, their result
can be stated as:

Theorem 3 ([6], informal). For every universal ste-
gosystem S(κ) which hides λ := λ(κ) bits and takes q := q(κ)
samples per stego-document there exists a family of channels
C(κ) such that

InSec(κ) +UnRel(κ) ≥ 1

2
− e · q

2λ
−Ψ(q, κ)− o(1), (2)

where InSec(κ) denotes the insecurity (against polynomial-
time bounded wardens) and UnRel(κ) the unreliability of
S(κ) on C(κ), and Ψ describes a term caused by the insecurity
of the pseudorandom function used in the construction of
C(κ).

They thus prove that the exponential query complexity λ2λ

of the universal systems by Hopper et al. is asymptotically
optimal: indeed, if q ∈ o(λ2λ) and q ∈ pol(κ), the right hand
side of the inequality (2) goes to 1/2. However, analogously
to our discussion on the upper bound (1), we notice that the
lower bound (2) is not meaningful if q ∈ ω(pol(κ)) (even if
q ∈ o(λ2λ)), as the right hand side of the inequality does
not necessarily need to go to 0 in this case. The red area in
Fig. 2 illustrates this lower bound.



Later, Hopper et al. [15] provided another lower bound on
the insecurity and unreliability. They show that for every
universal stegosystem S(κ) of query complexity q(κ) which
hides λ(κ) bits per document and for any κ there exists a
channel such that:

InSec(κ, q) +UnRel(κ) ≥ 1− q/2λ − 2−κ, (3)

where InSec(κ, q), in contrast to InSec(κ), denotes insecu-
rity over wardens of time complexity and size > q(κ). Note
that in the case of λ ∈ ω(logn), bounds (2) and (3) are in-
comparable in the following sense. Due to (2), if in a reliable
universal stegosystem S the number of queries q is dominated
by 2λ then there exists a polynomial-time bounded Warden
whose advantage to detect S is big. The time complexity of
the Warden must not dependend on the query complexity
q of S but (2) needs the assumption that pseudorandom
functions exist and it may be meaningless if the rate ex-
ceeds logn. Bound (3) does not need any cryptographic
assumption, it is meaningful for any λ but, the Warden who
detects S needs time and size bigger than the query com-
plexity q of S. Thus, in cases of super-polynomial q, the
Warden is not polynomial-time bounded anymore implying
InSec(κ, q)� InSec(κ).

1.4 Our Contribution
Thus, as shown above, if high rate is required we have no

guarantee that the discussed systems are secure and reliable.
And indeed, no secure and reliable universal stegosystem
(irrespective of its query complexity) with rate larger than
logn was known before, even under unproven cryptographic
assumptions. Note that the secure stegosystems used in
practice typically achieve a much larger rate of

√
n [18]. A

longstanding conjecture, the Square Root Law of Stegano-
graphic Capacity [8, 17, 19] deals with just this fact. It says
that a rate of the form (1− ε)

√
n is always achievable (not

necessarily in a setting of universal steganography). We thus
have the situation, that the best known theoretical rate is
logn, while all practical rates are of order

√
n.

To close this gap between theory and practice, we intro-
duce the notion of rate-efficiency and analyze its impact on
steganography. We say that a stegosystem is rate-efficient,
if there is a constant 1 > α > 0 such that the number of
embedded bits in a stego-document of length n is at least
nα (in channels of sufficiently large entropy). One of the
main results of this paper is the construction of a stegosys-
tem that is scalable with respect to the rate up to nα for
every α < 1. However, to achieve this rate, an exponential
number of queries is needed. On the other hand we prove
that this query complexity is minimal. Thus, such a system
as S2 analyzed in Fig.1 cannot exist and we give a complete
answer to the question illustrated in Fig. 2 of determining
the relationship between rate and number of queries. For an
illustration of our results see Fig. 3.
Speaking more precisely: In this paper we present, up to

our best knowledge, the first secret-key universal stegosystem
that is provably secure (in the complexity-theoretic setting),
reliable, and it has nearly optimal rate. Moreover, the secu-
rity and reliability do not rely on any unproven assumptions,
like the existence of one-way functions, as long as the channel
does not allow one to break the hard functions the stegosys-
tem is based on. Furthermore, no channel that is sampleable
in exponential time can break these hard functions.

#queries q
(log scale)

rate λlogn
√
n n1−δ

pol(n)

InSec+UnRel ≤ ε

Figure 3: Our results (without any assumptions):
our stegosystem achieves negligible insecurity and
unreliability for the number of queries depending
on the rate as shown by the green line (Eq. (4)).
This bound is sharp: any system of rate and query
complexity in the red area is unreliable or insecure
against polynomial-time bounded wardens (Eq. (5)).

Theorem 4 (Informal). There exists a universal ste-
gosystem S that is unconditionally secure and reliable. More-
over S is rate-efficient.

This stays in contrast with the claim of Hopper at al. [15]
that provably secure steganography does imply existence of
one-way functions (see Theorem 1). Analyzing the proofs
in [15] we experienced the need for formal definitions and
more careful handling of the security notion for cryptographic
primitives relative to an oracle for a channel in order to
conduct the typical cryptographic security-reductions. Oth-
erwise, a security analysis can lead to misunderstandings and
errors.
Our stegosystem is stateless and uses rejecting sampling

in a similar way as the stateless secret-key construction pro-
posed in [6] and the public-key system used in [1]. To achieve
the security which does not rely on any unproven assump-
tions we construct pseudorandom functions of very high
hardness based on constructions for sparse pseudorandom
distributions due to Goldreich and Krawczyk [12]. Overall,
our construction satisfies the following conditions:

Theorem 5 (Informal). For every 1 > α1 ≥ α2 > 0,
there exists a stegosystem S(κ), with security parameter κ,
that has documents of length κα1 , such that for every channel
C with min-entropy H(C) > 2 · κα2 , the system S
• hides an ` · κα2 bit message, λ(κ) = κα2 bits per docu-
ment sent, with ` ≤ pol(κ),

• takes q(κ) ≤ κ2κ
α2

samples per κα2 bits, and
• has insecurity and unreliability negligible in κ (if C does
not break the used hard functions):

InSec(κ) +UnRel(κ) ≤ negl(κ). (4)

The running time of the stegosystem S is 22
o(κ)

to ensure
the unconditional security against polynomial wardens, but
it achieves minimal query complexity. To prove that the
query complexity of our construction is optimal, we show the
following lower bound, improving the bounds (2) and (3):



Theorem 6 (Informal). There exists a family of chan-
nels C(κ) such that for every universal stegosystem S(κ)
where the encoder takes an expected number of q(κ) queries,
it holds that

InSec(κ) +UnRel(κ) ≥ 1

2
− e · q

2λ
− o(1). (5)

In the theorems InSec(κ) denotes, like in (2), the insecu-
rity over polynomial-time bounded wardens and UnRel(κ)
denotes the unreliability of stegosystem S(κ) on C(κ).
As mentioned in the introduction, we also show that the

proof of Theorem 1 in [15] is incorrect and that the theorem
is wrong in the stated form. This is a direct consequence of
our Theorem 5.

1.5 Related Work
The running time of the rejecting sampling algorithm was

improved by Kiayias et al. in [20]. They use t-wise indepen-
dent families of functions instead of a pseudorandom function
to choose corresponding documents from the channel. As
a t-wise independent family utilizes much less random bits
than a pseudorandom function, this decreases the running
time of the algorithm. They also provide another refinement
of the rejection sampling approach by proving that a key
length of (1+o(1))` is sufficient in order to embed a message
of length ` while achieving high security. The authors define
the security of a stegosystem in an information-theoretic
setting but they show that the results are also applicable to
the computational model assuming the existence of pseudo-
random functions. However, the system provided in [20] is
rate-inefficient – it embeds 1 bit per document.
For some specific channels, Van Le and Kurosawa [21]

proposed a stegosystem based on arithmetic coding that
achieves a better rate than the universal systems proposed
in [15] and [6]. However in the model assumed in [21] it is
allowed that the system has access to additional knowledge
of the channel. For some specific families of channels, like
e.g. represented by Boolean functions, Lískiewicz et al. [22]
provided systems for secure and reliable steganography but,
similarly to the results presented in [6, 13, 14, 15], the upper
bound on insecurity of the construction in [22] is meaningless
if the rate exceeds logn.

Universal systems with optimum embedding rate are also
a subject of intensive study using an information-theoretic
modeling of secure steganography as defined in the influ-
ential work by Cachin [4]. In [24], Wang and Moulin have
introduced a powerful information-theoretic framework for
studying capacity in perfectly secure steganography. For
relevant theoretical results and practical applications see also
[2, 5, 7, 8, 23].

The paper is organized as follows. Due to space constraints,
the formal definitions concerning steganography, cryptogra-
phy and the security relative to a channel are skipped and
we refer the reader to the literature, e.g. [6, 15]. The next
section contains a short summary of our notations. Section
3 deals with the problems in the proof of Theorem 1. We an-
alyze those problems and discuss possible solutions to them.
In Section 4 two ensembles of pseudorandom functions of
very high hardness are defined and in the subsequent section
these ensembles are used to construct a universal stegosystem
which is secure and efficient in terms of rate and reliability.
This proves Theorems 4 and 5. In order to prove that our
algorithm has almost optimal query complexity, Section 6

improves the lower bounds (2) and (3) of [6] and [15] that
only work under certain circumstances. Our proof of Theo-
rem 6 does without those circumstances. Finally, we discuss
the conclusions one can draw from our work and possible
future research directions.

2. NOTATIONS
Due to space constraints, we skip the formal security defi-

nitions and refer the reader to the literature, e.g. [6, 15].

Channel, Reliability, Security. Our stegosystems and
cryptographic primitives will be sufficiently parameterized
by the secret-key length κ. As usually, we will require that
the ability of any polynomial-time algorithm to attack this
constructions is lower than the inverse of every polynomial
in κ. This is modeled by the notion of negligible function
negl : N→ [0, 1], which satisfies that for every polynomial p,
there is an N0 ∈ N such that negl(N) < p(N)−1 for every
N ≥ N0.

We denote the min-entropy of a probability distribution D
as H(D). A channel C is a function, that maps for any n ∈ N
(the document length) a sequence of documents h (the history)
to a probability distribution Ch,n on documents of length
n. A stegosystem S = [SE, SD] consists of two probabilistic
algorithms SE and SD. The encoder SE takes a key k, a
message m ∈Mκ (the message space), and a history h and
produces a sequence of ` documents (` is the output length of
S), while the decoder SD tries to reconstruct m from those
documents with the help of k and h. The rate b of the encoder
is defined as log(|Mκ|)/` and returns the number of bits that
the encoder embeds into a single document. The encoder
is allowed to draw c ∈ N (the sample complexity) samples
from the channel C. The unreliability UnRelS,C(κ) of the
stegosystem S on channel C is the maximal probability that
the decoding of a message fails. This is the same notation as
we used in the introduction, where we skipped the mention
of C and S to increase readability. An attacker (or warden)
W on the stegosystem S on the channel C is allowed to
give messages to a challenging oracle that either returns
encodings of those messages or random documents. The
advantage Advcha

W,S,C(κ) of W is its success probability in
distinguishing those two cases. The maximal advantage of
any warden W that runs in time t and makes q requests to
the challenging oracle is the insecurity of S on C and denoted
by InSecchaS,C(q, t, κ). By InSecchaS,C(κ) we mean the insecurity
over all wardens of polynomial-time complexity. As with the
unreliability, this is exactly the notion of the introduction,
but in a parameterized form. The insecurity InSecprfF (q, t, κ)
of a pseudorandom function F is the maximal probability of
any algorithm that runs in time t and makes q queries to an
oracle, that either equals one of the pseudorandom functions
or a totally random functions, to distinguish these cases.

Relativized Security. Clearly, the (in)security of a stego-
system InSecchaS,C(·, ·, ·) depends on the concrete channel C,
as every adversary on S on channel C has oracle access to
sample documents of C. In order to base the security of a
stegosystem on the security of a cryptographic primitive, a
typical reduction works along the following lines: Suppose
that there is a successful warden W on the stegosystem S;
Construct an attacker A on the cryptographic primitive that
simulates W on S; Prove that the advantage of A and W
is very similar. Using such reductions, it is important to
note that the attacker A on the cryptographic primitives



completely simulates the warden W and the encoder of S
(assuming a black-box access to the cryptographic primitive
it is based on). As both W and S make calls to the sampling
oracle of the channel, A also needs access to those samples.
The need for this was already noted by Hopper et al. [13, 14,
15]. There are essentially two solutions to take the access to
the sampling oracle into account:
• One assumes that the sampling oracle can be simulated

in polynomial time. Hence, the simulation of W and S
can be performed in polynomial time. As the typical re-
quirement is that the cryptographic primitives remains
secure against attackers that run in polynomial time,
the security reduction remains valid.
• One assumes that the cryptographic primitive remains

secure even if the attacker has access to the sampling
oracle of the channel C. One then proceeds to define
relativized versions of the common insecurity terms,
e.g. we could define the insecurity InSecprfF,C(q, t, κ) of
a pseudorandom function F . It is the maximal proba-
bility of any algorithm that has access to the sampling
oracle of the channel C, runs in time t and makes q
queries to an oracle, that either equals one of the pseu-
dorandom functions or a totally random functions, to
distinguish these cases. Dedić et al. [6] were the first
that gave a formal definition for this, but they did not
use it consistently in their work.

Note that the assumption that the sampling oracle for channel
C can be simulated in polynomial time is quite artificial:
Arguably, the single most studied channels for steganography
are those containing multimedia-files such as images or videos.
Typically, we do not assume that one is able to sample
uniformly from the set of all valid images or videos. This
rules out the first possibility. On the other hand, the second
possibility is completely valid, as we have access to these
channels in real-life, but suspect that this access does not
break the security of cryptographic primitives. Due to this
advantage, we will use the second possibility in this work.

3. COMMENTS ON THE WORK OF HOP-
PER, LANGFORD AND VON AHN

The attentive reader may have noticed that the commonly
used formulation of Hopper, Langford and von Ahn [13, 14,
15] does not bound the running time of the stegosystem,
while the time complexity of the adversary is required to be
bounded by a polynomial. In addition to giving the rejection-
sampling stegosystem, they also argue that one-way functions
are necessary for steganography:

Theorem 7 ([15], informal). For all channels C it is
true: if secure and reliable steganography for C exists then
there exist one-way functions relative to an oracle for C.2

Since the proof of Theorem 7 is ”black-box” with respect
to the one-way functions it holds relative to the presence of
the channel oracle for C, too. Thus, Hopper et al. conclude
Theorem 1 (Corollary 1 in [15]) given in the introduction.

Combining Theorem 5 with Theorem 1 one would conclude
that (1) relative to an oracle for channel C one-way functions

2Hopper et al. prove even stronger result using a weaker
notion of security. Theorem 9 in [15] says that if there
is a stegosystem S that is SS-KHA-D-C secure for some
hiddentext distribution D and some channel C, then there
exists a pseudorandom generator, relative to an oracle for C.

exist and much more startling, that (2) one-way functions
exist in the standard model, i.e., without assuming oracle
access to the channel C. As a proof on the existence of
one-way functions seems to be far away from our current
knowledge, one must wonder at the validity of Theorem 1.
Indeed, we found errors in the proof of Theorem 7 which
consequently do not allow to conclude Theorem 1.
There are three issues concerning this proof. Firstly, the

time complexity of the proposed false entropy generator
(FEG), a kind of oracle used in the construction and the use
of relativized primitives. The aim was to provide an algorithm
for an FEG, assuming the existence of a stegosystem S that
is SS-KHA-D-C secure for some hidentext distribution D and
some channel C (for the exact definitions, see [15]).
The proposed construction for an FEG uses, as a subrou-

tine, the encoder of S having an oracle access to C. Since
no restrictions on the running time of the encoder are given,
it does not follow that the obtained algorithm for FEG is
bounded by a polynomial. This problem can be fixed by as-
suming that the stegosystem runs in polynomial time. Note,
however, that making the assumption of polynomial time
complexity for stegosystems, the claim of [15, Section 4.3]
concerning rate-optimality is false, as the proposed system
requires exponential time.
Secondly, according to the definition, an FEG is a func-

tion (satisfying the conditions of FEG). However, the FEG
relative to an oracle C does not seem to be deterministic, as
it sometimes returns the samples generated by the channel
oracle. This does not seem to be fixable easily, but one can
make use of randomized cryptographic primitives in order to
give an alternative proof.
The third obstacle still remains: In order to construct a

cryptographic primitive out of a stegosystem, one needs to
simulate the access to the channel oracle. If this simula-
tion can be carried out in polynomial time, the constructed
primitive is indeed efficient. But, as discussed in Section 2,
such an assumption is quite artificial. And indeed, if the
channel oracle can not be simulated in polynomial time, the
constructed cryptographic primitive is not efficient. It seems
that the only remedy to this is to define another way of
relativized primitives, where the primitive has also access to
the channel oracle as in this work.

4. PSEUDORANDOM FUNCTIONS OF
VERY HIGH HARDNESS

We construct two families of pseudorandom functions that
are secure against adversaries of exponential running times.
Our result does not rely on any unproven assumptions but
to construct the family, super-exponential time is needed.
Let P = {Pκ}κ∈N and Q = {Qκ}κ∈N be two ensembles

of discrete probability distributions. For a probabilistic al-
gorithm A, the advantage of A to distinguish P and Q is
defined as

Advdist
A,P,Q(κ) =

∣∣∣Pr[APκ(1κ) = 1]− Pr[AQκ(1κ) = 1]
∣∣∣ ,

where AD has the ability to get samples distributed accord-
ingly to D in unit time. The insecurity of P and Q is defined
as InSecdistP,Q(q, t, κ) = maxA{Advdist

A,P,Q(κ)}, where the max-
imum is taken over all algorithms that make an expected
number of q queries to the probability distribution and run
in expected time t. In order to simplify our notation, we
sometimes identify a set M with the uniform distribution



on M . If M and N are two finite sets, we hence write
Advdist

A,M,N , AM , AN and InSecdistM,N with the meaning that
M and N are uniformly distributed.

We also introduce the relativized version InSecP,Q,C of the
term InSecP,Q and define it for parameters q, t, κ analogously

as InSecprfF,C .
Next we recall the following definition of the statistical

distance DS between two discrete probability distributions
on the same domain.

Definition 1 (Statistical Distance). Let P and Q
be two discrete probability distributions on the same domain
X. The statistical distance DS(P,Q) between P and Q is
defined as DS(P,Q) = 1

2

∑
x∈X |P (x)−Q(x)| .

By the following well-known theorem (see e.g. [10]) we know
that the statistical distance is a stronger measure than the
computational indistinguishability.

Theorem 8. Let {Pκ}κ∈N and {Qκ}κ∈N be two probability
distribution ensembles on the same domains and let C(κ) be
a channel. Then it holds that for every function t and q and
all κ ∈ N: InSecdistP,Q,C(q, t, κ) ≤ q ·DS(Pκ, Qκ). Particularly

we have InSecdistP,Q(q, t, κ) ≤ q ·DS(Pκ, Qκ).

In our stegosystem we will apply a super-polynomial time
computable pseudorandom function based on an algorithm
G that also takes super-polynomial time, which is given by
the following result due to Goldreich and Krawczyk [12]. In
order to simplify the notation throughout this and the next
section, let α1, α2 be constants with 1 > α1 ≥ α2 > 0 and let

n = κα1 , b = κα2 , B = 2b · b, and N = 2n · b. (6)

Theorem 9 (Lemma 5, [12]). Let k(n) be any subexpo-
nential function in n. There are (nonpolynomial) generators
which expand random strings of length n into pseudorandom
string of length k(n).

This result immediately implies the following theorem:

Theorem 10. There is a deterministic algorithm G, that
on input x ∈ {0, 1}κ produces a string G(x) ∈ {0, 1}N , and
a negligible function negl such that for every polynomial t in
N , it holds InSecdistG({0,1}κ),{0,1}N (1, t, κ) ≤ negl(N). There

is also another deterministic algorithm G′, that on input x ∈
{0, 1}κ produces a string G′(x) ∈ {0, 1}B, and a negligible
function negl′ such that for every polynomial t in B, it holds
InSecdistG′({0,1}κ),{0,1}B (1, t, κ) ≤ negl′(B).

The theorem says that no polynomial time algorithm in N
(recall N = 2n · b) can distinguish between the distribution
G({0, 1}κ) and the uniform distribution on {0, 1}N . Sim-
ilarly, no polynomial time algorithm in B can distinguish
G′({0, 1}κ) and the uniform distribution on {0, 1}B . The
running time of G and G′ is exponential in N (resp. B),
while the running time of the distinguisher is polynomial in
N (resp. B). Note that the usual construction to obtain
a pseudorandom function from a pseudorandom generator
due to Goldreich, Goldwasser and Micali [11] is not suited
for our situation: Its security proof relies on the ability of
the attacker on the function to simulate the generator. As
a simulation of the generator takes exponential time and
our attackers are polynomial, we can not use this approach.
Instead, we observe that the generators produce very long

strings. We will interpret these strings as the table of a
function.
For a bit string ω = ω1ω2 . . . of length 2X · Y , for some

positive integers X and Y , let the function Fω : {0, 1}X →
{0, 1}Y be defined as

Fω(z) = ωiz ·Y ωiz ·Y +1 . . . ω(iz+1)·Y−1,

if z is the binary representation of the number iz. For
example, the bit string ω = 0111101100010110 corresponds
to the function Fω : {0, 1}3 → {0, 1}2 with e.g. Fω(000) = 01,
Fω(001) = 11, and Fω(111) = 10.
Moreover, let FG denote the function ensemble FG :=
{FG(x)}x∈{0,1}κ and FG′ := {FG′(x)}x∈{0,1}κ . The defini-

tion of Fω implies a bijection between {0, 1}2
X ·Y and the

set of all function from {0, 1}X → {0, 1}Y , which we will
denote by FX,Y . The following theorem shows that FG is
not distinguishable from Fn,b by any algorithm with time
complexity pol(N) and FG′ is not distinguishable from Fb,b

by any algorithm with time complexity pol(B).

Theorem 11. For all functions q, t of κ, we have:

InSecprfFG
(q, t, κ) ≤ InSecdistG({0,1}κ),{0,1}N (1, N · q + t, κ) and

InSecprfFG′ (q, t, κ) ≤ InSecdistG′({0,1}κ),{0,1}B (1, B · q + t, κ).

The proof of the theorem relies simply on the fact that
any polynomial-time adversary on FG has only access to an
excerpt of size poly(κ). Theorem 10 states that even access
to the whole string of length N � poly(κ) does not help
an adversary. The advantage of any adversary is thus only
negligible.

Proof. We only prove the theorem for FG, as the proof
for FG′ is analogous.

Let A be any algorithm trying to distinguish between FG

and Fn,b with running time t by making q queries to the
function oracle. The algorithm A has access to a function
oracle f , which is either uniformly chosen from Fn,b or equal
to FG(x) for a certain x ∈ {0, 1}κ. We will now construct a
distinguisher Dist for G, such that∣∣∣Pr[DistG({0,1}κ)(1κ) = 1]− Pr[Dist{0,1}

N

(1κ) = 1]
∣∣∣ =∣∣∣∣ Pr

x←{0,1}κ
[AFG(x)(·)(1κ) = 1]− Pr

f←Fn,b

[Af(·)(1κ) = 1]

∣∣∣∣ .
The distinguisher Dist makes a single query to its distribution
oracle and receives a bit string ω ∈ {0, 1}N , which is either
a random string or produced by G(x). Whenever A makes
a query z to its function oracle, Dist returns Fω(z). In the
end, Dist returns the same value as A. We thus have

Pr
x←{0,1}κ

[AFG(x)(·)(1κ) = 1] = Pr[DistG({0,1}κ)(1κ) = 1]

and because of the bijection between Fn,b and {0, 1}N , we
have

Pr
f←Fn,b

[Af(·)(1κ) = 1] = Pr[Dist{0,1}
N

(1κ) = 1].

The computation of Fω(z) takes time O(N). As the running
time of A is bounded by t and A makes at most q queries to
its function oracle, the running time of Dist is bounded by
O(N) · q + t. The distinguisher Dist performs 1 query.



5. RATE-EFFICIENT STEGANOGRAPHY
In this section we prove that there exists secure, reliable

and rate-efficient steganography. Our result does not rely on
any unproven assumption.
We will use the function families FG, FG′ of the previ-

ous section in the stegosystem of Backes and Cachin [1] to
construct a universal stegosystem, which is unconditionally
secure. As in the previous section, let α1, α2 be constants
with 1 > α1 ≥ α2 > 0 and let n, b,N,B be as defined in
eq. (6) in Section 4.
The rejecting sampling stegosystem S = [SE, SD] is de-

scribed in Algorithm 1 and in Algorithm 2.

Algorithm 1: SE

In : key k ∈ {0, 1}κ, message m ∈ {0, 1}`·b, history h
let f := FG(k)(·); parse m into m1m2 . . .m` with
|mj | = b;

for j = 1 to ` do
let i := 0; sample x← Ch,n(κ);

while f(x) 6= mj and i < κ · 2b do
sample x← Ch,n(κ); let i := i+ 1;

let xj := x; append xj to h;
return x1x2 . . . x`

Algorithm 2: SD

In : key k ∈ {0, 1}κ, documents x1x2 . . . x`

let f := FG(k)(·);
return f(x1)f(x2) . . . f(x`)

Backes and Cachin [1] prove that this stegosystem is secure
against polynomial-time CHA-Wardens as long as the family
of functions used is pseudorandom and as long as the number
of bits embedded in a single document is at most log κ. We
will expand this result and prove that one can embed up to
o(κ) bits into a single document.

For any function f̂ ∈ Fn,b, denote by SEf̂ (k,m, h) the run

of SE if we replace f = FG(k) by f̂ and by SEFn,b(k,m, h)
the output distribution of SEf , if f is chosen at random
from Fn,b. The following result is also due to Backes and
Cachin and shows that SEFn,b and C are statistically close.

Theorem 12 (Proposition 1 in [1]). 3 If κ is a suffi-
ciently large key-length, then there exists a constant η < 1

such that DS(P, Ch,n) ≤ ` ·
(
2b−H(Ch,n) + η2b·κ

)
, where P is

the probability distribution generated by SEFn,b(·,m, h) upon
random choice of m and fixed choice of h.

As m is chosen by the Warden, we need to “randomize”
the message embedded by SE. We will thus not embed m,
but CTR$(m, k) with the meaning of:

The output length of CTR$(m, k) with |m| = `·b is (`+1)·b.
The insecurity of this construction can be reduced to the
insecurity of FG′ by the well known result of Bellare et al.
[3]. As their reduction is black-box, the result also holds in
a relativized setting.

3The exact wording of this Proposition and a correspond-
ing proof can be found as Proposition 7 in the full ver-
sion available under the link: www.zurich.ibm.com/~cca/pa-
pers/pkstego.pdf

Algorithm 3: CTR$

In :message m ∈ {0, 1}`·b, key k ∈ {0, 1}κ
sample y from {0, 1}b; let g = FG′(k)(·);
let
r = g(y)||g((y + 1) mod 2b)|| . . . ||g((y + `− 1) mod 2b);

return (r ⊕m)||y

Theorem 13. The probability that a probabilistic algo-
rithm A, that has access to the channel C, with running
time t, that makes q samples to an oracle, which on input
m ∈ {0, 1}`·b either (a) produces random strings of length
(`+ 1) · b or (b) CTR$(m, k) for a uniformly chosen k, can
distinguish between the two cases (a) and (b) is bounded by

2 InSecprfFG′ ,C(κ) +
`·b·(q−1)

b·2b .

This operation can be simply inverted with the knowledge
of k and we will denote this operation by CTR$−1. We hence
use the stegosystem S ′ = [SE′, SD′] which uses CTR$ as

SE′(m, k, h) = SE(CTR$(m, k), k, h)

and

SD′(x1 . . . x`, k) = CTR$−1(SD(x1 . . . x`, k), k).

By using the families FG, FG′ , we prove that every channel
with sufficient min-entropy that is sampleable in exponential
time has a secure stegosystem. This analysis resembles the
analysis in [1], but spells out the relation of InSecchaS,C and

InSecprfFG,C respectively InSecprfFG
.

Theorem 14. The rejection sampling stegosystem S ′ on
document length n(κ) = n with the message space Mκ =
U({0, 1}`·b) satisfies for every polynomials q, t in κ the fol-
lowing properties relative to channel C:

1. InSecchaS′,C(q, t, κ) ≤
InSecprfFG,C

(
q(`+ 1)2bκ , q(`+ 1)2bκ+ t , κ

)
+

InSecprfFG′

(
`+ 1 , (`+ 1)2 , κ

)
+

q(`+ 1)
(
2b−H(Cn) + η2bκ

)
+ (`+1)2

2b
+

2 InSecprfFG′ ,C(q, t, κ) +
`·b·(q−1)

b·2b for a constant η < 1,

2.UnRelS′,C(κ) ≤
InSecprfFG,C

(
(`+ 1)2bκ , (`+ 1)2bκ , κ

)
+

(`+ 1) · exp(−κ) + (`+ 1)2 · κ2 · 22b−H(Cn).

Proof. In order to bound the insecurity of the stegosys-
tem, we construct for every warden W with running time t
that makes q queries to its challenging oracle on the stegosys-
tem S ′ with respect to the channel C an attacker A on the
function family FG such that∣∣∣∣ Pr
k←{0,1}κ

[W C,SEC(k,·,·)(1κ) = 1]− Pr[W C,OC(·,·)(1κ) = 1]

∣∣∣∣ ≤
Advprf

A,FG,(C)(A) + q · (`+ 1) ·
(
2b−H(Cn) + η2b·κ

)
+

(`+ 1)2

2b

+ InSecprfFG′

(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprfFG′ ,C(q, t, κ)

+
` · b · (q − 1)

b · 2b .

This yields the security of the stegosystem. Let W be any
such warden on the stegosystem S with respect to the channel



C. The attacker A has access to a function oracle f , which
is either uniformly chosen from Fn,b or equal to FG(k) for a
certain k ∈ {0, 1}κ. The attacker A simulates the warden
W . Whenever W makes a query to the channel-oracle, A
uses its channel-oracle to produce such a sample. Whenever
W makes a query (m,h) to the challenging oracle, A uses
the encoding algorithm SEf (k,m, h). The attacker A then
returns the same result as W . If f = FG(k), the attacker A
simply simulates the run of W against the stegosystem, i.e.,

Pr
k←{0,1}κ

[AFG(k)(·)(1κ) = 1] =

Pr
k←{0,1}κ

[W C,SEC(k,·,·)(1κ) = 1].

If f is truly randomly and m = m1m2 . . .m` is a message
of length ` · b such that mi 6= mj for every i 6= j, we can
think of SEf (m, k, h) as `-fold product of the probability
distribution SEf (mi, k, h), where f is chosen randomly for
every i.
The output of SEf (mi, k, h) is nearly identical to the

channel (see Theorem 12), if the corresponding message of
length b is also chosen uniformly. Theorem 13 implies that
for W , the difference between the behavior of SEf (mi, k, h)
on a uniformly chosen message mi or an mi generated by

CTR$ is bounded by 2 InSecprfFG′ ,C(q, t, κ) +
`·b·(q−1)

b·2b .

As we do not give m to SE, but rather the message m′ =
CTR$(m, k) = m′1m

′
2 . . .m

′
`+1, the probability that there

are i 6= j such that m′i = m′j is at most

InSecprfFG′ (`+ 1, (`+ 1)2, κ) +
(`+ 1)2

2b
,

by constructing an attacker on FG′ which guesses values
x1, . . . , x`+1 and tests, whether f(x1), f(x2), . . . , f(x`+1) are
pairwise different.
As statistical distance is stronger than computational in-

distinguishability (see Theorem 8), we thus know that there
is a constant η < 1 such that∣∣∣∣ Pr
f←Fn,b

[W C,SEf (1κ) = 1]− Pr[W C,OC(·,·)(1κ) = 1]

∣∣∣∣ ≤
q · (`+ 1)

(
2b−H(Cn) + η2b·κ

)
+ 2 InSecprfFG′ (q, t, κ)+

` · b · (q − 1)

b · 2b + InSecprfFG′ (`+ 1, (`+ 1)2, κ) +
(`+ 1)2

2b
,

as W makes at most q calls to its challenging oracle. This
concludes the statement concerning the advantage of A. The
simulation of each call to SEf can be carried out in time
O((` + 1) · 2b · κ) if one has access to the channel oracle.
The number of calls to the function oracle f is bounded by
q · (` + 1) · 2b · κ The running time of A is thus at most
q · O((`+ 1) · 2b · κ) + t and the number of queries of A is at
most q · (`+ 1) · 2b · κ.

Concerning the reliability, we construct for every message
m and every legal history h a different attacker Am,h against
FG. The attacker Am,h with function oracle f computes
m′ = SDf (k, SEf (k,m, h)) and returns 1 if m = m′. If
f = FG(k), we have

Pr
k←{0,1}κ

[A
FG(k)(·)
m,h (1κ) = 1] =

Pr
k←{0,1}κ

[m 6= SD(k, SE(k,m, h))].

If f is a totally random function from Fn,b and all samples
x1, x2, . . . taken from the channel oracle C are different, the
probabilities Pr[f(xi) = mj ] are independent, as we can
assume that a new random function is evaluated on each xi.
Denote the event that all of the xi are pairwise different with
Coll. The probability that none of this samples evaluates to
m is then bounded by

Pr
f←Fn,b

[m 6= SD(SEf (m,h)) | Coll] ≤

`+1∑
j=1

2b·κ∏
i=1

Pr
f←Fn,b

[f(xi) 6= mj ] ≤

(`+ 1) ·
(
1− 1

2b

)2b·κ

≤ (`+ 1) · exp(−κ). (*)

By definition, the maximal probability of any element from
the channel is bounded from above by 2−H(Cn). The prob-
ability that xi = xi′ for i 6= i′ is thus bounded by 2−H(Cn).
Hence

Pr[Coll] ≤ ((`+ 1) · κ · 2b)2 · 2−H(Cn) =

(`+ 1)2 · κ2 · 22b−H(Cn). (**)

If p = Pr[Coll], we can combine (*) and (**) and conclude

Pr
f←Fn,b

[m 6= SD(SEf (m,h))] =

Pr
f←Fn,b

[m 6= SD(SEf (m,h)) | Coll] · (1− p)

+ Pr
f←Fn,b

[m 6= SD(SEf (m,h)) | Coll] · p ≤

(`+ 1) · exp(−κ) + (`+ 1)2 · κ2 · 22b−H(Cn).

We thus have∣∣∣∣ Pr
k←{0,1}κ

[A
FG(k)(·)
m,h (1κ) = 1]− Pr

f←Fn,b

[A
f(·)
m,h(1

κ) = 1]

∣∣∣∣ =∣∣∣∣ Pr
k←{0,1}κ

[m 6= SD(SE(k,m, h))]− Pr
f←Fn,b

[Af(·)
m (1κ) = 1]

∣∣∣∣ ≥
Pr

k←{0,1}κ
[m 6= SD(SE(k,m, h))]−

(`+ 1) · exp(−κ)− (`+ 1)2 · κ2 · 22b−H(Cn).

We can thus conclude

UnRelS′,C(κ) ≤

InSecprfFG

(
(`+ 1) · 2b · κ, tC · (`+ 1) · 2b · κ, κ

)
+ (`+ 1) · exp(−κ) + (`+ 1)2 · κ2 · 22b−H(Cn).

The simulation of the call to SEf can be carried out in
time O((`+1) ·2b ·κ) with 2b ·κ calls to the function oracle f .
The running time of Am is thus at most O((`+1) · 2b ·κ)+ t
and the number of queries of A is at most (`+ 1) · 2b · κ.

By combining Theorem 10, Theorem 11 and Theorem 14
together, we can conclude the existence of a secure black-box
stegosystem (see Theorem 4 and 5 for an informal statement)
and in particular:

Theorem 15. Let C be a channel and let α1, α2 be con-
stants with 1 > α1 ≥ α2 > 0. Furthermore, let neglG and



neglG′ be two negligible functions such that for every polyno-
mial t, it holds that

InSecdistG({0,1}κ),{0,1}N ,C(1, t, κ) ≤ neglG(N),

InSecdistG′({0,1}κ),{0,1}B ,C(1, t, κ) ≤ neglG′(B).

Let n(κ) = κα1 be the document length and the message
spaceMκ = U({0, 1}`·b) be with 1 ≤ b ≤ κα2 . If H(Cn(κ)) >
2b and (`+ 1) · b ≤ pol(κ), then S ′ is a secure, reliable and
rate-efficient stegosystem on C.

Proof. Recall thatN = 2n ·b and B = 2b ·b. AssumeW is
a Warden with Advcha

C,S,W (κ) = InSecchaS,C(q, t, κ). Theorem
14 then implies that

InSecchaS,C(q, t, κ) ≤

InSecprfFG,C

(
q(`+ 1)2bκ , (`+ 1)2bκ+ t , κ

)
+

q · (`+ 1)
(
2b−H(Cn) + η2b·κ

)
+

(`+ 1)2

2b
+

` · b · (q − 1)

b · 2b +

InSecprfFG′

(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprfFG′ ,C(q, t, κ)

for a constant η < 1. Note that the terms q · (` + 1) ·
η2b·κ, (`+1)2

2b
, `·b·(q−1)

b·2b and q · (`+ 1) · 2b−H(Cn) are negligible
in κ as C has sufficient min-entropy. There is thus a negligible
function negl such that

InSecchaS,C(q, t, κ) ≤

InSecprfFG,C

(
q(`+ 1)2bκ , q(`+ 1) · 2bκ+ t , κ

)
+

InSecprfFG′

(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprfFG′ ,C(q, t·, κ)+

negl(κ).

By using Theorem 11, we have

InSecprfFG,C

(
q · (`+ 1) · 2b · κ, q · ·(`+ 1) · 2b · κ+ t, κ

)
≤

InSecdistG({0,1}κ),{0,1}N ,C
(
1 , Nq(`+ 1)2bκ+

q(`+ 1)2bκ+ t , κ
)
.

As q, t, `, b ≤ pol(κ), we can bound this term by

InSecdistG({0,1}κ),{0,1}N ,C
(
1 , Nq(`+ 1)2bκ+

q(`+ 1)2bκ+ t , κ
)
≤

InSecdistG({0,1}κ),{0,1}2n·b,C (1, pol(N), κ) .

This insecurity is negligible by the assumption and there is
thus a negligible function negl′ such that

InSecprfFG,C

(
q · (`+ 1) · 2b · κ, q · (`+ 1) · 2b · κ+ t, κ

)
≤

negl′(κ).

Furthermore, Theorem 11 also implies

InSecprfFG′

(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprfFG′ ,C(q, t, κ) ≤

InSecdistG′({0,1}κ),{0,1}B ,C
(
1, B · (`+ 1) + (`+ 1)2, κ

)
+ 2 InSecdistG′({0,1}κ),{0,1}B ,C (1, B · q + t, κ)

As q, t, `, b ≤ pol(κ), we can bound this term by

InSecdistG′({0,1}κ),{0,1}B ,C
(
1, B · (`+ 1) + (`+ 1)2, κ

)
+ InSecdistG′({0,1}κ),{0,1}B ,C (1, B · q + t, κ) ≤

3 InSecdistG′({0,1}κ),{0,1}B ,C(1, pol(N), κ)

This insecurity is negligible in κ by assumption and there is
thus a negligible function negl′′ such that

InSecprfFG′ ,C
(
`+ 1, (`+ 1)2, κ

)
+ 2 InSecprfFG′ (q, t, κ) ≤

negl′′(κ).

In conclusion, we have

InSecchaS,C(q, t, κ) ≤ negl(κ) + negl′(κ) + negl′′(κ).

The stegosystem S is thus secure on C.
Concerning the unreliability, we can proceed similarly.

Theorem 14 implies that

UnRelS,C(κ) ≤

InSecprfFG,C

(
(`+ 1) · 2b · κ, (`+ 1) · 2b · κ, κ

)
+

(`+ 1) · exp(−κ) + (`+ 1)2 · κ2 · 22b−H(Cn).

Due to sufficient min-entropy of C and the fact, that `, b ≤
pol(κ), there is a negligible function negl such that

InSecprfFG,C

(
(`+ 1) · 2b · κ, (`+ 1) · 2b · κ, κ

)
+

(`+ 1) · exp(−κ) + (`+ 1)2 · κ2 · 22b−H(Cn) ≤

InSecprfFG,C

(
(`+ 1) · 2b · κ, (`+ 1) · 2b · κ, κ

)
+ negl(κ).

As above, Theorem 11 shows that

InSecprfFG,C

(
(`+ 1) · 2b · κ, (`+ 1) · 2b · κ, κ

)
+ negl(κ) ≤

InSecdistG({0,1}κ),{0,1}N ,C
(
1 , N(`+ 1)2bκ+

(`+ 1)2bκ , κ
)
+ negl(κ).

As `, b ≤ pol(κ), this is bounded by

InSecdistG({0,1}κ),{0,1}N ,C
(
1 , N(`+ 1)2bκ+

(`+ 1)2bκ , κ
)
+ negl(κ) ≤

InSecdistG({0,1}κ),{0,1}N ,C (1, pol(N), κ) + negl(κ).

The insecurity is negligible in N by assumption and there is
thus a negligible function negl′ such that

UnRelS,C(κ) ≤ negl′(κ).

The stegosystem S is thus reliable on C.
As we embed b ≤ κα2 bits into a single document, the

transmission rate b(κ) is equal to b. As H(Cn) ≤ κα1 , the
stegosystem S is rate-efficient on C, as α1, α2 are constants
and as long as b is large enough.

Note that the precondition concerning the negligible func-
tions neglG, neglG′ is always fulfilled, if the channel oracle can
be simulated in time poly(N). This is due to Theorem 11,
that states the security of the pseudorandom function.

Dedić et al. [6] introduced the family F of pseudorandom
flat-h channels and proved that every time- and rate-efficient
stegosystem for F is either insecure or unreliable (under
the cryptographic assumption that efficient pseudorandom
functions exist). The running-time of every rate-efficient,
secure and reliable stegosystem for F is thus at least super-
polynomial. To the best of our knowledge, there is no such
stegosystem known for F . We therefore give the first se-
cure, reliable and rate-efficient stegosystem for this family of
channels:



Corollary 1. The stegosystem S ′ is rate-efficient, se-
cure and reliable on the family of pseudorandom flat-h chan-
nels.

6. UNCONDITIONAL LOWER BOUND
In order to give an unconditional lower bound, we make

use of a lower bound by Dedić et al. [6]. By providing the
warden W with an efficient test, whether a document belongs
to the support of the channel, they prove:

Theorem 16 ([6]). For every universal (not necessar-
ily of polynomial-time complexity) stegosystem S(κ) which
hides λ := λ(κ) bits and takes q := q(κ) samples per stego-
document there exists a family of channels C(κ) such that

InSec∗(κ) +UnRel(κ) ≥ 1

2
− e · q

2λ
− o(1),

where InSec∗ denotes the insecurity against polynomial war-
dens with an auxiliary oracle for testing membership in the
support of C(κ), and UnRel denotes the unreliability of S(κ)
on C(κ).

Dedić et al. then argue that the assumption that a warden
has an oracle for membership-testing is not feasible, if the
channel is chosen completely random. By making use of
the fact that the warden can choose a history, while the
stegoencoder can not, we will show how an efficient warden
is able to test membership of a completely random channel.
Let Sn be the set of all subsets of {0, 1}n of cardinality

n/2. For S ∈ Sn, let CS be the following channel, where
~1 denotes the vector of length n that contains a 1 at every
position:
• C(S)∅,n is the uniform distribution on {0, 1}n.
• C(S)~1||d,n is the uniform distribution on all strings in

{0, 1}n that start with 1, if d ∈ S or the uniform
distribution on all strings in {0, 1}n that start with 0,
if d 6∈ S (i.e. the first position indicates the membership
of d in S).
• C(S)h,n is the uniform distribution on S for all other

histories.
The warden W for the family {C(S) | S ∈ Sn}n∈N now
works as follows: It randomly chooses a history h← {0, 1}n \
{~1} and m = 00 . . . 0 – a message containing ` 0-bits – and
gets the results d1, d2, . . . , d` from the challenging oracle on h
and m. For i ∈ {1, . . . , `}, it takes a sample si ← C(S)~1||di,n.
If every si starts with 1, the warden returns “Non-Stego” and
else “Stego”. The warden W is thus able to test membership
in S efficiently by making use of the channel. Note that the
stegoencoder can not make use of these capabilities of C(S)
as it can only make queries to Ch,n, where h does not start

with ~1. We use here the definition for channel access as in
[15], which assumes that the encoder has an access to the
marginal channel distributions Ch for the histories h started
with adversarially chosen prefixes.

We can thus efficiently simulate an oracle for membership-
testing and Theorem 16 thus implies (the formal statement
of Theorem 6 in Introduction):

Theorem 17. For every universal (not necessarily polyno-
mial-time bounded) stegosystem S(κ) which hides λ := λ(κ)
bits and takes q := q(κ) samples per stego-document there
exists a family of channels C(κ) such that

InSec(κ) +UnRel(κ) ≥ 1

2
− e · q

2λ
− o(1),

where InSec denotes the insecurity against polynomial war-
dens and UnRel denotes the unreliability of S(κ) on C(κ).

Note that in contrast to Theorem 3, no cryptographic as-
sumption is necessary and in contrast to Theorem 16, no
membership-oracle is necessary. Our lower bound thus holds
unconditionally. Furthermore, this lower bound holds even
when the running time of the stegosystem S is much larger
(say 22

κ

) than the running time of W (say pol(κ)).
Note that this method only works because of the asymme-

try between Alice and Warden: While Warden has oracle-
access for all possible histories, Alice can only use the history
chosen by Warden.

7. CONCLUSIONS AND FURTHER WORK
We first gave a secure, reliable and rate-efficient stegosys-

tem by using pseudorandom functions of very high hardness.

The running time of the stegosystem is roughly 22
o(κ)

. The
work of Dedić et al. [6] gives the best known lower bound
of a running time of ω(pol(κ)) for any universal secure, reli-
able stegosystem (under cryptographic assumptions and of
the rate ω(log κ)). We proved that by making use of the
imbalance between encoder and warden, this lower bound
also holds without any assumption and for any rate-efficient
stegosystem. This immediately gives rise to the question,

whether one can shrink the gap between 22
o(κ)

and ω(pol(κ)),
by either giving a more efficient stegosystem or by the con-
struction of more difficult channels. If the requirements of
a universal stegosystem seem too strict, one can proceed
similarly to Lískiewicz et al. [22] and try to find secure,
reliable, and rate-efficient stegosystems for a large family F
of channels. It is still open how complex F can be for secure,
reliable, efficient and rate-efficient stegosystems.

We also showed that the common phrase “Steganography
is Cryptography” is provably wrong as the communication
channel is a very important part of the steganographic setting.
We would hope that this motivates other authors to conduct
theoretical and practical research on this fascinating topic.
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