
Computing Kernels in Parallel: Lower and Upper Bounds

Max Bannach Till Tantau

Institute for Theoretical Computer Science,
Universität zu Lübeck

Lübeck, Germany
{bannach,tantau}@tcs.uni-luebeck.de

Abstract

Parallel fixed-parameter tractability studies how parameterized problems can be solved in parallel.
A surprisingly large number of parameterized problems admit a high level of parallelization, but
this does not mean that we can also efficiently compute small problem kernels in parallel: known
kernelization algorithms are typically highly sequential. In the present paper, we establish a number
of upper and lower bounds concerning the sizes of kernels that can be computed in parallel. An
intriguing finding is that there are complex trade-offs between kernel size and the depth of the circuits
needed to compute them: For the vertex cover problem, an exponential kernel can be computed
by AC0-circuits, a quadratic kernel by TC0-circuits, and a linear kernel by randomized NC-circuits
with derandomization being possible only if it is also possible for the matching problem. Other
natural problems for which similar (but quantitatively different) effects can be observed include tree
decomposition problems parameterized by the vertex cover number, the undirected feedback vertex
set problem, the matching problem, or the point line cover problem. We also present natural problems
for which computing kernels is inherently sequential.

1 Introduction
The core objective of parameterized complexity has classically been to determine which problems can be
solved in “FPT time,” meaning time f(k) ·nc for instances of size n, where c is a constant, f is an arbitrary
computable function (usually at least exponential), and k is a hopefully small instance parameter. Over
the last 25 years, theoreticians in the field have been very successful at determining which problems admit
algorithms of this kind and practitioners have been very successful at implementing them. In both cases,
the focus has traditionally been on finding sequential algorithms, but in recent years interest in parallel
algorithms has sparked, leading to the new field of parallel fixed parameter tractability.

In classical sequential FPT algorithms, kernelization algorithms play a key role. They shrink the
input to a small but difficult core (called the kernel), leading to the following design principle of modern
parameterized algorithms: Firstly, in polynomial time, a kernelization algorithm computes a kernel that
is, secondly, solved using an exponential (or worse) time algorithm – yielding a total running time of the
form f(k) + nc. Regarding the parallelization of these two algorithmic steps, it turns out that the second
one is usually the easier one: the kernel is typically processed using the search tree technique or just
by “brute force,” both of which allow natural parallelizations. In contrast, kernelization algorithms are
typically described in a very sequential way, namely “apply these reduction rules over and over again.” This
means that designing parallel fixed-parameter algorithms effectively means designing parallel kernelization
algorithms – which is exactly what this paper addresses.

Our Contributions. We start our systematic investigation of parallel kernelization by linking the
parameterized analogues of the NC-hierarchy to kernel computation using NC-circuits. Such a link is
already known for FPT and kernels computed in polynomial time. We establish a circuit version of the
well-known result that all algorithms running in time f(k) · nc can also be implemented with running
time g(k) + nc: We can turn any circuit family of size f(k) · nc and depth f(k) + c logi n into one of size
g(k) + nc

′
and depth c′ logi n (note that we can remove the parameter dependence from the depth).

The bulk of the paper consists of a series of lower and upper bounds on the size of kernels that can be
computed by circuits of certain depths. We show that for natural problems like the vertex cover problem

1

intriguing trade-offs arise: the faster our algorithm, the worse our kernel. For p-vertex-cover we show
that a simple exponential kernel can be computed in AC0, a quadratic kernel can be computed in TC0,
and a linear kernel can be computed in randomized NC. Other problems for which we establish similar
results include the tree width, path width, and tree depth problems parameterized by the vertex cover
number of the input graph.

On the negative side, we also establish a number of lower bounds for the parallel computation of small
kernels. We show that a classical 2k kernel for the vertex cover problem can only be computed in parallel
if the maximum matching problem for bipartite graphs is in NC, for which RNC2 and quasi-NC2 are the
best known upper bounds; that classic reduction rules for feedback vertex set are P-complete (but an
exponential kernel can be computed in AC2); that for the point line cover problem we cannot (absolutely,
without any assumptions) compute any kernel in AC0 (but we can compute a quadratic one in TC0); and
that kernels for generalized versions of Horn satisfiability, linear programming, and maximum flow cannot
be computed in polylogarithmic time unless NC = P. The later results in fact presents three natural
FPT-complete problems, which demonstrate the limits of fixed parameter parallelization.

Table 1 summarizes which trade-offs are established in this paper between the parallel time needed to
compute kernels and their sizes.

Table 1: An overview of problems studied in this paper, showing which kernel size can be achieved in
certain layers of the NC-hierarchy. An explicit function represents the best bound the authors are aware
of, pointed out in this work or (for the P-column) in cited works; f(k) corresponds to kernels originating
from Theorem 2.3; and “–” means that there is no kernel of any size (either absolutely or unless TC0 = L

for –1, unless TC0 = NL for –2, unless TC0 = P for –3, unless NC = P for –4, unless P ⊆ RNC for –5, and
unless NC1 = P for –6). For problems parameterized by the vertex cover number, S is the given vertex
cover; the δ in the first column can be any fixed positive integer.

Problem Kernel size achievable in
AC0 TC0 NC RNC P

p-vertex-cover 2
δ√
k k2 + 2k k2 + 2k 2k 2k − c log k

p-matching 2
δ√
k 6k2 6k2 1 1

pvc-tree-width 2
δ
√
|S| |S|3 |S|3 |S|3 |S|3

pvc-path-width 2
δ
√
|S| |S|3 |S|3 |S|3 |S|3

pvc-tree-depth 2
δ
√
|S| |S|3 |S|3 |S|3 |S|3

p-point-line-cover – k2 k2 k2 k2

p-feedback-vertex-set – –1 f(k) f(k) 2k2 + k
p-strong-backdoor-2cnf-sat – –2 f(k) f(k) f(k)
p-strong-backdoor-horn-sat – –3 –3 –5 f(k)
p-mixed-integer-programming – –6 –4 –5 f(k)
p-max-flow-quantities – –6 –4 –5 f(k)

Related Work. Parameterized complexity is a rapidly growing field, see [14, 15, 18] for an intro-
duction, in which parallelization is a recent research direction. Early research in the late 1990s was done
by Cai, Chen, Downey, and Fellows [9] who studied parameterized logaritmic space. A structural study
of parameterized logspace and parameterized circuit classes was started around 2015 by Elberfeld et
al. [16]; see also the references therein. The parameterized version of the NC-hierarchy we use in this
paper was introduced in [2]. Chen and Flum studied lower bounds in this context and especially provide
some details and alternative characterizations for parameterized AC0. There is a huge body of literature
on polynomial-time algorithms for computing small kernels, but the authors are not aware of results
concerning how quickly these kernels can be computed in parallel.

Organization of This Paper. We review basic terminology in Section 2, where we also establish
the link between parameterized parallel complexity and parallel kernel computation. Each of the following
sections studies a different well-known parameterized problem and establishes trade-offs between kernel
size and speed. We start with the vertex cover and the matching problem in Section 3, followed by the

2

feedback vertex set problem in Section 4, structural parameterizations for tree width, path width, and
tree depth in Section 5, the p-point-line-cover problem in Section 6, and finally generalized versions of
Horn satisfiability, linear programming, and maximum flow in Section 7.

2 Parameterized Parallel Complexity Classes and Kernelization
We use standard terminology of parameterized complexity theory, see for instance [18]. A parameterized
problem is a tuple (Q, κ) consisting of a language Q ⊆ Σ∗ and a parameterization κ : Σ∗ → N. The
complexity of κ should not exceed the power of the classes that we consider, and since we study small
parameterized circuit classes, we require κ to be computable by dlogtime-uniform constant-depth
AC-circuits or, equivalently, to be first-order computable. We denote parameterized problems by a leading
“p-” as in p-vertex-cover, and, whenever the parameterization κ is not clear from the context, we add
it as an index as in pvc-tree-width. A parameterized problem (Q, κ) is fixed-parameter tractable (or in
FPT) if there is a computable function f : N→ N and a constant c such that we can decide x ∈ Q in time
f(κ(x)) · |x|c for all x ∈ Σ∗. In this paper we study the parallel complexity of parameterized problems,
that is, the parameterized counter part of the NC-hierarchy. Formally we study the following classes, see
for instance [2, 11] for a detailed discussion:

Definition 2.1. For each i > 0, a parameterized problem (Q, κ) is in dlogtime-uniform para-ACi if
there exists a computable function f : N→ N, a constant c ∈ N, and a family of AC-circuits (Cn,k)n,k∈N
such that:

1. For all x ∈ Σ∗ we have C|x|,κ(x)(x) = 1 ⇐⇒ x ∈ Q.

2. The depth of each Cn,k is at most f(k) + c logi n.

3. The size of each Cn,k is at most f(k) · nc.

4. There is a deterministic Turing machine that on input of bin(i)# bin(k)# bin(n), where bin(x) is
the binary encoding of x, outputs the ith bit of a suitable encoding of Cn,k in at most f(k) + c log n
steps.

The class para-AC0 is defined as above, but with circuits of constant depth. Additionally, we define for
all i ≥ 0 the class para-ACi↑ with circuits of depth f(k) · logi n. In particular, para-AC0↑-circuits have
depth f(k). Recall that AC-circuits are defined over the standard base of not-, or-, and and-gates
and that the last two may have unlimited fan-in. The same definition works for NC-circuits (all gates
have bounded fan-in) and TC-circuits (additional threshold gates are allowed). It is known that the
parameterized classes inherit their inclusion structure from their classical counterparts [2]:

para-AC0 (para-TC0 ⊆ para-NC1 ⊆ para-AC1 ⊆ para-TC1 ⊆ · · · ⊆ para-NC ⊆ FPT.

A Parallel Analogue of “FPT = Kernels Computable in Polynomial Time”. One of the
most fruitful aspects of parameterized complexity is the concept of kernelization. Let f : N → N be a
computable function. A kernelization of a parameterized problem (Q, κ) is a self-reduction K : Σ∗ → Σ∗

such that for every x ∈ Σ∗ we have x ∈ Q ⇐⇒ K(x) ∈ Q and |K(x)| ≤ f(κ(x)). The images of K are
called kernels and as they later need to be processed by at least exponential-time algorithms, we are
interested in kernels that are as small as possible – while they still need to be efficiently computable,
meaning in polynomial time from the view point of FPT theory. The following result is well-known and
gives a deep connection between parameterized complexity and kernelization:

Fact 2.2 (for instance [18]). A decidable parameterized problem (Q, κ) is in FPT if, and only if, it admits
a polynomial-time computable kernelization.

The following theorem shows that the same relation also connects the AC-hierarchy with its parame-
terized counterpart. Note that in the theorem the ACi-circuits are really “normal ACi-circuits,” meaning
that their size is just polynomial in the input length.

3

Theorem 2.3. A decidable parameterized problem (Q, κ) is in para-ACi if, and only if, it admits a
kernelization computable by a dlogtime-uniform family of ACi-circuits.

Proof. Let f : N→ N be a computable function and c ∈ N be a constant as in Definition 2.1, let furthermore
(Q, κ) be a parameterized problem. Assume for the first direction that a kernelization K of (Q, κ) can be
computed by a dlogtime-uniform family (Cn)n∈N of ACi-circuits. Then we construct a family (Cn,k)n,k∈N
of para-ACi-circuits as follows: Circuit Cn,k uses Cn as a first black box, which is possible due to the
depth and size definitions, and reduces the input to an instance of size at most f(κ(x)). Then the circuit
essentially applies naive “brute force” in the form of a big or-gate that checks if any element of Q of
length at most f(κ(x)) equals the computed kernel (we need the decidability of Q at this point to ensure
that the circuit family is uniform).

For the other direction let us assume (Q, κ) ∈ para-ACi witnessed by a dlogtime-uniform family
(Cn,k)n,k∈N of para-ACi-circuits, and let us first assume i > 0. We may further assume that the computable
function f used in the definition of (Cn,k)n,k∈N is a monotone increasing function with f(x) > x for all
x ∈ N, and that there is a Turing machine Mf that computes f(x) on input bin(x) in time O(log f(x)).
To see this, observe that, since f is computable, there is a Turing machine M ′f that computes f(x) on
input bin(x) in some time T (x) such that T is a monotone increasing function and such that T (x) > x for
all x ∈ N. We may replace f with g(x) = 2T (x), which fulfils the above requirements. The resulting family
(C ′n,k)n,k∈N is still a family of para-ACi-circuits that accepts the same language.

For every n ∈ N we define k̃ ∈ N to be the maximum k such that f(k) ≤ c logi n. We will use k̃ in the
following construction and, hence, k̃ must be computable by a Turing machine in time O(log n) on input
bin(n) to ensure uniformity. This is the case, as an appropriate Turing machine can first compute the
value c logi n (this is possible since log n is a log log n-bit number, i is a constant, and c logi n is thus a
2i log log n ∈ O(log log n)-bit number) and can then perform binary search to find k̃. The later is possible
since f is monotone increasing and since k̃ ≤ c logi n as we have f(x) > x. Therefore, the Turing machine
has to test only log

(
c logi n

)
∈ O(log log n) possible k. Finally, for a fixed k ≤ c logi n the Turing machine

can simulate Mf on input bin(k) for log
(
c logi n

)
∈ O(log logn) steps and either obtains the value f(k)

or, if Mf does not finish, can conclude that f(k) > c logi n.
We now construct a family of ACi-circuits that compute a kernelization of (Q, κ). Each circuit Cn

consists of k̃ subcircuits C0
n, . . . , C

k̃
n that are evaluated in parallel. The circuit Cjn first checks on input

x whether or not κ(x) = j, which is possible since κ can be computed by AC0-circuits (by definition).
If this test is affirmative, the circuit uses Cn,j to solve the problem and outputs a trivial kernel, that
is, a trivial yes- or no-instance of Q. Otherwise Cjn just sets a flag that states that it is not responsible
for this instance. Note that there is a constant c′ such that Cn,j has, by definition, depth at most
f(j) + c logi n ≤ (c+ 1) logi n ≤ c′ logi n and size at most f(j) ·nc ≤ c logi n ·nc ≤ nc′ . If any Cin produces
a kernel, then Cn just presents this kernel as result. If, otherwise, all Cjn state that they are not responsible,
we have κ(x) > k̃ and f(κ(x)) > c logi n and, thus, we already deal with a kernel, that is, Cn can just
present the input as output.

For the remaining case, i = 0, we perform the same construction, but choose k̃ such that f(k̃) ≤ nc,
that is, we bound the subcircuits by size and not by depth.

The theorem also holds if we replace ACi with NCi or TCi. The only exception is NC0, as this class
may not be powerful enough to compute κ.

Application: Improve the Work of Parallel Algorithms. When we study the performance
of parallel algorithms, we usually do not only measure the time of the algorithm (as we would in the
sequential case), but also its work (the total number of computational steps performed by the algorithm).
This is important as a parallel algorithm may need polynomially many processors to reach its promised
runtime: For instance, an algorithm that runs in time O(log n) with O(n2) work will need at least time
O(n2/p) on a machine with p processors – which is bad if there exists a linear time sequential algorithm
and p < n. In the circuit model the parallel time of an algorithm corresponds to the depth of the circuit,
and the work to its size. While the layers of the AC- and para-AC-hierarchy measure the time of parallel
algorithms quite precisely, they only require the size of the circuits to be polynomial or to be bounded
by f(k) · nc, respectively. Using Theorem 2.3, we can improve the work of any parameterized parallel
algorithm from f(k) · nc to g(k) + nc

′
while, at the same time, reducing the depth of the circuit from

f(k) + c logi n to c′ logi n.

4

Lemma 2.4. Let (Q, κ) be a parameterized problem with (Q, κ) ∈ para-ACi. Then there are a computable
function g : N → N and a constant c′ such that there is a dlogtime-uniform family (C ′n,k)n,k∈N of
para-ACi-circuits that decides (Q, κ) and in which every C ′n,k has depth at most c′ logi n and size at most
g(k) + nc

′
.

Proof. Since (Q, κ) ∈ para-ACi, there is a dlogtime-uniform family (Cn,k)n,k∈N of para-ACi-circuits that
decides (Q, κ). Let f : N→ N and c ∈ N be as in Definition 2.1. By Theorem 2.3 there is a constant c′ and
a dlogtime-uniform family (Cn)n∈N of ACi-circuits such that every Cn has depth at most c′ logi n and
size at most nc

′
and produces a kernel of size at most f(κ(x)). We construct the desired family (C ′n,k)n,k∈N

as follows: The circuit C ′n,k first applies the circuit Cn to an input x and obtains an instance x′ of size at
most f(κ(x)), then the circuit uses a constant number of AC layers to check x′ ∈ Q by testing in parallel
for all w ∈ Q with |w| ≤ f(κ(x)) whether w = x′ holds.

Therefore, the depth of C ′n,k equals (up to a constant) the depth of Cn, and the size of C ′n,k is the sum
of the size of Cn and the size of the “brute force” circuit applied at the end, that is, there is a computable
function g : N→ N such that size of C ′n,k can be bounded by g(κ(x)) + nc

′
.

Note that the function g from the lemma may grow exponentially faster then f , as the circuit from
the lemma internally solves an instance x′ with |x′| ≤ f(κ(x)) and κ(x′) ≤ f(κ(x)). A direct application
of Lemma 2.4 is therefore only of theoretical interest. It shows, however, that we can always search for
parameterized parallel algorithms that run in polylogarithmic time and whose work is polynomial plus an
additive term depending only on the parameter.

3 Parallel Kernels for Vertex Cover and Matching
The parameterized vertex cover problem is a prime example used to demonstrate many different kerneliza-
tion techniques, and an outrider in the race for small kernels. In this section we revisit the problem from
the point of view of circuit complexity and establish a link between circuit complexity and kernel size. An
early result in this context is due to Cai et al. [9] which, translated into the terminology of the present
paper, implies that a kernel for p-vertex-cover can be computed in logarithmic space and, hence, in
AC1. Elberfeld et al. [16] later noticed that the kernel of size k2 + 2k computed by Cai et al. can actually
also be computed in TC0. This result was later once more refined by showing that the same kernel can
be computed in para-AC0 [2]. Together with Theorem 2.3 this implies that a kernel of size f(k) can be
computed in AC0 for some computable function f . In fact, we can improve the bound in this case to 2

δ√
k

for any fixed δ > 0:

Lemma 3.1. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that, on input of a
tuple (G, k), outputs a p-vertex-cover kernel with at most 2

δ√
k vertices.

Proof. Let I be the input instance and let n = |I| be the size of its encoding. The circuit first checks if
we have k ≤ logδ(n). If not, we have 2

δ√
k > n and the instance is already the desired kernel. Otherwise

the circuit can simulate threshold gates up to k using standard hashing techniques, as AC0-circuits can
simulate polylogarithmic threshold gates [33]. Since the TC0-circuit from Elberfeld et al. [16] only uses
threshold gates up to k, it follows that the AC0-circuit under construction can simulate this TC0-circuit,
which completes the proof.

The central observation in the proof of Lemma 3.1 is that the threshold-gates in the corresponding
family of TC0-circuits only “count up to the parameter.” We will use exactly the same trick for other TC0-
kernelizations, but will then only formulate it as corollary. Summarizing the statements from above, we
can compute an exponential kernel for p-vertex-cover in AC0 and a quadratic kernel in TC0. However,
the best known kernelizations for p-vertex-cover are able to produce linear kernels – and a reasonable
next step is to implement them in parallel as well. Unfortunately, this is a way more challenging task, as
both the classical 3k kernel based on crown decomposition [14] and the 2k kernel due to Chen et al. [10]
require the computation of sufficiently large matchings. We can state this more precisely for the latter
observation, by showing that the core part of the kernelization is NC-equivalent to computing maximum
matchings in bipartite graphs. The kernelization of Chen et al. is based on the following fact, known as
the Nemhauser–Trotter Theorem:

5

Fact 3.2 ([32]). Let G = (V,E) be a graph and I = {xv | v ∈ V } be a set of variables. For every optimal
solution β : I → R for the following linear program (LPVC)

min
∑
v∈V xv

xu + xv ≥ 1 for all {u, v} ∈ E
xv ≥ 0 for all v ∈ V

let V0 = { v | β(xv) < 1/2 }, V1/2 = { v | β(xv) = 1/2 }, V1 = { v | β(xv) > 1/2 } be a partition of V .
There is a minimum vertex cover S of G that satisfies V1 ⊆ S ⊆ V1 ∪ V1/2.

Chen et al. have shown that one can obtain the desired kernel from a solution of LPVC by discarding
the vertices of V0 and by taking the vertices of V1 into the solution. The remaining 2k vertices of V1/2
constitute the kernel [10]. The following theorem shows that solving LPVC is tightly linked to the
maximum matching problems for bipartite graphs.

Theorem 3.3. Computing a solution for LPVC is NC-equivalent to computing a maximum matching in
bipartite graphs.

Proof. The first direction is essentially the standard way of efficiently solving LPVC: Given an instance
of LPVC we construct a bipartite graph H =

(
{ v1, v2 | v ∈ V },

{
{u1, v2}, {u2, v1} | {u, v} ∈ E

})
and

compute a minimum vertex cover S of it. One can show that the following assignment is an optimal
solution for LPVC [14]:

β(xv) =

0 for |{v1, v2} ∩ S| = 0,

1/2 for |{v1, v2} ∩ S| = 1, and
1 for |{v1, v2} ∩ S| = 2.

Since H is bipartite, computing a minimum vertex cover is equivalent to computing a maximum matching
due to König’s Theorem [28]. More precisely: To obtain the vertex cover S, we compute a maximum
matching in H and this matching constitutes an optimal solution to the dual program of LPVC. Due
to the Complementary Slackness Theorem, we can derive an optimal solution for the primal program
from an optimal solution of the dual program by solving a linear system of equations, which is possible
in NC [25]. Note that the matrices of both LPVC and its dual are totally unimodular, as the incidence
matrix of a bipartite graph is totally unimodular, and since the transpose of a totally unimodular matrix
is so as well. Therefore, Cramer’s Rule states that the solution that we obtain for the dual program with
the algorithm from above is integral as well. This completes this part of the proof.

For the other direction the input is a bipartite graph G = (V,E) in which we search for a maximum
matching. Let β be an optimal real solution of LPVC for G. We can transform β into a (still optimal)
half-integral solution β′ by simple rounding:

β′(xv) =

0 if β(xv) < 1/2,
1/2 if β(xv) = 1/2, and
1 if β(xv) > 1/2.

This well-known fact is based on [32], and can be shown by the following procedure that successively
transforms β into refined optimal solutions, ending at β′. To refine β we define the sets V+ = {xv | 0 <
β(xv) < 1/2 } and V− = {xv | 1/2 < β(xv) < 1 }. We now define for a suitable small ε > 0 the two
assignments

β+(xv) =

β(xv) if xv 6∈ V+ ∪ V−,
β(xv) + ε if xv ∈ V+, and
β(xv)− ε if xv ∈ V−,

and β−(xv) =

β(xv) if xv 6∈ V+ ∪ V−,
β(xv)− ε if xv ∈ V+, and
β(xv) + ε if xv ∈ V−.

Observe that both, β+ and β−, are still feasible solutions, as for any edge {u, v} the constraint xu+xv ≥ 1
is still satisfied (either one of the variables is already 1, or they are both 1/2, or we add ε to at least one
of them). Further observe that, compared to β, the value of the target function changes by ε|V+| − ε|V−|
and ε|V−| − ε|V+|, respectively. Since β is optimal, neither β+ nor β− may reduce the value of the target
function compared to β; consequently we have |V+| = |V−| and β+ and β− are both optimal solutions.
Conclusively observe that, by repeating this process successively, we will end up at β′.

6

To conclude this part of the proof, we will now turn β′ into an integral solution. To achieve this,
we construct an auxiliary graph G′ by deleting all vertices with value 1 in G (as these must be in the
vertex cover). Since all vertices with value 0 are now isolated, we may remove them too. We end up
with a bipartite graph G′ with n′ vertices, which are all assigned with the value 1/2 by β′. We claim β′

is an optimal solution for LPVC on G′. For a contradiction assume otherwise, that is, assume there is
an assignment γ with

∑
v∈V (G′) γ(xv) <

∑
v∈V (G′) β

′(xv). We can infer a new assignment β′′ for G by
“plugging” γ into β′:

β′′(xv) =

{
β′(xv) if xv 6∈ V (G′);
γ(xv) if xv ∈ V (G′).

Observe that this is a feasible solution for LPVC on G, since for all edges {u, v} we have:

β′′(xu) + β′′(xv) =

γ(xu) + γ(xv) ≥ 1 if u, v ∈ V (G′);
β′(xu) + β′(xv) ≥ 1 if u, v 6∈ V (G′);
β′(xu) + γ(xv) ≥ 1 if u 6∈ V (G′) and v ∈ V (G′).

The first two lines follow by the fact that γ and β′ are feasible; the last line follows by the construction of
G′, as an edge {u, v} with u 6∈ V (G′) and v ∈ V (G′) only appears if we have β′(xu) = 1 (we have only
deleted isolated vertices and vertices with value 1, and here u was deleted and is not isolated). By the
construction of β′′, we end up with

∑
v∈V (G) β

′′(xv) <
∑
v∈V (G) β

′(xv), which is a contradiction as β′ is
an optimal solution for LPVC on G. Consequently, β′ must be an optimal solution for LPVC on G′ as
well.

Since β′ assigns 1/2 to all vertices in G′, a minimal vertex cover of G′ has size at least n′/2. Therefore,
G′ has to consist of two equally sized shores, as otherwise the smaller one would be a vertex cover of size
smaller than n′/2. We can, thus, greedily select one shore into the vertex cover, that is, we set β′ for one
shore to 1 and for the other to 0. The obtained optimal integral solution of LPVC can be turned, as in
the first direction, into a solution for the dual program in NC, i. e., into a maximum matching of G.

The parallel complexity of the maximum matching problem is still not fully resolved. The currently
best parallel algorithms run in RNC2 [31] or quasi-NC2 [17]. From the theorem we can deduce that we
can compute the Nemhauser–Trotter-based 2k-vertex kernel for p-vertex-cover in RNC and quasi-NC;
and we can deduce that we cannot compute this kernel in NC without improving the parallel complexity
of the maximum matching problem – which is a longstanding open problem.

Corollary 3.4. There is a dlogtime-uniform family of NC-circuits of polylogarithmic depth that, on
input of a graph G = (V,E) and an integer k, outputs a kernel of p-vertex-cover with at most 2k
vertices. The circuits of the family either use randomness and have size |V |c, or are deterministic and of
size |V |c log |V |.

Note that other kernels that are based on the Nemhauser–Trotter Theorem, such as the one by
Soleimanfallah and Yeo [34], or the one by Lampis [30], also do not bypass Theorem 3.3. A natural goal
is, thus, to compute linear kernels for p-vertex-cover in NC – most likely using an algorithm that does
not rely on a LPVC relaxation. Table 1 summarizes the complexity of computing kernels of certain size
for p-vertex-cover.

Since p-matching turns out to be an obstruction for parallel kernelization, it is a natural question
in the light of this paper, whether or not we are able to compute polynomial kernels for the matching
problem in NC. Note that the problem is in para-AC0, and hence we can compute a size-f(k) kernel in
AC0; and since matching ∈ RNC we can compute a size-1 kernel in RNC.

Lemma 3.5. There is a dlogtime-uniform family of TC0-circuits that, on input of a tuple (G, k),
outputs a p-matching kernel with at most O(k2) vertices.

Proof. The circuit first computes a set S = { v ∈ V | |N(v)| > 2k } of “high-degree” vertices. If we have
|S| ≥ k, the circuit can output a trivial yes-instance since for such a set S we can greedily match any
vertex v ∈ S with a vertex u ∈ N(v) \ S, reducing the available matching mates of all other vertices in S
by at most two – and since they have degree at least 2k, there are still enough mates left to match every
vertex of S.

If the circuit has not finished yet, we compute a set S′ consisting of S and 2k arbitrary neighbors
of every vertex in S (take the lexicographically first for each v ∈ S, for instance). Note that we have

7

|S′| ≤ 2k2. Consider the graph G′ = G[V \ S′]. Since S was the set of high-degree vertices, G′ has
maximum-degree d ≤ 2k. Our circuit now removes all isolated vertices from G′, resulting in G′′, and then
checks if we have |V (G′′)| ≥ k · 2d. If so, we can output a trivial yes-instance since a graph with maximum
degree d and minimum degree 1 always contains a matching of size |V (G′′)|/2d ≥ k. If, on the other hand,
we have |V (G′′)| ≤ k · 2d ≤ 4k2, the circuit outputs G[S′ ∪ V (G′′)] together with the unchanged number k.

The output clearly always has size at most O(k2). To see that G[S′ ∪ V (G′′)] is a kernel, we clearly
only have to show that if G has a size-k matching M , so does G[S′ ∪V (G′′)] (the other direction is trivial).
To see this, first note that any edge in M that does not have an endpoint in S must lie in G′′ and, hence,
is also present in G[S′ ∪ V (G′′)]. Next, all other edges in M must have an endpoint in S and, thus, there
can be at most |S| many such edges. While not all of these edges need to be present in G[S′], we can
greedily construct a matching of size |S| in G[S′] (by the same argument as the one of the beginning of
this proof for |S| ≥ k). This means that we find a matching of size |M | also in G[S′ ∪ V (G′′)].

The circuits of Lemma 3.5 need their threshold gates “only” to count up to k. We can thus deduce the
following corollary (the proof argument is the same as for Lemma 3.1):

Corollary 3.6. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that, on input of a
tuple (G, k), outputs a p-matching kernel with at most O(2

δ√
k) vertices.

4 Parallel Kernels for the Feedback Vertex Set Problem
The input for p-feedback-vertex-set = p-fvs is an undirected multigraph G = (V,E) and an integer k,
the question is whether it is possible to delete k vertices such that the remaining graph is a forest. The
problem is well-known to be fixed-parameter tractable. Concerning the parallel complexity, it is known
that membership in FPT can be witnessed by a machine that uses “FPT time and XL space” [16] and the
problem was recently shown to lie in para-NC2+ε ⊆ para-NC3 [3].

A lot of effort has been put into the design of sequential kernels for this problem, ultimately resulting
in a kernel with O(k2) vertices [8, 7, 36, 24]. Much less is known concerning parallel kernels. Since the
k = 0 slice of p-fvs is exactly the L-complete [13] problem whether a given graph is a forest, we get as a
lower bound that no kernel of any size can be computed for p-fvs by any circuit class C unless L ⊆ C
and the smallest AC-class for which this is known is AC1. On the other hand, the mentioned membership
in para-NC2+ε together with Theorem 2.3 yield an NC2+ε kernel. In summary:

Lemma 4.1. There is a dlogtime-uniform family of NC2+ε-circuits that, on input of a tuple (G, k),
outputs a p-fvs kernel with at most f(k) vertices. There is no such family of AC1−ε-circuits, unless
L ⊆ AC1−ε.

A natural first question arising from this lemma is: Can we improve the bounds? It turns out that
we can lower the upper bound from NC2+ε to AC1+ε by observing the reduction rules used in sequential
kernels for p-fvs can, in certain cases, be applied in parallel. In detail, the known sequential kernels for
p-fvs all repeatedly apply (at least) the below rules, whose correctness is very easily seen. We will show
that each of the first three rules can individually be applied exhaustively in AC1. Based on this, we show
p-fvs ∈ para-AC1↑.

Leaf Rule Delete a vertex v of degree 1.

Chain Rule Contract a vertex v of degree 2 to one of its neighbors.

Loop Rule Delete a vertex v with v ∈ N(v), reduce k by 1.

Flower Rule Delete a vertex v that appears in more then k cycles that only share the vertex v, reduce
k by 1.

8

Lemma 4.2. There is a dlogtime-uniform family of AC1-circuits that, on input of a tuple (G, k),
outputs a tuple (G′, k′) that results from repeatedly applying (only) the Leaf Rule as long as possible. The
same holds for the Chain Rule and for the Loop Rule.

Proof. The claim follows immediately for the Loop Rule as we may delete all such vertices in parallel and
since the deletion of a vertex cannot create new vertices with a self-loop. For the other two rules observe
that an “exhaustive application” equals either the deletion of attached trees (for the Leaf Rule), or the
contraction of induced paths (for the Chain Rule). For the first case, the circuit must be able to detect if a
vertex v becomes a leaf at some point of the computation (of course, the circuit cannot sequentially delete
degree one vertices). The following observation provides a locally testable property that allows precisely
such a detection: A vertex v is contained in an attached tree if, and only if, it is possible to delete a single
edge such that (a) the graph decomposes into two components and such that (b) the component of v is
a tree [16]. Both properties can be tested in logspace (and hence in AC1), and an AC1-circuit can test
them for all vertices and all edges in parallel. Finally, for the Chain Rule, observe that an AC1-circuit can
mark all degree two vertices in parallel and that such a circuit, afterwards, only has to connect the two
endpoints of highlighted paths – which is a again a logspace task.

Theorem 4.3. p-fvs ∈ para-AC1↑.

Proof. We have to construct a family of AC-circuits of depth f(k) · log n and size f(k) · nc. The circuits
will consist of k layers such that every layer finds a set of at most 3k vertices to branch on (which will be
done for the next layer). Note that layer i contains at most 3k as many subcircuits as layer i− 1.

Each layer consists of multiple AC1-circuits that work independently of each other on different possible
graphs (depending on the branches of the previous layer). Each of these circuits first checks if the input is
a yes-instance (input is a tree and k ≥ 0), or a no-instance (k < 0) – in the first case it just globally signals
this circumstance and in the second case it truncates this path of the computation. If the subcircuit has
not decided yet, it applies first the Leaf Rule exhaustively, and then Chain Rule exhaustively – both are
possible due to Lemma 4.2. The circuit now applies the Loop Rule (again, using Lemma 4.2), if the rule
has an effect (that is, k was reduced by at least one) the circuit is done and just pipes the result to the
next layer. If not, the circuit tests in parallel if there are two vertices v and u that are connected by a
multi-edge (that is, by at least two edges). If this is the case, any feedback vertex set must contain either
v or u and, hence, the circuit branches on these two vertices and pipes the two resulting graphs to the
next layer. Otherwise, we know that we have no vertex with a self-loop, no vertices with multi-edges, and
a minimum vertex-degree of at least three. The circuit then uses the simple fact that any size k feedback
vertex set in such graph must contain at least one vertex of the 3k vertices of highest degree, and hence,
may simple branch over these [14].

Since each layer reduced k in each branch by at least one, after at most k layers every branch has
decided if it deals with a yes- or a no-instance. Since each layer is implemented by an AC1-circuit, the
claim follows.

Corollary 4.4. There is a dlogtime-uniform family of AC1+ε-circuits that, on input of a tuple (G, k),
outputs a p-fvs kernel with at most f(k) vertices.

Proof. Follows by Theorem 2.3 and by the fact that para-ACi↑ ⊆ para-ACi+ε [2].

We now have rather tight bounds (an upper bound of AC1+ε and a conditional lower bound of AC1−ε)
on how quickly we can compute some kernel for p-fvs in parallel. However, there is a natural second
question arising from Lemma 4.1: Can we also compute a polynomial kernel in parallel?

We claim that progress towards such a kernel cannot solely be based on the presented reduction rules.
In the proof of Theorem 4.3 we may need to branch after the exhaustive application of one of the rules
Leaf Rule, Chain Rule, or Loop Rule. If we seek to implement a polynomial kernel for p-fvs in NC, we
have to implement these rules without branching and have to apply the rules exhaustively together while
they may influence each other. Figure 1 provides an intuition why this interplay is “very sequential,” and
Theorem 4.5 provides evidence that it is in fact very unlikely that there exists a parallel algorithm that
computes the result of jointly applying all rules exhaustively.

9

Figure 1: A graph that is fully reduced by the Chain Rule and the Loop Rule in k = 6 rounds. In every
round, the Chain Rule can only be applied after the Loop Rule was used exhaustively.

Theorem 4.5. The problem of deciding whether a specific vertex of a given graph will be removed by an
exhaustive application of the Leaf Rule, the Chain Rule, and the Loop Rule is P-hard under NC1-reduction.

Proof. We will reduce from the monotone circuit value problem (MCVP), which is known to be P-complete
under NC1-reduction [21]. The input to this problem is a monotone circuit (it consists only of and-gates
and or-gates of indegree 2, and it has a single gate marked as output) and an assignment of the input
gates, the question is whether or not the output gate evaluates to true. We will transform the input circuit
into a multi-graph by replacing any gate with a small gadget. Every gadget will have two vertices marked
as “input” and one marked as “output”. The “input” vertices are incident to exactly one edge outside of
the gadget (which connects them to the “output” vertex of another gadget), the “output” vertex of the
gadget may have edges to an arbitrary number of other “input” vertices. The semantic then is as follows:
The edge of an “input” vertex that leaves the gadget will be removed by the reduction rules when the
corresponding wire of the circuit would have the value true for the given assignment of the input gates;
similarly the “output” vertex of the gadget will be removed if, and only if, the corresponding gate would
evaluate to true under the given assignment (this in turn removes the edges to other “input” vertices and
propagates the computation of the circuit). By induction, the “output” vertex of the gadget corresponding
to the output gate will then be removed if, and only if, the circuit evaluates to true – which completes the
proof.

We start with a description of the transformation. For clarity, we stipulate that a self-loop contributes
two to the degree of a vertex, similarly multi-edges increase the degree by their multiplicity. Therefore,
the Chain Rule may not be applied to a leaf with a self-loop. We further stipulate that the Chain Rule
may not be applied to a self-loop, i. e., it has to contract two distinct vertices (and hence, self-loops may
only be handled by the Loop Rule). For the input gates, we use the gadgets and for gates with

assignment true or false, respectively. For and-gates, we use the gadget , and for or-gates . In

these figures, the two top circled vertices are the ones we call “input”, while the bottom vertex is the
“output” vertex. The dotted lines indicate edges that leave the gadget. For every “input” vertex there
will be exactly one outgoing edge, as any gate has exactly to incoming wires. The “output” vertex may
have edges to an arbitrary number of successor gates; to ensure that there is at least some edge, we
fully connect such vertices to cliques of size three (that is, the “output” vertex is part of a clique of size
four) – this ensures that the degree of “output” vertices is always greater then two.

We first prove that these gadgets work locally as intended, that is, that they perform as an input gate
that is set to true or false, or as an and- or or-gate. Observe that the gadget for input gates that are
true contains a self-loop, that is, it gets removed by the Loop Rule; and observe that the gadget for a
false input gate is a clique to which no rule can be applied. Now for the internal gates, observe that all
vertices have degree at least three and no self-loop, that is, no rule can be applied unless one “incoming”
edge gets removed (recall that each “output” vertex is fully connected to a clique of size three). In other
words, the gadgets simulate the corresponding gates correctly for the assignment “(false, false)”, a case
distinction shows that this is also the case for the other assignments:

Assignment Behaviour of the
and-gadget or-gadget

(true, false) 7→ 7→

(false, true) 7→ 7→

(true, true) 7→ 7→

10

Observe that the “output” vertex obtains a self-loop (and hence gets removed by the Loop Rule) if, and
only if, the corresponding gate evaluates to true; note that the degree of a “output” vertex is always
greater than two and, hence, it is never affected by the Leaf Rule or the Chain Rule.

We now show the correctness of the construction by an induction over the gates of the input circuit in
topological order. The induction hypothesis is that the gadget corresponding to the current gate gets
modified by the Leaf Rule, the Loop Rule and the Chain Rule in the same way as the gate gets evaluated.
The base case is given as this is true for the input gates by construction. For the inductive step consider
the gadget corresponding to any gate g, and let it have the vertices x, y, and z where z is the “output”
vertex. By the induction hypothesis the vertices marked as “input” (i. e., x and y) lose an incident edge for
input wires that evaluate to true (as the gates corresponding to these gadgets precede g in the topological
order), the above table then states that the gadget works correctly. The only pitfall we need to address
is that the simulation does not “work backwards”, that is, that reduction rules in g trigger a reduction
rule for the “output” vertex v of a gadget that corresponds to a gate that precedes g in the topological
order. The only way in which the described scenario appears is when v obtains a self-loop (as v is an
“output” vertex it is connected to a clique of size three and, hence, the only rule that can delete v is the
Loop Rule). The only way to generate a self-loop is to contract a cycle of degree-2 vertices to v. With out
loss of generality, we may assume that v is connected to exactly one of x and y and we may assume that
it is x. Therefore, to generate a self-loop on v the reduction rules have to modify the gadget such that x
has exactly two incident edges which both are connected to the vertex v – the case distinction in the table
shows that this can not happen.

The induction completes the proof. A full example of the construction is provided in Figure 2. It
is worth mentioning that the construction almost never generates vertices to which the Leaf Rule can
be applied, the sole exception are or-gates in which only one input is set to true (after the deletion of
the “output” vertex, the second input vertex becomes a leaf). However, in this case the application of
the Leaf Rule has no effect on the behaviour of the gadgets. Also note that the simulation still works
if we alternatingly apply the Chain Rule and the Loop Rule exhaustively (i. e., exhaustively apply the
Chain Rule, exhaustively apply the Loop Rule, exhaustively apply the Chain Rule, and so forth). These
observations yield Remark 4.6.

0 1 1

∧ ∧

∨
v

7→

Figure 2: An example of the construction from the proof of Theorem 4.5. The vertex labeled v is the
“output” vertex of the gadget corresponding to the output gate of the circuit, that is, v gets removed by
the reduction rules if, and only if, the circuit evaluates to true. This is the case in this example, but if we
change, for instance, the third input gate to false (replace the self-loop with a clique), v would not be
removed.

Remark 4.6. The proof of Theorem 4.5 shows that the problem remains P-hard restricted to the Chain
Rule and the Loop Rule, even if they are alternatingly executed exhaustively.

We close this section with the observation that also the last rule, the Flower Rule, is unlikely to yield
a parallel algorithm.

Theorem 4.7. Unless matching ∈ NC, there is no dlogtime-uniform family of NCicircuits for any i
that determines, give a graph G = (V,E), an integer k, and a vertex v, whether the Flower Rule can be
applied to v.

Proof. Assume we have access to an NC-circuit that determines if the Flower Rule can be applied to
some vertex v. We construct an NC-circuit for matching. On input G = (V,E) and k ∈ N, the circuit
constructs a new graph G′ by adding a vertex s to G, which is connected to all vertices of V . It then uses

11

the NC-circuit for the Flower Rule on s and the value k − 1. We claim G has a matching of size k if, and
only if, the Flower Rule can be applied to s. For the first direction observe that, if s is in k disjoint cycles,
we may take one edge of every cycle and, hence, have a matching of size k. Now assume G contains a
matching of size k, say M = { (m1,m2), (m3,m4), . . . , (m2k−1,m2k) }. Then s is contained in k disjoint
cycles, namely s−mi −mi+1 − s for i ∈ {1, 3, 5, . . . , 2k − 1}.

5 Parallel Kernels for Structural Parameterizations
It is known that NP-hard graph parameters that are closed under taking disjoint union do not allow a
polynomial kernel unless NP ⊆ coNP/poly [14]. Famous problems that suffer from this result are the
decision versions of tree width, path width, and tree depth, which has led to a growing body of research
that considers structural parameters for these problems [6, 5, 27]. A commonly used parameter in this
line of research is the vertex cover number of the input graph and in this section we extend the cited
results by proving that the corresponding kernels can be computed in small circuit classes.

We use the following standard definitions: A tree decomposition of a graph G = (V,E) is a tuple (T, ι)
where T is a tree and ι a mapping from the nodes of T to subsets of V (which we call bags) such that for
every u ∈ V and every {v, w} ∈ E there is (1) a node n with u ∈ ι(n), (2) a node m with {v, w} ⊆ ι(m),
and (3) the set {n | u ∈ ι(n) } is connected in T . The width of a tree decomposition is the maximum size of
the bags minus one. For a graph G, its tree width tw(G) is the minimum width of all tree decompositions
of G, its path width pw(G) is the minimum width of all tree decompositions of G that are paths, and its
tree depth td(G) is the minimum width of all tree decompositions (T, ι) of G that can be rooted in such a
way that for all n,m ∈ V (T) we have ι(n) (ι(m) if m is an descendant of n. The following two facts will
be useful, where N(v) = {u | {u, v} ∈ E } is the neighborhood of v, N [v] = N(v) ∪ {v}, and where we
call a vertex v simplicial if N(v) is a clique:

Fact 5.1 ([6, 5, 27]). Let G = (V,E) be a graph with tree width, path width, or tree depth at most k and
with u, v ∈ V , {u, v} 6∈ E, and |N(u) ∩N(v)| > k. Then adding the edge {u, v} to G will not increase the
tree width, path width, or tree depth of G, respectively.

Fact 5.2 ([4]). Let G = (V,E) be a graph and v ∈ V be a simplicial vertex, then we have tw(G) ≥ |N(v)|.

Computing a Kernel for Tree Width. For the problem pvc-tree-width we are given a graph
G = (V,E), an integer k, and a vertex cover S ⊆ V of G; the parameter is |S| and the question is whether
tw(G) ≤ k holds.

Theorem 5.3. There is a dlogtime-uniform family of TC0-circuits that, on inputs of a triple (G, k, S),
outputs a pvc-tree-width kernel with at most O(|S|3) vertices.

Proof. On input (G, k, S) the circuit can easily check if S is actually a vertex cover and if we have k < |S|.
If not, it outputs a trivial no-instance in the first case and a yes-instance in the second case (a tree
decomposition of width |S| can easily be obtained from S).

The circuit now checks in parallel for every pair u, v ∈ S with {u, v} 6∈ E if we have |N(u) ∩N(v) ∩
(V \ S)| > k, that is, if the two vertices have more than k common neighbors in V \ S. If this is the case,
the circuit adds the edge {u, v}. Note that this operation is safe by Fact 5.1 and can be applied in parallel
as we consider only neighbors in V \ S while we only add edges in S. Finally, the circuit considers all
simplicial vertices v ∈ V \ S in parallel: if |N(v)| > k, the circuit safely outputs a trivial no-instance by
Fact 5.2, otherwise the circuit safely removes v from the graph by standard arguments [5].

We now argue that, if the circuit has not decided yet, the remaining graph has at most O(|S|3) vertices:
the remaining graph consist of the vertices in S, and the nonsimplicial vertices I ⊆ (V \ S). We have
|I| ≤ |S|3 as any vertex u ∈ I must have at least two neighbors v, w in S with {v, w} 6∈ E (as otherwise
u would be simplicial), however, every pair of nonadjacent vertices in S can have at most k common
neighbors (as otherwise the circuit would have added the edge). Since we have at most |S|2 such pairs,
the claim follows by k ≤ |S|.

Corollary 5.4. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that, on input of a
triple (G, k, S), outputs a pvc-tree-width kernel with at most 2

δ
√
|S| vertices.

Corollary 5.5. pvc-tree-width ∈ para-AC0.

12

Computing a Kernel for Path Width. We define the problem pvc-path-width analogously to
pvc-tree-width and the aim of this section is to reformulate Theorem 5.3 in terms of path width. The
main difference is that we cannot simply delete simplicial vertices as this would, for instance, eliminate
trees completely. We can, however, use the following weaker result:

Fact 5.6 ([5]). Let G = (V,E) be a graph, k ∈ N, and v ∈ V be a simplicial vertex. If the degree |N(v)|
of v is 1 and the neighbor of v has another degree-1 neighbor, or if we have 2 ≤ |N(v)| ≤ k and for each
pair x, y ∈ N(v) there is a simplicial vertex w ∈ N(x)∩N(y) with w 6∈ N [v], then pw(G) ≤ k if, and only
if, pw(G[V \ {v}]) ≤ k.
Theorem 5.7. There is a dlogtime-uniform family of TC0-circuits that, on input of a triple (G, k, S),
outputs a pvc-path-width kernel with at most O(|S|3) vertices.

Proof. The circuit works as in Theorem 5.3 and differs only in the last step, that is, the handling of
simplicial vertices. We have to identify the vertices for which Fact 5.6 applies in constant parallel time,
which is not trivial since we have dependencies between these vertices. The circuit marks simplicial
vertices to which Fact 5.6 does not apply or which we will use as conditions when applying the fact to
other vertices as follows: The circuit first marks for every v ∈ S the lexicographically smallest degree-1
neighbor of v. Then for every simplicial vertex v ∈ V \ S of degree at least 2, the circuit marks for every
pair of neighbors x, y of v the lexicographically smallest simplicial vertex w ∈ (N(x)∩N(y)) \N [v]. If for
any pair such a vertex does not exist, v marks itself. Note that all simplicial vertices that are not marked
can safely be removed by Fact 5.6 and since, furthermore, the safeness is witnessed by marked vertices,
the circuit can remove them all in parallel.

We are left with the task to show that there are at most O(|S|3) marked vertices left (the other vertices
can be counted as in Theorem 5.3). We have at most |S| marked vertices of degree 1 (one for each vertex
in S), and at most |S|2 marked vertices of degree greater than 1: each such vertex v has a pair of neighbors
in S that has v as sole simplicial neighbor.

Corollary 5.8. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that, on input of a
triple (G, k, S), outputs a pvc-path-width kernel with at most 2

δ
√
|S| vertices.

Corollary 5.9. pvc-path-width ∈ para-AC0

Computing a Kernel for Tree Depth. The last problem we consider is tree depth, and, as for
path width, we prove a version of Theorem 5.3 for it. The main problem is once more that we cannot
simply remove simplicial vertices. However, by the following fact of Kobayashi and Tamaki there are still
enough simplicial vertices that are safe to remove:

Fact 5.10 ([27]). Let G = (V,E) be a graph, k ∈ N, and let v ∈ V be a simplicial vertex with 1 ≤
|N(v)| ≤ k. If every neighbor of v has degree at least k + 1, then we have td(G) ≤ k if, and only if,
td(G[V \ {v}]) ≤ k.
Theorem 5.11. There is a dlogtime-uniform family of TC0-circuits that, on input of a triple (G, k, S),
outputs a pvc-tree-depth kernel with at most O(|S|3) vertices.

Proof. We proceed again as in Theorem 5.3 and only differ in the way we handle simplicial vertices. In
particular, we argue how we can apply Fact 5.10 in parallel constant time. The circuit starts by marking
for every vertex v ∈ S with |N(v)| > k the k+ 1 lexicographically smallest neighbors of v, then the circuit
marks every simplicial vertex v ∈ V \ S that has at least one neighbor of degree less than k. Note that
every simplicial vertex that is not marked can safely be removed by Fact 5.10 and, since this safeness is
witnessed by marked vertices, these vertices can be removed in parallel.

The amount of remaining vertices can be computed as in Theorem 5.3, we will end the proof by
counting the number of marked vertices. There are at most |S|2 + |S| marked vertices that were marked in
the first step, as every vertex in S marks only k + 1 neighbors. Additionally we may have some simplicial
vertices that are marked because they have a neighbor of degree at most k. Since every degree k vertex in
S can produce at most k such vertices, the number of these vertices can be bounded by |S|2 as well.

Corollary 5.12. For every δ ∈ N there is a dlogtime-uniform family of AC0-circuits that, on inputs of
a triple (G, k, S), outputs a pvc-tree-depth kernel with at most 2

δ
√
|S| vertices.

Corollary 5.13. pvc-tree-depth ∈ para-AC0

13

6 A Parallel Kernel for Point Line Cover
In this section we study a natural, well-known problem for which we can prove (unconditionally) that we
cannot compute a kernel using AC0-circuits while we can compute polynomially-sized kernels in TC0. In
the p-point-line-cover problem we are given distinct points p1, . . . , pn ∈ Zd for some dimension d ≥ 2
and a natural number k ∈ N, the question is whether we can cover all points by at most k lines. This
problem is NP-hard in general (even for d = 2) and in FPT parameterized by k [29]. There is a simple k2
kernel, which is essentially optimal [29]: If any line covers at least k + 1 points, remove all points on this
line and reduce k by one. This is safe since we would require at least k + 1 different lines if we would not
use this line. Because no set of k + 1 points lies on the same line after the reduction, we have at most k2
points left or we deal with a no-instance.

Lemma 6.1. There is a dlogtime-uniform family of TC0-circuits that, on input of a dimension d, a set
of distinct points p1, . . . , pn ∈ Zd, and an integer k, outputs a p-point-line-cover kernel with at most
k2 points.

Proof. First observe that the reduction rule “for a line covering at least k + 1 points, remove all points
on this line and reduce k by 1” can be applied in parallel, as removing all points from a line removes at
most one point from any other line. To complete the proof, note that it is sufficient to check all n2 line
segments defined by pairs of points in parallel; and that a TC0-circuit can check if another point lies on
such a line segment as it can multiply and divide binary numbers [23].

The lemma shows that the optimal kernel for p-point-line-cover can be computed in TC0 and it is
natural to ask if we can do the same using a AC0-circuit or, failing that, to at least compute some kernel
using a AC0-circuit (as we could for the problems in the previous sections). We answer this question in
the negative, settling the complexity of the problem to para-TC0:

Lemma 6.2. For every fixed k, the kth slice of p-point-line-cover is TC0-complete under AC0-
reduction.

Proof. We start with the case k = 1 and d = 2, which is clearly in TC0, as an instance is a yes-instance if,
and only if, the input points are colinear. To see that the problem is TC0-hard we reduce from division
defined as: Given three numbers x, y, and z, is it true that x/y = z? This is a classical TC0-complete
problem [23]. For the reduction let x, y, z be the division-instance, we construct the instance a = (0, 0),
b = (x, z), c = (y, 1) of 1-point-line-cover. This is a yes-instance if the points are colinear, that is, if
we have (b− a) · (c− a) = 0 or, equivalently: x−0

y−0 = z−0
1−0 ⇐⇒ x/y = z. Since the cases k > 1 and / or

d > 2 are generalizations, they remain TC0-hard. To see that these cases are also in TC0, observe that
we have to consider at most n2 line segments from which we have to pick k, that is, there are at most(
n2

k

)
≤ n2k solution candidates. For fixed k, these candidates can be checked in parallel by a TC0-circuit

and can be evaluated as in the case of k = 1.

Corollary 6.3. p-point-line-cover is para-TC0-complete under AC0-reduction.

Now assume there would be a uniform family of AC0-circuits computing a kernel of arbitrary size
for p-point-line-cover. Then by Theorem 2.3 the problem is in para-AC0, which on the other hand
implies that for every fixed k the problem must be in AC0. This contradicts Lemma 6.2 as it is known
that AC0 (TC0 [19]. Therefore, no family of AC0-circuits can compute such a kernel.

Corollary 6.4. para-AC0 63 p-point-line-cover ∈ para-TC0

7 Problems for Which Computing a Kernelization is Inherently
Sequential

As surprisingly many problems have NC-computable, in fact often even AC0-computable, kernelizations,
we may ask which problems do not have this property. We would like to find problems for which the
computation of any kernel is P-complete or, equivalently, which are FPT-complete under AC0- or NC1-
reductions. While it is easy to find artificial problems with this property – such as any P-complete problem
(like cvp) with the trivial parametrization (κ(x) ≡ 1) –, no natural problems that are FPT-complete for
sensible parametrizations can be found in the literature. We remedy this situation in the following; but

14

must caution the reader that in all our results the hardness of the parameterized problem for FPT stems
from the fact that some slice of the problem is (essentially) a known P-complete problem. Unfortunately,
it is known [18] that this “cannot be helped” since all FPT-complete problems have this property. Our
main contribution here lies, thus, in the assembly of a diverse body of relevant, non-trivial FPT-problems
that will serve as starting points for further studies of the limits of parameterized parallelization.

Strong Backdoors to Satisfiability. A strong backdoor set of a propositional formula φ is a set
of variables such that under any assignment of these variables the resulting formula φ′ belongs to a
certain class of formulas [20]. In the p-strong-backdoor-{horn,2cnf}-sat problems, we are given
a formula φ and an integer k, the question is whether φ is satisfiable and has a strong backdoor set of
size k to Horn- or 2cnf-formulas, respectively. Solving such problems is usually done in two phases: first
detect the backdoor set and, second, solve the satisfiability problem of the formula for every assignment
of the backdoor set. While the first part might seem harder in general, it is not from a parameterized
point of view: (1) A strong backdoor set to Horn formulas is exactly a vertex cover of size k in the
positive primal graph of φ, that is, the graph that has a vertex for each variable and an edge between any
two variables appearing together positively in a clause; (2) strong backdoor sets to 2cnf-formulas are
exactly the hitting sets of the hypergraph that has the variables of φ as vertices and that connects three
vertices by a hyperedge if they appear together in a clause. Since p-vertex-cover ∈ para-AC0 and also
p-3-hitting-set ∈ para-AC0 [2, 12], we can conclude:

Corollary 7.1. There is a dlogtime-uniform family of para-AC0-circuits that, on input of a propositional
formula φ and an integer k, either outputs a size-k strong backdoor set to {Horn, 2cnf}-formulas, or
concludes that no such set exists.

The second step of solving p-strong-backdoor-{horn,2cnf}-sat is to solve the satisfiability
problem for φ on every assignment to the variables of the backdoor set. While we can nicely handle all
assigments in parallel, checking if the formulas are satisfiable in parallel is difficult. Indeed, it is known
that, under AC0-reductions, the satisfiability problem is NL-complete for 2cnf-formulas, and is even
P-complete for Horn formulas [1].

Corollary 7.2. p-strong-backdoor-2cnf-sat is para-NL-complete under AC0-reduction.

Corollary 7.3. p-strong-backdoor-horn-sat is FPT-complete under AC0-reduction.

The last corollary implies that there is no parallel kernelization running in polylogarithmic time for
p-strong-backdoor-horn-sat that produces a kernel of any size, unless NC = P.

Mixed Integer Linear Programming. The FPT-complete problem above is an intermediate
problem between a P-complete problem (horn-sat) and a NP-complete problem (sat); the transition
between the problems is caused by the backdoor variables. A similar intermediate problem is known
for linear-programming (another classical P-complete problem) and its integer variant (which is
NP-complete). The intermediate version of these problems is called p-mixed-integer-programming,
which asks, given a matrix A ∈ Zn×n, vectors b ∈ Zn, c ∈ Zn, and integers k and w, if there is a vector
x ∈ Rn such that Ax ≤ b, cTx ≥ w, and such that x[i] ∈ Z for 0 ≤ i < k. A celebrated result by Lenstra
states that an instance I of this problem can be solved in time 2O(k3) · |I|c for a suitable constant c, that
is, the problem is in FPT. Therefore, every slice of the problem is in P and, as linear-programming
trivially reduced to it, we get that k-mixed-integer-programming is P-complete for every k (under
NC1-reductions [37]).

Corollary 7.4. p-mixed-integer-programming is FPT-complete under NC1-reductions.

Maximum Flow with Minimum Quantities. The last problem we review in this section is the
maximum flow problem with minimum quantities: Inputs are directed graphs G = (V,E) with s, t ∈ V ,
two weight functions u, l : E → N, an integer w ∈ N, and a set of edges B ⊆ E; the question is whether
there is a set A ⊆ B such that in G′ = (V,E \A) there is a valid s-t-flow f of value at least w that fulfills
the flow conservation constraints and l(e) ≤ f(e) ≤ u(e) for all e ∈ E \A. For B = ∅ the problem boils
down to classical maximum flow with lower bounds on the edges, which can be solved in polynomial
time [26] and which is known to be P-hard under NC1-reduction [37]. On the other hand, for B = E the
problem becomes NP-complete even on serial-parallel graphs [22] and it is also NP-hard to approximate

15

the problem within any positive factor [35]. The intermediate problem between this two cases is the
parameterized problem p-max-flow-quantities where the cardinality of B is the parameter.

Lemma 7.5. p-max-flow-quantities is FPT-complete under NC1-reduction.

Proof. Containment in FPT follows by the simple algorithm that iterates over all 2|B| possible sets A ⊆ B
and which computes a maximum flow in G′ = (V,E \A) with, for instance, a variant of Ford-Fulkerson [26].
The algorithm also implies that for every fixed k the slice k-max-flow-quantities is in P and, since it
is a generalization of classical max-flow, it is also P-complete.

8 Conclusion and Outlook
Kernelization is a fundamental concept of parameterized complexity and we have studied its parallelization.
Since traditional descriptions of kernelization algorithms are inherently sequential, we found it surprising
how many parameterized problems lie in para-AC0 – the smallest robust class in parallel parameterized
complexity theory. We found, furthermore, that for many problems the equation “smaller circuit class =
larger kernel” holds, see Table 1 for a summary of our results.

Apart from classifying more parameterized problems in the spirit of this paper, namely according to
how well small kernels can be computed by small circuits, an interesting open problem is to improve any
of the AC0-kernelizations presented in the paper so that they produce a polynomially sized kernel (which
we, at best, can currently do only in TC0). Perhaps even more challenging seems to be the design of a
framework for proving that polynomially sized kernels for these problems cannot be computed in AC0.

References
[1] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The complexity of satisfiability

problems: Refining Schaefer’s theorem. J. Comput. Syst. Sci., 75(4):245–254, 2009. doi:10.1016/j.
jcss.2008.11.001.

[2] M. Bannach, C. Stockhusen, and T. Tantau. Fast parallel fixed-parameter algorithms via color coding.
In Proceedings of IPEC 2015, pages 224–235, 2015. doi:10.4230/LIPIcs.IPEC.2015.224.

[3] M. Bannach and T. Tantau. Parallel multivariate meta-theorems. In Proceedings of IPEC 2016,
pages 4:1–4:17, 2016. doi:10.4230/LIPIcs.IPEC.2016.4.

[4] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM
J. Comput., 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219.

[5] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernel bounds for structural parameterizations of
pathwidth. In Proceedings of SWAT 2012, pages 352–363, 2012. doi:10.1007/978-3-642-31155-0_
31.

[6] H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Preprocessing for treewidth: A combinatorial
analysis through kernelization. SIAM J. Discrete Math., 27(4):2108–2142, 2013. doi:10.1137/
120903518.

[7] H. L. Bodlaender and T. C. van Dijk. A cubic kernel for feedback vertex set and loop cutset. Theory
Comput. Syst., 46(3):566–597, 2010. doi:10.1007/s00224-009-9234-2.

[8] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows, Michael A. Langston, Shev Mac, and
Frances A. Rosamond. The undirected feedback vertex set problem has a poly(k) kernel. In Proceedings
of IWPEC 2006, pages 192–202, 2006. doi:10.1007/11847250_18.

[9] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes of parameterized tractability. Ann.
Pure Appl. Logic, 84(1):119–138, 1997. doi:10.1016/S0168-0072(95)00020-8.

[10] J. Chen, I. A. Kanj, and W. Jia. Vertex cover: Further observations and further improvements. J.
Algorithms, 41(2):280–301, 2001. doi:10.1006/jagm.2001.1186.

[11] Y. Chen and J. Flum. Some lower bounds in parameterized AC0. In Proceedings of MFCS 2016,
pages 27:1–27:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.27.

16

http://dx.doi.org/10.1016/j.jcss.2008.11.001
http://dx.doi.org/10.1016/j.jcss.2008.11.001
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.224
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.4
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1007/978-3-642-31155-0_31
http://dx.doi.org/10.1007/978-3-642-31155-0_31
http://dx.doi.org/10.1137/120903518
http://dx.doi.org/10.1137/120903518
http://dx.doi.org/10.1007/s00224-009-9234-2
http://dx.doi.org/10.1007/11847250_18
http://dx.doi.org/10.1016/S0168-0072(95)00020-8
http://dx.doi.org/10.1006/jagm.2001.1186
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.27

[12] Yijia Chen, Jörg Flum, and Xuangui Huang. Slicewise Definability in First-Order Logic with Bounded
Quantifier Rank. In Valentin Goranko and Mads Dam, editors, Proceedings of CSL 2017, volume 82,
pages 19:1–19:16, 2017. doi:10.4230/LIPIcs.CSL.2017.19.

[13] Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic space. J.
Algorithms, 8(3):385–394, 1987. doi:10.1016/0196-6774(87)90018-6.

[14] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer Berlin Heidelberg, 2015.

[15] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer
Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

[16] M. Elberfeld, C. Stockhusen, and T. Tantau. On the space and circuit complexity of parame-
terized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015. doi:10.1007/
s00453-014-9944-y.

[17] S. A. Fenner, R. Gurjar, and T. Thierauf. Bipartite perfect matching is in quasi-NC. In Proceedings
of STOC 2016, pages 754–763, 2016. doi:10.1145/2897518.2897564.

[18] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

[19] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathe-
matical Systems Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431.

[20] S. Gaspers and S. Szeider. Backdoors to satisfaction. In H.L. Bodlaender, R. Downey, F. V. Fomin,
and D. Marx, editors, The Multivariate Algorithmic Revolution and Beyond, pages 287–317. Springer,
2012. doi:10.1007/978-3-642-30891-8_15.

[21] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation:
P-completeness Theory. Oxford University Press, 1995.

[22] D. Haugland, M. Eleyat, and M. Lie Hetland. The maximum flow problem with minimum lot sizes.
In Proceedings of ICCL 2011, pages 170–182, 2011. doi:10.1007/978-3-642-24264-9_13.

[23] W. Hesse. Division is in uniform TC0. In Proceedings of ICALP 2001, pages 104–114, 2001.
doi:10.1007/3-540-48224-5_9.

[24] Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Proceedings of ICALP 2017, pages
68:1–68:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.68.

[25] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[26] Jon M. Kleinberg and Éva Tardos. Algorithm design. Addison-Wesley, 2006.

[27] Y. Kobayashi and H. Tamaki. Treedepth parameterized by vertex cover number. In Proceedings of
IPEC 2016, pages 18:1–18:11, 2016. doi:10.4230/LIPIcs.IPEC.2016.18.

[28] D. König. Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathe-
matische Annalen, 77(4):453–465, 1916. doi:10.1007/BF01456961.

[29] S. Kratsch, G. Philip, and S. Ray. Point line cover: The easy kernel is essentially tight. ACM Trans.
Algorithms, 12(3):40:1–40:16, 2016. doi:10.1145/2832912.

[30] M. Lampis. A kernel of order 2k − c log k for vertex cover. Inf. Process. Lett., 111(23-24):1089–1091,
2011. doi:10.1016/j.ipl.2011.09.003.

[31] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combina-
torica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

[32] G. L. Nemhauser and L. E. Trotter Jr. Properties of vertex packing and independence system
polyhedra. Math. Program., 6(1):48–61, 1974. doi:10.1007/BF01580222.

17

http://dx.doi.org/10.4230/LIPIcs.CSL.2017.19
http://dx.doi.org/10.1016/0196-6774(87)90018-6
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/s00453-014-9944-y
http://dx.doi.org/10.1007/s00453-014-9944-y
http://dx.doi.org/10.1145/2897518.2897564
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/BF01744431
http://dx.doi.org/10.1007/978-3-642-30891-8_15
http://dx.doi.org/10.1007/978-3-642-24264-9_13
http://dx.doi.org/10.1007/3-540-48224-5_9
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.68
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.18
http://dx.doi.org/10.1007/BF01456961
http://dx.doi.org/10.1145/2832912
http://dx.doi.org/10.1016/j.ipl.2011.09.003
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/BF01580222

[33] I. Newman, P. Ragde, and A. Wigderson. Perfect hashing, graph entropy, and circuit complexity.
In Proceedings of STC 1990, pages 91–99. IEEE Computer Society, Los Alamitos, California, 1990.
doi:10.1109/SCT.1990.113958.

[34] A. Soleimanfallah and A. Yeo. A kernel of order 2k − c for vertex cover. Discrete Mathematics,
311(10-11):892–895, 2011. doi:10.1016/j.disc.2011.02.014.

[35] Clemens Thielen and Stephan Westphal. Complexity and approximability of the maximum flow
problem with minimum quantities. Networks, 62(2):125–131, 2013. doi:10.1002/net.21502.

[36] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms, 6(2):32:1–32:8,
2010. doi:10.1145/1721837.1721848.

[37] Jacobo Toran. P-completeness. In Alan Gibbons and Paul Spirakis, editors, Lectures on parallel
computation, pages 177–196. Cambridge University Press, 1993.

18

http://dx.doi.org/10.1109/SCT.1990.113958
http://dx.doi.org/10.1016/j.disc.2011.02.014
http://dx.doi.org/10.1002/net.21502
http://dx.doi.org/10.1145/1721837.1721848

	Introduction
	Parameterized Parallel Complexity Classes and Kernelization
	Parallel Kernels for Vertex Cover and Matching
	Parallel Kernels for the Feedback Vertex Set Problem
	Parallel Kernels for Structural Parameterizations
	A Parallel Kernel for Point Line Cover
	Problems for Which Computing a Kernelization is Inherently Sequential
	Conclusion and Outlook

