
ar
X

iv
:1

80
1.

00
71

6v
1

 [
cs

.C
C

]
 2

 J
an

 2
01

8

Computing Hitting Set Kernels By AC0-Circuits

Max Bannach Till Tantau

Institute for Theoretical Computer Science,

Universität zu Lübeck

Lübeck, Germany
{bannach,tantau}@tcs.uni-luebeck.de

Abstract

Given a hypergraph H = (V,E), what is the smallest subset X ⊆ V such that e∩X 6= ∅
holds for all e ∈ E? This problem, known as the hitting set problem, is a basic problem
in parameterized complexity theory. There are well-known kernelization algorithms for it,
which get a hypergraph H and a number k as input and output a hypergraph H ′ such that
(1) H has a hitting set of size k if, and only if, H ′ has such a hitting set and (2) the size of
H ′ depends only on k and on the maximum cardinality d of edges in H . The algorithms run
in polynomial time, but are highly sequential. Recently, it has been shown that one of them
can be parallelized to a certain degree: one can compute hitting set kernels in parallel time
O(d) – but it was conjectured that this is the best parallel algorithm possible. We refute this
conjecture and show how hitting set kernels can be computed in constant parallel time. For
our proof, we introduce a new, generalized notion of hypergraph sunflowers and show how
iterated applications of the color coding technique can sometimes be collapsed into a single
application.

1 Introduction

The hitting set problem is the following combinatorial problem: Given a hypergraph H = (V,E)
as input, consisting of a set V of vertices and a set E of hyperedges with e ⊆ V for all e ∈ E, find a
set X ⊆ V of minimum size that “hits” all hyperedges e ∈ E, that is, e∩X 6= ∅. Many problems
reduce to the hitting set problem, including the vertex cover problem (it is exactly the special
case where all edges have size |e| = 2) and the dominating set problem (a dominating set of a
graph is exactly a hitting set of the hypergraph whose hyperedges are the closed neighborhoods
of the graph’s vertices). The computational complexity of the hitting set problem is thus of
interest both in classical complexity theory and in parameterized complexity theory.

The first result on the parameterized complexity of the hitting set problem was an effi-
cient kernelization algorithm for this problem restricted to edges of cardinality three [16]. This
was later improved to a kernelization for the d-uniform version (all hyperedges have size ex-
actly d) [15], which is based on the so-called Sunflower Lemma [13]. We will later have a closer
look at this algorithm; at this point let us just summarize its main idea by “repeatedly find
sunflowers and replace them by their cores until there are no more sunflowers.” The Sunflower
Lemma tells us that this algorithm will stop only when the input graph has been reduced to a
kernel. The just-sketched kernelization algorithm is highly sequential, but Chen et al. [11] have
recently shown that it can be parallelized: Instead of reducing sunflowers one-at-a-time, one can
replace all sunflowers in a hypergraph by their cores simultaneously in constant parallel time.
This process only needs to be repeated d(H) = maxe∈E |e| times, leading to a parallel algorithm
running in time O(d(H)). However, there were good reasons to believe that this algorithm is
essentially the best possible (we will later discuss them) and Chen et al. conjectured that the

1

http://arxiv.org/abs/1801.00716v1

hitting set problem does not admit a kernelization algorithm running in constant parallel time
(that is, in time completely independent of the input graph).

Our Contributions. In the present paper we refute the conjecture of Chen et al. and show
that there is a constant parallel time kernelization algorithm for the hitting set problem:

Problem 1.1. pk,d-hitting-set

Instance: A hypergraph H = (V,E) and a number k ∈ N.
Parameter: k + d(H)
Question: Does H have a hitting set X with |X| ≤ k?

Theorem 1.2 (Main Theorem). There is a dlogtime-uniform AC
0-circuit family that maps

every hypergraph H = (V,E) and number k to a new hypergraph H ′ = (V,E′) that has the same
size-k hitting sets as H, has d(H ′) ≤ d(H), and has |E′| ≤ f(k, d(H)) for some fixed computable
function f .

Let us stress at this point that the AC
0-family from the theorem really has a size that is

polynomial in the input length (no exponential or even worse dependency on the parameters) and
has a depth that is completely independent of the input. The hypergraphH ′ has the same vertex
set V as H – a feature shared by all hypergraphs considered in this paper that simplifies the
presentation. However, since V is still “large,” the circuit is not quite a kernelization algorithm.
Fortunately, this is easy to fix by replacing the vertex set of H ′ by V ′ =

⋃

e∈E′ e, yielding the
following corollary:

Corollary 1.3 (Constant-Time Kernelization). There is a dlogtime-uniform AC
0-circuit fam-

ily that computes a kernel for every instance for pk,d-hitting-set.

The theorem and corollary imply that all problems that can be reduced to pk,d-hitting-set
via a parameter-preserving AC

0-reduction admit a kernelization computable by an AC
0-circuit

family. This includes pk-vertex-cover, which is just pk,d-hitting-set with d fixed at 2; pk-
triangle-removal, where the objective is to remove at most k vertices from an undirected
graph so that no triangles remain; and also pk,deg-dominating-set, where we must find a
dominating set of size at most k in an undirected graph and we parametrize by k and the
maximum degree of the vertices.

Our proof of the main theorem requires the development of two new ideas, which we believe
may also be useful in other situations. The above-mentioned parallel kernelization algorithm
for the hitting set problem with runtime O(d(H)) essentially does the following: “Repeat d(H)
times: replace all sunflowers of size k + 1 by their cores” and the difficult task in each of the
d(H) iterations is to find the sunflowers. It turns out that this can be done in constant parallel
time using the color coding technique [2] and it has been shown in [3] and again in [11] that this
technique can be implemented in constant time. Our first idea for turning the circuits depth
from O(d) into O(1) is to collapse the color codings from the d rounds into a single application of
the color coding technique: Instead of applying color coding in each round to filter and describe
“objects,” we would like to apply one global application of color coding that already contains
the internal colorings and does away with the intermediate objects.

Unfortunately, there does not appear to be a simple (or any) way of actually collapsing the
colorings used when we “replace all sunflowers by their cores”: The coloring coding technique is
good at imposing requirements of the form “these objects must be disjoint,” but cannot impose
requirements of the form “these objects must be the same.” For this reason, as our second new
idea, we develop a generalization of the notion of a sunflower (which we dub “pseudo-sunflowers”)
that is tailored to the collapsing of color coding.

2

Related Work. The sequential kernelization algorithm for the hitting set problem based
on the Sunflower Lemma has been known for a longer time [15], but there have been recent
improvements that bring down the runtim to linear time [17]. A parallel version has recently
been studied by Chen et al. [11] and they show how kernels for pk,d-hitting-set can be computed
by circuits of depth O(d(H)). Chen et al. also conjecture that the circuit depth of O(d(H)) is
unavoidable (which we refute).

The results of this paper fit into the larger, fledgling field of parallel parameterized complexity
theory, which has already been studied both from a practical [1] and a theoretical point of
view [8]. First results go back to research on parameterized logarithmic space [7, 10, 14], since it
is known from classical complexity theory that problems that are solvable with such a resource
bound can also be parallelized. A more structured analysis of parameterized space and circuit
classes was later made by Elberfeld et. al [12], which addresses parallelization more directly.
Current research on parameterized parallelization – including this paper – focuses on constant-
time computations, that is, on a parameterized analogue of AC

0 [9, 11, 3, 4]. We remark that
many previous results (including several of the authors) boil down to showing that instead
of using a known reduction rule many times sequentially, one can simply apply it in parallel
“everywhere,” but “only once.” In contrast, the kernelization algorithm developed in the present
paper had no previous counterpart in the sequential setting.

Organization of This Paper. After a short section on preliminaries, in Section 3 we review
known kernelization algorithms for the hitting set problem – both the sequential ones and the
parallel one. In Section 4 we discuss the obstacles that must be surmounted to turn the known
parallel algorithm into one that needs only constant time. Towards this aim, we introduce
the notions of pseudo-cores and pseudo-sunflowers as replacements for the cores and sunflowers
used in the known algorithms. In Section 5 we then argue that these pseudo-sunflowers can be
computed in constant time by “collapsing” multiple rounds of color coding into a single round.
Full proofs can be found in the full version of the paper [5].

2 Preliminaries

A hypergraph is a pair H = (V,E) such that for all hyperedges e ∈ E we have e ⊆ V . We write
V (H) = V and E(H) = E for the vertex and hyperedge sets of H. Let d(H) = maxe∈E |e|.
Throughout this paper, all hypergraphs will always have the same vertex set V , which is the
input vertex set. For this reason, in slight abuse of notation, for two hypergraphs H1 = (V,E1)
andH2 = (V,E2) we also writeH1 ⊆ H2 for E(H1) ⊆ E(H2) andH1∪H2 for (V,E(H1)∪E(H2)).

Concerning circuit classes and parallel computations, we will only need the notion of AC-
circuit families, which are sequences C = (C0, C1, C2, . . .) of Boolean circuits where each Ci is a
directed acyclic graph whose vertices are gates such that there are i input gates, the inner gates
are ∧-gates or ∨-gates with unbounded fan-in, or ¬-gates; and the number of output gates is
either 1 (for decision problems) or depends on the number of input gates (for circuits computing
a function). The size function S maps circuits to their size (number of gates) and the depth
function D maps them to their depth (longest path from input gates to output gates). When
D(Cn) ∈ O(1) and S(Cn) ∈ nO(1) hold, we call C an AC

0-circuit family. Concerning circuit
uniformity, all circuit families in this paper will be dlogtime uniform, which is the strongest
notion of uniformity commonly considered [6]: there is a dtm that on input of bin(i)#bin(n),
where bin(x) is the binary encoding of x, outputs the ith bit of a suitable encoding of Cn in at
most O(log n) steps.

Even though this paper is about a parallel kernelization algorithm, we will need only little
from the machinery of parallel parameterized complexity theory. We do need the following
notions: A parameterized problem is a pair (Q,κ) where Q ⊆ Σ∗ is a language and κ is a function

3

κ : Σ∗ → N that is computable by a dlogtime-uniform AC
0-circuit family. When we write down

a parameterized problem such as pk,d-hitting-set, the indices of “p” (for “parameterized”)
indicate which parameter function κ we mean. A kernelization for a parameterized problem
(Q,κ) is a function K that maps every instance x ∈ Σ∗ to a new instance K(x) ∈ Σ∗ such that
for all x ∈ Σ∗ we have (1) x ∈ Q ⇐⇒ K(x) ∈ Q and (2) |K(x)| ≤ f(κ(x)) for some fixed
computable function f .

A parameterized problem (Q,κ) lies in FPT if x ∈ Q can be decided by a sequential algorithm
running in time f(κ(x)) · |x|O(1) for a computable function f . The AC

0-analogue of FPT is the
class para-AC0. It contains all problems (Q,κ) for which there is a circuit family (Cn,k)n,k∈N
such that for all inputs x we have C|x|,κ(x)(x) = 1 if, and only if, x ∈ Q, and D(Cn,k) ∈ O(1) and

S(Cn,k) ∈ f(k) · nO(1). It is well-known that (Q,κ) ∈ FPT holds if, and only if, Q is decidable
and there is a kernelization for (Q,κ) that is computable in polynomial time. The same proof
as for the polynomial-time case also shows that we have (Q,κ) ∈ para-AC0 if, and only if, Q is
decidable and (Q,κ) has a kernelization that can be computed by an AC

0-circuit family. (We
stress once more that this means that the kernelization is a normal AC

0-circuit family, having
size S(Cn) ∈ nO(1).)

We will use the color coding technique a lot. First introduced in [2], it has recently been
shown to work in the context of constant time computations [3, 11]. The key observation
underlying this technique is the following: Suppose we are given a set of n elements and suppose
you have k special elements x1, . . . , xk together with some specific colors c1, . . . , ck for them
“in mind”. Then we can compute a set Λ of “candidate colorings” of all elements of the set
such that at least one λ ∈ Λ colors each “in mind” vertex xi with the “desired” color ci, that is
λ(xi) = ci. Formally, the following holds (the original version of this lemma due to Alon et. al [2]
is equivalent to the statement below – only without any depth guarantees):

Fact 2.1 (Color Coding Lemma, [3]). There is a dlogtime-uniform family (Cn,k,c)n,k,c∈N of
AC-circuits without inputs such that each Cn,k,c

1. outputs a set Λ of functions λ : {1, . . . , n} → {1, . . . , c} (coded as a sequence of function
tables) with the property that for any k mutually distinct x1, . . . , xk ∈ {1, . . . , n} and any
c1, . . . , ck ∈ {1, . . . , c} there is a function λ ∈ Λ with λ(xi) = ci for all i ∈ {1, . . . , k},

2. has constant depth (independent of n, k, or c), and

3. has size at most O(log c · ck
2

· k4 · n log2 n).

3 Known Kernelization Algorithms for the Hitting Set Problem

3.1 Known Sequential Kernelization Algorithms

The knwon sequential kernelization algorithms for pk,d-hitting-set are based on the so-called
Sunflower Lemma. The perhaps simplest application of this lemma is to repeatedly collapses
sufficiently large sunflowers to their cores until there are no longer any large sunflowers in the
graph and, then, the Sunflower Lemma tells us that the graph “cannot be very large.” In detail,
the definitions and algorithm are as follows:

Definition 3.1 (Sunflower). A sunflower S with core C is a set of proper supersets of C such
that for any two distinct p, q ∈ S we have p ∩ q = C. The elements of a sunflower are called
petals. A sunflower in a hypergraph is a sunflower whose petals are hyperedges of the hypergraph.

Fact 3.2 (Sunflower Lemma [13]). Every hypergraph H with more than kd(H) ·d(H)! hyperedges
contains a sunflower of size k + 1.

4

The importance of the Sunflower Lemma for the hitting set problem lies in the following
observation: Suppose a hypergraph H contains a sunflower S of size at least k + 1. Then H
has a size-k hitting set if, and only if, the hypergraph obtained from H by removing all petals
of the sunflower and adding its core has such a hitting set (we cannot hit the k + 1 petals in
the sunflower using only k vertices without using at least one vertex of the core; thus, we hit
all petals if, and only if, we hit the core). In other words, replacing a sunflower of size k + 1 by
its core is a reduction rule for the hitting set problem; and if we can no longer apply this rule,
the Sunflower Lemma tells us that the hypergraph’s size is bounded by a function that depends
only on k and d(H) – in other words, it is a kernel.

The just-described kernelization algorithm is simple, but “very sequential.” It is, however,
not too difficult to turn it into a more parallel algorithm – at least, as long as d(H) is fixed. This
was first noted by Chen et al. [11] and we explain the ideas behind their proof below, rephrased
for the purposes of the present paper.

A better sequential kernelization algorithm has recently [17] been proposed (it runs in time
O(2d(H)|E|), which is linear from a parameterized point of view) – but the algorithm is arguably
“even more sequential” and does not lend itself to easy parallelization.

3.2 Known Parallel Kernelization Algorithm

The first step towards a parallel kernelization is the observation that we can compute many
cores in parallel. Given a hypergraph H = (V,E) and a number k, let a k-core in H be a core C
of a sunflower in H with more than k petals. Let k -cores(H) =

(

V, {C | C is a k-core in H}
)

.
While in the sequential algorithm we always replace one sunflower by its core, we now replace
all sunflowers by their cores. This leaves behind some hyperedges, but the Sunflower Lemma
will show that their number is “small.” Unfortunately, the set of cores itself may still be large
and we need to apply the replace-all-sunflowers-by-cores operation repeatedly. This process does
stop after at most d(H) rounds since the size of the cores decreases by 1 in each round and,
hence, after d(H) rounds it has shrunk to 0.

H = H0

a

b

c d e

f g h i j k l m n

o p q

r s t

u v w
H1

a

b

c d e

f g h i j k l m n

o p q

r s t

u v w

Figure 1: Visualization of a hypergraph H0 and of its 2-cores H1 = 2-cores(H0). Vertices are
drawn as rectangles, while the ten hyperedges of H0 are drawn as lines: they contain all vertices
that they touch. For instance, the leftmost line starting in the vertex a in H0 visualizes the
hyperedge {a, b, c, f, u, v, w} and the rightmost line visualizes the hyperedge {a, b, e, n}. The
hypergraph H0 contains three sunflowers of size 3, visualized by the red, blue, and green lines,
respectively. Their cores are the hyperedges shown in H1. These cores, in turn, form a sunflower
in H1 with core {a, b}, but note that {a, b} is not a 2-core of H0. It is the only hyperedge of H2.

Let us now formalize these ideas a bit: Let H0 = H and let Hi+1 = k -cores(Hi). Then H0

is the original hypergraph; H1 is the set of its k-cores; H2 is the set of H1’s k-cores and thus
the set of “cores of cores” of H; next H3 is the set of “cores of cores of cores” of H; and so on,

5

see Figure 1 for an example. In a sense, each Hi is nested into the previous hypergraph, leading
to a whole sequence resembling a matryoshka doll. Below, we define a matryoshka sequence as
a sequence that has this “nested in some sense” property and then show in Lemma 3.4 that
(H0,H1, . . .) is, indeed, such a matryoshka sequence:

Definition 3.3 (Matryoshka Sequence). A matryoshka sequence for a hypergraph H = (V,E)
and a number k is a sequence (M0,M1, . . . ,Md(H)) of hypergraphs, all of which have the same
vertex set V , with the following properties for all i ∈ {0, . . . , d(H)}:

1. M0 = H,

2. d(Mi) ≤ d(H) − i,

3. k -cores(Mi) ⊆ Mi+1, and

4. every size-k hitting set of H is also a hitting set of Mi.

Lemma 3.4 (Cores of Cores Form a Matryoshka Sequence). For every hypergraph H and num-
ber k, the sequence (H0, . . . ,Hd(H)) is a matryoshka sequence for H and k.

Proof. The first property of a matryoshka sequence is true by definition. The second property
follows since each time we apply the operator k -cores to a hypergraph, the maximum size of the
hyperedges decreases by at least 1 (cores are smaller than the largest petals of their sunflowers).
Since we start at d(H), we get d(Hi) ≤ d(H)− i. For the third property we actually even have
equality here by definition. The last property is proved by induction on i. The case i = 0
is trivial, so consider a hitting set X of size k for Hi−1 and consider a k-core C of Hi−1. By
definition there must be a sunflower {e1, . . . , ek+1} ⊆ E(Hi−1) with core C. If X did not hit C
(that is, if X ∩C = ∅), then the size-k set X would have to hit all of the k+1 pairwise disjoint
sets ei − C for i ∈ {1, . . . , k + 1}, which is impossible.

Recall that the idea behind the parallel computation of a kernel for the hitting set problem
is to repeatedly remove all sunflowers from H, each time perhaps leaving a manageable number
of hyperedges – and after d rounds, no hyperedges will remain. We use the following notation
for the “removal” operation: For two hypergraphs H = (V,E) and H ′ = (V,E′) let H ⊖H ′ =
(

V, { e ∈ E | ∀e′ ∈ E′ : e′ 6⊆ e }
)

, that is, we remove all hyperedges from H that contain a
hyperedge of H ′. Thus, H ⊖H1 is the set of all hyperedges in H that are not involved in any
sunflower of size at least k + 1 since we remove all edges that contain a core.

The following theorem shows that the repeated removing operation only leaves behind a
“small” number of hyperedges. We formulate the theorem for arbitrary matryoshka sequences
(we will need this later on), but it is best to think of the Mi as the sets Hi.

Theorem 3.5 (Kernel Theorem). Let (M0, . . . ,Md(H)) be a matryoshka sequence for H and k.
Let K = (M0 ⊖M1) ∪ (M1 ⊖M2) ∪ (M2 ⊖M3) ∪ · · · ∪ (Md(H)−1 ⊖Md(H)) ∪Md(H).

1. Then K has at most
∑d(H)

i=0 kii! hyperedges and

2. H and K have the same size-k hitting sets.

Proof. For the first item, fix an i and consider Mi ⊖ Mi+1. We claim that these “remaining
hyperedges” cannot contain a sunflower {e1, . . . , ek+1}: If it did, by the third property of a
matryoshka sequence the sunflower’s core would be an element of Mi+1 and, thus, none of the
ei would be in Mi⊖Mi+1. By the Sunflower Lemma and the fact that d(Mi⊖Mi+1) ≤ d(Mi) ≤
d(H)− i by the second property of a matryoshka sequence, we get that Mi ⊖Mi+1 cannot have
more than kd(H)−i · (d(H) − i)! hyperedges. This means that the union K cannot have more
hyperedges than the sum of these numbers for i ∈ {1, . . . , d(H)} plus the number of hyperedges

6

in Md(H). However, by the second property we have d(Md(H)) ≤ 0 and, thus, this hypergraph
can contain at most one edge (the empty edge). We account for this single edge by the value

k00! = 1 for i = 0 in the sum
∑d(H)

i=0 kii!.
For the second item, we make a simple observation: Let A, B, and C be hypergraphs (all

with the same vertex set V as always) such that every size-k hitting set of A∪B is also a hitting
set of C. We claim that

A ∪B and A ∪ (B ⊖ C) ∪ C have the same size-k hitting sets. (∗)

To see this, first consider a size-k hitting set X of A ∪ B. Trivially, X is also a hitting set of
A ∪ (B ⊖ C) ⊆ A ∪ B and X is also hitting set of C by assumption. Now, second, consider a
size-k hitting set X of A∪ (B ⊖C)∪C. Trivially, X hits all of A as well as all hyperedges in B
that are in B ⊖ C, so consider an edge e ∈ B − (B ⊖ C). By definition, this means that e must
be a superset of some e′ ∈ E(C) and X was a hitting set for C and, thus, hits e′ and therefore
also e.

Let us now prove the second item by proving by induction on i that H and

(M0 ⊖M1) ∪ (M1 ⊖M2) ∪ (M2 ⊖M3) ∪ · · · ∪ (Mi−1 ⊖Mi) ∪Mi.

have the same size-k hitting sets. The base case i = 0 is true by the first property of a matryoshka
sequence. For the inductive step from i to i + 1, let A = (M0 ⊖ M1) ∪ · · · ∪ (Mi−1 ⊖Mi) and
B = Mi and C = Mi+1. By the inductive assumption, H and A∪B have the same size-k hitting
sets. The fourth property of a matryoshka sequence now implies that every size-k hitting set of
A ∪ B is also a hitting set of C. By (∗) we get that A ∪ B has the same size-k hitting sets as
A ∪ (B ⊖ C) ∪ C. Thus, H and A ∪ (B ⊖ C) ∪ C have the same size-k hitting sets, which was
exactly the inductive claim for i+ 1.

Instantiating the theorem with (H0, . . . ,Hd(H)) tells us that, if we can compute the elements
of K = (H0⊖H1)∪ · · · ∪ (Hd(H)−1 ⊖Hd(H))∪Hd(H) in parallel, we can compute a kernel for the
hitting set problem in parallel. Clearly, “computing K” essentially boils down to “computing
the Hi” in parallel. Thus, the real question, which we address next, is how quickly and easily
we can compute the hypergraphs Hi.

At this point, we briefly need to address some technical issues concerning the coding of
hypergraphs. For our purposes, it is largely a matter of taste how the input hypergraph H0 is
encoded, but the encoding of the later graphs Hi becomes important in the context of parallel
constant-time computations. We consider H = (V,E) fixed and encoded using, for instance,
an incidence matrix (having |V | columns and |E| rows). We encode a refinement of H, that
is, a hypergraph H ′ = (V,E′) with the property that each e′ ∈ E′ is a subset of some e ∈ E,
using a matrix of 2d(H) columns and |E| rows. There is a column for each of the at most 2d(H)

possible subsets of an edge e ∈ E and the entry at the column for a given row is 1 if this
subset is an element of E′; otherwise it is 0. Let us call this the refinement matrix enconding of
hypergraph H ′ (with respect to the fixed input hypergraph H).

Lemma 3.6 (Computing Cores in Constant Depth). For each d and i there is a dlogtime-
uniform family of AC-circuits that

1. on input of the incidence matrix of a hypergraph H with d(H) ≤ d, a number k, and the
refinement matrix encoding of the hypergraph Hi,

2. outputs the refinement matrix encoding of Hi+1,

3. has constant depth, and

4. has size f(k, d) · |V |O(1)|E|O(1) where f is some computable function.

7

Proof. By the definition of refinement matrix encodings, it suffices to show how we can decide
for a single set e′ ⊆ e ∈ E whether it is a hyperedge of Hi+1 or not using a circuit of constant
depth and size f(k, d) · |V |O(1)|E|O(1) – it then follows that we can do this for all possible e′

in parallel without increasing the circuit depth at all and without increasing the circuit size by
more than 2d|E|.

By definition, e′ is a hyperedge of Hi+1 if it is a k-core of Hi = (V,Ei). Thus, “all” we
need to test is whether there are petals p1, . . . , pk+1 ∈ Ei that form a sunflower in Hi with
core e′. This question can be answered very quickly in parallel using color coding as follows:
The vertices from the Color Coding Lemma (Fact 2.1) that we “have in mind” are the vertices
in the petals and the color “we have in mind for them” is i for all vertices in pi − e′. Formally,
we use Fact 2.1 to obtain a set Λ of colorings λ : V → {1, . . . , k + 1} and check whether for one
of these colorings for each j ∈ {1, . . . , k+1} there exists a hyperedge pj ∈ Ei with the properties
that (1) pj ⊇ e′ and (2) all vertices in pj − e′ have the color j. Clearly, such a coloring together
with the hyperedges p1 to pk+1 exists if, and only if, e′ is the core of a sunflower of size k + 1
in Hi. Even more importantly, Fact 2.1 provides us with such a coloring λ – if it exists – via a
circuit of constant depth and size at most some polynomial in the number |V | of vertices times a
computable function f(k, d) depending on the number k+1 of colors and the maximum number
d(k + 1) of vertices in the sunflower (for which we “had colors in mind”).

The lemma tells us that once we have computed some Hi, we can compute the next Hi+1

using only constant additional depth and using f(k, d) · |V |O(1)|E|O(1) additional size. Since
Hi ⊖Hi+1 can easily be computed from Hi and Hi+1 in constant depth, we get:

Theorem 3.7 (Depth-O(d) Kernelization Algorithm, [11]). For each d there is a dlogtime-
uniform family of AC-circuits that

1. on input of a hypergraph H with d(H) ≤ d and a number k

2. outputs a hypergraph K having the same size-k hitting sets as H and having at most
∑d(H)

i=0 kii! hyperedges,

3. has depth O(d),

4. and has size f(k, d) · |V |O(1)|E|O(1) where f is some computable function.

4 Pseudo-Cores and Pseudo-Sunflowers

The parallel kernelization algorithm described in the previous section has a depth that is linear
in the parameter d, the maximum size of any hyperedge in the input hypergraph. The reason
for this linear dependency was that, while we managed to reduce not just one but all sunflowers
in the hypergraph to their cores in parallel, we had to repeat this “reduce to core” procedure d
times – and each round adds a constant number of layers to the circuit.

It is not obvious how this build-up of layers can be avoided. In the following, we first explain
why there are good reasons to believe that the computation of the hypergraphs Hi necessitates
deeper and deeper circuits. Following this discussion, we explain our proposal for side-stepping
these difficulties: we replace the hypergraphs Hi by new hypergraphs H ′

i that are easier to
compute but still form a matryoshka sequence and – hence – can serve as a replacement for the
Hi in the Kernel Theorem, Theorem 3.5.

The Difficulty: Cores of Cores Are Hard to Compute There are several reasons to
believe that one cannot compute kernels for the hitting set problem in constant depth using the
repeated sunflower-reduction-procedure. A first idea for reaching a constant depth is to apply

8

the reduction procedure only a constant number of times (instead of d times). Indeed, it is
not immediately clear that a “core of cores” is not already a core in the first round – so do
we actually need more than one round? Unfortunately, the answer is “yes, we do”: Figure 1
shows an example where {a, b} is a 2-core of the 2-cores, but it is not a 2-core of the original
hypergraph. For a more complex example, where d rounds are needed to arrive at a constant
size kernel, consider the trees T ℓ

d (defined in detail later on) that are perfectly balanced trees of
depth d with ℓ + 1 children per node for a number ℓ ≥ k – and now consider the hypergraph
Hd that has one hyperedge for each leaf of T ℓ

d and this hyperedge contains all the nodes on the
path from the leaf to the root r. Now, for i > 0 we have k -cores(H i) = H i−1 and the latter
hypergraphs all have a size of at least the arbitrarily large ℓ for i > 1. Thus, we need to apply
the “core of cores” procedure at least d − 1 times before arriving at a hypergraph whose size
depends only on the parameter.

A second, more promising idea is the observation that it might be possible to somehow
“collapse” two (and then, hopefully, all) applications of the sunflower-reduction-procedure “into
a single application.” Unfortunately, we also run into a problem here, namely in the “collapsed
color coding process.” In essence, color coding is great at ensuring that certain vertex sets
are disjoint (namely those vertex sets that receive different colors), but fails at enforcing that
the same vertices are used in different hyperedges – which is exactly what is needed when the
definition of some Hi refers to Hi−1, which in turn refers to some Hi−2.

These problems with avoiding the build-up of additional layers with rising d have led Chen
et al. [11] to the conjecture that the build-up is unavoidable and that all parallel kernelization
algorithms for pk,d-hitting-set have a runtime that is linear in d. We agree with Chen et al. in
their assessment that the computation of the Hi presumably necessitates a linear circuit depth
– but, nevertheless, we will refute their conjecture in the following.

The Solution: Pseudo-Cores As a Replacement For Cores Our idea is not to compute
the sets Hi (we do not see how this can be done in constant time), but to compute hypergraphs
H ′

i with rather similar properties (formally, they will form matryoshka sequences as well) that
we can compute in constant time for all d and i. We introduce a new notion of k-pseudo-cores
of level i and H ′

i will be the hypergraph whose edges are the k-pseudo-cores of level i. Crucially,
the definition of H ′

i (only) refers directly to the original input graph H and its hyperedges can be
obtained from H directly using color coding. At the same time, the H ′

i will form a matryoshka
sequence and, hence, just as for the Hi, the core of any sunflower of H ′

i−1 must already be
present in H ′

i.
The definition of pseudo-cores is somewhat technical. We will, however, show that all cores

are pseudo-cores of level 1, cores of cores are pseudo-cores of level 2, and so on. The reverse
implication does not hold (for instance, pseudo-cores of level 2 need not be cores of cores). For
a “level” L and a number k, let T k

L denote the rooted tree in which all leafs are at the same
depth L and all inner nodes have exactly k + 1 children. The root of T k

L will always be called r
in the following. Thus, T k

1 is just a star consisting of r and its k + 1 children, while in T k
2 each

of the k + 1 children of r has k + 1 new children, leading to (k + 1)2 leafs in total. For each
l ∈ leafs(T k

L) = { l | l is a leaf of T k
L } there is a unique path (l0, l1, . . . , lL) from l0 = r to lL = l.

An example for the following definition is shown in Figure 2.

Definition 4.1 (Pseudo-Sunflowers and Pseudo-Cores). Let H = (V,E) be a hypergraph and let
L and k be fixed. A set C ⊆ V is called a k-pseudo-core of level L in H if there exists a mapping
S : leafs(T k

L)×{0, 1, . . . , L} → 2V , called a T k
L-pseudo-sunflower for H with pseudo-core C, such

that for all l,m ∈ leafs(T k
L) with l 6= m we have:

1. S(l, 0) = C.

2. S(l, 0) ∪ S(l, 1) ∪ · · · ∪ S(l, L) ∈ E and let us write S(l) for this hyperedge.

9

3. S(l, i) ∩ S(l, j) = ∅ for 0 ≤ i < j ≤ L, but S(l, i) 6= ∅ for i ∈ {1, . . . , L}.

4. Let z ∈ {1, . . . , L} be the smallest number such that lz 6= mz, that is, z is the depth
where the path from r to l and the path from r to m diverge for the first time. Then
S(l, z) ∩ S(m, z) = ∅ must hold.

H

a

b

c d e

f g h i j k l m n

o p q

r s t

u v w

T 2
2

r

c1

c2

c3

l
{a, b} {c, f} {u, v, w}
{a, b} {c, g} {r, s, t,m}
{a, b} {c, h, o} {p, q, l, e}
{a, b} {d, i} {o, r, u}
{a, b} {d, j} {p, s, v}
{a, b} {d} {k, q, t, w}
{a, b} {e} {l}
{a, b} {e} {m}
{a, b} {e} {n}

S(l, 0) S(l, 1) S(l, 2)

Figure 2: A T 2
2 -pseudo-sunflower S for the level 2 pseudo-core {a, b} in the hypergraph H. The

four properties of pseudo-sunflowers hold: In “column S(l, 0)” we always have the pseudo-core,
the union of each row is a hyperedge, the sets in a row form a partition of this hyperedge,
and – most importantly – we have the disjointness property at each “branch” of the tree. This
property requires that for column S(l, 1) the sets of all red vertices, of all blue vertices, and of
all green vertices are pairwise disjoint; whereas for column S(l, 2) it requires that the three red
sets are pairwise disjoint, likewise for the three blue sets, and the three green sets. However, it
is permissible (and the case) that a red vertex in the third column is the same as green vertex
in the third or the second column.

Definition 4.2. For a hypergraph H = (V,E) and numbers k and i ≥ 1 let H ′
i =

(

V, {C |
C is a k-pseudo-core of level i of H}

)

and let H ′
0 = H.

To get some intuition, let us have a closer look at H ′
1. As the following lemma shows, pseudo-

cores and cores are still very closely related at this first level – while for larger levels, we no
longer have Hi = H ′

i, but only Hi ⊆ H ′
i.

Lemma 4.3. Let H be a hypergraph and k a number. Then H1 = H ′
1.

Proof. Consider a k-pseudo-core of H of level 1. The tree T k
1 consists of a root r with leafs l1 to

lk+1. Consider a T k
1 -pseudo-sunflower S and let us fix some leaf l of T k

1 . The pseudo-sunflower
must map (l, 0) to the pseudo-core C and (l, 1) to a set of vertices that is disjoint from C. This
means that S(l) = S(l, 0) ∪ S(l, 1) = C ∪ S(l, 1) ∈ E is a hyperedge in H that contains the
(pseudo)core C. Furthermore, for any two different leafs l and m we have S(l, 1) ∩ S(m, 1) = ∅
or, equivalently, S(l) ∩ S(m) = C. This shows that {S(l1), . . . , S(lk+1)} is a sunflower with
core C. For the other direction, given a sunflower {e1, . . . , ek+1} of size k+1 in H with core C,
the T k

1 -pseudo-sunflower S given by S(li, 0) = C and S(li, 1) = ei−C, where the li are the k+1
leafs of T k

1 , witnesses that C is also k-pseudo-core of level 1 of H.

5 The Constant-Depth Kernelization

We show that hitting set kernels can be computed in constant depth in two steps:

1. We show that (H ′
0, . . . ,H

′
d(H)) is a matryoshka sequence.

10

2. We show that all H ′
i can be computed by a constant depth circuit whose depth is inde-

pendent of both k and d(H).

By the Kernel Theorem, Theorem 3.5, taken together, these two items yield the desired kernel-
ization algorithm.

Step 1: Pseudo-Cores Form Matryoshka Sequences. Our first aim is to show the fol-
lowing theorem, which is an analogue of Lemma 3.4 for pseudo-cores:

Theorem 5.1. For every hypergraph H and number k, the sequence (H ′
0, . . . ,H

′
d(H)) from Def-

inition 4.2 is a matryoshka sequence for H and k.

The proof consists of four lemmas, one for each of four properties of a matryoshka sequence:

Lemma 5.2. H ′
0 = H.

Proof. By definition.

Lemma 5.3. d(H ′
L) ≤ d(H) − L holds for all L ∈ {0, . . . , d(H)}.

Proof. For every leaf l we have S(l) = S(l, 0)∪̇S(l, 1)∪̇· · ·∪̇S(l, L) and all S(l, i) for i ∈ {1, . . . , L}
are non-empty sets. This implies that |S(l, 0)| ≤ |S(l)| − L ≤ d(H)− L.

Lemma 5.4. k -cores(H ′
L) ⊆ H ′

L+1 holds for all L ∈ {0, . . . , d(H)}.

Proof. We show the claim by induction on L. The base case L = 0 was already handled in
Lemma 4.3. For larger L, let e be a k-core of H ′

L. Then there is a sunflower {e1, . . . , ek+1} ⊆
E(H ′

L) with core e and |e| ≤ d(H) − L − 1 since all ei have the property |ei| ≤ d(H) − L by
definition and since a core is always smaller than its largest petal. For each j ∈ {1, . . . , k + 1}
there must now be a T k

L-pseudo-sunflower Sj with pseudo-core ej . From these k + 1 different
pseudo-sunflowers, we construct a T k

L+1-pseudo-sunflower S whose pseudo-core is e as follows:

In the tree T k
L+1, let c1 to ck+1 be the children of the root r. For a leaf l of T k

L+1, let l
1 = cj be

the child of r on the path from r to l and let us view l also as a leaf in the tree T k
L rooted at cj .

We define S as follows:

1. S(l, 0) = e.

2. S(l, 1) = ej − e.

3. S(l, i) = Sj(l, i− 1) for i ∈ {2, . . . , L+ 1}.

It remains to show that the mapping S defined in this way satisfies the four properties of a
pseudo-sunflower. Consider any two leafs l and m of T k

L+1:

1. By definition, S(l, 0) = e and, thus, e is the pseudo-core of S.

2. S(l, 0)∪S(l, 1)∪· · ·∪S(l, L+1) = e∪(ej−e)∪Sj(l, 1)∪· · ·∪Sl(l, L) = e∪(ej−e)∪(Sj(l)−ej).
We know that Sj(l) ∈ E holds (since Sj is a pseudo-sunflower), that ej ⊆ Sj(l) holds (since
ej is the pseudo-core of Sj), and that e ⊆ ej holds (since e is the core of a sunflower that
has ej as one of its petals). This implies S(l) = Sj(l) and the latter is an element of E.

3. Clearly, S(l, 0) = e and S(l, 1) = ej−e are disjoint and S(l, 1) has size at least 1 since ej is
not a subset of e. The other S(l, i) are also disjoint from one another since the Sj(l, i− 1)
are disjoint among one another, and they are also disjoint from S(l, 0) and S(l, 1) (since
all Sj(l, i − 1) are disjoint from Sj(l, 0) = ej).

11

4. Finally, let z be the “divergence depth” of l and m, that is, the smallest number with
lz 6= mz. For z = 1, we have S(l, 1)∩S(m, 1) = ∅ since S(l, 1) = ej−e and S(m, 1) = ej′−e
for some indices j and j′ and since the intersection of the two sunflower petals ej and ej′

is exactly e. For z > 1, the leafs l and m lie in the same tree T k
L rooted at some child cj

of r and we have S(l, z) ∩ S(m, z) = Sj(l, z − 1) ∩ Sj(m, z − 1) and the latter intersection
is empty since Sj is a pseudo-sunflower.

Lemma 5.5. Every size-k hitting set of H is also a size-k hitting set of H ′
L for all L ∈

{0, . . . , d(H)}.

Proof. We must show that every hitting set X of H with |X| ≤ k is also a hitting set of H ′
L.

That is, we must show that every k-pseudo-core C of level L contains at least one element of X.
Let S be a T k

L-pseudo-sunflower with pseudo-core C.
The following definition will be crucial in the following: We say that X hits a node n of T k

L

if there is a leaf l of T k
L such that n = lD (that is, n is the Dth node on the path l0, l1, . . . , lL

from the root r = l0 to l = lL) and X ∩ (S(l, 0) ∪ S(l, 1) ∪ · · · ∪ S(l,D)) 6= ∅.
First, observe that X hits every leaf of T k

L since, for them, D = L and S(l, 0) ∪ · · · ∪
. . . S(l, L) = S(l) is a hyperedge of H and, hence, gets hit by X.

Second, we claim that if X hits all children c1, . . . , ck+1 of a node n of T k
L , then X also hits n.

Let n be at depth D, so the children are at depth D+ 1. By definition of “being hit by X,” for
each child ci of n there must be a leaf li such that

X ∩ (S(li, 0) ∪ · · · ∪ S(li,D + 1)) 6= ∅. (1)

We claim that at least one of the li also witnesses that X hits n. Otherwise, since all li are in
the subtree rooted at n, for all of them we would have

X ∩ (S(li, 0) ∪ · · · ∪ S(li,D)) = ∅. (2)

From (1) and (2) we immediately get that

X ∩ S(li,D + 1) 6= ∅ must hold for all i ∈ {1, . . . , k + 1}. (3)

Now, for any two different leafs li and lj consider the two paths from the root to them. These
paths will be identical exactly up to the node n and will then split into a path via the child
ci and a path via the child cj . Now, in this situation the fourth property of pseudo-sunflowers
tells us that S(li,D + 1) ∩ S(lj ,D + 1) = ∅ must hold. In other words, the k + 1 many sets
S(li,D + 1) in equation (3) are pairwise disjoint. However, this means that the size-k set X
cannot contain one element of each of them. Thus, our assumption that X does not hit n has
lead us to a contradiction.

Third, we claim that X hits the root of T k
L . This follows easily from the first two claims

since X hits all leafs of T k
L and whenever it hits all children of a node, it also hits the node.

Clearly, this implies that X hits all nodes, including the root.
Now, we are done since “X hits the root” means that X ∩ S(l, 0) 6= ∅ holds for at least one

leaf l and S(l, 0) = C. Thus, X ∩ C 6= ∅, which was the claim.

Step 2: Pseudo-Cores Can Be Computed in Constant Depth. Theorem 5.1 states that
the hypergraphs H ′

i form a matryoshka sequence and, thus, the Kernel Theorem tells us that
the following hypergraph is a kernel for the hitting set problem: K = (H ′

0 ⊖H ′
1) ∪ (H ′

1 ⊖H ′
2) ∪

· · · ∪ (H ′
d(H)−1 ⊖H ′

d(H))∪H ′
d(H). Of course, the whole effort that went into the definition of the

H ′
i and the proof of the matryoshka properties would be for nothing, if the H ′

i were not easier
to compute than the Hi.

12

This is exactly what we claim in the following theorem and prove in the rest of this paper: It
is an analogue of Lemma 3.6 for pseudo-cores. The crucial difference in the formulation is that,
now, we no longer get H ′

i−1 as input when we compute H ′
i, but rather we compute H ′

i “directly”
from the original graph H.

Theorem 5.6 (Computing Pseudo-Cores in Constant Depth). There is a dlogtime-uniform
family of AC-circuits that

1. on input of the incidence matrix of a hypergraph H = (V,E) and numbers k and L,

2. outputs the refinement matrix encoding of H ′
L,

3. has constant depth (in particular, it is independent of |V |, |E|, d(H), k, and L), and

4. has size f(k, d(H)) · |V |O(1)|E|O(1) where f is some computable function.

To compute the encoding of H ′
L, we can consider all candidate pseudo-cores in parallel.

Thus, proving the theorem boils down to deciding for a subset C ⊆ V whether there exists a
T k
L-pseudo-sunflower S of H whose pseudo-core is C. Of course, we wish to use color coding for

this and our definition of pseudo-cores and pseudo-sunflowers was carefully crafted so that it
includes only requirements of the form “these parts of these hyperedges must be disjoint” (and
not – as is necessary for describing cores of cores – statements like “these hyperedges must share
the vertices that form petals”). Unfortunately, while we no longer need to ensure that certain
parts of different hyperedges are identical, we must be careful that we do not inadvertently
forbid vertices to be the same across hyperedges when we “do not care whether they are the
same”:

Example 5.7. Suppose we wish to find two disjoint hyperedges e1 = {v1, v2, v3} and e2 =
{v4, v5, v6} in a hypergraph H plus another hyperedge e3 = {x, y} such that x /∈ e1 ∪ e2, but do
not care whether y ∈ e1 ∪ e2 holds or not. We can easily enforce the disjointness properties by
coloring v1 to v6 using colors 1 to 6 and x using color 7. However, how should we color y for
which we do not care about disjointness (at least with respect to e1 and e2)? Fixing any of the
colors 1 to 3 for y or any of the colors 4 to 6 (or, for that matter, any other color) would be
wrong, since this would enforce either y /∈ e2 or y /∈ e1 (or both).

Fortunately, there is a way out of the dilemma: we consider all feasible colors y could get
in parallel. To formalize this “trick”, we define a technical problem in which an undirected
graph G is used to specify which vertices in hyperedges of a hypergraph H should be different.
As is customary, a proper coloring of an undirected graph G = (U,F) is a mapping c : U → C
to some set C of colors with c(u) 6= c(v) for all {u, v} ∈ F . Let us write f [X] = {f(x) | x ∈ X}
for the image of a set X under a function f . For an example instance see Figure 3.

Problem 5.8. pG-restricted-coloring

Instance: A hypergraph H = (V,E) and an undirected graph G = (U,F) together with a parti-
tion U = U1 ∪̇ · · · ∪̇ Um of U .

Parameter: |G|
Question: Is there a proper coloring c : U → V of G such that c[Ui] ∈ E holds for all i ∈

{1, . . . ,m}?

Lemma 5.9. The problem pG-restricted-coloring can be solved by a dlogtime-uniform
family of AC-circuits of constant depth and size f(|G|)|V |O(1)|E|O(1) for some computable func-
tion f .

13

H ′

c d e

f g h i j k l m n

o p q

r s t

u v w
G

Proper coloring
c f f f u v w w

c g g g r s t m

c h o o p q l e

d i i i o r u u

d j j j p s v v

d d d d k q t w

e e e e l l l l

e e e e mmmm

e e e e n n n n

Figure 3: An instance of pG-restricted-coloring consisting of a hypergraphH ′ and a graphG
(a thick edge connecting two areas with dashed borders indicates that there is an edge between
each vertex of the first area and each vertex of the second area; thus, in the example, each
thick edge corresponds to 12 · 12 = 144 edges). This instance is the one resulting from the
reduction described in the proof of Theorem 5.6 for L = 2, the hypergraph H from Figure 1,
and the core {a, b} (except that we use only four vertices in G per set S(l, i) instead of d = 9). A
proper coloring is shown right (the table indicates the values c(u) ∈ V (H ′) for the corresponding
vertices u of G).

Proof. Let G = (U,F) and H = (V,E) be given as input. We assume that |U | ≤ |V | holds
since, otherwise, the number of possible mappings c that must be checked only depends on the
parameter |G| and, thus, they can easily be checked in parallel in constant depth (any function
can be computed in constant depth when circuit size is not an issue).

The objective is, of course, to use color coding to find the mapping c. Towards this aim, we
search for a mapping d : V → {1, . . . , |U |} with the following two Properties 1 and 2:

1. There is a proper coloring c′ : U → {1, . . . , |U |} of G such that

2. for each i ∈ {1, . . . ,m} there is a hyperedge ei ∈ E with |d[ei]| = |ei| and d[ei] = c′[Ui].

The idea behind this search is the following: The graph G imposes restrictions of the form
“for the edge {u, v} the vertices c(u) and c(v) must be different.” In principle, such restrictions
are easy to enforce using color coding: use one color for c(u) and a different color for c(v).
However, as explained in Example 5.7, we may run into a problem when there is no edge
between two vertices x and y since, then, we may not rule out that c(x) = c(y) holds – which we
would rule out when two different colors are used. The solution offered following the example is
to try out all possible ways in which we may assign colors to vertices for which we “actually do
not care” about their colors. These “possible ways” are modeled by the proper coloring c′ from
above.

In detail, recall the situation of Example 5.7 where we searched for two disjoint hyperedges
e1 = {v1, v2, v3} and e2 = {v4, v5, v6} and a hyperedge e3 = {x, y} with x /∈ e1 ∪ e2. This search
can be modeled by a graph G whose vertex set U can be partitioned into U1 = {u1, u2, u3},
U2 = {u4, u5, u6}, and U3 = {u7, u8} and where the edge set F is a clique on U1 ∪U2 (to ensure
that the hyperedges c[U1] and c[U2] are disjoint and have size 3) and there are edges between u7
and all elements of U1 ∪ U2 (to ensure that c(u7) /∈ c[U1] ∪ c[U2]). A proper coloring c : U → V
might now map c(ui) = vi for i ∈ {1, . . . , 6} and c(u7) = x and c(u8) = y. All vertices in
{v1, . . . , v6, x} must be distinct, but y must not necessarily be distinct from them – in fact, it
could be any of them. In this situation, the different possible values of y give rise to different c′

14

and d (note that in all of these examples, c′ is a proper coloring of G and that |d[ei]| = |ei| and
d[ei] = c′[Ui] hold for i ∈ {1, 2, 3}):

Example 5.10. Suppose that y = v1 holds, that is, e1∩e3 = {v1} and e2∩e3 = ∅. This situation
is modeled by the following functions c′ and d: c′(ui) = i for i ∈ {1, . . . , 7} and c′(u8) = 1; and
d(vi) = i for i ∈ {1, . . . , 6} and d(x) = 7 and d(v) can be arbitrary for v /∈ {v1, . . . , v6, x} (note
that we do not need to define d(y) since d(v1) is already defined and y = v1).

Example 5.11. Suppose that y = v5 holds, that is, e1 ∩ e3 = ∅ and e2 ∩ e3 = {v5}. Here, we
can use almost identical functions c′ and d as in the previous example, except that c′(u8) = 5.

Example 5.12. Suppose that y /∈ {v1, . . . , v6, x}. Then we use c(u8) = 8 and d(y) = 8.

Let us now formally argue that the search for d can be performed using color coding: First,
observe that the test “there is a proper coloring c′” can be performed in parallel by testing all
possible colorings of G (their number depends only on |G|). Second, given a mapping d : V →
{1, . . . , |U |}, we can determine the existence of hyperedges ei ∈ E with both |d[ei]| = |ei| and
d[ei] = c′[Ui] in constant depth. Third, if d : V → {1, . . . , |U |} has Properties 1 and 2, so does
any other d′ as long as it is identical to d on the vertices of

⋃m
i=1 ei. Since the number of vertices

in
⋃m

i=1 ei is at most |U |, which depends only on the parameter |G|, instantiating Fact 2.1 with
{x1, . . . , xk} =

⋃m
i=1 ei tells us that we can find one such d′ in constant depth.

It remains to argue that the following two statements are equivalent:

• There is a mapping d : V → {1, . . . , |U |} with the Properties 1 and 2.

• There is a mapping c : U → V such that is a proper coloring of G and c[Ui] ∈ E holds for
all i ∈ {1, . . . ,m}.

For the first direction, let d : V → {1, . . . , |U |} be a mapping and c′ : U → {1, . . . , |U |}
a proper coloring of G such that for each i ∈ {1, . . . ,m} there is a hyperedge ei ∈ E with
|d[ei]| = |ei| and d[ei] = c′[Ui]. Define c : U → V as follows: We know that each u ∈ U lies in a
unique set Ui, and since d[ei] = c′[Ui] for the hyperedge ei ∈ E, there must be an element vu ∈ ei
with d(vu) = c′(u). Since |d[ei]| = |ei|, the element vu ∈ ei must be unique with this property.
Define c(u) = vu and observe that d ◦ c = c′ holds. (As an example, consider the functions c′

and d from Example 5.11 and u5 ∈ U and u8 ∈ U . For u5, we have u5 ∈ U2 = {u4, u5, u6}
and d[e2] = c′[U2] = {4, 5, 6}. The element v5 has the property d(v5) = 5 and, indeed, it is the
only element with this property. Thus c(u5) = v5. For u8, we have u8 ∈ U3 = {u7, u8} and
d[e3] = c′[U3] = {7, 5}. Again, the element v5 has the property d(v5) = 5 and c(u8) = v5.)

The just-defined mapping c is a proper coloring of G since for every edge {u, v} ∈ F we
have d(c(u)) = c′(u) 6= c′(v) = d(c(v)), which implies c(u) 6= c(v). To prove c[Ui] ∈ E for
i ∈ {1, . . . ,m}, fix some i. Since d ◦ c = c′, we also have d[c[Ui]] = c′[Ui] and this equals d[ei] by
assumption. By construction of c, we clearly also have c[Ui] ⊆ ei. Finally, since |d[ei]| = |ei|, we
know that d is injective on ei. Now, from d[c[Ui]] = d[ei] and c[Ui] ⊆ ei and d being injective
on ei, we conclude that c[Ui] = ei ∈ E must hold.

For the second direction, let c : U → V be a proper coloring of G with c[Ui] ∈ E for all
i ∈ {1, . . . ,m}. We need to construct a mapping d : V → {1, . . . , |U |} and a proper coloring
c′ : U → {1, . . . , |U |} with the property that for each i ∈ {1, . . . ,m} there is a hyperedge ei ∈ E
with |d[ei]| = |ei| and d[ei] = c′[Ui].

For the definition of d, let b : c[U] → {1, . . . , |c[U]|} be a bijection. Define d as follows:

d(v) =

{

b(v) for v ∈ c[U] and

1 otherwise.

15

Let c′ = d ◦ c. First, c′ is a proper coloring of G since c is a proper coloring and d restricted to
c[U] is a bijection. Now consider an i ∈ {1, . . . ,m}. Then ei = c[Ui] is a hyperedge in E. We
have |d[ei]| = |ei| since d restricted to ei ⊆ c[U] is a bijection. We have d[ei] = d[c[Ui]] = c′[Ui]
by definition of c′.

We are now ready to prove Theorem 5.6:

Proof of Theorem 5.6. Recall that in order to prove the claim, we must solve the following
problem in constant depth: Given H = (V,E), k, L, and a subset C ⊆ e ∈ E, check whether
there exists a T k

L-pseudo-sunflower S of H whose pseudo-core is exactly C. We must now
show how the existence of the pseudo-sunflower can be checked using the technical problem pG-
restricted-coloring.

The input for the restricted coloring problem will consist of a special graph G that encodes
the different disjointedness properties of pseudo-sunflowers using edges and will consist of the
hypergraph H ′ =

(

V, { e−C | e ⊇ C, e ∈ E }
)

. In other words, we restrict H to those edges that
contain the alleged core C (other edges cannot be part of the sought pseudo-sunflower anyway)
and we remove the core from the edge since they all contain it.

Let us now define the graph G = (U,F). The objective of this definition is, of course, that
there is a T k

L-pseudo-sunflower S with core C if, and only if, there a proper coloring c : U → V
of G such that c[Ui] ∈ E(H ′) for all i ∈ {1, . . . ,m}.

Pseudo-sunflowers are mappings from leafs(TL
k) × {0, . . . , L} to subsets of V such that for

each leaf l the union S(l, 0) ∪ · · · ∪ S(l, L) is a hyperedge in E. In our case, we must have
S(l, 1) ∪ · · · ∪ S(l, L) ∈ E(H ′) since S(l, 0) = C and we removed the fixed core C already from
the hyperedges of H ′. In G, we will have one set Ul for each leaf l of T k

L : The vertices that
will be assigned to the elements of Ul by the coloring c should then form exactly the hyperedge
S(l, 1) ∪ · · · ∪ S(l, L).

If we knew that each S(l, i) had size exactly 1, we could set U = leafs(TL
k)×{1, . . . , L}: For

each leaf l the coloring c would need to pick L vertices which, together, make up the hyperedge
S(l) − C of H ′. To ensure that S(l, i) and S(l, j) are disjoint for i 6= j, we would make each
{l}×{1, . . . , L} a clique in G. However, the sets S(l, i) can have different sizes. For this reason,
we do not use a single vertex in G for each S(l, i), but d different vertices (actually, d − L + 1
vertices would suffice): The different elements of S(l, i) can be represented by different vertices
– and if |S(l, i)| < d, the coloring c can map the superfluous vertices to any of the vertices of
S(l, i).

We set U = leafs(TL
k) × {1, . . . , L} × {1, . . . , d} and define the partition of U by Ul =

{l} × {1, . . . , L} × {1, . . . , d} for each l ∈ leafs(T k
L). It remains to explain how we put edges

into G such that the colorings of G induce pseudo-sunflowers. The following edges are present
in G to ensure the four properties from Definition 4.1:

1. Nothing needs to be done to ensure the first property (S(l, 0) = C) since H ′ only contains
hyperedges that used to contain C.

2. Nothing needs to be done to ensure the second property (S(l) ∈ E) since c[Ul] ∈ E(H ′)
will ensure that S(l)− C ∈ E(H ′) holds and, thus, S(l) ∈ E(H).

3. To ensure the third property (S(l, i) ∩ S(l, j) = ∅ for i 6= j), for each l ∈ leafs(T k
L) and

every i 6= j and all x, y ∈ {1, . . . , d} let {(l, i, x), (l, j, y)} be an element of F , that is, let it
be an edge of G.

4. To ensure the fourth property (S(l, z) ∩ S(m, z) = ∅ must hold when lz and mz have the
same parent), for each l,m ∈ leafs(T k

L) and the smallest number z with lz 6= mz and all
x, y ∈ {1, . . . , d} let {(l, z, x), (m, z, y)} be an element of F .

16

With this definition, we claim that C is a k-pseudo-core of level L of H if, and only if, (H ′, G)
is a element of pG-restricted-coloring. If we can show this, we are done by Lemma 5.9.

We need to prove two directions. First, let a TK
L -pseudo-sunflower S of H with core C be

given. We must argue that there is a proper coloring c : U → V of G with c[Ul] ∈ E(H ′) for all
leafs of T k

L. This coloring is the following: Consider all leafs l and all numbers i ∈ {1, . . . , L}. For
each pair, the set S(l, i) consist of some vertices v1, . . . , vp ∈ V for some p = |S(l, i)| ∈ {1, . . . , d}.
We set c(l, i, x) = vx for x ∈ {1, . . . , p} and c(l, i, x) = vp (or any other element of S(l, i), it does
not matter) for x ∈ {p+ 1, . . . , d}.

With this definition, we clearly have c[Ul] = S(l, 1)∪· · ·∪S(l, L) and since S(l) ∈ E, the latter
is an element of E(H ′). Furthermore, c is a proper coloring: For all edges {(l, i, x), (l, j, y)} ∈ F
we know that the colors c(l, i, x) and c(l, j, y) are different since c(l, i, x) ∈ S(l, i) and c(l, j, y) ∈
S(l, j) and S(l, i) ∩ S(l, j) = ∅. Next, for the edges of the form {(l, z, x), (m, z, y)} ∈ F we also
have that c(l, z, x) and c(m, z, y) are different since S(l, z) and S(m, z) are disjoint.

For the other direction, let a coloring c be given. Define a mapping S from leafs(T k
L) ×

{0, . . . , L} to subsets of V as follows: For all l ∈ leafs(T k
l) let S(l, 0) = C and for i ∈ {1, . . . , L}

let S(l, i) = {c(l, i, 1), c(l, i, 2), . . . , c(l, i, d)}.
To see that S has the properties of a pseudo-sunflower, consider the four properties. The

first property is clearly true by definition. The second follows from c[Ui] ∈ E(H ′) and, hence
C∪c[Ui] ∈ E(H). The third item follows from the following fact: For any two vertices vx ∈ S(l, i)
and vy ∈ S(l, j) for i 6= j, there is an edge between (l, i, x) and (l, j, y) in G and, thus, vx 6= vy.
This shows that S(l, i) ∩ S(l, j) = ∅ must hold; and note that, clearly, S(l, i) 6= ∅ always holds.
For the fourth item, we have S(l, z) ∩ S(m, z) = ∅ since for all vx ∈ S(l, z) and vy ∈ S(m, z)
there is an edge between (l, z, x) and (m, z, y) in G.

Theorem 5.6 now implies Theorem 1.2 by simple standard arguments:

Proof of Theorem 1.2. The only difference between the above claim and the claim of Theo-
rem 5.6 (apart from the exact formulation) is that Theorem 1.2 requires the AC

0-circuit family
to have size |V |c|E|c for some constant c, while Theorem 5.6 allows it to have size f(k, d)|V |c|E|c.
To reduce the size, on input (H, k), a kernelization algorithm for Theorem 1.2 first checks whether
we have f(k, d) > |V |c|E|c and, if so, just outputs (H, k); otherwise it runs the kernelization
algorithm from Theorem 5.6, which needs size f(k, d)|V |c|E|c ≤ |V |2c|E|2c.

6 Conclusion

The results of this paper can be summarized as pk,d-hitting-set ∈ para-AC0 or, equivalently,
that kernels for the hitting set problem parameterized by k and d can be computed by a single
AC

0-circuit family. This result refutes a conjecture of Chen et al. [11]. The proof introduced a
new technique: Iterated applications of color coding can sometimes be “collapsed” into a single
application. This collapsing is not always straightforward (as the present paper showed) and
additional technical machinery may be needed to make it work.

The proof of our main result would be much simpler if the number of k-cores of a hypergraph
depended only on the parameters k and d (since, then, only one round would be needed in the
parallel algorithm). While we gave examples that refute this hope, it may be possible to tweak
the idea a bit: We can compute in constant parallel time the set of all inclusion-minimal
k-cores of a hypergraph. We believe that we can prove that the number of these inclusion-
minimal k-cores depends only on k and d (unfortunately, we need rather involved and technical
combinatorics and the dependence on k and d seems to be “quite bad”). Nevertheless, if this
is the case, we get a different proof that pk,d-hitting-set has an AC

0-kernelization, where the
complexity of proving correctness is shifted away from the algorithm (which gets much simpler)
towards the underlying graph theory and combinatorics.

17

References

[1] F. N. Abu-Khzam, M. A. Langston, P. Shanbhag, and C. T. Symons. Scal-
able parallel algorithms for fpt problems. Algorithmica, 45(3):269–284, 2006.
doi:10.1007/s00453-006-1214-1.

[2] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–
856, 1995. doi:10.1145/210332.210337.

[3] Max Bannach, Christoph Stockhusen, and Till Tantau. Fast parallel fixed-parameter
algorithms via color coding. In Proceedings of the Tenth International Sympo-
sium on Parameterized and Exact Computation (IPEC 2015), pages 224–235, 2015.
doi:10.4230/LIPIcs.IPEC.2015.224.

[4] Max Bannach and Till Tantau. Parallel multivariate meta-theorems. In Proceedings of the
Eleventh International Symposium on Parameterized and Exact Computation (IPEC 2016),
pages 4:1–4:17, 2016. doi:10.4230/LIPIcs.IPEC.2016.4.

[5] Max Bannach and Till Tantau. Computing hitting set kernels by AC0-circuits. Technical
Report arxiv:. [cs.], ArXiv e-prints, 2018. URL: http://arxiv.org/abs/.

[6] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity within
NC1. In Proceedings of the Third Annual Structure in Complexity Theory Conference, pages
47–59, 1988. doi:10.1109/SCT.1988.5262.

[7] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes of pa-
rameterized tractability. Annals of Pure and Appied Logic, 84(1):119–138, 1997.
doi:10.1016/S0168-0072(95)00020-8.

[8] Marco Cesati and Miriam Di Ianni. Parameterized parallel complexity. In Proceedings of
the Fourth International Euro-Par Conference, volume 1470 of Lecture Notes in Computer
Science, pages 892–896. Springer, 1998. doi:10.1007/BFb0057945.

[9] Y. Chen and J. Flum. Some lower bounds in parameterized AC0. In Proceedings of the
41st International Symposium on Mathematical Foundations of Computer Science (MFCS
2016), pages 27:1–27:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.27.

[10] Y. Chen, J. Flum, and M. Grohe. Bounded nondeterminism and alternation in
parameterized complexity theory. In Proceedings of the 18th IEEE Conference on
Computational Complexity (CCC 2003), pages 13–29. IEEE Computer Society, 2003.
doi:10.1109/CCC.2003.1214407.

[11] Yijia Chen, Jörg Flum, and Xuangui Huang. Slicewise definability in first-order logic
with bounded quantifier rank. In 26th EACSL Annual Conference on Computer Sci-
ence Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, pages 19:1–19:16, 2017.
doi:10.4230/LIPIcs.CSL.2017.19.

[12] M. Elberfeld, C. Stockhusen, and T. Tantau. On the Space Complexity of Pa-
rameterized Problems: Classes and Completness. Algorithmica, 71(3):661–701, 2014.
doi:10.1007/s00453-014-9944-y.

[13] P. Erdős and R. Rado. Intersection theorems for systems of sets. Journal of the London
Mathematical Society, 1(1):85–90, 1960.

18

http://dx.doi.org/10.1007/s00453-006-1214-1
http://dx.doi.org/10.1145/210332.210337
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.4
http://arxiv.org/abs/.
http://dx.doi.org/10.1109/SCT.1988.5262
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1007/BFb0057945
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.27
http://dx.doi.org/10.1109/CCC.2003.1214407
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.19
http://dx.doi.org/10.1007/s00453-014-9944-y

[14] J. Flum and M. Grohe. Describing parameterized complexity classes. In Proceedings
of the 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS
2002), volume 2285 of Lecture Notes in Computer Science, pages 359–371. Springer, 2002.
doi:10.1007/3-540-45841-7_29.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer
Science. Springer, 2006. doi:10.1007/3-540-29953-X.

[16] Rolf Niedermeier and Peter Rossmanith. An efficient fixed-parameter algo-
rithm for 3-hitting set. Journal of Discrete Algorithms, 1(1):89–102, 2003.
doi:10.1016/S1570-8667(03)00009-1.

[17] René van Bevern. Towards optimal and expressive kernelization for d-hitting set. Algorith-
mica, 70(1):129–147, September 2014. doi:10.1007/s00453-013-9774-3.

19

http://dx.doi.org/10.1007/3-540-45841-7_29
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1016/S1570-8667(03)00009-1
http://dx.doi.org/10.1007/s00453-013-9774-3

	1 Introduction
	2 Preliminaries
	3 Known Kernelization Algorithms for the Hitting Set Problem
	3.1 Known Sequential Kernelization Algorithms
	3.2 Known Parallel Kernelization Algorithm

	4 Pseudo-Cores and Pseudo-Sunflowers
	5 The Constant-Depth Kernelization
	6 Conclusion

