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Abstract

This Master’s thesis deals with the topic of learning causal structure from condi-
tional independences. Of particular interest are sets of conditional independences with
a low order. For the special case of marginal independences we give important proofs
which were missing from the literature. For the until now unsolved, general case of con-
ditional independences up to a fixed order 𝑘 we propose a new algorithm which finds the
faithful DAGs and prove its correctness. The main result is the application of the new
concepts to the problem of causal structure learning from complete conditional inde-
pendence information. This enables us to propose a constraint-based algorithm which
learns causal structures more efficiently than the popular PC algorithm.

Zusammenfassung

Diese Masterarbeit behandelt die Fragestellung, wie kausale Strukturen durch be-
dingte Unabhängigkeiten gelernt werden können. Von besonderem Interesse sind Men-
gen, bei denen die Ordung der bedingten Unabhängigkeiten gering ist. Für den Randfall
von unbedingten Unabhängigkeiten ergänzen wir den derzeitigen Stand der Forschung
um wichtige Beweise. Für den bislang ungelösten, allgemeinen Fall von bedingten Un-
abhängigkeiten bis zu einer bestimmten Ordnung 𝑘 geben wir einen Algorithmus, der
die konsistenten DAGs findet, und beweisen dessen Korrektheit. Das Hauptresultat ist
die Anwendung der neuen Konzepte auf das Lernen von kausalen Strukturen für den
Fall, dass alle bedingten Unabhängigkeiten zur Verfügung stehen. Daraus leiten wir
einen Algorithmus her, der kausale Strukturen effizienter als der weit verbreitete PC
Algorithmus lernt.
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1 Introduction
In empirical sciences researchers are interested in discovering causal relationships. To
analyze such relationships the interdisciplinary research field of causal inference has been
developed [13]. In particular, directed acyclic graphs (in short DAGs) are used to model
causal relationships. These DAGs are also called causal structures. The nodes of the causal
structure represent random variables and the directed edges causal dependences. These
causal structures enable, among others, the estimation of causal effects and the analysis
of counterfactuals. Causal inference is especially useful when experimental data cannot be
obtained, for example, for ethical reasons.

A common scenario is that such causal structures are specified by an expert. However,
for more complex systems this is infeasible and, in particular, for Artificial Intelligence
applications it is vital that this process is automated. A central question is therefore how
causal structures can be learned from observed data. This problem is known to be NP-
hard [4]. Still, there are algorithms available for practical use. One of the main classes of
causal structure learning algorithms are the constraint-based approaches. These algorithms
learn the causal structure by searching for conditional independences (CIs). Such a CI
implies that the nodes corresponding to the conditionally independent random variables
are nonadjacent in every faithful DAG. A DAG is faithful if it entails exactly the observed
conditional independences. This way it is possible to discover the causal structure. The
PC algorithm [8, 17] is the most popular of the constraint-based algorithms. It runs in time
polynomial in the maximal node degree of the underlying DAG and is able to find the exact
solution under certain assumptions. One of these assumptions is that the PC algorithm
has access to the true conditional independence information. However, in practice these
conditional independences have to be tested statistically.

Testing for conditional independences is inherently more difficult than testing for mar-
ginal independences [3] due to the fact that the variables could be dependent for only a
few values of the conditioning variable. This problem increases in significance for larger
conditioning sets and, therefore, tests in this setting require a high number of observations
which are often not available in practice. Inaccurate estimations of CIs are a consequence
that may lead to a high number of false positives or false negatives for the classification of
direct causal relations. A possible way to circumvent this problem is to primarily consider
low-order CIs and extract as much information as possible from these statements. Low-
order CIs are those where the cardinality of the conditioning set is small, for example one
or two.

The current state of research on the topic of causal structure learning with an emphasis
on low-order CIs leaves many problems open. Most of the work focused on finding faithful
DAGs for the important special case of marginal independences. Pearl and Wermuth [14]
proposed an algorithm which finds a certain class of faithful DAGs. This algorithm was
extended by Textor et al. [18] in order to find all faithful DAGs. But in both works the
correctness of the algorithm was not proven. Furthermore, it is unclear how the approaches
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proposed for the case of marginal independences can be generalized to sets of low-order CIs.
Campos and Huete [7] consider CIs with order one, but they presuppose knowledge of the
topological sorting of the underlying DAG. Wille and Bühlmann [21] also deal with CIs of
order one and propose an algorithm which finds faithful DAGs. However, this algorithm
is only correct for certain graph classes. Finally, the question remains open how these
concepts might be applied to causal structure learning in general.

1.1 Main results

This thesis deals with exactly these unsolved problems. We begin by investigating how
causal structures can be recovered when only low-order CIs are available. We approach this
problem from a causal structure learning perspective. As mentioned above, the constraint-
based algorithms rule out edges when finding corresponding conditional independences.
This is possible because these edges cannot be in a faithful DAG. In this spirit, we introduce
the notion of the representation of the set of faithful DAGs. The representation contains
an edge if and only if this edge is present in at least one faithful DAG. Vice versa, edges
which are in no faithful DAG are not in the representation. Thus, our goal is to classify
and remove these edges. We will later see that obtaining the representation also enables
us to find the faithful DAGs.

We reexamine the problem of recovering causal structures from marginal independences
and prove the correctness of the previously proposed algorithms (Theorem 2 in [14] and
Theorem 4.4 in [18]). We do this by presenting an equivalent algorithm which is simpler
and easier to generalize than the construction by Pearl and Wermuth [14]. Moreover, we
show that the resulting graph coincides with the representation.

Based on this we tackle the generalized and until now unsolved problem of recovering
causal structures from sets of CIs whose order is bounded by a fixed value 𝑘. We introduce
an algorithm which solves this problem by finding the representation. This algorithm
generalizes our results on marginal independences. Moreover, we gain insights into the set
of faithful DAGs by showing that the representation is always a CPDAG — a Completed
partially directed acyclic graph is the standard way of representing a Markov equivalence
class. The notion was first developed by Meek [12] and Andersson et al. [2]. This enables
us to view the concept of a representation as a generalization of the concept of a CPDAG.

Afterwards, we apply the new ideas developed for the learning from low-order CIs to
causal structure learning in general by proposing an improved version of the popular PC
algorithm. This is the main result of this thesis. The essential idea behind this improvement
is the following. The PC algorithm (and every other constraint-based causal structure
learning algorithm — see Chapter 2.5 in the book by Pearl [13]) is made up of three steps:

1. Learning the skeleton.

2. Orientation of the v-structures (obtaining a pattern).

3. Orientation of the remaining edges.
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The PC algorithm begins by learning the skeleton which is an undirected graph storing
the adjacency information of the underlying causal structure. The edges are oriented only
afterwards. The orientation phase itself consists of two steps. First, the v-structures are
detected. The obtained intermediate result is also called a pattern. A v-structure is a
substructure 𝑖 → 𝑘 ← 𝑗 where there are two converging arrows whose tails are not directly
connected. Verma and Pearl [19] showed that two DAGs are observationally equivalent if
and only if they have the same skeleton and the same set of v-structures. Observational
equivalence means that every probability distribution which is compatible with one of the
DAGs is also compatible with the other [13]. Therefore, obtaining the pattern which has
the same skeleton and the same v-structures as every faithful DAG is a vital step in causal
structure learning. Finally, as many undirected edges as possible are oriented in order to
extend the graph maximally. The new approach we propose consists only of two steps:

1. Learning the (extended) pattern.

2. Orientation of the remaining edges.

We call this approach the OPPC (One phase pattern construction) algorithm. The central
modification is that we merge the first two steps of the PC algorithm — the learning of
the skeleton and the detection of the v-structures. This is nontrivial and only possible by
using the concepts we develop for the learning of causal structures from low-order CIs. In
essence, this is because when recovering faithful DAGs from low-order CIs, it is vital to
direct edges before having complete conditional independence information. This is similar
to the task of directing edges before knowing the true skeleton.

Most importantly, we show experimentally that by merging the two steps we are able
to improve the efficiency of learning the causal structure significantly. For example for
regular graphs with 76 nodes and node degree 5, the PC algorithm needs more than 8
times as many CI tests as the OPPC algorithm. This improvement is due to extensive
use of low-order CIs as the following numbers confirm. After considering the marginal
independences the OPPC algorithm already removed 1, 672 edges compared to only 992
in the PC algorithm. These early removals of edges lead to a substantially smaller search
space.

1.2 Structure of the thesis

The following is an overview of the structure of this thesis: In Section 2 we propose the used
notation and formally introduce the most essential definitions. Section 3 reviews the most
important previous work on the topics dealt with in this thesis. In Section 4 we introduce
the new concept of incompatible nodes which plays a key role in recovering causal structures
from a set of low-order CIs. Section 5 deals with the special case of recovering causal
structures from a set of marginal independences. We give important proofs which have
been missing from the literature. The approach for marginal independences is generalized

8



in Section 6 where we solve the problem of recovering causal structures from a set of CIs
up to order 𝑘. The concepts are then applied to improve causal structure learning in
general (Section 7). In particular, we propose a new constrained-based algorithm which we
term OPPC (One phase pattern construction). Afterwards, in Section 8 we experimentally
analyze the performance of the OPPC algorithm and compare it to the PC algorithm.
Finally, in Section 9 we discuss new questions raised by the results of this thesis and
possible future work on the topic of causal structure learning from low-order CIs.
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2 Preliminaries
In this section we give the notation used throughout this thesis and introduce some basic
definitions. For all remaining definitions we refer the reader to the fundamental book by
Pearl [13].

2.1 Graphical Background

We begin by introducing the necessary graphical definitions. A graph 𝐺 = (𝑉 , 𝐸) consists
of a vertex set 𝑉 and a set of edges 𝐸. We use the variable 𝑛 to describe the number of ver-
tices: |𝑉 | = 𝑛. We are mainly concerned with directed and partially directed graphs. The
latter type describes a graph where edges can be directed as well as undirected. Formally
this can be modeled in the following manner:

𝐸 = {(𝑖, 𝑗) | if there is a directed edge from 𝑖 to 𝑗 or an undirected edge between 𝑖 and 𝑗}

This means that in case we have (𝑖, 𝑗) ∈ 𝐸 and (𝑗, 𝑖) ∈ 𝐸, there is an undirected edge
between 𝑖 and 𝑗. Two nodes 𝑖 and 𝑗 are called adjacent if there is an edge between them
(directed or undirected). For any node 𝑖 the neighborhood 𝑁(𝑖) is the set of nodes adjacent
to 𝑖 and the boundary Bd(𝑖) is the neighborhood of 𝑖 including 𝑖: Bd(𝑖) = 𝑁(𝑖) ∪ 𝑖. We
occasionally write 𝑁𝐺(𝑖) and Bd𝐺(𝑖) to emphasize that we refer to graph 𝐺. The degree
of a node 𝑖 is the cardinality of 𝑁(𝑖). If there is an edge 𝑖 → 𝑗 we call 𝑖 the parent of 𝑗 and
𝑗 the child of 𝑖. A way is a sequence 𝑝0, … , 𝑝𝑘 of nodes so that for all 𝑖, with 0 ≤ 𝑖 < 𝑘,
there is an edge connecting 𝑝𝑖 and 𝑝𝑖+1. Such a sequence is called a path if 𝑝𝑖 ≠ 𝑝𝑗 holds
for all 𝑖, 𝑗 ∈ [0, 𝑘] with 𝑖 ≠ 𝑗. A path from 𝑝0 to 𝑝𝑘 is called causal if every edge on the
path is directed from 𝑝𝑖 towards 𝑝𝑖+1. A node 𝑗 is called an ancestor of 𝑖 if there is a causal
path from 𝑗 to 𝑖. A node 𝑗 is called a descendant of 𝑖 if there is a causal path from 𝑖 to
𝑗. An𝐺(𝑖) is the set of all ancestors of 𝑖 in graph 𝐺, De𝐺(𝑖) is the set of all descendants
of 𝑖 in graph 𝐺. We use small letters for nodes and values, and capital letters for sets and
random variables.

Of special importance are directed acyclic graphs (also called DAGs). As the name
indicates these are directed graphs that do not contain a cycle. The skeleton of a DAG 𝐷 is
the undirected graph where every edge in 𝐷 is substituted by an undirected edge. Another
type of graphs we consider are partially directed acyclic graph (also called PDAGs). In
these graphs undirected edges are allowed, however, directed cycles are not. A topological
sorting of a DAG is an ordering of its nodes such that for every edge 𝑖 → 𝑗 the node 𝑖
comes before 𝑗 in the ordering. When speaking about a topological sorting for PDAGs we
demand that for every directed edge 𝑖 → 𝑗 the node 𝑖 comes before 𝑗 in the ordering.

2.2 Probability notions

We will now associate the graphical models introduced above with a probability distribu-
tion. Let 𝑃 be a joint probability distribution over the variables 𝑉 and 𝑋, 𝑌 and 𝑍 stand
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for any three sets of variables in 𝑉. We use the notation (𝑋 ⟂⟂ 𝑌 | 𝑍) to state that 𝑋 is
independent of 𝑌 given 𝑍 in 𝑃. Vice versa, (𝑋⟂/⟂𝑌|𝑍) denotes that 𝑋 and 𝑌 are dependent
given 𝑍. A DAG 𝐷 is compatible with 𝑃 if it factorizes 𝑃 as 𝑃(𝑥1, … , 𝑥𝑛) = ∏𝑖(𝑃 (𝑥𝑖 | 𝑝𝑎𝑖))
where 𝑥𝑖 is a particular realization of 𝑋𝑖 and 𝑝𝑎𝑖 is a particular realization of the parents
of 𝑋𝑖 in 𝐷. Throughout this thesis we confine ourselves to independences of two variables
given a conditioning set, meaning 𝑋 and 𝑌 will usually be variables and not sets. Note
that we use iff as shorthand for if and only if. It is possible to read CIs off a DAG through
the notion of d-separation:

Definition 2.1 ([13]). A path 𝑝 is said to be d-separated (or blocked) by a set of nodes 𝑍
iff

1. 𝑝 contains a chain 𝑖 → 𝑚 → 𝑗 or a fork 𝑖 ← 𝑚 → 𝑗 such that the middle node 𝑚 is
in 𝑍, or

2. 𝑝 contains an inverted fork (or collider) 𝑖 → 𝑚 ← 𝑗 such that the middle node 𝑚 is
not in 𝑍 and such that no descendant of 𝑚 is in 𝑍.

A set 𝑍 is said to d-separate 𝑥 from 𝑦 iff 𝑍 blocks every path from 𝑥 to 𝑦.

We write (𝑥 ⟂⟂ 𝑦 | 𝑍)𝐷 when 𝑥 and 𝑦 are d-separated by 𝑍 in the DAG 𝐷 with 𝑥 and
𝑦 being nodes and 𝑍 a set of nodes. An inverted fork 𝑖 → 𝑚 ← 𝑗 is a called an unshielded
collider or v-structure if 𝑖 and 𝑗 are not adjacent. A pattern of a DAG 𝐷 is the PDAG
which has the identical adjacencies as 𝐷 and which has an oriented edge 𝑖 → 𝑗 iff there is
a vertex 𝑘 ∉ 𝑁(𝑖) such that 𝑖 → 𝑗 and 𝑘 → 𝑗 are in 𝐷. Essentially, in the pattern of 𝐷 the
only directed edges are the ones which are part of a v-structure in 𝐷.

A special case of PDAGs are the so called CPDAGs [2] or completed partially directed
graphs. These graphs represent Markov equivalence classes. If two DAGs are Markov
equivalent, it means that every probability distribution that is compatible with one of the
DAGs is also compatible with the other [13]. As shown by Verma and Pearl [19] two DAGs
are Markov equivalent iff they have the same skeleton and the same v-structures.

Definition 2.2. Given a DAG 𝐷 = (𝑉 , 𝐸), the class of Markov equivalent graphs to
𝐷, denoted as [𝐷], is defined as [𝐷] = {𝐷′ | 𝐷′ is Markov equivalent to 𝐷}. The graph
representing [𝐷] is called a completed partially directed acyclic graph (CPDAG) and is
denoted as 𝐷∗ = (𝑉 , 𝐸∗), with the set of edges defined as follows: 𝑖 → 𝑗 is in 𝐸∗ if 𝑖 → 𝑗
belongs to every 𝐷′ ∈ [𝐷] and 𝑖 − 𝑗 is in 𝐸∗ if there exists 𝐷′, 𝐷″ ∈ [𝐷] so that 𝑖 → 𝑗 is an
edge of 𝐷′ and 𝑖 ← 𝑗 is an edge of 𝐷″. A partially directed graph 𝐺 is called a CPDAG if
𝐺 = 𝐷∗ for some DAG 𝐷.

A CPDAG represents a Markov equivalence class and every DAG in this class is a
consistent extension of the CPDAG:
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Definition 2.3. Given a partially directed graph 𝐺, a DAG 𝐷 is an extension of 𝐺 iff 𝐺
and 𝐷 have the same skeleton and if 𝑖 → 𝑗 is in 𝐺, then 𝑖 → 𝑗 is in 𝐷. An extension is
called consistent if additionally 𝐺 and 𝐷 have the same v-structures. We denote the set of
all consistent extensions of 𝐺 as 𝐶𝐸(𝐺).

Meek [12] proved the following theorem:

Theorem 2.1 ([12]). When starting with a pattern of some DAG and repeatedly executing
the following three rules until none of them applies, we obtain a CPDAG:

R1: Orient 𝑗 − 𝑘 into 𝑗 → 𝑘 whenever there is 𝑖 → 𝑗 such that 𝑖 and 𝑘 are nonadjacent.

R2: Orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there is a chain 𝑖 → 𝑘 → 𝑗.

R3: Orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there are two chains 𝑖 − 𝑘 → 𝑗 and 𝑖 − 𝑙 → 𝑗 such
that 𝑘 and 𝑙 are nonadjacent.

We will call the rules R1-R3 the Meek rules. We note that this theorem does not only
hold when starting with the pattern of a DAG, but more generally for any PDAG whose
consistent extensions form a Markov equivalence class.

2.3 Definitions for sets of independences

The following new definitions are necessary to formally model the problem of causal
structure learning from sets of low-order CIs. The set ℐ𝑉 consists of CIs over variables
𝑉 = {𝑥1, … , 𝑥𝑛}. These CIs have the form (𝑎 ⟂⟂ 𝑏 | 𝑍) with 𝑎, 𝑏 ∈ 𝑉 and 𝑍 ⊆ 𝑉. In
particular, we commonly consider sets which only contain CI statements with |𝑍| ≤ 𝑘. We
denote these sets as ℐ𝑘

𝑉. We will term the cardinality of the conditioning set the order, so
ℐ𝑘

𝑉 would be a set of CI statements up to order 𝑘. The set ℐ0
𝑉 solely contains marginal

independences. Having access to the conditional independence information through a set
(or sometimes a list) ℐ𝑉 or ℐ𝑘

𝑉 is the standard setting in the literature [12, 18, 20]. When-
ever we measure the complexity of an algorithm, however, we will formally work with an
oracle which tells us if a CI (𝑎 ⟂⟂ 𝑏 | 𝑍) is in ℐ𝑉. A DAG 𝐷 is called faithful to a set ℐ𝑘

𝑉 if it
contains exactly the independences of order ≤ 𝑘 given in this set. A set ℐ𝑘

𝑉 will be termed
DAG-representable if there is a DAG which is faithful to it. We call a DAG 𝐷 faithful to
ℐ𝑘

𝑉 edge maximal if there is no faithful DAG whose edge set is a superset of 𝐷. For a more
elegant notation we usually write (𝑥 ⟂⟂ 𝑦 | 𝑍)ℐ𝑘

𝑉
instead of (𝑥 ⟂⟂ 𝑦 | 𝑍) ∈ ℐ𝑘

𝑉 and vice versa
(𝑥 ⟂/⟂ 𝑦 | 𝑍)ℐ𝑘

𝑉
instead of (𝑥 ⟂⟂ 𝑦 | 𝑍) ∉ ℐ𝑘

𝑉. This notation is justified as we will only inves-
tigate DAG-representable sets of independences throughout this thesis. We will explicitly
state that a set ℐ𝑘

𝑉 is DAG-representable whenever we use this property in an argument.
In all other cases the DAG-representability is implicitly assumed. For a set ℐ𝑘

𝑉 we denote
the set of all faithful DAGS as ℱ(ℐ𝑘

𝑉). We will say that a PDAG 𝐺 = (𝑉𝐺, 𝐸𝐺) contains
a set of faithful DAGs ℱ(ℐ𝑘

𝑉) if it holds for every 𝐷 = (𝑉𝐷, 𝐸𝐷) ∈ ℱ(ℐ𝑘
𝑉) that 𝑉𝐷 = 𝑉𝐺
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Figure 1: The set ℱ(ℐ1
𝑉) for 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} and ℐ1

𝑉 = {(𝑐 ⟂⟂ 𝑑 | {𝑎})} is presented in (a)
and its representation in (b).

and 𝐸𝐷 ⊆ 𝐸𝐺. From a causal structure learning perspective it is our goal to extract as
much information as possible from a set of CIs of order ≤ 𝑘. We formalize this goal as the
minimal PDAG which contains every DAG faithful to ℐ𝑘

𝑉:

Definition 2.4. A PDAG 𝐺 represents the set ℱ(ℐ𝑘
𝑉) if 𝐺 is a minimal graph that contains

every graph in ℱ(ℐ𝑘
𝑉). Here, minimality is considered in regard to the inclusion relation

between the sets of edges and taking into account that an undirected edge 𝑎 − 𝑏 in 𝐺 is
encoded as 𝑎 → 𝑏 and 𝑏 → 𝑎.

Later we will show that 𝐺 is actually a CPDAG (see Corollary 6.2). We note that a
PDAG 𝐺 representing a set ℱ(ℐ𝑘

𝑉) fulfills the following conditions:

1. There is an edge 𝑎−𝑏 in 𝐺 iff DAGs 𝐷1, 𝐷2 ∈ ℱ(ℐ𝑘
𝑉) exist such that there is an edge

𝑎 → 𝑏 in 𝐷1 and an edge 𝑎 ← 𝑏 in 𝐷2.

2. There is an edge 𝑎 → 𝑏 in 𝐺 iff a DAG 𝐷 ∈ ℱ(ℐ𝑘
𝑉) exists which contains the edge

𝑎 → 𝑏 and no DAG in ℱ(ℐ𝑘
𝑉) contains the edge 𝑎 ← 𝑏.

3. There is no edge between 𝑎 and 𝑏 in 𝐺 iff no DAG in ℱ(ℐ𝑘
𝑉) contains an edge between

𝑎 and 𝑏.

From this perspective one can already view the representation 𝐺 as a generalization of the
notion of a CPDAG. Moreover, we will later show that the consistent extensions of 𝐺 are
faithful DAGs.

We will finish this section with an example which illustrates the new terms introduced
above. This example is depicted in Figure 1. We have the set of variables 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}
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and the set of independences ℐ1
𝑉 = {(𝑐 ⟂⟂ 𝑑 | {𝑎})}. Note that for the sake of readability we

refrain from listing independences that follow symmetrically as, for example, (𝑑 ⟂⟂ 𝑐 | {𝑎})}
would in this case. The set ℐ1

𝑉 contains all conditional independences with order ≤ 1. This
set is DAG-representable because ℱ(ℐ1

𝑉) is not empty. As shown in part (a) of Figure 1
there are six DAGs faithful to ℐ1

𝑉. We can see that not all DAGs have the same skeleton.
The three DAGs in the upper row are edge maximal. In the lower row the edge 𝑎 → 𝑏
could be added. In part (b) the representation of ℱ(ℐ1

𝑉) is shown. We will refer to this
graph as 𝐺. This is the minimal graph which contains every faithful DAG. For example
the edge 𝑎 − 𝑐 is undirected, because there is a faithful DAG with the edge 𝑎 → 𝑐 and one
with the edge 𝑎 ← 𝑐. All those DAGs have to be contained in 𝐺 and therefore the edges
𝑎 → 𝑐 as well as 𝑎 ← 𝑐 are in 𝐺 which, in turn, is encoded as an undirected edge. On
the other hand, the directed edge 𝑐 → 𝑏 is present in 𝐺 because there is no faithful DAG
containing the edge 𝑐 ← 𝑏 (while there is a DAG which contains 𝑐 → 𝑏). We will briefly
explain why the edge 𝑐 ← 𝑏 is in no faithful DAG. If this edge were in a faithful DAG,
it would imply that there is an unblocked path between 𝑐 and 𝑑 given the conditioning
set 𝑍 = {𝑎}. This is because there can be no collider at node 𝑏 with the edge 𝑐 ← 𝑏 and
(𝑏 ⟂/⟂ 𝑑 | 𝑍)ℐ1

𝑉
. With 𝑏 ∉ 𝑍 this would contradict (𝑐 ⟂⟂ 𝑑 | 𝑍)ℐ1

𝑉
. It is a bit harder to see why

no faithful DAG contains the edge 𝑎 ← 𝑏. We investigate this further in Section 6.

14



3 Previous work
In this section we summarize the most relevant work on the topics dealt with in this
thesis. When it comes to the problem of recovering causal structure from a set of order-
bounded independences, the special case of marginal independences is the one which has
been studied the most intensively. But there are also some works which include conditional
independences of order one. There are, however, no generalizations that consider a fixed
𝑘 as the bound on the order. We will also give a short overview of the topic of causal
structure learning from complete conditional independence information. In particular, we
recall the popular PC algorithm.

3.1 Sets of marginal independences

Pearl and Wermuth [14] investigate the problem whether a set of marginal independences
ℐ0

𝑉 has a causal interpretation — meaning a DAG faithful to ℐ0
𝑉. Moreover, they propose

an algorithm to construct a faithful DAG (Algorithm 1 below). However, in their paper
they do not give proofs for their theorems. Textor et al. [18] investigate the stated problem
further, characterizing the DAG-representable sets by graph theoretical properties of the
marginal independence graphs (these are undirected graphs with an edge between 𝑖 and
𝑗 iff 𝑖 and 𝑗 are marginally dependent). Additionally, they propose Algorithm 1 below
which is based on above mentioned construction by Pearl and Wermuth [14]. We want to

input : Vertex set 𝑉, a DAG-representable set ℐ0
𝑉 of marginal independence

statements
output: CPDAG 𝐻 which contains every faithful DAG and whose extensions are

faithful
1 Form the empty graph 𝐻 on the vertex set 𝑉 and the graph 𝒰 which has an

undirected edge 𝑎 − 𝑏 if (𝑎 ⟂/⟂ 𝑏)ℐ0
𝑉
.

2 foreach edge 𝑢 − 𝑣 in 𝒰 do
3 Add the edge 𝑢 → 𝑣 to 𝐻 if Bd𝒰(𝑢) ⊂ Bd𝒰(𝑣).
4 Add the edge 𝑢 ← 𝑣 to 𝐻 if Bd𝒰(𝑢) ⊃ Bd𝒰(𝑣).
5 Add the edge 𝑢 − 𝑣 to 𝐻 if Bd𝒰(𝑢) = Bd𝒰(𝑣).
6 end
Algorithm 1: Algorithm from Textor et al. to find faithful DAGs for sets of
marginal independences [18].

emphasize that when adding edges between line 3 and 5 in Algorithm 1 an edge will not
be added between 𝑢 and 𝑣 if neither Bd(𝑢) ⊆ Bd(𝑣) nor Bd(𝑢) ⊇ Bd(𝑣) hold. No proof
is given for the statement that the extensions of 𝐻 are indeed faithful to ℐ0

𝑉. Based on
Algorithm 1 a method is proposed which enumerates every DAG faithful to ℐ0

𝑉. Moreover,
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it is remarked that 𝐻 is a CPDAG, but here as well no proof is given. It remains unclear
how these results can be generalized for sets of conditional independences.

3.2 Independences with order ≤ 1

The problem of finding faithful DAGs for a set of marginal independences and conditional
independences with a singleton conditioning set has not been extensively discussed in the
literature yet. However, there are a few papers which touched on the topic. Campos and
Huete [7] propose an algorithm for causal structure learning which uses zero- and first-
order independences to improve on previous constraint-based-algorithms. They also access
conditional independences of higher order, but the goal is to learn as much as possible from
low-order independences. However, they presuppose knowledge of the topological ordering
of the underlying DAG which is a rather strong assumption.

Wille and Bühlmann propose [21] to learn the undirected graph with those edges present
for which no zero- or first-order independence exists. However, it is possible that this graph
is not the skeleton for any faithful DAG. They analyze that for trees and other sparse
DAGs, their approach is a good heuristic.

3.3 Complete conditional independence information

The question of finding the faithful DAGs when given complete information has been
examined extensively beginning with Verma and Pearl [20]. Having complete independence
information is comparable to the real world scenario of having access to CI tests. As
these CI tests are computationally expensive the main goal for practical use is, thus, to
minimize the number of needed CI tests. Moreover the statistical properties of these tests
are relatively weak — in particular for large conditioning sets — making it desirable to
work with sets which are as small as possible. A number of algorithms have been proposed.
The most prominent one is the so called PC algorithm. It has the advantage of needing
only a polynomial amount of CI tests if the maximal degree 𝑑max in the underlying DAG
is fixed. This algorithm was first proposed by Spirtes, Glymour and Scheines in Chapter 5
of [17]. Later Kalisch and Bühlmann popularized the algorithm by proving consistency for
Gaussian distributions in high dimensional, sparse settings [8]. We present the algorithm
as given by Kalisch and Bühlmann. The PC algorithm consists of two parts: First, the
skeleton is learned by searching for independences as shown in Algorithm 2. Afterwards,
the conditioning sets found in the first step are used to form the necessary v-structures.
Finally, the PDAG is maximally extended by the Meek rules (R1-R3). This is presented
in Algorithm 3. The result is a CPDAG which represents the class of Markov-equivalent
faithful DAGs.

For a proof of correctness when having access to the true conditional independences
(the setting we consider in this thesis), we refer the reader to [17]. The number of carried
out CI tests is bounded by 𝑛 ⋅ (𝑛 − 1) ⋅ ∑𝑑max

𝑖=0 (𝑛−1
𝑖 ) [17]. This is because for every ordered
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input : Vertex Set 𝑉, Conditional Independence Information ℐ𝑉
output: Estimated skeleton 𝐺skel, separation sets 𝑆 (only needed when directing

the skeleton afterwards)
1 Form the complete undirected graph 𝐺skel on the vertex set 𝑉. Set 𝑙 = −1.
2 repeat
3 Set 𝑙 = 𝑙 + 1.
4 repeat
5 Select a (new) ordered pair of nodes 𝑖, 𝑗 that are adjacent in 𝐺skel such that

|𝑁(𝑖)\{𝑗}| ≥ 𝑙.
6 repeat
7 Choose (new) 𝑍 ⊆ 𝑁(𝑖)\{𝑗} with |𝑍| = 𝑙.
8 if (𝑖 ⟂⟂ 𝑗 | 𝑍)ℐ𝑉

then
9 Remove the edge 𝑖 − 𝑗 from 𝐺skel.

10 Save 𝑍 in 𝑆(𝑖, 𝑗) and 𝑆(𝑗, 𝑖).
11 end
12 until edge 𝑖 − 𝑗 is deleted or all 𝑍 ⊆ 𝑁(𝑖)\{𝑗} with |𝑍| = 𝑙 have been chosen
13 until all ordered pairs of adjacent variables 𝑖 and 𝑗 such that |𝑁(𝑖)\{𝑗}| ≥ 𝑙

and 𝑍 ⊆ 𝑁(𝑖)\{𝑗} with |𝑍| = 𝑙 have been tested for conditional independence
14 until for each ordered pair of adjacent nodes 𝑖, 𝑗: |𝑁(𝑖)\{𝑗}| < 𝑙

Algorithm 2: PC algorithm — Learning the skeleton [8]

input : Skeleton 𝐺skel, separation sets 𝑆
output: CPDAG 𝐺 representing the Markov equivalence class of faithful DAGs

1 Set 𝐺patt = 𝐺skel.
2 foreach chain 𝑖 − 𝑘 − 𝑗 in 𝐺skel with 𝑖 and 𝑗 nonadjacent do
3 if 𝑘 ∉ 𝑆(𝑖, 𝑗) then
4 Replace 𝑖 − 𝑘 − 𝑗 in 𝐺patt by 𝑖 → 𝑘 ← 𝑗.
5 end
6 end
7 Set 𝐺 = 𝐺patt.
8 repeat
9 R1: In 𝐺 orient 𝑗 − 𝑘 into 𝑗 → 𝑘 whenever there is an arrow 𝑖 → 𝑗 such that 𝑖

and 𝑘 are nonadjacent.
10 R2: In 𝐺 orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there is a chain 𝑖 → 𝑘 → 𝑗.
11 R3: In 𝐺 orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there are two chains 𝑖 − 𝑘 → 𝑗 and

𝑖 − 𝑙 → 𝑗 such that 𝑘 and 𝑙 are nonadjacent.
12 until No further edges can be oriented in 𝐺 by application of R1-R3.

Algorithm 3: PC algorithm — Extending the skeleton to a CPDAG [8]
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pair of nodes we search through all sets of neighboring nodes up to cardinality 𝑑max. In the
worst case no independence with a conditioning set smaller than 𝑑max is found, and thus
every node has 𝑛 − 1 neighbors until sets of size 𝑑max are considered. We can estimate:

𝑛 ⋅ (𝑛 − 1) ⋅
𝑑max

∑
𝑖=0

(𝑛 − 1
𝑖

) ≤ 𝑛 ⋅ (𝑛 − 1) ⋅
𝑑max

∑
𝑖=0

(𝑛 − 1)𝑖

𝑖!

= 𝑛 ⋅ (𝑛 − 1) ⋅
𝑑max

∑
𝑖=0

𝑑𝑖
max
𝑖!

(𝑛 − 1/𝑑max)𝑖

≤ 𝑛 ⋅ (𝑛 − 1) ⋅ 𝑒𝑑max(𝑛 − 1/𝑑max)𝑑max

It follows that in the worst case the number of CI tests is asymptotically in 𝒪(𝑛2+𝑑max)
and thus polynomial for a fixed maximal degree 𝑑max. It is reasonable to assume that the
worst case occurs very rarely in practice and that the algorithm will usually perform even
better.

Almost all proposed modifications of the PC algorithm seek out to make the algorithm
more robust and improve the quality of the results on real word-data [5, 9, 11]. There
is only one notable paper by Abellán et al. [1] which proposes modifications to improve
the running time of the PC algorithm in the ideal scenario of having complete and correct
independence information. However, the experiments in this paper do not indicate that
the performances of these modifications are significantly better than the performance of
the PC algorithm.
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𝑣𝑏𝑎𝑢

𝑐 (b)

𝑣𝑏𝑎𝑢

𝑐(a)

Figure 2: In (a) the set ℐ0
𝑉 = {(𝑢 ⟂⟂ 𝑐), (𝑢 ⟂⟂ 𝑏), (𝑢 ⟂⟂ 𝑣), (𝑎 ⟂⟂ 𝑣), (𝑐 ⟂⟂ 𝑣)} for the vertex set

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑢, 𝑣} is visualized by an undirected graph which contains an edge 𝑎 − 𝑏 if 𝑎
and 𝑏 are marginally dependent. In (b) we show the only DAG faithful to ℐ0

𝑉.

4 Incompatible nodes

4.1 Motivation and Definition

In this thesis we are concerned with causal structure learning from sets of CIs. Of particular
interest are such sets ℐ𝑘

𝑉 where the order of the CIs is bounded by 𝑘. In order to recover the
underlying causal structure our goal is to find the representation of the set of faithful
DAGs ℱ(ℐ𝑘

𝑉). This is a PDAG (later we will show that the representation is actually
a CPDAG) which contains every faithful DAG. Moreover, this PDAG should be minimal
with regards to the edges. In other words, our goal is to remove all edges which are in no
faithful DAG and, vice versa, keep all edges which are in at least one faithful DAG. In this
section, we investigate how to find the edges which can be removed. This will also be useful
in view of causal structure learning in general where the most common algorithms start
with a complete graph and remove exactly the mentioned superfluous edges. Therefore, all
definitions and theorems in this section apply to sets ℐ𝑉 as well as ℐ𝑘

𝑉.
One way of removing edges is quite obvious. If we have a statement (𝑎⟂⟂𝑏 |𝑍)ℐ𝑉

, it fol-
lows trivially that there cannot be an edge between 𝑎 and 𝑏 in any faithful DAG. Removing
edges according to this rule is sufficient for causal structure learning when having access to
the complete conditional independence information. For example, the PC algorithm works
exactly in this fashion. However, only removing these edges is not sufficient for obtain-
ing the skeleton of a faithful DAG when we consider order-bounded sets of independences.
This can be exemplified by the following case: We have a set of marginal independences
ℐ0

𝑉 = {(𝑢 ⟂⟂ 𝑐), (𝑢 ⟂⟂ 𝑏), (𝑢 ⟂⟂ 𝑣), (𝑎 ⟂⟂ 𝑣), (𝑐 ⟂⟂ 𝑣)} for the vertex set 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑢, 𝑣}
whose dependences are shown as undirected edges in the graph in part (a) of Figure 2. It
is immediately clear that any edge missing in this graph (for example 𝑢 − 𝑏) means that 𝑢
and 𝑏 are nonadjacent in every faithful DAG. This is the case because these nodes need to
be d-separated given the empty set with (𝑢 ⟂⟂ 𝑏) being in ℐ0

𝑉. However, the nodes 𝑎 and 𝑏
also have to be nonadjacent in every DAG faithful to ℐ0

𝑉 even though we have (𝑎 ⟂/⟂ 𝑏)ℐ0
𝑉
.

Essentially, this is the case because the edge between 𝑎 and 𝑏 (if present) would need to
be in two conflicting v-structures namely 𝑢 → 𝑎 ← 𝑏 and 𝑎 → 𝑏 ← 𝑣 to make sure that 𝑢
and 𝑏 as well as 𝑎 and 𝑣 are marginally independent. This is clearly impossible. It follows
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that there is no DAG faithful to ℐ0
𝑉 in which 𝑎 and 𝑏 are adjacent. Thus, it is vital that

the nodes 𝑎 and 𝑏 are nonadjacent in the representation of ℱ(ℐ0
𝑉) as well. Therefore, every

algorithm learning this representation has to ensure that these edges are removed. We will
formalize the situation just described in the following definition and thereby introduce the
so called incompatible nodes:

Definition 4.1. Given a set of CIs ℐ𝑉. Then two nodes 𝑎 and 𝑏 are called incompatible
iff the following holds:

(∃𝑢, 𝑍) ((𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
∧ (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑉

∧ (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉
∧ 𝑎 ∉ 𝑍)

∧ (∃𝑣, 𝑍′) ((𝑣 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑉
∧ (𝑣 ⟂/⟂ 𝑏 | 𝑍′)ℐ𝑉

∧ (𝑏 ⟂/⟂ 𝑎 | 𝑍′)ℐ𝑉
∧ 𝑏 ∉ 𝑍′)

We can see that the nodes 𝑎 and 𝑏 in Figure 2 are incompatible because

(𝑢 ⟂⟂ 𝑏)ℐ0
𝑉
, (𝑢 ⟂/⟂ 𝑎)ℐ0

𝑉
, (𝑎 ⟂/⟂ 𝑏)ℐ0

𝑉
, (𝑣 ⟂⟂ 𝑎)ℐ0

𝑉
and (𝑣 ⟂/⟂ 𝑏)ℐ0

𝑉

hold. In this case 𝑍 and 𝑍′ are both the empty set. It follows immediately that 𝑎 ∉ 𝑍 and
𝑏 ∉ 𝑍′ hold. Moreover, (𝑏 ⟂/⟂ 𝑎)ℐ0

𝑉
follows by symmetry from (𝑎 ⟂/⟂ 𝑏)ℐ0

𝑉
(and from the fact

that ℐ0
𝑉 is DAG-representable).

4.2 Properties of incompatible nodes

We will now show the most important properties of incompatible nodes. We begin by
proving that if the nodes 𝑎 and 𝑏 are incompatible, this means that there cannot be an
edge between 𝑎 and 𝑏 in any faithful DAG.

Theorem 4.1. Given a set of CIs ℐ𝑉. If we have (𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
, (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑉

and 𝑎 ∉ 𝑍,
then no DAG faithful to ℐ𝑉 contains the edge 𝑎 → 𝑏.

Proof. Assume, for the sake of contradiction, there is an edge 𝑎 → 𝑏 in a faithful DAG 𝐷.
In this DAG (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑉

has to hold. This means that there is a path between 𝑢 and 𝑎
which is not blocked by 𝑍. But as we have the edge 𝑎 → 𝑏 in 𝐺, there will also be a path
between 𝑢 and 𝑏 which is not blocked by 𝑍 (note that 𝑎 ∉ 𝑍). A contradiction.

It immediately follows that incompatible nodes cannot be adjacent in any faithful DAG:

Corollary 4.1. Given a set of CIs ℐ𝑉. If the nodes 𝑎 and 𝑏 are incompatible, they are
nonadjacent in every DAG faithful to ℐ𝑉.

Due to the conditions stated in the definition of incompatible nodes (Definition 4.1) it
follows from Theorem 4.1 that neither the edge 𝑎 → 𝑏 nor 𝑎 ← 𝑏 can be in any faithful DAG.
We want to emphasize that (as can be seen in Theorem 4.1) the conditions (𝑎⟂/⟂𝑏|𝑍)ℐ𝑉

and
(𝑏 ⟂/⟂ 𝑎 | 𝑍′)ℐ𝑉

stated in Definition 4.1 are not necessary for 𝑎 and 𝑏 to be nonadjacent
in every faithful DAG. If we would have (𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉

or (𝑏 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑉
, trivially there
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cannot be an edge connecting 𝑎 and 𝑏. However, our point in Definition 4.1 is that the
given conditions are nontrivial but still sufficient for two nodes to be nonadjacent in every
faithful DAG. Therefore, we include (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉

and (𝑏 ⟂/⟂ 𝑎 | 𝑍′)ℐ𝑉
.

Theorem 4.1 showed that incompatible nodes cannot be adjacent in any faithful DAG.
The following theorem will strengthen this statement further:

Theorem 4.2. Given a set of CIs ℐ𝑉. If we have (𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
, (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑉

and 𝑎 ∉ 𝑍,
then no DAG faithful to ℐ𝑉 contains a causal path from 𝑎 to 𝑏.

Proof. Assume, for the sake of contradiction, that there is a faithful DAG 𝐷 which contains
a causal path from 𝑎 to 𝑏 even though the stated conditions hold. It follows from (𝑢⟂/⟂𝑎|𝑍)ℐ𝑉
and the faithfulness of 𝐷 that there is a path from 𝑢 to 𝑎 which is not blocked by 𝑍. But
as 𝑢 is supposed to be independent of 𝑏 given 𝑍, some node on the causal path from 𝑎 to
𝑏 (we call this node 𝑛) has to be in 𝑍 blocking this path. Moreover, we know that there is
a path from 𝑎 to 𝑏 not blocked by 𝑍 as (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉

has to hold. Thus, there has to be
a collider at node 𝑎 (because of 𝑎 ∉ 𝑍) blocking this possible path from 𝑢 to 𝑏. But this
collider would be unblocked by node 𝑛 as it is a successor of 𝑎 and in 𝑍. It follows that
(𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉

does not hold. A contradiction.

The following statement follows directly (as Corollary 4.1 above):

Corollary 4.2. Assume ℐ𝑉 is a set of CIs. If the nodes 𝑎 and 𝑏 are incompatible, no DAG
faithful to ℐ𝑉 contains a causal path between 𝑎 and 𝑏.

We have already seen an example of this fact in Figure 2. The nodes 𝑎 and 𝑏 are
incompatible, but as 𝑎 and 𝑏 are marginally dependent there still is a path connecting
them. However, this path is not causal but has the form 𝑎 ← 𝑐 → 𝑏.

The notion of incompatible nodes is central in this thesis. When considering order-
bounded sets of CIs ℐ𝑘

𝑉, we will show that removing the possible edges between two in-
compatible nodes (in combination with all edges that we can remove trivially by having an
independence in ℐ𝑘

𝑉) is necessary and sufficient to obtain the skeleton of the representation
of ℱ(ℐ𝑘

𝑉). The necessity of incompatible nodes being nonadjacent in the representation is
clear from Figure 2. Proving the sufficiency on the other hand is much more complicate
and will be one of the main results of this thesis.

We have seen the importance of the notion of incompatible nodes when considering
order-bounded sets of CIs. But beyond that Definition 4.1 also applies to the setting of
having complete conditional independence information without a bound on the order. In
this case the removal of possible edges between incompatible nodes is not strictly necessary.
With access to all CIs we are able to find a conditional independence for every pair of
nonadjacent nodes in the underlying DAG. This is for example how the PC algorithm
operates, by finding a separating set for every such pair. However, including the notion
of incompatible nodes accelerates the learning of causal structures because we can infer
independences earlier. This enables us to propose an improvement on the popular PC
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Figure 3: A class of DAGs for which 𝑎 and 𝑏 are separated by a large set 𝑍 = {𝑐, … , 𝑑} ∪
{𝑒, … , 𝑓}. However, because the nodes 𝑎 and 𝑏 are incompatible, the edges 𝑎 → 𝑏 and
𝑎 ← 𝑏 cannot be in any faithful DAG. This information can be retrieved already through
marginal independences.

algorithm in Section 7. Thus, incompatible nodes play a key role in the standard setting
of causal structure learning as well. We exemplify this in Figure 3.

A class of DAGs is shown for which the PC algorithm would need to consider the whole
set 𝑍 = {𝑐, … , 𝑑} ∪ {𝑒, … , 𝑓} in order to separate 𝑎 and 𝑏. However, finding this set is
computationally very expensive. In particular, the PC algorithm will need at least 2|𝑍| CI
tests. But the nodes 𝑎 and 𝑏 are incompatible and it is clear that they cannot be adjacent
in any faithful DAG as the following statements hold:

(𝑢 ⟂⟂ 𝑏), (𝑢 ⟂/⟂ 𝑎), (𝑎 ⟂/⟂ 𝑏), (𝑣 ⟂⟂ 𝑎), (𝑣 ⟂/⟂ 𝑏).

Note that all of these statements are marginal independences and thus, we know that 𝑎
and 𝑏 are incompatible — and are able to remove the edges between 𝑎 and 𝑏 — just by
looking at the marginal independences. Of course, what remains to be shown for a correct
causal structure learning algorithm is that we are able to direct the edges 𝑎 − 𝑐 − 𝑏 into a
v-structure if necessary. When removing the edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 because 𝑎 and 𝑏 are
incompatible, we have to do this without knowing the separating set. This is nontrivial
but indeed possible and shows that the notion of incompatible nodes is not simply an
arbitrary condition, but instead a useful and important criterion for edge removal in causal
structure learning. We show this result in Section 7 when we present an improved version
of the PC algorithm.

However, a caveat is necessary. Even though it is possible to remove some edges much
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earlier than the PC algorithm the number of CI tests will still grow polynomially in the
maximal degree of the underlying DAG. In particular, in the example shown in Figure 3
the nodes 𝑎 and 𝑏 have a large degree and the algorithm still has to test for example
whether 𝑢 and 𝑎 can be separated by any subset of 𝑍 = {𝑐, … , 𝑑} ∪ {𝑒, … , 𝑓} because
all these nodes are neighbors of 𝑎. This limitation is inherent in constraint-based causal
structure learning and all exact approaches have to check these CIs. Consider, for example,
the extreme case that the skeleton of the underlying DAG is a complete graph. Then
every algorithm learning this causal structure has to exhaustively check all possible CIs
even though there is no conditional independence. We analyze this further in Section 7
and show experimentally in Section 8 that our proposed algorithm which removes edges
between incompatible nodes is more efficient than the PC algorithms for most DAGs even
with this limitation.
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𝑎 𝑏 𝑐

𝑑(a)

𝑎 𝑏 𝑐

𝑑 (b)

Figure 4: Both DAGs (a) and (b) have the same marginal independences (all variables are
pairwise dependent), but a different skeleton and different v-structures.

5 Recovering causal structures from marginal independences

In this section our goal is to find the DAGs faithful to a set ℐ0
𝑉 of marginal independences.

We do this by obtaining the representation 𝐺 of the set of faithful DAGs ℱ(ℐ0
𝑉). We will

generalize this scenario to sets of CIs with a bounded order in the subsequent section.
Still, the special case of marginal independences is of interest for two reasons. On the one
hand there are some properties which only hold for the learning of causal structures from
marginal independences. On the other hand this case has been investigated before by Pearl
and Wermuth [14] as well as Textor et al. [18] and there are still some key proofs missing
(see Section 3) which we prefer to give explicitly and not implicitly through the general
case in the next section. Additionally, we want to give a simpler alternative to Algorithm 1
proposed by Textor et al. [18]. Finally, because the proofs in this section are considerably
easier while the structure is similar to Section 6, the inclusion of this section emphasizes
the new ideas we present.

5.1 Introduction of Algorithm 4

We are given a set of marginal independences ℐ0
𝑉. First, we investigate the structure of

the set ℱ(ℐ0
𝑉) of faithful DAGs. For Markov equivalent DAGs it holds that they have the

same skeleton and the same set of v-structures. Neither of these two properties hold for
DAGs faithful to a set of marginal independences, however, as is exemplified in Figure 4.
In the DAG (b) the edge 𝑎 → 𝑐 is missing and the v-structure 𝑎 → 𝑑 ← 𝑐 is present while
in DAG (a) the edge 𝑎 → 𝑐 is present and therefore 𝑎 → 𝑑 ← 𝑐 is no v-structure. But
both DAGs have the same marginal independences as every pair of nodes is marginally
dependent. This observation makes the recovery of the underlying causal structure much
more challenging. In particular, our goal is first and foremost to find a minimal PDAG
𝐺 which contains all faithful DAGs. We termed this PDAG the representation of the
set of faithful DAGs (see Definition 2.4). When we obtain this representation we can be
certain that we have extracted maximum information from the set ℐ0

𝑉 in a causal structure
learning sense. More precisely, we know that every edge missing from 𝐺 is not present in
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the underlying DAG, while all remaining edges might be. Therefore, no further edges can
be removed. We will later see that the representation also enables us to find the faithful
DAGs. In particular, the consistent extensions of 𝐺 are faithful to ℐ0

𝑉.
Algorithm 4 finds the representation 𝐺 for a set of marginal independences ℐ0

𝑉. Proving
this will be the main result of this section combined with the fact that 𝐺 is a CPDAG.
As mentioned above, in Section 6 we will propose a generalization (Algorithm 5) which
recovers causal structures from a set of conditional independences with order ≤ 𝑘.

input : Vertex set 𝑉, set ℐ0
𝑉 of marginal independence statements

output: CPDAG 𝐺 which is the representation of ℱ(ℐ0
𝑉)

1 Form the graph 𝒰 on the vertex set 𝑉 which has an undirected edge 𝑖 − 𝑗 if
(𝑖 ⟂/⟂ 𝑗)ℐ0

𝑉
. Set 𝐺 = 𝒰.

2 For every chain 𝑖 − 𝑘 − 𝑗 in 𝒰 with 𝑖 and 𝑗 nonadjacent, remove the edges 𝑖 ← 𝑘
and 𝑘 → 𝑗 from 𝐺.

Algorithm 4: Finding the representation 𝐺 for a DAG-representable set ℐ0
𝑉 of

marginal independences

Algorithm 4 consists of two steps: First, we form the graph that has (undirected) edges
between marginally dependent nodes. Second, we remove all edges which cannot be in any
faithful DAG because the conditions for Theorem 4.1 hold. This is the case for the edge
𝑖 → 𝑘 if (𝑘⟂/⟂𝑗)ℐ0

𝑉
and (𝑖⟂⟂𝑗)ℐ0

𝑉
are satisfied. These conditions are met if we have the chain

𝑖 − 𝑘 − 𝑗 in 𝒰. Thus, it is quite clear that the rules to remove edges from 𝐺 are correct. In
other words, these edges are in no faithful DAG. The main challenge is to show that every
remaining edge in 𝐺 is actually present in a faithful DAG. Then, it is clear that no further
edge can be removed and it follows that 𝐺 is the representation of ℱ(ℐ0

𝑉).
We analyze the algorithm in more depth by considering the example which is shown

in Figure 5. We have the set of marginal independences ℐ0
𝑉 = {(𝑢 ⟂⟂ 𝑐), (𝑢 ⟂⟂ 𝑏), (𝑢 ⟂⟂

𝑣), (𝑎 ⟂⟂ 𝑣), (𝑐 ⟂⟂ 𝑣)} with 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑢, 𝑣}. A DAG faithful to this set is shown in part
(a) of Figure 5. The algorithm starts by producing the undirected graph 𝒰 which contains
an edge 𝑎 − 𝑏 iff (𝑎 ⟂/⟂ 𝑏)ℐ0

𝑉
holds. This graph is shown in part (b). Then we set 𝐺 = 𝒰

and obtain the resulting representation by removing edges from 𝐺 according to the rule
in line 2 of Algorithm 4. In this rule we remove the edges 𝑖 ← 𝑘 and 𝑘 → 𝑗 from 𝐺 if we
have the chain 𝑖 − 𝑘 − 𝑗 with 𝑖 and 𝑗 nonadjacent in 𝒰. It is important to recall how we
formally model a graph in this thesis. Whenever we have the edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 in
𝐺, we encode this as an undirected edge 𝑎 − 𝑏. This explains how we can remove the edge
𝑎 ← 𝑏 from a graph with the edge 𝑎 − 𝑏. This edge 𝑎 − 𝑏 means that the edges 𝑎 → 𝑏 and
𝑎 ← 𝑏 are present in the graph. Thus, if we remove the edge 𝑎 ← 𝑏 from a graph 𝐺 with
the edge 𝑎 − 𝑏, the edge 𝑎 → 𝑏 remains.

The graph shown in part (c) of Figure 5 is the graph 𝐺 obtained after applying the rule
in line 2 of Algorithm 4 to all chains starting with the node 𝑢. We show this intermediate
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Figure 5: Example showing how Algorithm 4 works: The underlying DAG is shown in (a).
In (b) we present the graph 𝒰 obtained in line 1 of Algorithm 4. In (c) the intermediate
graph 𝐺 is shown after applying the rule in line 2 to all chains starting with node 𝑢. In
(d) the final graph 𝐺 is shown after applying the rule in line 2 to the remaining chains.

result in order to better illustrate how this rule works. We list all removed edges (some
edges appear multiple times because they are in more than one chain): The edges 𝑢 ← 𝑑
and 𝑑 → 𝑣 are removed because of the chain 𝑢 − 𝑑 − 𝑣 in 𝒰, the edges 𝑢 ← 𝑎 and 𝑎 → 𝑐
because of the chain 𝑢 − 𝑎 − 𝑐, the edges 𝑢 ← 𝑎 and 𝑎 → 𝑏 because of the chain 𝑢 − 𝑎 − 𝑏
and the edges 𝑢 ← 𝑑 and 𝑑 → 𝑐 because of the chain 𝑢 − 𝑑 − 𝑐.

In part (d) of Figure 5 the final result is shown. Here, all remaining chains are considered
as well and the following edges are removed: The edges 𝑐 ← 𝑏 and 𝑏 → 𝑣 are removed
because of the chain 𝑐−𝑏−𝑣 in 𝒰, the edges 𝑎 ← 𝑏 and 𝑏 → 𝑣 because of the chain 𝑎−𝑏−𝑣
and the edges 𝑎 ← 𝑑 and 𝑑 → 𝑣 because of the chain 𝑎−𝑑−𝑣. The resulting graph 𝐺 is the
representation of the set of faithful DAGs (we will prove this later). While 𝐺 is actually
a DAG in this example, this is not always the case and the representation might contain
undirected edges. In general, 𝐺 is a CPDAG as we will show in Theorem 5.4. We also
want to emphasize that the nodes 𝑎 and 𝑏 are incompatible. They are nonadjacent in 𝐺
even though we have (𝑎⟂/⟂𝑏)ℐ0

𝑉
because the conditions stated in Definition 4.1 are satisfied.

More generally, all pairs of nodes that become nonadjacent during step 2 of Algorithm 4
are incompatible.

5.2 Equivalence of Algorithm 1 and Algorithm 4

In Section 3 we recalled a construction (see Algorithm 1) which was first proposed by Pearl
and Wermuth [14] and later refined by Textor et al. [18]. This construction was used in
order to find DAGs faithful to a set ℐ0

𝑉. We show that this algorithm is equivalent to
Algorithm 4 we introduced in this section. The reason we propose a new algorithm for this
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problem is that it is simpler and, most importantly, easier to generalize. Moreover, we are
able to give the important proofs that every consistent extension of the resulting graph is
faithful (Theorem 2 in [14] and Theorem 4.4 in [18]), that the result of the algorithm is
the representation of ℱ(ℐ0

𝑉) and that this representation is a CPDAG.
When comparing Algorithm 1 and Algorithm 4 it is clear that in both cases an edge

will not be present in the resulting PDAG (we will only refer to the result of Algorithm 4
as a CPDAG after we have proven this in Theorem 5.4) if we have a statement (𝑎 ⟂⟂ 𝑏)ℐ0

𝑉
.

What we will show is that the conditions for directing edges are equivalent as well. In
particular both algorithms make sure that incompatible nodes are nonadjacent (see case 4
in the proof below).

Theorem 5.1. For every set ℐ0
𝑉 of marginal independences Algorithm 4 produces the same

PDAG as Algorithm 1.

Proof. In this proof we denote the PDAG produced by Algorithm 1 as 𝐻 and the one
produced by Algorithm 4 as 𝐺. We have to show that 𝐺 = 𝐻 holds. We will begin our
proof by analyzing under which conditions a directed edge 𝑢 ← 𝑣 is removed from 𝐺. This
is the case if we have a node 𝑤 which is a neighbor of 𝑣, but not a neighbor of 𝑢. Because
then we have 𝑢 − 𝑣 − 𝑤 with 𝑢 and 𝑤 nonadjacent and in particular the edge 𝑢 ← 𝑣 is
removed.

Formally, the edge 𝑢 ← 𝑣 (in case we have (𝑢 ⟂/⟂ 𝑣) ∈ ℐ0
𝑉) is removed from 𝐺 if the

following condition holds:

(∃𝑤)(𝑤 ∉ Bd𝒰(𝑢) ∧ 𝑤 ∈ Bd𝒰(𝑣)) (1)

Note that 𝒰 is the same graph in both algorithms. We will also consider under which
condition an edge 𝑢 → 𝑣 is not removed from 𝐺. This happens if condition 1 does not hold
and by negation we get:

¬((∃𝑤)(𝑤 ∉ Bd𝒰(𝑢) ∧ 𝑤 ∈ Bd𝒰(𝑣))) = (∀𝑤)¬(𝑤 ∉ Bd𝒰(𝑢) ∧ 𝑤 ∈ Bd𝒰(𝑣)) (2)
= (∀𝑤)(𝑤 ∈ Bd𝒰(𝑣) ⟹ 𝑤 ∈ Bd𝒰(𝑢)) (3)

Now we can show that 𝐻 and 𝐺 are identical. We note that both PDAGs have the same
vertex set. Thus, it is left to prove that all edges are identical. To do this we consider
all possible edge states (undirected, directed or missing) between two node 𝑢 and 𝑣 in the
following case study.

1. There is no edge between 𝑢 and 𝑣 in 𝐺 and (𝑢 ⟂⟂ 𝑣)ℐ0
𝑉

holds. Then, in the first line
of both algorithms the edge was not added to 𝒰 and thus is neither part of 𝐻 nor 𝐺.

2. The directed edge 𝑢 → 𝑣 is in 𝐺. From above considerations it follows that the
conditions

(∃𝑤)(𝑤 ∉ Bd𝒰(𝑢) ∧ 𝑤 ∈ Bd𝒰(𝑣))
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and
(∀𝑤)(𝑤 ∈ Bd𝒰(𝑢) ⟹ 𝑤 ∈ Bd𝒰(𝑣))

hold. This is because we require that the edge 𝑢 ← 𝑣 was removed from 𝐺 while
𝑢 → 𝑣 was not. Only then we have the directed edge 𝑢 → 𝑣 in 𝐺. Moreover, it is
clear that the edge between 𝑢 and 𝑣 is present in 𝒰 in both algorithms. We can see
that the two conditions above are equivalent to Bd𝒰(𝑢) ⊂ Bd𝒰(𝑣) which is exactly
the condition in line 3 in Algorithm 1 for adding an edge 𝑢 → 𝑣 to 𝐻.

3. The directed edge 𝑢 ← 𝑣 is in 𝐺. This case can be dealt with in the same way as
𝑢 → 𝑣 in case 2.

4. There is no edge between 𝑢 and 𝑣 in 𝐺 and (𝑢⟂/⟂𝑣)ℐ0
𝑉
. In Algorithm 4 this case occurs

if the edges 𝑢 → 𝑣 and 𝑢 ← 𝑣 are removed from 𝐺 in different iterations in line 2.
Thus, the following two conditions hold:

(∃𝑤)(𝑤 ∉ Bd𝒰(𝑢) ∧ 𝑤 ∈ Bd𝒰(𝑣))

and
(∃𝑥)(𝑥 ∈ Bd𝒰(𝑢) ∧ 𝑥 ∉ Bd𝒰(𝑣)).

This means that none of the three cases from line 3 to 5 in Algorithm 1 apply as
Bd𝒰(𝑢) and Bd𝒰(𝑣) are not equal nor is one a subset of the other. This means that
no edge is added to 𝐻. We note here that the opposite direction holds as well,
meaning that if none of the three cases apply it follows that the two statements
above concerning the existence of 𝑤 and 𝑥 are valid. Moreover, the nodes 𝑢 and 𝑣
are incompatible as

(𝑤 ⟂⟂ 𝑢)ℐ0
𝑉
, (𝑤 ⟂/⟂ 𝑣)ℐ0

𝑉
, (𝑣 ⟂/⟂ 𝑢)ℐ0

𝑉
, (𝑥 ⟂⟂ 𝑣)ℐ0

𝑉
and (𝑥 ⟂/⟂ 𝑢)ℐ0

𝑉

hold.

5. There is an edge 𝑢 − 𝑣 in 𝐺. This can only occur in Algorithm 4 if neither 𝑢 → 𝑣 nor
𝑢 ← 𝑣 get removed. But this means as reasoned above that

(∀𝑥)(𝑥 ∈ Bd𝒰(𝑢) ⟹ 𝑥 ∈ Bd𝒰(𝑣))

and
(∀𝑥)(𝑥 ∈ Bd𝒰(𝑣) ⟹ 𝑥 ∈ Bd𝒰(𝑢))

hold. It immediately follows that Bd𝒰(𝑢) = Bd𝒰(𝑣) and therefore the edge 𝑢 − 𝑣 is
added to 𝐻 in line 5 of Algorithm 1.
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We have seen that the Algorithms 1 and 4 produce the same result. We will now
compare the running time of the two algorithms. In order to simplify the analysis we
measure the complexity in the cardinality of the vertex set 𝑛 and will not consider the size
of the set ℐ0

𝑉. Formally, this can be modeled by having access to an oracle which tells us if
a certain marginal independence is in the set ℐ0

𝑉. In Algorithm 1 we have to compare the
sets of neighbors for all adjacent nodes in 𝒰. In the worst case there are 𝒪(𝑛2) adjacent
nodes in 𝒰 and each node can have 𝒪(𝑛) neighbors. Thus, the worst case complexity is
in 𝒪(𝑛3). In Algorithm 4 we consider all chains 𝑖 − 𝑘 − 𝑗 in 𝒰. In the worst case there
are 𝒪(𝑛3) of those chains and therefore the complexity is again in 𝒪(𝑛3). Thus, both
algorithms have the same running time. As mentioned above, our main motivation for
proposing Algorithm 1 was not to gain performance improvements, but that it is simpler
and easier to generalize.

5.3 Proof of correctness

In this subsection we will prove the main results of this section that Algorithm 4 returns
the representation 𝐺 of the set ℱ(ℐ0

𝑉) of faithful DAGs and that this representation is a
CPDAG. Moreover, we show that every consistent extension of 𝐺 is faithful. This proof has
until now been missing from the literature (see Theorem 2 in [14] and Theorem 4.4 in [18]).
During this whole subsection we assume that 𝐺 is the result of applying Algorithm 4 to a
set of marginal independences ℐ0

𝑉. The corresponding set of faithful DAGs is denoted as
ℱ(ℐ0

𝑉). We begin by stating that every faithful DAG is contained in 𝐺. This statement
follows from Theorem 4.1 which shows the correctness of the rule for removing edges in
line 2.

Lemma 5.1. 𝐺 contains every DAG 𝐷 ∈ ℱ(ℐ0
𝑉).

Proof. Every faithful DAG is contained in the graph 𝐺 formed in line 1. Moreover, by
Theorem 4.1 every edge removed in line 2 is in no faithful DAG because (𝑎 ⟂⟂ 𝑏)ℐ0

𝑉
and

(𝑐 ⟂/⟂ 𝑏)ℐ0
𝑉

hold when the edge 𝑎 ← 𝑏 is removed.

What we need to show in order to prove that 𝐺 represents the set of faithful DAGs
ℱ(ℐ0

𝑉) is the minimality of 𝐺. This is a much harder task. We begin by showing that
every edge 𝑎 → 𝑏 in 𝐺 can be added to a faithful DAG 𝐷 producing another faithful DAG
𝐷′ = 𝐷 ∪ {𝑎 → 𝑏} given that this does not produce a cycle. Proving this will be the first
step towards showing that the edge maximal DAGs faithful to ℐ0

𝑉 have the same skeleton
as 𝐺.

Theorem 5.2. Given a DAG 𝐷 ∈ ℱ(ℐ0
𝑉) and two nodes 𝑎, 𝑏 ∈ 𝑉 nonadjacent in 𝐷. The

DAG 𝐷′ = 𝐷 ∪ {𝑎 → 𝑏} is faithful to ℐ𝑘
𝑉 iff 𝑎 ∉ De𝐷(𝑏) and 𝑎 → 𝑏 ∈ 𝐺 hold.

Proof. We show two directions. We begin by showing that if the DAG 𝐷′ = 𝐷 ∪ {𝑎 → 𝑏}
is faithful to ℐ0

𝑉, then 𝑎 ∉ De𝐷(𝑏) and 𝑎 → 𝑏 ∈ 𝐺 hold. Clearly, 𝑎 cannot be in De𝐷(𝑏)
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as then there would be a cycle in 𝐷′. Moreover, every faithful DAG is contained in 𝐺
(Lemma 5.1) and because 𝐷′ is faithful it follows that 𝑎 → 𝑏 is in 𝐺.

We will now show the more interesting direction that if 𝑎 ∉ De𝐷(𝑏) and 𝑎 → 𝑏 ∈ 𝐺
hold, the DAG 𝐷′ = 𝐷 ∪ {𝑎 → 𝑏} is faithful to ℐ0

𝑉. We prove this by showing that the
following holds:

∀𝑢, 𝑣 ∈ 𝑉 [(𝑢 ⟂⟂ 𝑣)𝐷′ ⟺ (𝑢 ⟂⟂ 𝑣)𝐷]

We show two directions. We begin with (𝑢 ⟂⟂ 𝑣)𝐷′ ⟹ (𝑢 ⟂⟂ 𝑣)𝐷. It follows immediately
from the fact that 𝐷 is a subgraph of 𝐷′ that every marginal independence in 𝐷′ is also
in 𝐷. The second direction (𝑢 ⟂/⟂ 𝑣)𝐷′ ⟹ (𝑢 ⟂/⟂ 𝑣)𝐷 is more interesting. We consider a
path 𝑝′ which d-connects 𝑢 and 𝑣 in 𝐷′. We will show that there will also be a path 𝑝
d-connecting 𝑢 and 𝑣 in 𝐷.

If the edge 𝑎 → 𝑏 is not part of 𝑝′, this path also exists in 𝐷. If, on the other hand,
𝑎 → 𝑏 is in 𝑝′ we will show that there is a path 𝑝𝑢−𝑏 d-connecting 𝑢 and 𝑏 in 𝐷. Then, as
there will not be collider at node 𝑏 (in 𝑝′ the edge 𝑎 → 𝑏 was used and therefore the path
between 𝑏 and 𝑣 has to start with 𝑏 →), a path 𝑝 which d-connects 𝑢 and 𝑣 in 𝐷 exists.
This is the concatenation of 𝑝𝑢−𝑏 and the subpath 𝑝′

𝑏−𝑣 between the nodes 𝑏 and 𝑣 of the
path 𝑝′. Note that this concatenation is formally a way (because a node could be part of
𝑝𝑢−𝑏 and 𝑝′

𝑏−𝑣), but we know that every way d-connecting two nodes can be simplified into
a path with the same property. We show now that the path 𝑝𝑢−𝑏 exists:

The statements (𝑢 ⟂/⟂ 𝑎)ℐ0
𝑉

and (𝑎 ⟂/⟂ 𝑏)ℐ0
𝑉

hold because of the validity of 𝑝′. It follows
that (𝑢 ⟂/⟂ 𝑏)ℐ0

𝑉
holds as well. This is because in the case of (𝑢 ⟂⟂ 𝑏)ℐ0

𝑉
the edge 𝑎 → 𝑏 would

have been removed in line 2 of Algorithm 4. A contradiction to the assumption that the
edge 𝑎 → 𝑏 is in 𝐺. But with (𝑢 ⟂/⟂ 𝑏)ℐ0

𝑉
and the faithfulness of 𝐷 it follows that there is a

path 𝑝𝑢−𝑏 d-connecting 𝑢 and 𝑏 in the faithful DAG 𝐷 and therefore as argued above also
a path d-connecting 𝑢 and 𝑣.

The following Lemma will be important for the proof of Theorem 5.3 below.

Lemma 5.2. If 𝑎 ← 𝑏 ∈ 𝐺 and 𝑎 → 𝑏 ∉ 𝐺, it follows that 𝑏 ∉ De𝐷(𝑎) holds for all DAGs
𝐷 ∈ ℱ(ℐ0

𝑉).

Proof. Having the edge 𝑎 ← 𝑏 in G but not the edge 𝑎 → 𝑏 implies that the following holds:

(∃𝑢 ∈ 𝑉 ) (𝑢 ⟂⟂ 𝑏)ℐ0
𝑉
, (𝑢 ⟂/⟂ 𝑎)ℐ0

𝑉
, (𝑎 ⟂/⟂ 𝑏)ℐ0

𝑉

These are the conditions that the edge 𝑎 → 𝑏 gets removed in line 2 of Algorithm 4. Note
that this edge will not be removed in line 1 because (𝑎 ⟂/⟂ 𝑏)ℐ0

𝑉
holds. It follows from

Theorem 4.2 that there cannot be a causal path from 𝑎 to 𝑏 in any DAG faithful to ℐ0
𝑉.

Thus, 𝑏 is not a descendant of 𝑎 in all DAGs 𝐷 ∈ ℱ(ℐ0
𝑉).

We prove the important result that the edge maximal faithful DAGs have the same
skeleton as 𝐺. This shows that if two nodes 𝑎 and 𝑏 are nonadjacent in an edge maximal
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faithful DAG either the independence (𝑎 ⟂⟂ 𝑏)ℐ0
𝑉

holds or 𝑎 and 𝑏 are incompatible. This is
because these are the only two ways 𝑎 and 𝑏 can become nonadjacent during the execution
of Algorithm 4. In particular, edges between incompatible nodes are removed in line 2.

Theorem 5.3. The edge maximal DAGs faithful to ℐ0
𝑉 have the same skeleton as 𝐺.

Proof. We show two directions. If 𝑎 and 𝑏 are adjacent in an edge maximal faithful DAG
𝐷, they are also adjacent in 𝐺. This follows from Lemma 5.1 because every faithful DAG
is contained in 𝐺.

The second direction is more intricate. We show that if 𝑎 and 𝑏 are adjacent in 𝐺,
they are also adjacent in any edge maximal faithful DAG 𝐷. Assume, for the sake of
contradiction, that 𝑎 and 𝑏 are not adjacent in an edge maximal faithful DAG 𝐷. We
consider three cases:

1. The edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 are in 𝐺. From Theorem 5.2 we know that the edge
𝑎 → 𝑏 can be added to 𝐷 if 𝑎 ∉ De𝐷(𝑏). If on the other hand 𝑎 ∈ De𝐷(𝑏) holds, then
the edge 𝑎 ← 𝑏 can be added, because in this case 𝑏 ∉ De𝐷(𝑎) has to hold (else there
would be a cycle in 𝐷). Thus, 𝐷 is not edge maximal. A contradiction.

2. The edge 𝑎 ← 𝑏 is in 𝐺 and the edge 𝑎 → 𝑏 is not. From Lemma 5.2 it follows that
𝑏 ∉ De𝐷(𝑎) holds for every faithful DAG. Thus, as shown in Theorem 5.2 the edge
𝑎 ← 𝑏 can be added to 𝐷. This means that 𝐷 is not edge maximal. A contradiction.

3. The edge 𝑎 → 𝑏 is in 𝐺 and the edge 𝑎 ← 𝑏 is not. This case is symmetrical to case 2
above.

We have seen that all edge maximal faithful DAGs have the same skeleton and this is
exactly the skeleton of 𝐺. Our goal is to show that the edge maximal DAGs faithful to ℐ0

𝑉
also have the same v-structures as 𝐺. We begin by proving the following Lemma:

Lemma 5.3. Given a DAG-representable set ℐ0
𝑉 and a chain 𝑎 − 𝑐 − 𝑏 with 𝑎 and 𝑏

nonadjacent in the skeleton of 𝐺. Then the edges are directed either as 𝑎 → 𝑐 ← 𝑏 or
𝑎 ← 𝑐 → 𝑏 in 𝐺.

Proof. The nodes 𝑎 and 𝑏 can be nonadjacent in 𝐺 for two reasons:

1. The edge 𝑎 − 𝑏 was not added to 𝒰 in line 1 of Algorithm 4 because (𝑎 ⟂⟂ 𝑏)ℐ0
𝑉

holds.
Then the chain 𝑎 − 𝑐 − 𝑏 is in 𝒰 and thus, considered in line 2. It follows that the
edges 𝑎 ← 𝑐 and 𝑐 → 𝑏 were removed and the chain is thus directed as 𝑎 → 𝑐 ← 𝑏.
Note that the edges 𝑎 → 𝑐 and 𝑐 ← 𝑏 will be present in 𝐺 because we assumed that
the skeleton of 𝐺 contains the chain 𝑎 − 𝑐 − 𝑏.
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𝑐

𝑣

(b)

𝑣𝑏𝑎𝑢

𝑐 (d)

𝑣𝑏𝑎𝑢

𝑐(c)

Figure 6: The two cases considered in the proof of Lemma 5.3. Case 2a is on the left in
parts (a) and (c) and case 2b on the right in parts (b) and (d). In the upper row the
graph 𝒰 is shown which visualizes the marginal independences in ℐ𝑉. In the lower row the
corresponding representation — meaning the learned structure — is shown.

2. The edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 were removed in line 2 of Algorithm 4. Then we have a
node 𝑢 with (𝑢⟂⟂𝑏)ℐ0

𝑉
and (𝑢⟂/⟂𝑎)ℐ0

𝑉
as well as a node 𝑣 with (𝑣⟂/⟂𝑏)ℐ0

𝑉
and (𝑣⟂⟂𝑎)ℐ0

𝑉
.

Now we consider the node 𝑐 which is a common neighbor of 𝑎 and 𝑏. In particular
(𝑎⟂/⟂𝑐)ℐ0

𝑉
and (𝑐⟂/⟂𝑏)ℐ0

𝑉
hold. There are two cases which are also illustrated in Figure 6.

Our reasoning is that starting from the two possible statements (𝑢⟂⟂𝑐)ℐ0
𝑉

and (𝑢⟂/⟂𝑐)ℐ0
𝑉

due to the DAG-representability of ℐ𝑉 further statements can be deduced. In the
end it becomes clear that these imply either 𝑎 → 𝑐 ← 𝑏 or 𝑎 ← 𝑐 → 𝑏 in the learned
representation 𝐺.

(a) If (𝑢 ⟂/⟂ 𝑐)ℐ0
𝑉

holds the edge 𝑐 → 𝑏 will be removed from 𝐺 in line 2 (we have the
chain 𝑢 − 𝑐 − 𝑏 in 𝒰). We know that 𝑐 and 𝑏 are adjacent and thus, it follows
that the edge 𝑐 ← 𝑏 is present in 𝐺. But then (𝑣 ⟂/⟂ 𝑐)ℐ0

𝑉
has to hold as in case of

(𝑣 ⟂⟂ 𝑐)ℐ0
𝑉

the edge 𝑐 ← 𝑏 would have been removed from 𝐺 (we would have the
chain 𝑐 − 𝑏 − 𝑣 in 𝒰). This means, in turn, that we have 𝑎 → 𝑐 in 𝐺 because as
above the edge 𝑎 ← 𝑐 gets removed due to the chain 𝑎 − 𝑐 − 𝑣 in 𝒰. It follows
that we get the v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐺.

(b) If (𝑢 ⟂⟂ 𝑐)ℐ0
𝑉

holds, it follows that we have 𝑎 ← 𝑐 in 𝐺 as the edge 𝑎 → 𝑐
is removed (due to the chain 𝑢 − 𝑎 − 𝑐 in 𝒰) and as 𝑎 and 𝑐 are adjacent in
𝐺. Then (𝑣 ⟂⟂ 𝑐)ℐ0

𝑉
holds because in case of (𝑣 ⟂/⟂ 𝑐)ℐ0

𝑉
the edge 𝑎 ← 𝑐 would

have been removed because of the chain 𝑎 − 𝑐 − 𝑣 in 𝒰. Thus, the edge 𝑐 → 𝑏
is removed from 𝐺 because of the chain 𝑐 − 𝑏 − 𝑣 in 𝒰 and we get the structure
𝑎 ← 𝑐 → 𝑏.

To summarize the two cases (a) and (b), for a DAG-representable set ℐ𝑉 the statement
(𝑢 ⟂⟂ 𝑐)ℐ0

𝑉
holds iff (𝑣 ⟂⟂ 𝑐)ℐ0

𝑉
holds.
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Corollary 5.1. There is a v-structure in an edge maximal DAG 𝐷 ∈ ℱ(ℐ0
𝑉) iff it is present

in 𝐺.

Proof. We begin by showing that whenever there is a v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐷, it will
also be present in 𝐺. From Theorem 5.3 we know that 𝐺 has the same skeleton as 𝐷 and
thus, 𝑎 and 𝑏 are nonadjacent in 𝐺. It follows from Lemma 5.3 that the edges between 𝑎
and 𝑐 as well as 𝑐 and 𝑏 are already directed. Because 𝐷 is contained in 𝐺 (Lemma 5.1)
we cannot have 𝑎 ← 𝑐 → 𝑏 in 𝐺. Thus, we have the v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐺.

We show that a v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐺 will also be in 𝐷. In particular, this means
that the edges 𝑎 ← 𝑐 and 𝑐 → 𝑏 were removed from 𝐺 and it follows from Lemma 5.1
that they cannot be present in 𝐷 either. Because 𝐷 and 𝐺 have the same skeleton, the
v-structure 𝑎 → 𝑐 ← 𝑏 will also be present in 𝐷.

We have seen that all edge maximal faithful DAGs have the same skeleton and the
same set of v-structures. Thus, these DAGs form a Markov-equivalence class:

Corollary 5.2. The set of edge maximal DAGs faithful to ℐ0
𝑉 is the Markov equivalence

class formed by all consistent extensions of 𝐺.

Proof. Theorem 5.3 states that all edge maximal faithful DAGs have the same skeleton and
Corollary 5.1 states that all edge maximal faithful DAGs have the same set of v-structures
as 𝐺. Thus, the set ℱ(ℐ𝑘

𝑉) is equivalent to the set 𝐶𝐸(𝐺) of consistent extensions of 𝐺.

This finally proves the correctness of Theorem 2 in [14] and Theorem 4.4 in [18] which,
essentially, stated that the consistent extensions of 𝐺 are DAGs faithful to ℐ0

𝑉. It also
shows that 𝐺 is vital for finding faithful DAGs. Moreover, by connecting the set of edge-
maximal faithful DAGs with 𝐺 we can derive some interesting properties. In particular,
we will show now that 𝐺 is a CPDAG which enables us to conclude that 𝐺 is minimal.
The following Lemma shows that in 𝐺 all transitive edges are present:

Lemma 5.4. If we have the edges 𝑎 → 𝑏 → 𝑐 in the PDAG 𝐺 obtained by Algorithm 4,
there will also be an edge 𝑎 → 𝑐.

Proof. We will first argue that an edge between 𝑎 and 𝑐 is present in 𝐺 and then show that
it is directed 𝑎 → 𝑐. Assume, for the sake of contradiction, that 𝑎 and 𝑐 are nonadjacent
in 𝐺, but 𝑎 and 𝑏 are adjacent as well as 𝑏 and 𝑐. Then from Lemma 5.3 we know that the
edges are directed either as 𝑎 → 𝑏 ← 𝑐 or 𝑎 ← 𝑏 → 𝑐. A contradiction to above assumption
that we have the edges 𝑎 → 𝑏 → 𝑐 in 𝐺.

For the sake of simplicity we will lead the following argument based on Algorithm 1
which, as we showed in Theorem 5.1, produces the same CPDAG as Algorithm 4. However,
we note that it is possible to prove this statement solely with Algorithm 4 as well. From
Algorithm 1 we know that 𝑎 → 𝑏 implies Bd𝒰(𝑎) ⊂ Bd𝒰(𝑏) and 𝑏 → 𝑐 implies Bd𝒰(𝑏) ⊂
Bd𝒰(𝑐). Thus, Bd𝒰(𝑎) ⊂ Bd𝒰(𝑐) holds as well and the edge is directed as 𝑎 → 𝑐.
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Theorem 5.4. 𝐺 is a CPDAG.

Proof. Meek proved that when starting with a pattern of a DAG and applying the rules
R1-R3 (we termed these rules the Meek rules) repeatedly, the result will be a CPDAG [12].
We note here that it is not necessary to start with a pattern. A PDAG whose consistent
extensions form a Markov equivalence class is sufficient. This is the case here as shown by
Corollary 5.2. We show that none of the Meek rules can be applied to 𝐺, implying that it
is already a CPDAG:

1. There is no structure 𝑖 → 𝑗 − 𝑘 with 𝑖 and 𝑘 nonadjacent in 𝐺 because in this case
we either have 𝑖 → 𝑗 ← 𝑘 or 𝑖 ← 𝑗 → 𝑘 as shown in Lemma 5.3. Therefore, the first
Meek rule does not apply.

2. We have shown in Lemma 5.4 that when we have 𝑖 → 𝑗 → 𝑘 there will already be an
edge 𝑖 → 𝑘 in 𝐺. Therefore, the second Meek rule does not apply.

3. If 𝑘 and 𝑙 are nonadjacent the edges 𝑖 − 𝑘 and 𝑖 − 𝑙 would already be directed as
shown in Lemma 5.3. Therefore, the third Meek rule does not apply.

It follows that 𝐺 is a CPDAG.

We have seen that 𝐺 contains all faithful DAGs, that its consistent extensions are
faithful and that it is a CPDAG. The final result of this section is that 𝐺 is minimal and,
thus, the representation of the set ℱ(ℐ0

𝑉). This shows that from a constraint-based causal
structure learning perspective we have extracted as much information as possible from 𝐺
as no further edges can be removed.

Theorem 5.5. 𝐺 is the representation of the set ℱ(ℐ0
𝑉).

Proof. As shown in Lemma 5.1 𝐺 contains every DAG in ℱ(ℐ0
𝑉). Moreover 𝐺 is minimal,

because removing another edge would immediately violate the condition that 𝐺 contains
every DAG in ℱ(ℐ0

𝑉). This is because 𝐺 is a CPDAG (Theorem 5.4) whose consistent
extensions are the edge maximal faithful DAGs (Corollary 5.2).

5.4 Enumerating all faithful DAGs

After obtaining the representation 𝐺 of ℱ(ℐ0
𝑉) the natural question arises how we can

actually find (or even better enumerate) all faithful DAGs. In particular, the challenge
is that not all faithful DAGs have the same skeleton and the same set of v-structures
(we have seen this in Figure 4). Thus, well known approaches which enumerate all Markov
equivalent DAGs fail [12]. This special problem has already been investigated by Textor
et al. [18]. In Section 5 of this work they extensively study the problem using Algorithm 1
which is equivalent to Algorithm 4 (see Theorem 5.1). They propose an algorithm which
solves the problem and enumerates all faithful DAGs using the representation 𝐺 as well as
the set of edge minimal faithful DAGs.
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6 Recovering causal structures from order-bounded sets of
independences

In this section our goal is to find the DAGs faithful to a set ℐ𝑘
𝑉 of CIs up to order 𝑘. We

achieve this by obtaining the representation 𝐺 of the set of faithful DAGs ℱ(ℐ𝑘
𝑉). We

propose Algorithm 5 to solve this task. This algorithm is a generalization of Algorithm 4
from the previous section. When proving the correctness, we moreover show that the
representation 𝐺 is a CPDAG and that all consistent extensions of 𝐺 are DAGs faithful
to ℐ𝑘

𝑉. Lastly, we investigate further how the representation enables us to find all faithful
DAGs.

6.1 Introduction of Algorithm 5

input : Vertex Set 𝑉, DAG-representable set ℐ𝑘
𝑉 of conditional independence

statements with order ≤ 𝑘
output: CPDAG 𝐺 which is the representation of ℱ(ℐ𝑘

𝑉)
1 Form the graph 𝐺ep on the vertex set 𝑉 which has an undirected edge 𝑖 − 𝑗 if it

holds for every subset 𝑍 of 𝑉 that (𝑖 ⟂/⟂ 𝑗 | 𝑍)ℐ𝑘
𝑉
.

2 foreach three nodes 𝑖, 𝑘, 𝑗 and every conditioning set 𝑍 do
3 if (𝑖 ⟂⟂ 𝑗 | 𝑍)ℐ𝑘

𝑉
, (𝑖 ⟂/⟂ 𝑘 | 𝑍)ℐ𝑘

𝑉
, (𝑘 ⟂/⟂ 𝑗 | 𝑍)ℐ𝑘

𝑉
and 𝑘 ∉ 𝑍 then

4 Remove the edges 𝑖 ← 𝑘 and 𝑘 → 𝑗 from 𝐺ep.
5 end
6 end
7 Set 𝐺 = 𝐺ep.
8 repeat
9 R1: In 𝐺 orient 𝑗 − 𝑘 into 𝑗 → 𝑘 whenever there is an arrow 𝑖 → 𝑗 such that 𝑖

and 𝑘 are nonadjacent.
10 R2: In 𝐺 orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there is a chain 𝑖 → 𝑘 → 𝑗.
11 R3: In 𝐺 orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there are two chains 𝑖 − 𝑘 → 𝑗 and

𝑖 − 𝑙 → 𝑗 such that 𝑘 and 𝑙 are nonadjacent.
12 until No further edges can be oriented in 𝐺 by application of R1-R3.

Algorithm 5: Obtaining the representation 𝐺 for a DAG-representable set of CIs
up to order 𝑘

We begin by explaining how Algorithm 4 works. At first, the graph 𝐺ep is formed
which contains an undirected edge 𝑖 − 𝑗 if there is no set 𝑍 ⊆ 𝑉 with |𝑍| ≤ 𝑘 such
that the CI (𝑖 ⟂⟂ 𝑗 | 𝑍) is in ℐ𝑘

𝑉. This undirected edge encodes the edges 𝑖 → 𝑗 and 𝑖 ← 𝑗
which are both in 𝐺ep at the beginning of the algorithm. Recall that the representation
is obtained by removing all edges which are in no faithful DAG. Thus, edges are removed
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Figure 7: The underlying DAG faithful to the set ℐ1
𝑉 = {(𝑎 ⟂⟂ 𝑐), (𝑎 ⟂⟂ 𝑑 | {𝑏, 𝑐})} with

𝑉 = {𝑎, 𝑏, 𝑐, 𝑑} is shown in (a). In (b) the graph formed in line 1 is displayed. In (c) 𝐺ep is
shown after the for-loop from line 2 to 6. In (d) the final result 𝐺 is shown after applying
the Meek rules.

from 𝐺ep according to the conditions stated in line 3. These are the conditions demanded
in Theorem 4.1. We check exhaustively if the conditions are satisfied for every possible
three nodes 𝑖, 𝑘, 𝑗 and conditioning set 𝑍. The result is a graph which we will call an
extended pattern 𝐺ep. This is due to the fact that all necessary v-structures are oriented
(the usual definition of a pattern), but there are also directed edges which are not part of
a v-structure. This notion of an extended pattern will be illustrated in more detail in the
subsequent section.

Then, we set 𝐺 = 𝐺ep and apply the Meek rules (R1-R3) to the graph 𝐺 instead of
𝐺ep. We do this, on the one hand, to emphasize the important intermediate result 𝐺ep and,
on the other hand, because we specifically need the graph 𝐺ep for some proofs. After the
application of the Meek rules we obtain the resulting graph 𝐺 which is the representation
of the set of faithful DAGs ℱ(ℐ𝑘

𝑉). We want to emphasize that there are two different ways
two nodes 𝑎 and 𝑏 can be nonadjacent in 𝐺. The first is that there is a CI (𝑎⟂⟂𝑏|𝑍)ℐ𝑘

𝑉
. The

second is that the edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 are removed in different iterations of the for loop
between lines 2 and 6. If this second case applies the nodes 𝑎 and 𝑏 are incompatible. We
show later in this section that these two rules for edges removals are sufficient in order to
obtain the representation 𝐺 of ℱ(ℐ𝑘

𝑉). Moreover, we will see that the consistent extensions
of 𝐺 are faithful DAGs.

Through the example depicted in Figure 7 we show in more detail how Algorithm 5
works. We have a set ℐ1

𝑉 = {(𝑎 ⟂⟂ 𝑐), (𝑎 ⟂⟂ 𝑑 | {𝑏, 𝑐})} of CIs up to order 1. We consider the
vertex set 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}. The underlying DAG is shown in part (a). The main goal of
this example is to show why the Meek rules are needed in order to find the representation
ℱ(ℐ𝑘

𝑉). These rules (R1-R3) were not necessary in the case of marginal independences
we investigated in the previous section because the result was already a CPDAG (see
Theorem 5.4).

The algorithm starts with the undirected graph 𝐺ep in which two nodes are adjacent if
there is no CI statement in ℐ1

𝑉 for those nodes. With (𝑎 ⟂⟂ 𝑐)ℐ1
𝑉

and (𝑎 ⟂⟂ 𝑑 | {𝑏, 𝑐})ℐ1
𝑉

the
nodes 𝑎 and 𝑐 as well as 𝑎 and 𝑑 are therefore nonadjacent in 𝐺ep while all other nodes are
adjacent. The graph obtained in line 1 is shown in part (b) of Figure 7. In the for-loop
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from line 2 to 6 edges are removed if the conditions for Theorem 4.1 apply. In this case
the edges 𝑎 ← 𝑏 and 𝑏 → 𝑐 are removed as we have (𝑎 ⟂/⟂ 𝑐)ℐ1

𝑉
, (𝑎 ⟂/⟂ 𝑏)ℐ1

𝑉
, (𝑏 ⟂/⟂ 𝑐)ℐ1

𝑉
and

𝑏 ∉ ∅. We have obtained the extended pattern 𝐺ep which is shown in part (c).
We continue by applying the Meek rules to the graph 𝐺 = 𝐺ep. Through the first Meek

rule the edge 𝑏 − 𝑑 is oriented as 𝑏 → 𝑑 because we have 𝑎 → 𝑏 − 𝑑 in 𝐺 with 𝑎 and 𝑑
nonadjacent. This is correct because the opposite orientation 𝑏 ← 𝑑 would imply a new
v-structure. This, however, is not allowed because all necessary v-structures are already
present in 𝐺ep. Moreover, because of the chain 𝑐 → 𝑏 → 𝑑 the edge 𝑐 − 𝑑 is oriented into
𝑐 → 𝑑 according to the second Meek rule. Clearly, the opposite orientation would create
a cycle. The resulting representation is in this case equal to the underlying DAG which
actually is the only DAG faithful to ℐ1

𝑉.
We have seen an application of the first two Meek rules. An example for the third rule

is shown in Figure 1 we looked at in Section 2. There the edge 𝑎 − 𝑏 is oriented as 𝑎 → 𝑏.
This is correct as the orientation 𝑎 ← 𝑏 would imply either a cycle or a new v-structure
𝑐 → 𝑎 ← 𝑑. It is clear that the Meek rules are correct for a fixed skeleton. However, as
we have seen already for marginal independences, the DAGs faithful to ℐ𝑘

𝑉 not necessarily
have the same skeleton. This makes it much harder to prove the correctness of the Meek
rules in our setting. Take for example the second rule. Orienting the edge 𝑖 → 𝑗 avoids
a cycle in 𝐺, but there might be a faithful DAG not containing the edge 𝑖 → 𝑘 or not
containing the edge 𝑘 → 𝑗. It is necessary to show that in this DAG as well, the edge 𝑖 ← 𝑗
will not be present. This is precisely the reason why we prefer to prove some statements
for the graph 𝐺ep and only afterwards include the Meek rules in our reasoning.

6.2 Comparing Algorithm 5 and Algorithm 4

Algorithm 4 which we introduced in the previous section solved the problem of recovering
causal structures for the special case of marginal independences. This setting had already
been investigated in the literature [14, 18] and, in particular, the equivalent Algorithm 1
(see Theorem 5.1) had been proposed. However, a generalization of this algorithm to the
general setting we consider in this section was not possible and the problem remained
unsolved. We will show that such a generalization is possible when instead starting with
Algorithm 4 we proposed in the previous section. We prove in the following Theorem that
Algorithm 5 (which finds the representation for the general problem as we show later in
this section) generalizes Algorithm 4. This proof will also serve as a short comparison of
the two algorithms.

Theorem 6.1. Algorithm 5 produces the same CPDAG as Algorithm 4 when given a
DAG-representable set ℐ0

𝑉 of marginal independences.

Proof. Line 1 in Algorithm 5 is clearly equivalent to line 1 in Algorithm 4. Moreover
the for-loop from line 2 to 6 in Algorithm 5 is equivalent to line 2 in Algorithm 4. This
follows from the fact that the only conditioning set 𝑍 to consider is the empty set and that
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(𝑖 ⟂⟂ 𝑗)ℐ0
𝑉
, (𝑖 ⟂/⟂ 𝑘)ℐ0

𝑉
and (𝑘 ⟂/⟂ 𝑗)ℐ0

𝑉
hold iff there is a chain 𝑖 − 𝑘 − 𝑗 in 𝒰 with 𝑖 and 𝑗

nonadjacent. Finally, the Meek rules (R1-R3) will not orient any further edges because
we have shown in Theorem 5.4 that in the case of marginal independences 𝐺 is already a
CPDAG.

We have seen the two main differences of Algorithm 5 and Algorithm 4. First, that we
have to consider every 𝑍 with |𝑍| ≤ 𝑘 and second, that we have to include the Meek rules
(R1-R3). It will become clear during the course of this section why this is necessary.

The running time of the algorithm is dominated by the for loop from line 2 to 6 and
is, thus, in 𝒪(𝑛3 ⋅ ∑𝑘

𝑖=0 (𝑛
𝑖)). As in the previous section, we measure the complexity in the

cardinality of the vertex set 𝑛 and do not consider the size of ℐ𝑘
𝑉. Formally, this is modeled

by an oracle giving us access to this set. We can see that Algorithm 5 is asymptotically no
worse than Algorithm 4 for the special case of 𝑘 = 0. But practically speaking Algorithm 4
is faster because we only consider every chain 𝑖 − 𝑘 − 𝑗 in 𝒰 instead of every three nodes
𝑖, 𝑘, 𝑗 ∈ 𝑉. It is an open question if it is sufficient to only consider such chains in the general
case as well. However, it is not our main goal to optimize the running time of Algorithm 5.

Instead when formulating Algorithm 5 our main interest is that we are able to prove the
correctness as well as some other important properties (for example that 𝐺 is a CPDAG).
Therefore, it is our objective to present the algorithm as clean and simple as possible. The
running time is only of secondary interest. In particular, this is because we will present a
much more practicable algorithm (for the topic of causal structure learning in general) in
the subsequent section. Still, we want to mention one further potential improvement. It
might actually be sufficient to look at only one set 𝑍 per independence. This means that if
we find one set for which (𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘

𝑉
holds, it might not be necessary to look at another

set 𝑍′ with (𝑎 ⟂⟂ 𝑏 | 𝑍′)ℐ𝑘
𝑉

in the for loop from line 2 to 6.

6.3 Proof of correctness

In this subsection we show that the result of Algorithm 5 is a CPDAG which is the repre-
sentation 𝐺 of the set of faithful DAGs ℱ(ℐ𝑘

𝑉). Then it follows that no further edges can
be removed from 𝐺. Recall that every edge in the representation is contained in a faithful
DAG. Therefore, removing another edge from the representation 𝐺 would mean that one
or more DAGs will not be contained in 𝐺. At first, we will consider the PDAG obtained
from Algorithm 5 at line 6 (after the for loop) before applying the Meek rules (R1-R3).
Throughout this whole section we will refer to this PDAG as 𝐺ep while we will refer to the
output graph of Algorithm 5 as 𝐺. As explained above, considering 𝐺ep instead of 𝐺 will
simplify some proofs and we will show the correctness of the three rules R1-R3 afterwards.

The structure of this subsection is very similar to the corresponding one in the previous
section. However, a few technical proofs are much more intricate and may be skipped
at first reading. In particular, this holds for Lemma 6.2 and Theorem 6.2. We begin by
showing that every DAG faithful to a set of independences ℐ𝑘

𝑉 is a subgraph of 𝐺ep.
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Lemma 6.1. 𝐺ep contains every DAG in ℱ(ℐ𝑘
𝑉).

Proof. Every faithful DAG is contained in the graph formed in line 1. Moreover, for every
edge 𝑎 → 𝑏 removed in line 4 the following holds:

∃𝑍 ⊆ 𝑉 with |𝑍| ≤ 𝑘 ∃𝑢 ∈ 𝑉 [(𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉
, (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑘

𝑉
, (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘

𝑉
, 𝑎 ∉ 𝑍]

By Theorem 4.1 the edge 𝑎 → 𝑏 is not part of any faithful DAG.

Our goal is to show that the edge maximal DAGs have the same skeleton as 𝐺ep. We
begin with the following technical Lemma which is necessary for the proof of Theorem 6.2
below.

Lemma 6.2. Given a DAG 𝐷 ∈ ℱ(ℐ𝑘
𝑉), two nodes 𝑎, 𝑏 ∈ 𝑉 and a set 𝑍 with |𝑍| ≤ 𝑘 such

that the following holds: (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘
𝒱
, (𝑎 ⟂/⟂ 𝑏 | 𝑍\De(𝑏))ℐ𝑘

𝒱
and 𝑎 ∉ De(𝑏). Then there is a

path d-connecting 𝑎 and 𝑏 in 𝐷 given 𝑍 which ends with → 𝑏.

Proof. Assume, for the sake of contradiction, that there is no path d-connecting 𝑎 and 𝑏
given 𝑍 ending with → 𝑏 in 𝐷. This means every path ends with the edge ← 𝑏. Moreover
we know that there cannot be a causal path from 𝑏 to 𝑎 because 𝑎 ∉ De(𝑏). Then, it is clear
that every path 𝑝 which d-connects 𝑎 and 𝑏 given 𝑍 in 𝐷 contains at least one collider. We
also note that on 𝑝 every node unblocking the collider closest to 𝑏 is a descendant of 𝑏. We
will now consider the set 𝑍′ = 𝑍 \ De(𝑏) meaning we remove all nodes from 𝑍 which are a
descendant of 𝑏. We will show that there can be no path d-connecting 𝑎 and 𝑏 given 𝑍′.
This will contradict the assumption that (𝑎 ⟂/⟂ 𝑏 | 𝑍′)ℐ𝑘

𝑉
holds for 𝑍′ = 𝑍 \ De(𝑏).

Every path d-connecting 𝑎 and 𝑏 given 𝑍′ contains a node 𝑥 ∈ De(𝑏). If this were not
the case and there actually is such a path which contains no node in De(𝑏), then this path
would d-connect 𝑎 and 𝑏 given 𝑍 as well. Moreover, this path would have to end with
the edge → 𝑏 (else the node preceding 𝑏 on the path is a descendant of 𝑏). But we have
assumed above, for the sake of contradiction, that there is no path d-connecting 𝑎 and 𝑏
given 𝑍 in 𝐷 ending with → 𝑏.

We will consider a path 𝑝′ d-connecting 𝑎 and 𝑏 given 𝑍′ which contains a node 𝑥 ∈
De(𝑏). This node cannot be a collider → 𝑥 ← in 𝑝′, because 𝑥 is not in 𝑍′ and neither is
any descendant 𝑦 of 𝑥 as 𝑦 is by transitivity a descendant of 𝑏 as well. Thus, the collider
→ 𝑥 ← would be unblocked. It follows that in 𝑝′ there is an edge ← 𝑥 or an edge 𝑥 →.
We investigate these two cases which are also displayed in Figure 8:

1. Consider the edge ← 𝑥 is in 𝑝′. This case is shown in part (a) of Figure 8. We denote
the subpath between 𝑎 and 𝑥 of 𝑝′ as 𝑝′

𝑎−𝑥. This subpath cannot be causal from 𝑥
to 𝑎 as then there would be a causal path from 𝑏 to 𝑎 because 𝑥 is a descendant of 𝑏.
But we required that 𝑎 ∉ De(𝑏) holds.
This means that there has to be a collider on 𝑝′

𝑎−𝑥. We will look at the collider 𝑐1
closest to 𝑥. The collider 𝑐1, however, cannot be unblocked by a node 𝑑1 in 𝑍′. This
is because 𝑑1 would be a descendant of 𝑏.
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𝑎 … 𝑐1

⋮

𝑑1

… 𝑥 …
…

𝑏

(a)

𝑎 … 𝑥 … 𝑐2

⋮

𝑑2

…

…

𝑏

(b)

Figure 8: The two cases considered in the proof of Lemma 6.2. In (a) there is an edge
← 𝑥 on the path between 𝑎 and 𝑏. A causal path from 𝑥 to 𝑎 (dotted line) is impossible
because then there would be a causal path from 𝑏 to 𝑎. We show that the collider 𝑐1 is
unblocked. In (b) the edge 𝑥 → is part of the path between 𝑎 and 𝑏. A causal path from 𝑥
to 𝑏 (dotted line) is impossible because this would imply a cycle. We show that the collider
𝑐2 is unblocked.

2. Consider the edge 𝑥 → is in 𝑝′. This case is shown in part (b) of Figure 8. We denote
the subpath between 𝑥 and 𝑏 of 𝑝′ as 𝑝′

𝑥−𝑏. This subpath cannot be causal from 𝑥 to
𝑏 as then there would be a cycle because 𝑥 is a descendant of 𝑏.
It follows that there is a collider on the subpath 𝑝′

𝑥−𝑏. We look at the collider 𝑐2
closest to 𝑥. This collider cannot be unblocked by a node 𝑑2 in 𝑍′ because 𝑑2 would
be a descendant of 𝑏.

We have seen that there cannot be a path d-connecting 𝑎 and 𝑏 given 𝑍′ in 𝐷. This is a
contradiction to the requirement that (𝑎 ⟂/⟂ 𝑏 | 𝑍′)ℐ𝑘

𝑉
holds for 𝑍′ = 𝑍 \ De(𝑏). Therefore,

we conclude that indeed there is a path d-connecting 𝑎 and 𝑏 given 𝑍 ending with → 𝑏 in
𝐷.

The following theorem is of central importance for this section. We show that every
edge in 𝐺ep can be added to a faithful DAG 𝐷 iff this does not produce a cycle. This is
an important step towards showing that the edge maximal DAGs faithful to ℐ𝑘

𝑉 have the
same skeleton as 𝐺ep.

Theorem 6.2. Given a DAG 𝐷 ∈ ℱ(ℐ𝑘
𝑉) and 𝑎, 𝑏 ∈ 𝑉 nonadjacent in 𝐷. The DAG

𝐷′ = 𝐷 ∪ {𝑎 → 𝑏} is faithful to ℐ𝑘
𝑉 iff 𝑎 ∉ De𝐷(𝑏) and 𝑎 → 𝑏 ∈ 𝐺ep hold.

Proof. We show two directions. We begin by showing that if the DAG 𝐷′ = 𝐷 ∪ {𝑎 → 𝑏}
is faithful to ℐ𝑘

𝑉, then 𝑎 ∉ De𝐷(𝑏) and 𝑎 → 𝑏 ∈ 𝐺ep hold. Clearly, 𝑎 cannot be in De𝐷(𝑏)
as then there would be a cycle in 𝐷′. Moreover, every faithful DAG is contained in 𝐺ep
(Lemma 6.1) and because 𝐷′ is faithful it follows that 𝑎 → 𝑏 is in 𝐺ep.

We will now show the more interesting direction that if 𝑎 ∉ De𝐷(𝑏) and 𝑎 → 𝑏 ∈ 𝐺ep
are satisfied, the DAG 𝐷′ = 𝐷 ∪ {𝑎 → 𝑏} is faithful to ℐ𝑘

𝑉. We prove this by showing that
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𝑣…𝑏𝑎…

𝑤𝑢−𝑏

𝑑…𝑢

(a)

𝑣…𝑑′…𝑐…𝑑

𝑤𝑢−𝑏 𝑤𝑣−𝑏

…𝑢

⋮

𝑎

𝑏

⋮

𝑥

(b)

Figure 9: The two cases in which the edge 𝑎 → 𝑏 can be part of a path 𝑝′ d-connecting 𝑢
and 𝑣 given 𝑍 in 𝐷′. We show that in both there is a path 𝑝 d-connecting 𝑢 and 𝑣 given 𝑍
in 𝐷. In (a) the edge 𝑎 → 𝑏 is on the path 𝑝′. Then we can find a way 𝑤𝑢−𝑏 (indicated by
the red arrows) d-connecting 𝑢 and 𝑏 given 𝑍 in 𝐷 which ends with → 𝑏. Combined with
the existing path between 𝑏 and 𝑣, we conclude that the desired path 𝑝 exists. In (b) the
edge 𝑎 → 𝑏 is part of a chain which unblocks a collider 𝑐 on the path 𝑝′. We find a way
𝑤𝑢−𝑏 and by symmetry a way 𝑤𝑣−𝑏 (both indicated by the red arrows) which combined
imply that the desired path 𝑝 exists as the collider at node 𝑏 will be unblocked by 𝑥.

the following holds:

∀𝑍 ⊆ 𝑉 with |𝑍| ≤ 𝑘 ∀𝑢, 𝑣 ∈ 𝑉 [(𝑢 ⟂⟂ 𝑣 | 𝑍)𝐷′ ⟺ (𝑢 ⟂⟂ 𝑣 | 𝑍)𝐷]

We show two directions. We begin with the direction (𝑢 ⟂⟂ 𝑣 | 𝑍)𝐷′ ⟹ (𝑢 ⟂⟂ 𝑣 | 𝑍)𝐷.
Every conditional independence of order ≤ 𝑘 in 𝐷′ is also in 𝐷 because 𝐷 is a subgraph of
𝐷′. The second direction (𝑢 ⟂/⟂ 𝑣 | 𝑍)𝐷′ ⟹ (𝑢 ⟂/⟂ 𝑣 | 𝑍)𝐷 is more intricate. We will prove
that every conditional dependence of order ≤ 𝑘 in 𝐷′ is also in 𝐷 by considering a path
𝑝′ which d-connects 𝑢 and 𝑣 given a set 𝑍 in 𝐷′. Then we show that there will also be a
path 𝑝 in 𝐷 not blocked by 𝑍.

There are two cases to consider displayed in Figure 9. The case (a) describes the
situation when the edge 𝑎 → 𝑏 is on the path 𝑝′ d-connecting 𝑢 and 𝑣 given 𝑍 in 𝐷′. The
case (b) appears when a collider 𝑐 on the path 𝑝′ is unblocked by the descendant 𝑥 which
is in 𝑍 and the edge 𝑎 → 𝑏 is on the causal path from 𝑐 to 𝑥. The nodes 𝑑 and 𝑑′ will
be important later in the proof and can be ignored for now. It is clear that any further
occurrence of the edge 𝑎 → 𝑏 in 𝑝′ would be redundant. Moreover it is obvious that if none
of the two cases applies and the edge is neither present in 𝑝′ nor takes part in unblocking
a collider, the same path 𝑝′ will also exist in 𝐷.

We prove that for the two cases in Figure 9 there is a path 𝑝 d-connecting 𝑢 and 𝑣
given 𝑍 in 𝐷. We do this by showing that a way 𝑤𝑢−𝑏 between 𝑢 and 𝑏 exists which
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does not contain the edge 𝑎 → 𝑏, but is still ending with → 𝑏. It is necessary that this
way ends with → 𝑏 (as the subpath 𝑝′

𝑢−𝑏 of 𝑝′ does) because 𝑏 could be a collider which is
unblocked by 𝑏 or a descendant of 𝑏 being in 𝑍. Interestingly, we did not have to consider
this case for marginal independences (see the proof of Theorem 5.2) because when 𝑍 is the
empty set, no colliders can be unblocked. This is precisely what makes the proof harder in
the general case of conditional independences. We will now show that if a way 𝑤𝑢−𝑏 exists
which d-connects 𝑢 and 𝑏 given 𝑍, then there will be a path 𝑝 d-connecting 𝑢 and 𝑣 given
𝑍 in 𝐷.

In both cases of Figure 9 there exists such a path 𝑝 not containing the edge 𝑎 → 𝑏. In
case (a) we have a way 𝑤 which is the concatenation of the way 𝑤𝑢−𝑏 (this path is indicated
by the red arrows) and the path 𝑝′

𝑏−𝑣 which is the subpath between 𝑏 and 𝑣 of path 𝑝′.
In case (b) the way 𝑤 is the concatenation of the way 𝑤𝑢−𝑏 and 𝑤𝑣−𝑏 (this way exists by
symmetry). Both ways are indicated by the red arrows and we will introduce the nodes 𝑑
and 𝑑′ later in this proof. We know that the existence of a way which d-connects 𝑢 and 𝑣
given 𝑍 implies the existence of a path with the same property. It follows that (𝑢 ⟂/⟂ 𝑣 | 𝑍)𝐷
holds.

Thus, our goal is to find a way 𝑤𝑢−𝑏 d-connecting 𝑢 and 𝑏 given 𝑍 in 𝐷 which ends
with → 𝑏 under the assumption that there is a path 𝑝′

𝑢−𝑏 ∶ 𝑢 = 𝑣1, 𝑣2, … , 𝑣𝑘−1 = 𝑎, 𝑣𝑘 = 𝑏
which d-connects 𝑢 and 𝑏 given 𝑍 in 𝐷′ and ends with the edge 𝑎 → 𝑏. Let 𝑑 = 𝑣𝑖 be
the node with the minimal 𝑖 such that 𝑏 ∈ De(𝑣𝑖) holds. Then either 𝑑 = 𝑢 or we have
𝑣𝑖−1 ← 𝑑 on 𝑝′

𝑢−𝑏. We will use this fact below to argue that there can be no collider at
node 𝑑. Moreover, 𝑣𝑗 ∉ 𝑍 holds for 𝑖 ≤ 𝑗 < 𝑘, because none of these nodes is a collider on
𝑝′

𝑢−𝑏 as we assumed that 𝑝′
𝑢−𝑏 is a valid path d-connecting 𝑢 and 𝑏 given 𝑍. In particular,

𝑎 ∉ 𝑍 follows as 𝑖 ≤ 𝑘 − 1 holds for 𝑑. We will show that there is a path 𝑞𝑑−𝑏 d-connecting
𝑑 and 𝑏 which ends with → 𝑏. Concatenating the subpath 𝑝′

𝑢−𝑑 with this path 𝑞𝑑−𝑏 will
result in the required way 𝑤𝑢−𝑏 because there can be no collider at node 𝑑 and 𝑑 ∉ 𝑍 holds.

The path 𝑞𝑑−𝑏 exists because of the following argument: The node 𝑑 cannot be a
descendant of 𝑏 because then with 𝑎 being a descendant of 𝑑, it would follow that 𝑎 is a
descendant of 𝑏 and the edge 𝑎 → 𝑏 would not have been added to 𝐷. Moreover every
node 𝑣𝑗 with 𝑗 ≥ 𝑖 is not in 𝑍 as seen above. Then the statement (𝑑 ⟂/⟂ 𝑏 | 𝑍′)𝐷 holds for
every subset 𝑍′ of 𝑍 because (𝑑 ⟂⟂ 𝑏 | 𝑍′)𝐷 would imply the following contradiction: We
know that (𝑎 ⟂/⟂ 𝑏 | 𝑍′)𝐷 (this holds for every 𝑍′ with |𝑍′| ≤ 𝑘 because the edge 𝑎 → 𝑏 is
in 𝐺) and also (𝑑 ⟂/⟂ 𝑎 | 𝑍′)𝐷 (because of the validity of the path 𝑝′

𝑢−𝑎 and the fact that no
node 𝑣𝑗 with 𝑗 ≥ 𝑖 is in 𝑍 meaning the same follows for 𝑍′ as it is a subset). Note that
because of the faithfulness of 𝐷, the same statements hold according to ℐ𝑘

𝑉 as well. With
𝑎 ∉ 𝑍 the edge 𝑎 → 𝑏 would have been removed from 𝐺ep because these are exactly the
conditions checked in line 3 of Algorithm 5. However, this would mean that we are not
able to add the edge 𝑎 → 𝑏 to 𝐷′. A contradiction. This means that (𝑑 ⟂/⟂ 𝑏 | 𝑍′)𝐷 holds
for every subset 𝑍′ of 𝑍 and therefore in particular for 𝑍′ = 𝑍\De(𝑏). With Lemma 6.2 it
follows that there is a path 𝑞𝑑−𝑏 d-connecting 𝑑 and 𝑏 given 𝑍 ending with → 𝑏.

42



The following Lemma is necessary to show that the edge maximal faithful DAGs have
the same skeleton as 𝐺 (Theorem 6.3 below).

Lemma 6.3. If 𝑎 ← 𝑏 ∈ 𝐺ep and 𝑎 → 𝑏 ∉ 𝐺ep, it follows that 𝑏 ∉ De𝐷(𝑎) holds for every
DAG 𝐷 ∈ ℱ(ℐ𝑘

𝑉).

Proof. Having the edge 𝑎 ← 𝑏 in 𝐺ep but not the edge 𝑎 → 𝑏 implies that the following
holds:

∃𝑍 ⊆ 𝑉 with |𝑍| ≤ 𝑘 ∃𝑢 ∈ 𝑉 [(𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉
, (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑘

𝑉
, (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘

𝑉
, 𝑎 ∉ 𝑍]

This is because these are exactly the conditions required to remove the edge 𝑎 → 𝑏 in line 4
of algorithm 5. From Theorem 4.2 we know that these conditions mean that no faithful
DAG contains a causal path from 𝑎 to 𝑏. Thus, 𝑏 ∉ De𝐷(𝑎) holds.

We obtain one of the main results of this section that the edge maximal faithful DAGs
have same skeleton as 𝐺. This means, as in the previous section, that, whenever two nodes
𝑎 and 𝑏 are nonadjacent in an edge maximal faithful DAG, there is either a statement
(𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘

𝑉
with |𝑍| ≤ 𝑘 or 𝑎 and 𝑏 are incompatible. This is due to the fact that these

are the only two reasons an edge can be deleted in Algorithm 5.

Theorem 6.3. The edge maximal DAGs faithful to ℐ𝑘
𝑉 have the same skeleton as 𝐺ep.

Proof. This follows from Lemma 6.1, Theorem 6.2 and Lemma 6.3. The proof is identical
to the one of Theorem 5.3 in the previous section.

Of all DAGs faithful to ℐ𝑘
𝑉 the edge maximal DAGs possess a very unique property. We

will prove that these DAGs form a Markov equivalence class. This result has far reaching
consequences. In order to show this we state that the edge maximal faithful DAGs have
the same set of v-structures as 𝐺:

Theorem 6.4. There is a v-structure in an edge maximal DAG 𝐷 ∈ ℱ(ℐ𝑘
𝑉) iff it is in 𝐺ep.

Proof. We begin by showing that a v-structure in 𝐷, will also be in 𝐺ep. Consider any
v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐷. We note that, because 𝑎 and 𝑐 as well as 𝑐 and 𝑏 are adjacent
in the faithful DAG 𝐷, the following holds:

∀𝑍 with |𝑍| ≤ 𝑘 (𝑎 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑘
𝑉

and (𝑐 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉

The nodes 𝑎 and 𝑏 are not adjacent in 𝐷 and as 𝐷 is edge maximal, it follows from the
fact that 𝐺ep and 𝐷 have the same skeleton (Theorem 6.3) that they will not be adjacent
in 𝐺ep either. We will now show that the edges 𝑎 ← 𝑐 and 𝑐 → 𝑏 are not in 𝐺ep. Then we
can conclude from the fact that every faithful DAG is contained in 𝐺ep (Lemma 6.1) that
the v-structure 𝑎 → 𝑐 ← 𝑏 is in 𝐺ep.

If the nodes 𝑎 and 𝑏 are not adjacent in 𝐺ep there are two possible reasons for this:
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𝑢 …
(𝑢 ⟂/⟂ 𝑎 | 𝑍)𝐷

𝑎

𝑐

𝑏 …
(𝑏 ⟂/⟂ 𝑣 | 𝑍′)𝐷

𝑣

Figure 10: Case 2 of the proof of Theorem 6.4. The v-structure 𝑎 → 𝑐 ← 𝑏 is in 𝐷 and there
exist 𝑍 and 𝑍′ such that (𝑢 ⟂/⟂ 𝑎 | 𝑍)𝐷 and (𝑏 ⟂/⟂ 𝑣 | 𝑍′)𝐷 hold. We argue that (𝑢 ⟂/⟂ 𝑐 | 𝑍)𝐷,
(𝑣 ⟂/⟂ 𝑐 | 𝑍′)𝐷, 𝑐 ∉ 𝑍 and 𝑐 ∉ 𝑍′ hold as well.

1. The edge 𝑎−𝑏 was not added to 𝐺ep in line 1 because of an independence (𝑎⟂⟂𝑏|𝑍)ℐ𝑘
𝑉
.

Moreover, because we have 𝑎 → 𝑐 ← 𝑏 in the faithful DAG 𝐷, it follows that 𝑐 ∉ 𝑍
has to hold. This means that the edges are directed 𝑎 → 𝑐 ← 𝑏 in 𝐺ep because the
conditions in line 3 of Algorithm 5 are met

(𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉
, (𝑎 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑘

𝑉
, (𝑐 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘

𝑉
, 𝑐 ∉ 𝑍

and therefore the edges 𝑎 ← 𝑐 and 𝑐 → 𝑏 were removed from 𝐺ep.

2. The edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 were removed in line 4. This case is displayed in
Figure 10.
This means we have nodes 𝑢 and 𝑣 and sets 𝑍 and 𝑍′ such that

((𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉

∧ (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑘
𝑉

∧ (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉

∧ 𝑎 ∉ 𝑍)

∧ ((𝑣 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑘
𝑉

∧ (𝑣 ⟂/⟂ 𝑏 | 𝑍′)ℐ𝑘
𝑉

∧ (𝑏 ⟂/⟂ 𝑎 | 𝑍′)ℐ𝑘
𝑉

∧ 𝑏 ∉ 𝑍′)

hold. Then (𝑢 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑘
𝑉

and (𝑣 ⟂/⟂ 𝑐 | 𝑍′)ℐ𝑘
𝑉

hold as well because of 𝑎 ∉ 𝑍 and 𝑏 ∉ 𝑍′

and the fact that with the edges 𝑎 → 𝑐 and 𝑏 → 𝑐 in the faithful DAG 𝐷 there is
neither a collider at node 𝑎 nor at node 𝑏. On the other hand there is a collider at
node 𝑐 (one the path from 𝑢 to 𝑏 as well as from 𝑣 to 𝑎) and therefore 𝑐 ∉ 𝑍 and
𝑐 ∉ 𝑍′ hold. Then with (𝑐 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑘

𝑉
(with the edge 𝑐 ← 𝑏 in 𝐷 there cannot be

any independence) and (𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑘
𝑉

the edge 𝑐 → 𝑏 is removed from 𝐺 because the
conditions in line 3 of Algorithm 5 are met. The edge 𝑎 ← 𝑐 is removed, too, as
additional to (𝑣⟂/⟂𝑐 |𝑍′)ℐ𝑘

𝑉
and 𝑐 ∉ 𝑍′ the statements (𝑎⟂/⟂𝑐 |𝑍′)ℐ𝑉

and (𝑣⟂⟂𝑎|𝑍′)ℐ𝑉
hold. Therefore we have the v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐺 as well.

Now we show that a v-structure in 𝐺ep will be present in 𝐷 as well. It follows from
Lemma 6.1 that if we have 𝑎 → 𝑐 ← 𝑏 in 𝐺ep, 𝐷 can neither contain an edge between 𝑎
and 𝑏 nor the edges 𝑎 ← 𝑐 or 𝑐 → 𝑏. Moreover because of the edge maximality of 𝐷 and
the fact that 𝐷 and 𝐺ep have the same skeleton (Theorem 6.3) that the edges 𝑎 → 𝑐 ← 𝑏
will be present in 𝐷.

We will now include the Meek rules in our argument in order to show the following
important result which shows a way to obtain faithful DAGs from the graph 𝐺 which is
the final result of Algorithm 5.
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Corollary 6.1. The set of edge maximal DAGs faithful to ℐ𝑘
𝑉 is the Markov equivalence

class formed by all consistent extensions of the CPDAG 𝐺.

Proof. Theorem 6.3 states that the edge maximal DAGs have the same skeleton and Theo-
rem 6.4 states that they have the same set of v-structures as 𝐺ep. Thus, these DAGs form
a Markov equivalence class which is exactly the set of all consistent extensions of 𝐺ep. It
immediately follows that the graph 𝐺 which results from applying the Meek rules to 𝐺ep
is a CPDAG. Moreover, by correctness of the Meek rules (these rules neither create a new
v-structure nor a cycle [12]) 𝐺 has the same set of consistent extensions as 𝐺ep.

Finally, it becomes clear why we can apply the three rules R1-R3 to 𝐺ep in Algorithm 5.
As shown by Meek [12] these rules maximally extend a PDAG whose consistent extensions
form a Markov equivalence class into a CPDAG and the edge maximal DAGs are the
Markov equivalence class formed by the consistent extensions of 𝐺ep. If an edge 𝑎 → 𝑏
gets directed by the rules R1-R3, this means that it is in every consistent extension (while
the edge 𝑎 ← 𝑏 is in no consistent extension). That the application of these three rules is
correct for all faithful DAGs — not only the edge maximal ones — will be argued in the
proof of the following theorem. This theorem combines the previous results to show that
𝐺 represents the set of faithful DAGs.

Theorem 6.5. The CPDAG 𝐺 is the representation of the set ℱ(ℐ𝑘
𝑉).

Proof. A representation 𝐺 of the set ℱ(ℐ𝑘
𝑉) is a minimal graph that contains every graph

in ℱ(ℐ𝑘
𝑉). We begin by proving that 𝐺 indeed contains every DAG faithful to ℐ𝑘

𝑉. We
do this by showing that every faithful DAG is a subgraph of a consistent extension of 𝐺.
Consider the faithful DAG 𝐷 ∈ ℱ(ℐ𝑘

𝑉). The DAG 𝐷 has to be a subgraph of some edge
maximal faithful DAG. We know from Corollary 6.1 that every edge maximal DAG is a
consistent extension of 𝐺 . Thus, 𝐷 is a subgraph of a consistent extension of 𝐺.

We show now that 𝐺 is indeed minimal. This holds as deleting or directing an edge
in 𝐺 would immediately violate the condition that 𝐺 contains every faithful DAG. This
follows as we know that there are (edge maximal) faithful DAGs with the same skeleton
as 𝐺 and the fact that 𝐺 is a CPDAG representing a Markov equivalence class.

From the above theorems we can deduce an interesting fact. Theorem 6.2 holds for 𝐺ep
and not only for 𝐺 and the only constraint we impose on adding edges is that they do not
produce a cycle. Thus, if we have an edge 𝑎 − 𝑏 in 𝐺ep, an edge 𝑎 → 𝑏 in 𝐺 (meaning the
edge 𝑎 → 𝑏 has been directed by one of the Meek rules (R1-R3)) and a DAG 𝐷 ∈ ℱ(ℐ𝑘

𝑉),
it follows that either 𝑎 → 𝑏 is in 𝐷 or there is a causal path from 𝑎 to 𝑏. Moreover we
derive the following remarkable result:

Corollary 6.2. The representation 𝐺 of a set ℱ(ℐ𝑘
𝑉) is a CPDAG.
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𝑎 𝑏 𝑐

(a)

𝑎 𝑏 𝑐

(b)

𝑎 𝑏 𝑐

(c)

𝑎 𝑏 𝑐

(d)

Figure 11: The representation 𝐺 is shown in (a). Two different consistent extensions of
𝐺 are displayed in (b) and (c). After removing the edge between 𝑎 and 𝑐 the resulting
faithful DAG (d) is the same.

This follows immediately from Corollary 6.1. It implies that the notion of a representa-
tion we introduced in this thesis is a generalization of the notion of a CPDAG. More pre-
cisely, for every 𝑘 there is a subclass of CPDAGs (let us call these 𝑘-CPDAGs) which are
the representation of a set of DAGs faithful to a set ℐ𝑘

𝑉 for a fixed |𝑉 | = 𝑛. In particular,
the set of 𝑙-CPDAGs is a subset of the set of 𝑙+1-CPDAGs. Further investigations of these
structures might be interesting, for example, for the open question of counting the number
of Markov equivalence classes (which is equal to the number of CPDAGs) for a given num-
ber 𝑛 of nodes [15]. Notably, Textor et al. [18] analyzed the number of 0-CPDAGs (they
use a different representation termed SMIG).

6.4 Enumerating all faithful DAGs

After obtaining the representation 𝐺 of the set of faithful DAGs ℱ(ℐ𝑘
𝑉) the question arises

how these faithful DAGs can be found and, more precisely, how they can be enumerated.
For the case of marginal independences this problem has already been studied by Textor
et al. [18]. For the general case, on the other hand, this problem is new.

The results in the previous subsection give insights into the structure of the set of
faithful DAGs. Of central importance is the result that the consistent extensions of the
representation 𝐺 are the edge maximal DAGs faithful to ℐ𝑘

𝑉. This shows that the notion
of a representation is useful for finding the faithful DAGs. It allows us to do this with the
following approach. We start with every consistent extension of 𝐺 and output it. Then we
recursively delete an edge and check if the produced DAG is still faithful. If it is, we output
the DAG and continue the recursion. Else we stop the recursion. With this approach we
find all faithful DAGs, because we know that these are subgraphs of a consistent extension
of 𝐺 and that all intermediate DAGs are faithful as well. With intermediate graphs we
mean the following. Consider that 𝐷1 is a consistent extension of 𝐺 and 𝐷2 is a subgraph
of 𝐷1 which is also faithful to ℐ𝑘

𝑉. Clearly, 𝐸2 ⊆ 𝐸1 holds. Then we know from Theorem 6.2
that every DAG 𝐷3 lying between these two DAGs with 𝐸2 ⊆ 𝐸3 ⊆ 𝐸1 will be faithful as
well. This is because all the edges in 𝐸1\𝐸2 are in 𝐺 and adding them will not produce
a cycle. We can conclude that it is possible starting with consistent extensions of 𝐺 to
obtain every faithful DAG by stepwise edge removal.

The problem of this approach is that we would output certain DAGs multiple times as
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Figure 11 shows. Given the representation 𝐺 of the set ℐ0
𝑉 = ∅ shown in (a), we present

two consistent extensions in (b) and (c). After removing the edge between 𝑎 and 𝑐 the
result is the same faithful DAG in both cases which is shown in (d). Therefore, it remains
an open problem if there is an algorithm which enumerates all faithful DAGs similar to
the one given by Textor et al. [18] we mentioned in the previous section. Their algorithm
makes extensive use of the edge minimal faithful DAGs. In this thesis we deal with the
edge maximal faithful DAGs intensively. The edge minimal DAGs, on the other hand,
are much harder to classify in the general setting of CI up to order 𝑘. It would be very
interesting to study this special class of DAGs in more detail which might help in solving
the stated enumeration problem.
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7 The OPPC algorithm
In the previous section the goal was to find faithful DAGs for a set of CIs with a bounded
order. We will now consider the case that we have complete conditional independence
information through a set ℐ𝑉. This set can also be viewed as an oracle telling us if a certain
conditional independence is present. As already discussed in Section 3.3, there are a number
of algorithms tackling this problem. The focus lies mainly on minimizing the number of CI
tests the algorithm carries out. Especially high order CI tests are undesirable due to their
weak statistical properties. With these goals in mind, we introduce a modified version of
the PC algorithm we call the OPPC (One-Phase Pattern Construction) algorithm.

7.1 Idea of the OPPC algorithm

We begin by recalling the different phases (as stated by Pearl [13]) of classical constraint-
based causal structure learning algorithms. In particular, the PC algorithm is one of these
algorithms and consists of exactly the steps stated below (for more details on the algorithm
see Section 3.3).

1. Learning the skeleton 𝐺skel.

2. Orientation of v-structures (obtaining a pattern 𝐺patt).

3. Orientation of remaining edges with the Meek rules (producing the final result 𝐺).

First, the PC algorithm learns the skeleton. This is done by searching for independences
starting from a complete graph and removing edges accordingly. It holds for the skeleton
of the true DAG that there is a CI in ℐ𝑉 for every pair of nonadjacent nodes 𝑎 and 𝑏. In
particular, there is such a CI which is solely formed by neighbors of 𝑎 or by neighbors of 𝑏.
The PC algorithm which exhaustively goes through all possible separating sets 𝑍 formed
by the neighbors will therefore find this CI, store the set 𝑍 and remove the corresponding
edge. Thus, the PC algorithm learns the correct skeleton. Second, the algorithm orients
the v-structures using the stored separating sets 𝑍. The result of this step is called the
pattern of the underlying DAG. All v-structures are directed and every directed edge is part
of a v-structure. Third, the remaining edges are oriented with the Meek rules producing
the final result 𝐺. The separation of the learning of the skeleton and the orientation of
the edges is the key paradigm for all classical constraint-based causal structure learning
algorithms. We will propose a completely new approach which only consists of two steps:

1. Learning of the extended pattern (obtaining 𝐺ep).

2. Orientation of the remaining edges with the Meek rules (producing the final result
𝐺).
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In particular, the new idea is that we merge the learning of the skeleton and the orientation
of the v-structures. We call the result of this first step the extended pattern. This is
not purely a pattern as some additional edges can be directed which are not part of a v-
structure. In the example shown in Figure 12 we will investigate this phenomenon further.
The important fact for now is, however, that all necessary v-structures are indeed oriented.
In the second step the remaining edges are oriented by application of the Meek rules. We
introduce the main ideas that enable us to combine the learning of the skeleton and the
orientation of the v-structures:

1. We are able to direct edges during the search for (conditional) independences.
In the PC algorithm we start by learning the skeleton and direct edges afterwards.
There, directing steps are done in the following manner. For every chain 𝑎 − 𝑐 − 𝑏 in
the skeleton we check if 𝑐 is in the set 𝑆(𝑎, 𝑏) which separated 𝑎 and 𝑏. If 𝑐 is not in
𝑆(𝑎, 𝑏) we direct the edges to form the v-structure 𝑎 → 𝑐 ← 𝑏. Note that in this case
we have to store the set 𝑆(𝑎, 𝑏) when discovering the independence (𝑎⟂⟂𝑏 |𝑆(𝑎, 𝑏))ℐ𝑉

,
in order to use this set later on.
However, it is also possible to direct the edges immediately when finding a set 𝑍
which separates 𝑎 and 𝑏. We have seen this idea throughout the thesis. If we want
to direct the edges 𝑎 − 𝑐 and 𝑐 − 𝑏 given an independence (𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉

we need to
check that for the node 𝑐 the following conditions are satisfied:

(𝑎 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑉
, (𝑐 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉

and 𝑐 ∉ 𝑍

These conditions were previously stated in Theorem 4.1. If they hold, the edges can
only appear as 𝑎 → 𝑐 and 𝑐 ← 𝑏 in any faithful DAG. Clearly, the cost of finding
these directions are the two additional CI tests we have to conduct in order to check
that (𝑎⟂/⟂𝑐 |𝑍)ℐ𝑉

and (𝑐⟂/⟂𝑏 |𝑍)ℐ𝑉
hold. These were not needed in the PC algorithm.

There we know implicitly that these conditions hold because an edge 𝑎 − 𝑐 (or 𝑐 − 𝑏)
in the skeleton indicates that these nodes cannot be separated by any set and thus,
in particular not by 𝑍. However, as we start directing edges before the skeleton is
known in the OPPC algorithm, we have to explicitly test if these statements hold.

2. We can delete edges between incompatible nodes.
If an edge can neither be directed 𝑎 → 𝑏 nor 𝑎 ← 𝑏 because in either case the
conditions from Theorem 4.1 mentioned above are fulfilled, the nodes 𝑎 and 𝑏 are
nonadjacent in the true skeleton. This is because the nodes 𝑎 and 𝑏 are incompatible.
Thus, we are able to delete the edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 — thereby making 𝑎 and
𝑏 nonadjacent — without having found a separating set 𝑍 for which (𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
holds. This means in turn that we can remove edges earlier than in the PC algorithm.
However, it is vital for the correctness of this approach that all the v-structures
𝑎 → 𝑐 ← 𝑏 can be directed even without the set 𝑍 which separates 𝑎 and 𝑏. We have
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already seen that a similar statement (see Theorem 6.4) holds for the case of a set of
independences bounded by the order 𝑘. That this is the case here as well is the most
important observation and is proven below in Theorem 7.2.

We can immediately see why combining the learning of the skeleton and the orientation
of the v-structures is able to improve the efficiency of causal structure learning. Directing
the edges earlier will mean that we are also able to delete edges earlier than in the PC
algorithm. This means that the search space for forming separating sets (these sets are
formed by the neighboring nodes) is smaller. Therefore, the OPPC algorithm learns the
true CPDAG more efficiently than the PC algorithm.

We have already seen similar ideas in the previous section and we can easily connect
the OPPC algorithm with Algorithm 5. Clearly, in order to solve the problem of recovering
causal structures from a complete set of conditional independence information ℐ𝑉 one
could also use Algorithm 5 (imagine that we set 𝑘 = 𝑛 − 2). However, this algorithm goes
through the whole set ℐ𝑉 exhaustively. The OPPC algorithm does this (similarly to the PC
algorithm) in an iterative fashion forming separating sets 𝑍 only from adjacent nodes which
makes it much more efficient. In particular, one could also view the OPPC algorithm as a
special version Algorithm 5 which considers the CIs in a certain iterative order. Moreover,
we see the connection of the notion of a representation to causal structure learning. The
representation was the minimal graph containing all faithful DAGs. A constraint-based
causal structure learning algorithm is the most efficient if the graph which is currently
considered — meaning which contains all DAGs faithful to the observed CIs — has as
few edges as possible because this reduces the search space. This is exactly what we
required from the representation. Of course, as mentioned above, the difference is that in
the previous section, we actually considered all CIs as long as the order was less or equal to
𝑘 while here we have the additional constraint that the separating sets 𝑍 are only formed
by the neighbors.

7.2 The OPPC algorithm

The OPPC algorithm is presented as Algorithm 6. We have already seen the ideas behind
this algorithm. Now we go through the details of the implementation and consider a de-
tailed example afterwards. Starting with a complete graph the algorithm looks for inde-
pendences which will enable us to remove edges from the graph. This is done by iteratively
increasing the order 𝑙 of the considered CIs beginning with order zero. In each iteration
we consider all currently adjacent nodes 𝑖 and 𝑗 and try to separate them. We do this by
exhaustively going through all separating sets 𝑍 of cardinality 𝑙 (the currently considered
order) which can be formed by the neighbors of 𝑖. If we find that (𝑖 ⟂⟂ 𝑗 | 𝑍)ℐ𝑉

holds, we
remove the edges 𝑖 → 𝑗 and 𝑖 ← 𝑗. This is done just as in the PC algorithm. The main
difference comes afterwards. We immediately try to orient further edges by checking if the
conditions stated in Theorem 4.1 apply. We note that orienting an edge 𝑎 − 𝑏 into 𝑎 → 𝑏
actually means removing the edge 𝑎 ← 𝑏. We use the term orientation at times because it
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input : Vertex Set 𝑉, Conditional Independence Information ℐ𝑉
output: CPDAG 𝐺 representing the Markov equivalence class of faithful DAGs

1 Let 𝐺ep be the complete undirected graph on the vertex set 𝑉.
2 Set 𝑙 = −1.
3 repeat
4 Set 𝑙 = 𝑙 + 1.
5 repeat
6 Select a new ordered pair of nodes 𝑖, 𝑗 with 𝑖 and 𝑗 adjacent such that

|𝑁(𝑖)\{𝑗}| ≥ 𝑙.
7 repeat
8 Choose new 𝑍 ⊆ 𝑁(𝑖)\{𝑗} with |𝑍| = 𝑙.
9 if (𝑖 ⟂⟂ 𝑗 | 𝑍)ℐ𝑉

then
10 Remove 𝑖 → 𝑗 and 𝑖 ← 𝑗 from 𝐺ep.
11 foreach 𝑘 ∈ (𝑁(𝑖) ∪ 𝑁(𝑗))\({𝑖, 𝑗} ∪ 𝑍) do
12 if (𝑖 ⟂/⟂ 𝑘 | 𝑍)ℐ𝑉

and (𝑘 ⟂/⟂ 𝑗 | 𝑍)ℐ𝑉
then

13 Remove 𝑖 ← 𝑘 and 𝑘 → 𝑗 from 𝐺ep.
14 end
15 end
16 end
17 until 𝑖 and 𝑗 are not adjacent or all 𝑍 ⊆ 𝑁(𝑖)\{𝑗} with |𝑍| = 𝑙 have been

chosen
18 until all ordered pairs of adjacent variables 𝑖 and 𝑗 such that |𝑁(𝑖)\{𝑗}| ≥ 𝑙

have been selected
19 until for each ordered pair 𝑖, 𝑗 with 𝑖 and 𝑗 adjacent: |𝑁(𝑖)\{𝑗}| < 𝑙
20 Set 𝐺 = 𝐺ep.
21 repeat
22 R1: In 𝐺 orient 𝑗 − 𝑘 into 𝑗 → 𝑘 whenever there is an arrow 𝑖 → 𝑗 such that 𝑖

and 𝑘 are nonadjacent.
23 R2: In 𝐺 orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there is a chain 𝑖 → 𝑘 → 𝑗.
24 R3: In 𝐺 orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there are two chains 𝑖 − 𝑘 → 𝑗 and

𝑖 − 𝑙 → 𝑗 such that 𝑘 and 𝑙 are nonadjacent.
25 until No further edges can be oriented in 𝐺 by application of R1-R3.

Algorithm 6: The OPPC algorithm
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𝑎 𝑏 𝑐 𝑑

(a) Underl. DAG

𝑎 𝑏 𝑐 𝑑

(b) 𝐺ep

𝑎 𝑏 𝑐 𝑑

(c) 𝐺

𝑎 𝑏 𝑐 𝑑

(d) 𝐻skel

𝑎 𝑏 𝑐 𝑑

(e) 𝐻patt

𝑎 𝑏 𝑐 𝑑

(f) 𝐻

Figure 12: A comparison of the PC and the OPPC algorithm for learning the DAG shown
in part (a). The steps of the OPPC algorithm are shown in (b) and (c) in the upper row
(𝐺ep and 𝐺). The steps of the PC algorithm are shown in (d), (e) and (f) in the lower row
(𝐻skel, 𝐻patt and 𝐻). In particular, we emphasize the difference between 𝐺ep and 𝐻patt.

is more intuitive, but formally edges are removed. We do this by going through all nodes
𝑘 which are not in 𝑍 and a neighbor of 𝑖 or 𝑗 (else we would not be able to remove an
edge). This step is similar to the orientation of the v-structures in the PC algorithm, but
there are some major differences due to the fact that we do this before knowing the true
skeleton. In particular, the interesting thing to consider is what happens if 𝑎 and 𝑏 become
nonadjacent not because a separating set is found, but because the edges 𝑎 → 𝑏 and 𝑎 ← 𝑏
are removed in different iterations of line 13. If this happens, the nodes 𝑎 and 𝑏 are incom-
patible. We will show later in this section that even in this case all v-structures 𝑎 → 𝑐 ← 𝑏
are detected.

At some point no further separating sets can be formed because 𝑙 is larger or equal
to the number of neighbors of 𝑖. In this case we have successfully learned the extended
pattern (we go into more detail why this pattern is extended in the following subsection)
and maximally extend the graph with the Meek rules. Note that we store the extended
pattern in 𝐺ep. We explicitly need this graph for some proofs later in this section.

7.3 Example and comparison with the PC algorithm

In this subsection we use the example in Figure 12 to illustrate an execution of the OPPC
algorithm and compare it with the PC algorithm. Particular emphasis lies on comparing the
pattern occurring in the PC algorithm with the extended pattern in the OPPC algorithm.
The underlying DAG is shown in part (a). The corresponding set of independences is the
following:

ℐ𝑉 = {(𝑎 ⟂⟂ 𝑑), (𝑏 ⟂⟂ 𝑑 | {𝑎, 𝑐})}.

We will denote the graphs used during the execution of the PC algorithm with 𝐻 and the
graphs used during the execution of the OPPC algorithm with 𝐺. We start by investigat-
ing how the PC algorithm learns the causal structure (this is shown in the lower row of
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Figure 12). The PC algorithm begins by learning the skeleton of the underlying DAG. The
algorithm starts with a complete graph and removes edges when independences are found.
Here, we find the independences (𝑎 ⟂⟂ 𝑑)ℐ𝑉

(for 𝑙 = 0) and (𝑏 ⟂⟂ 𝑑 | {𝑎, 𝑐})ℐ𝑉
(for 𝑙 = 2)

and therefore remove the edges 𝑎 − 𝑑 and 𝑏 − 𝑑. We obtain the intermediate result 𝐻skel
shown in (d). In particular, we note that the set {𝑎, 𝑐} is formed of the neighbors of 𝑏. The
separating sets 𝑆(𝑎, 𝑑) = ∅ = 𝑆(𝑑, 𝑎) and 𝑆(𝑏, 𝑑) = {𝑎, 𝑐} = 𝑆(𝑑, 𝑏) are stored. Afterwards,
the algorithm considers every chain 𝑖 − 𝑘 − 𝑗 in 𝐻skel. In this case, we have the chains
𝑎 − 𝑐 − 𝑑 and 𝑏 − 𝑐 − 𝑑. The chain 𝑎 − 𝑐 − 𝑑 gets oriented as a v-structure because 𝑐 is not
in 𝑆(𝑎, 𝑑). The chain 𝑏 −𝑐 −𝑑 on the other hand is not oriented because 𝑐 is in 𝑆(𝑏, 𝑑). We
obtain the next intermediate result 𝐻patt shown in (e). Finally, the Meek rules (R1-R3)
are applied until no further edges can be oriented. Due to the first Meek rule the edge 𝑏−𝑐
is oriented as 𝑏 ← 𝑐 and due to the second Meek rule the edge 𝑎 − 𝑏 is oriented as 𝑎 → 𝑏.
The result is a CPDAG 𝐻 (shown in (f)) which in this case coincides with the underlying
DAG.

In the OPPC algorithm the first two phases of the PC algorithm are combined. Imme-
diately after finding the independence (𝑎⟂⟂𝑑)ℐ𝑉

and removing the edges 𝑎 → 𝑑 and 𝑎 ← 𝑑,
the algorithm checks if further edges can be directed. To do this the algorithm goes through
every possible third node. More precisely, we look at every such node 𝑘 which could actu-
ally lead to the orientation of an edge. This is the case if 𝑘 ∈ (𝑁(𝑖) ∪ 𝑁(𝑗))\({𝑖, 𝑗} ∪ 𝑍)
holds. We note that orienting an edge 𝑢 − 𝑣 into 𝑢 → 𝑣 in the considered graph model is
equivalent to removing the edge 𝑢 ← 𝑣. The two nodes which are considered as 𝑘 are 𝑏 and
𝑐. Thus, it is tested if (𝑎 ⟂/⟂ 𝑐)ℐ𝑉

, (𝑐 ⟂/⟂ 𝑑)ℐ𝑉
and 𝑐 ∉ ∅ hold. This is the case and therefore

the edges 𝑎 ← 𝑐 and 𝑐 → 𝑑 are removed. In other words, we orient the edges as 𝑎 → 𝑐 and
𝑐 → 𝑑. The same test is done for 𝑏. Here as well (𝑎 ⟂/⟂ 𝑏)ℐ𝑉

, (𝑏 ⟂/⟂ 𝑑)ℐ𝑉
and 𝑏 ∉ ∅ hold. The

edges 𝑎 ← 𝑏 and 𝑏 → 𝑑 are removed or, in other words, the edges get directed as 𝑎 → 𝑏
and 𝑏 ← 𝑑. Afterwards, we find the conditional independence (𝑏 ⟂⟂ 𝑑 | {𝑎, 𝑐})ℐ𝑉

. Conse-
quently, the edges 𝑏 ← 𝑑 and 𝑏 → 𝑑 are removed (note that the edge 𝑏 → 𝑑 has already
been removed previously). Again we check if further edges can be oriented. But here 𝑎 and
𝑐 are both in the separating set {𝑎, 𝑐} and therefore not considered as 𝑘. When looking
at the result 𝐺ep we see that it is not identical to the pattern 𝐻patt obtained by the PC
algorithm. The edge 𝑎 → 𝑏 is directed even though it is not in a v-structure. This is why
we introduced the term extended pattern. After following this example it is also clear why
edges like 𝑎 → 𝑏 can be oriented without being in a v-structure. The reason is that this
edge is part of a disguised v-structure 𝑎 → 𝑏 ← 𝑑 (this is indicated by the dotted arrow in
𝐺ep above). However, the edge 𝑏 ← 𝑑 was removed during the execution of the algorithm.
This shows that due to the new ideas in the OPPC we are able to direct more edges when
constructing the pattern compared to the PC algorithm. We note that the edge 𝑎 − 𝑏 is
directed 𝑎 → 𝑏 in the PC algorithm as well. This, however, happens not until the appli-
cation of the Meek rules. These Meek rules are applied in the OPPC algorithm as well to
orient the remaining edges. Just as in the PC algorithm, the edge 𝑏 −𝑐 is oriented as 𝑏 ← 𝑐
due to the first Meek rule.
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We will now analyze the number of CI tests needed in the OPPC algorithm. We will
measure this in the cardinality of the vertex set 𝑛 dependent on the maximum degree in
the underlying DAG. We assume that we have oracle access to the complete conditional
independence information. The same worst case as for the PC algorithm applies. How-
ever, in line 12 the OPPC algorithm employs two additional independence tests for each
neighbor of 𝑖 or 𝑗 whenever an edge 𝑖 − 𝑗 is deleted. As it is possible that 𝒪(𝑛2) edges
are deleted and there are at most 𝒪(𝑛) neighbors, an additional additive term 𝒪(𝑛3) fol-
lows. Asymptotically the number of CI tests is therefore bounded by 𝒪(𝑛2+𝑑max + 𝑛3) (see
the analysis in Section 3.3). We note here that through the tests in line 12 it is possible
that tests are executed redundantly, meaning we test a statement which has already been
tested in line 9 (or the other way around). We will discuss this issue further in the sub-
sequent section. While the OPPC algorithm does not improve the worst case number of
necessary CI tests, it is clear that for most cases incompatible nodes are found and thus,
edges are deleted earlier in comparison to the PC algorithm leading to a reduced search
space. In the subsequent section we will experimentally show that this allows for more ef-
ficient causal structure learning in the average case.

7.4 Proof of correctness

In this subsection we formally prove the correctness of the OPPC algorithm. We begin
by proving the following statements for the PDAG which is obtained after line 19 of the
OPPC algorithm (we call this PDAG 𝐺ep). We show that this PDAG has the same skeleton
and the same v-structures as every faithful DAG. Afterwards, we will include the rules
R1-R3 in our argument which extend 𝐺ep maximally into a CPDAG. Showing that the
OPPC algorithm is correct, is much more straightforward than the proofs in the previous
sections. It is easy to show that we find the correct skeleton which moreover is the same
for all faithful DAGs. This is due to the fact that all edge removals are clearly correct
and that we have the comfort of having access to all CIs. This means that we can be
sure to find an independence for every edge which is not in the true skeleton. That all v-
structures are oriented correctly, on the other hand, is the central theorem of this section.
This holds for chains 𝑎 − 𝑐 − 𝑏 if the edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 were removed because of a CI
(𝑎 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉

(see line 13). Showing that this also holds if 𝑎 and 𝑏 are incompatible nodes
is more intricate, but similar to the proof of Theorem 6.4.

Theorem 7.1. The PDAG 𝐺ep has the same skeleton as every faithful DAG 𝐷 ∈ ℱ(ℐ𝑉).

Proof. The above statement can also be formulated as: The nodes 𝑎 and 𝑏 are nonadjacent
in PDAG 𝐺ep iff they are nonadjacent in every faithful DAG 𝐷. First, we show that if
an edge is missing from PDAG 𝐺ep, it is also missing from 𝐷. Essentially this means that
whenever during the execution of the algorithm an edge was removed from 𝐺ep, this choice
was correct. There are two cases to consider:
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1. The edge was removed in line 10 of the algorithm. This happens only if a set 𝑍 was
found that separates 𝑎 and 𝑏. But then the nodes 𝑎 and 𝑏 cannot be adjacent in any
faithful DAG as else 𝑎 and 𝑏 would be conditionally dependent given 𝑍.

2. The edges 𝑎 → 𝑏 and 𝑎 ← 𝑏 were removed in line 13. Then the following holds:

(∃𝑢, 𝑍) ((𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
∧ (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑉

∧ (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉
∧ 𝑎 ∉ 𝑍)

∧ (∃𝑣, 𝑍′) ((𝑣 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑉
∧ (𝑣 ⟂/⟂ 𝑏 | 𝑍′)ℐ𝑉

∧ (𝑏 ⟂/⟂ 𝑎 | 𝑍′)ℐ𝑉
∧ 𝑏 ∉ 𝑍′)

Thus, the nodes 𝑎 and 𝑏 are incompatible. It follows from Corollary 4.1 that there
cannot be an edge between 𝑎 and 𝑏 in any faithful DAG.

Second, we show that if 𝑎 and 𝑏 are nonadjacent in a faithful DAG 𝐷, they are also
nonadjacent in PDAG 𝐺ep.

We assume for the sake of contradiction that there is an edge between 𝑎 and 𝑏 in PDAG
𝐺ep. Then there was no set 𝑍 found in line 8 which separated 𝑎 and 𝑏. But we exhaustively
searched for every subset of the set of neighbors of 𝑎 (and 𝑏) in 𝐺ep. This set of neighbors
was at all times a superset of the neighbors of 𝑎 (and 𝑏) in 𝐷 because we have seen in the
first part of this proof that if 𝑎 and 𝑏 are nonadjacent in 𝐺ep they are also in 𝐷. But this
means that no subset of neighbors of 𝑎 (or 𝑏) separates 𝑎 and 𝑏 in 𝐷 which would mean
that 𝑎 and 𝑏 are adjacent in 𝐷 as well. A contradiction.

The following theorem is central for the proof of the whole algorithm. It shows that
the v-structures can be successfully reconstructed even if no separating set was found.

Theorem 7.2. There is a v-structure in the PDAG 𝐺ep resulting from Algorithm 6 iff
there is a v-structure in a faithful DAG 𝐷 ∈ ℱ(ℐ𝑉).

Proof. First, we show that if there is a v-structure in a faithful DAG 𝐷, then there will be
a v-structure in the PDAG 𝐺ep. Let the v-structure we consider be 𝑎 → 𝑐 ← 𝑏. We have
already seen in Theorem 7.1 that the edge 𝑎 − 𝑏 will be deleted in PDAG 𝐺ep. It remains
to be shown that the edges are actually directed 𝑎 → 𝑐 and 𝑐 ← 𝑏. We consider two cases:

1. The edge 𝑎 − 𝑏 was deleted in line 10 because a separating set 𝑍 was found. We will
show that the conditions in the if-statement in line 12 are met.
Because there is the structure 𝑎 → 𝑐 ← 𝑏 in the faithful DAG 𝐷, it follows that
(𝑎 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑉

and (𝑐 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉
hold and 𝑐 is not in 𝑍 (note that this holds for every

separating set 𝑍). Thus, the edges 𝑎 ← 𝑐 and 𝑐 → 𝑏 are removed in line 13. Due to
the fact that 𝐺ep and 𝐷 have the same skeleton (Theorem 7.1) the edges 𝑎 → 𝑐 ← 𝑏
will not be removed later.

2. The edges 𝑎 ← 𝑏 and 𝑎 → 𝑏 were deleted (at different iterations) in line 13 of the
algorithm. In other words, the nodes 𝑎 and 𝑏 are incompatible. Thus, the following
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holds for two sets 𝑍 and 𝑍′ because of the conditions in line 12::

((𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
∧ (𝑢 ⟂/⟂ 𝑎 | 𝑍)ℐ𝑉

∧ (𝑎 ⟂/⟂ 𝑏 | 𝑍)ℐ𝑉
∧ 𝑎 ∉ 𝑍)

∧ ((𝑣 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑉
∧ (𝑣 ⟂/⟂ 𝑏 | 𝑍′)ℐ𝑉

∧ (𝑏 ⟂/⟂ 𝑎 | 𝑍′)ℐ𝑉
∧ 𝑏 ∉ 𝑍′)

Moreover, we have a v-structure 𝑎 → 𝑐 ← 𝑏 in 𝐷. We know from case 2 in the proof
of Theorem 6.4 that (𝑢⟂/⟂𝑐 |𝑍)ℐ𝑉

, (𝑣⟂/⟂𝑐 |𝑍′)ℐ𝑉
, 𝑐 ∉ 𝑍 and 𝑐 ∉ 𝑍′ hold. But then the

edges 𝑎 ← 𝑐 and 𝑐 → 𝑏 are removed in line 13 when the independences (𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
and (𝑣 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑉

were found. This is because when finding (𝑢 ⟂⟂ 𝑏 | 𝑍)ℐ𝑉
we looked

at every node in (𝑁(𝑢) ∪ 𝑁(𝑏))\({𝑢, 𝑏} ∪ 𝑍) and thus, in particular, we looked at
node 𝑐 as it is a neighbor of 𝑏 and not in 𝑍. For this node 𝑐 the conditions in line 12
are fulfilled. Analogously, when finding (𝑣 ⟂⟂ 𝑎 | 𝑍′)ℐ𝑉

we looked at every node in
(𝑁(𝑣)∪𝑁(𝑎))\({𝑣, 𝑎}∪𝑍′)) and therefore, in particular, at node 𝑐 as it is a neighbor
of 𝑎 and not in 𝑍′.

Second, we show that if there is a v-structure in the PDAG 𝐺ep, this v-structure is also
in every faithful DAG. Let the v-structure we consider be 𝑎 → 𝑐 ← 𝑏. We know from
Theorem 7.1 that the edge 𝑎−𝑏 will be missing in every faithful DAG and an edge between
𝑎 and 𝑐 as well as 𝑐 and 𝑏 is present in every faithful DAG. We know that when only the
edge 𝑎 → 𝑐 (but not 𝑎 ← 𝑐) is in 𝐺ep the following holds for some 𝑢 and 𝑍:

(𝑢 ⟂⟂ 𝑎 | 𝑍)ℐ𝑉
, (𝑢 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑉

, (𝑎 ⟂/⟂ 𝑐 | 𝑍)ℐ𝑉
and 𝑐 ∉ 𝑍.

This means that Theorem 4.1 applies and no faithful DAG can contain the edge 𝑎 ← 𝑐
and accordingly has to contain the edge 𝑎 → 𝑐. The same holds for 𝑐 ← 𝑏. Thus, in every
faithful DAG there will also be the v-structure 𝑎 → 𝑐 ← 𝑏.

We are now able to conclude that Algorithm 6 returns the correct CPDAG.

Theorem 7.3. Algorithm 6 produces the CPDAG consistent with the given conditional
independence information ℱ(ℐ𝑉).

Proof. We have shown in Theorem 7.1 that the algorithm produces the same skeleton as
every faithful DAG. Moreover the PDAG 𝐺ep we obtain after line 19 contains the same v-
structures as every faithful DAG and every directed edge 𝑎 → 𝑏 is directed in this manner
in every faithful DAG. Then the three rules in lines 22- 24 maximally extend this PDAG
as shown by Meek [12] to produce the correct CPDAG 𝐺.
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8 Experimental analysis of the OPPC algorithm
The goal of the OPPC algorithm was, on one hand, to reduce the number of needed CI
tests and, on the other hand, to mainly use low-order CIs which are statistically easier to
test than CIs of higher order. In this section, we test experimentally if we reached this
goal.

8.1 Experimental setting

For our tests we generate a random DAG 𝐷 which represents the causal structure we want
to learn and which substitutes the set ℐ𝑉 as this would be far too large to store. Whenever
we have to test a CI statement (𝑖 ⟂⟂ 𝑗 | 𝑍), we will test if 𝑖 is d-separated from 𝑗 by 𝑍 in 𝐷.

We use different models to generate 𝐷. First, we generate random regular DAGs. For
this a regular graph 𝐺 with a certain degree 𝑑 is randomly chosen and afterwards the edges
are directed by imposing a random topological sorting on 𝐺. Second, we generate graphs
with a fixed edge probability 𝑝 — meaning a certain edge is present with probability 𝑝.
This is also known as the Erdős–Rényi model. For edge directions we will again randomly
choose a topological sorting. As implementation for these methods we use the R-package
pcalg [10] which provides the method randDAG to generate random DAGs. Note that for
generating regular graphs randDAG uses the package igraph [6]. For performance reasons
we implemented the PC and the OPPC algorithm in C++. In order to test d-separation
we used our own implementation of the Bayes-Ball algorithm [16]. The usage of R would
have been too slow for meaningful tests considering that our C++ implementation is more
than a factor 1000 faster than the standard implementation in the package pcalg. One
example to illustrate this: For a DAG generated by the random regular graph model above
with 26 nodes and node degree 5, the pcalg implementation of the PC algorithm runs
for 6, 882 second which is almost 2 hours. Our C++ implementation on the other hand
finishes after 4.1 seconds. These tests were run on one core of the Intel i5-2540M processor
with a 2.6 GHz clock rate.

For the conducted tests we present the number of carried out CI tests instead of the
execution time of the algorithms. The reason for this is that, as we test for d-separation
instead of using statistical CI tests, this time would not be very meaningful for practical
applications. Moreover, it is safe to assume that the number of CI tests is a good indicator
for the running time in practice as these tests constitute the by far largest part of the
computational effort.

8.2 Results in the regular graph model

In Table 1 we present the results of applying the PC algorithm and the OPPC algorithm
to regular DAGs. The first thing to notice is that for regular graphs with a node degree
smaller or equal to four the PC algorithm uses fewer CI tests than the OPPC algorithm.
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Table 1: The number of CI tests carried out by the PC and the OPPC algorithm for regular
DAGs. The shown values are the median of 50 random trials. OPPC (uq.) counts the
number of unique tests a run of the OPPC algorithm executes. On the right we present
the number of deleted edges due to incompatible nodes during a run of the OPPC algorithm
contrasted with the total number of deleted edges. More precisely, if both 𝑎 → 𝑏 and 𝑎 ← 𝑏
have been removed we count this as one deleted edge.

DAG Number of CI tests Deleted edges (OPPC)

𝑛 𝑑 PC OPPC OPPC (uq.) Edges betw. IN All edges

50 3 4, 786 69, 650 3, 668 138 1, 150
100 3 11, 606 597, 957 9, 719 336 4, 800
150 3 21, 022 2, 076, 385 18, 786 547 10, 950
200 3 35, 682 4, 999, 257 30, 897 803 19, 600
250 3 48, 208 9, 883, 800 44, 188 1, 018 30, 750
300 3 65, 554 17, 196, 809 59, 179 1, 272 44, 400
25 4 34, 620 19, 260 12, 641 63 250
50 4 122, 061 74, 223 22, 233 308 1, 125
75 4 277, 330 226, 112 45, 318 677 2, 625

100 4 377, 898 512, 954 50, 204 1, 123 4, 750
125 4 417, 558 1, 006, 377 59, 851 1, 576 7, 500
150 4 445, 912 1, 742, 788 65, 854 2, 050 10, 875
26 5 534, 286 279, 953 - 69 260
50 5 5, 682, 999 1, 092, 363 - 356 1, 100
76 5 21, 471, 567 2, 500, 688 - 901 2, 660

100 5 56, 936, 382 5, 648, 846 - 1, 600 4, 700
126 5 91, 237, 366 5, 901, 799 - 2, 505 7, 560
150 5 153, 242, 808 9, 783, 326 - 3, 540 10, 800
25 6 2, 074, 363 1, 012, 268 - 52 225
50 6 105, 862, 939 29, 351, 574 - 344 1, 075
75 6 875, 703, 600 180, 450, 254 - 919 2, 550
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We will explain the reason behind this and show how this might be resolved. For node
degree greater than four, however, the OPPC algorithm performs better.

That the OPPC algorithm needs more CI tests for graphs with a small node degree
𝑑 has the following reason. As analyzed above the OPPC algorithm has an additional
additive term 𝒪(𝑛3). This means that whenever the number of CI tests used by the PC
algorithm grows slower than 𝒪(𝑛3), the standard implementation of the OPPC algorithm
cannot perform better. This can be seen very well for 𝑑 = 3. When the number of nodes
is doubled from 100 to 200 the number of CI tests carried out by the OPPC algorithm
increases roughly eightfold (which fits very well with 8 being 23) indicating that the running
time is dominated by the term 𝒪(𝑛3). The growth of the PC algorithm on the other hand
is much slower and less than quadratic.

However, as mentioned in the previous section, the additional CI tests in the OPPC
algorithm might be redundant. For this reason we also present the number of unique
CI tests which were executed by the OPPC algorithm. This number is much smaller
and indeed smaller than the number of CI tests used in the PC algorithm showing the
potential of the OPPC algorithm. In this context we have to mention the fact that the
PC algorithm, too, tests CIs redundantly. This can happen as ordered nodes are selected
(see line 14 of Algorithm 2 in Section 3.3) and we might test for (𝑖 ⟂⟂ 𝑗 | 𝑍) as well as
(𝑗⟂⟂𝑖|𝑍). It is clear, however, that these redundancies in the worst case lead to a doubling
of the number of necessary CI tests. For the OPPC algorithm on the other hand, these
redundant CI tests are much more of a nuisance and it is an important question how these
can be reduced without simply storing the results of these tests which would lead to much
increased memory demand.

On the other hand, the tests confirm that the redundant CI tests are indeed negligible
for graphs with a larger node degree when the number of CI tests grows faster than 𝒪(𝑛3).
This can be seen by the results for regular graphs with node degree 5. Here the OPPC
algorithm performs clearly better than the PC algorithm. We can see that the number of
needed CI tests grows much faster for the PC algorithm than for the OPPC algorithm.
For 𝑛 = 26 the PC algorithm needs approximately double the CI tests, while for 𝑛 = 150
it is already more than fifteen times the CI tests in the OPPC algorithm. Moreover, we
see that there is a direct connection between the needed CI tests in the OPPC algorithm
and the number of deleted edges between incompatible nodes. It is shown in Table 1 that
for 𝑑 = 5 about one third of the deleted edges has been removed because the nodes were
incompatible. With the number of deleted edges we mean, more precisely, the number
of pairs of nodes 𝑎 and 𝑏 which became nonadjacent during the execution of the OPPC
algorithm. We count a deletion as incompatible if it happens (during different iterations)
in line 13 of the OPPC algorithm. These additional removals lead to a sparser graph
compared to the PC algorithm and thus, to a reduced search space. Of course, some of
these edges might have been removed by finding an independence statement with the same
order in the PC algorithm, but in total there is a significant influence. In contrast, for
𝑑 = 3 a smaller percentage of deleted edges were due to incompatible nodes. This might
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Table 2: The number of CI tests carried out by the PC algorithm and the OPPC algorithm
for random DAGs (𝑝 = 𝑘/(𝑛 − 1) is the probability that a certain edge is present in the
skeleton). The shown values are the median of 50 random trials. OPPC (uq.) counts the
number of unique tests a run of the OPPC algorithm executes. On the right we present the
number of deleted edges due to incompatible nodes during a run of the OPPC algorithm
contrasted with the total number of deleted edges. More precisely, if both 𝑎 → 𝑏 and 𝑎 ← 𝑏
have been removed we count this as one deleted edge.

DAG Number of CI tests Deleted edges (OPPC)

𝑛 𝑘 PC OPPC OPPC (uq.) Edges betw. IN All edges

25 3 6, 191 11, 890 3, 967 30 263
50 3 25, 380 79, 464 13, 989 149 1, 151
75 3 59, 856 254, 851 27, 008 314 2, 663

100 3 97, 672 600, 161 37, 315 503 4, 800
125 3 107, 840 1, 158, 631 42, 384 764 7, 565
150 3 259, 849 2, 043, 558 77, 208 1, 036 10, 952
25 4 59, 603 40, 347 - 39 251
50 4 413, 074 251, 365 - 227 1, 127
75 4 2, 103, 822 898, 320 - 574 2, 628

100 4 7, 828, 627 2, 614, 204 - 1, 013 4, 753
25 5 314, 133 245, 452 - 38 238
50 5 10, 532, 940 4, 806, 021 - 269 1, 102
75 5 100, 443, 318 44, 502, 264 - 718 2, 592
25 6 2, 160, 401 1, 761, 610 - 31 226
50 6 199, 871, 850 83, 824, 159 - 260 1, 077

be explained by the fact that a lot of edges are removed immediately through marginal
independences.

8.3 Results in the Erdős–Rényi model

In this subsection we test the performance of the OPPC algorithm on DAGs generated
with the Erdős–Rényi model. In this graph generation model every (undirected) edge is
present independently with probability 𝑝. Afterwards, the edges are directed according to
a random topological sorting — meaning a random permutation — of the nodes. We will
choose 𝑝 as 𝑘/(𝑛 − 1) with 𝑘 being the expected node degree. This enables us to compare
the results with the previous subsection where we had a fixed node degree 𝑑. The main
difference compared to the random regular graph model is that the maximal node degree
𝑑max might be significantly larger than the expected node-degree 𝑘. This has a direct
influence on the number of needed CI tests because as we have analyzed previously (see
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Section 3.3) the number of CI tests grows polynomially in 𝑑max.
The results of the tests are shown in Table 2. As we have seen in the regular graph

model, the PC algorithm performs better when considering very sparse graphs. This is the
case for 𝑘 = 3. Again the issue is that the number of CI tests used by the PC algorithm
grows slower than 𝒪(𝑛3) and the additional tests used in the OPPC algorithm outweigh
the improvement of earlier edge removals. However, if we only count unique CI tests, the
OPPC algorithm needs fewer CI tests than the PC algorithm. Beginning with 𝑘 = 4 the
OPPC algorithm outperforms the PC algorithm. As in the regular graph model, the gap
between the two algorithms grows with the number of nodes 𝑛. This is exemplified for
𝑘 = 4, where there is a factor ≈ 1.5 between the two algorithms for 𝑛 = 25 and a factor
≈ 3 for 𝑛 = 100. This result shows that in particular for computationally very expensive
settings with a large number of nodes, the OPPC algorithm is a better choice than the
PC algorithm. A growing 𝑘 on the other hand has a smaller influence on the relative
performance of the algorithms provided 𝑘 is large enough (here larger than three). For
example for 𝑛 = 50 and 𝑘 = 5 there is a factor ≈ 2.2 between the algorithms. For 𝑘 = 6
the factor is ≈ 2.4 and thus very similar. However, it would be necessary to compare these
values for larger 𝑘. But these tests would be computationally very expensive and from a
certain point onward infeasible.

When comparing the results to the previous subsection the first thing to note is that
the number of CI tests is larger in the Erdős–Rényi model. The reason for this, as mentioned
above, is that the the maximal node degree 𝑑max is usually higher than 𝑘 and that the
running time of the algorithms is polynomial in 𝑑max. Moreover, the OPPC algorithm
outperforms the PC algorithm by a larger margin when considering regular graphs. For
the case of 𝑛 = 50 and 𝑑 = 6 there is a factor of ≈ 3.5 between the algorithms while in
the Erdős–Rényi model for 𝑛 = 50 and 𝑘 = 6 it is below 2.5. One possible reason might
be that as for regular graphs the node degree is fixed and therefore every node has the
maximal node degree, deleting an edge due to incompatible nodes anywhere in the graph
will have a direct impact on the number of CI tests. In the Erdős–Rényi model on the
other hand we might delete an edge between two incompatible nodes with a relatively low
degree. The impact of this deletion will probably be significantly lower.

8.4 Analysis of the underlying distributions

The previous subsections gave a good overview of the performance of the OPPC algorithm
in comparison with the PC algorithm. In this subsection, we consider one choice of param-
eters for both DAG generation models in more detail.

For the presentation of the results in the previous subsections, we chose one represen-
tative value for each choice of 𝑛 and 𝑑 (or 𝑝 respectively). This value was the median of 50
random trials. We investigate why the use of the median instead of the mean is preferable
and in general shed some light on the underlying distribution of the number of needed CI
tests in the PC and OPPC algorithm for the used DAG generation models. In order to do
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Table 3: 250 executions of the PC and OPPC algorithm were conducted on random DAGs
with parameters 𝑛 = 76 and 𝑑 = 5 in the random regular graph model on the left and with
parameters 𝑛 = 75 and 𝑝 = 5/(𝑛 − 1) in the Erdős–Rényi model on the right. Displayed is
the number of trials for which the number of CI tests is in a given range.

No. CI Occ. PC Occ. OPPC

[105, 5 ⋅ 105) 0 11
[5 ⋅ 105, 106) 0 25
[106, 5 ⋅ 106) 9 130
[5 ⋅ 106, 107) 21 38
[107, 5 ⋅ 107) 183 46
[5 ⋅ 107, 108) 33 0
[108, 5 ⋅ 108) 4 0

No. CI Occ. PC Occ. OPPC

[105, 106) 0 2
[106, 107) 12 46
[107, 108) 92 98
[108, 109) 104 71
[109, 1010) 35 29
[1010, 1011) 7 4

this we will look at the exemplary case of 𝑛 = 75 and 𝑝 = 5/(𝑛 − 1) in the Erdős–Rényi
model and will compare this to the parameters 𝑛 = 76 and 𝑑 = 5 in the random regular
graph model. Note that we are not able to choose 𝑛 = 75 in the latter model as no graph
with these properties exists.

In Table 3 the distribution of the number of CI tests in the PC and OPPC algorithm
is displayed for 250 random trials. For various ranges we display the number of executions
which fall into this range. For example, in the random regular model (on the left) there
are 183 executions of the PC algorithm for which the number of CI tests lies between 107

and 5 ⋅ 107 while there are 46 such executions of the OPPC algorithm. In the Erdős–Rényi
model (shown on the right) the number of needed CI tests varies between 105 and 1011.
For random regular graphs the distribution is denser and for the given experiments it lies
completely in the range between 105 and 5 ⋅ 108. A reason for this is that the maximum
degree is fixed in the case of regular graphs while 𝑑max might vary in the Erdős–Rényi
model. Recall that the number of CI tests grows with the maximal degree in the PC and
OPPC algorithm.

We take a look at the mean and the median for the random regular graph distribution.
The means are 29, 620, 683 and 5, 803, 033 for PC and OPPC algorithm respectively, and
the medians are 23, 102, 446 and 3, 040, 522. In this model the mean and the median lie
quite close to each other. In the Erdős–Rényi model, on the other hand, the means are
1, 169, 373, 713 and 902, 187, 603 for PC and OPPC algorithm respectively, and the medians
are 148, 319, 989 and 60, 574, 544. We can see that there is a large difference between
mean and median. This applies to the absolute values as well as the relative performance
of the two algorithms. We will investigate why this is the case and argue that the median
is more suitable than the mean. We do this by comparing single runs of the PC and OPPC
algorithm.
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Figure 13: 250 executions of the PC and OPPC algorithm were conducted on random
DAGs with parameters 𝑛 = 76 and 𝑑 = 5 in the random regular graph model on the top
and with parameters 𝑛 = 75 and 𝑝 = 5/(𝑛 − 1) in the Erdős–Rényi model on the bottom.
Displayed is the quotient of the needed number of CI tests in the OPPC algorithm and
the PC algorithm (#CIOPPC / #CIPC). The data are sorted by increasing number of CI
tests in the PC algorithm such that the data point with x-coordinate 𝑘 stands for the input
graph for which the PC algorithm uses the 𝑘 lowest amount of CI tests.
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In Figure 13 we display for each random trial the quotient of the needed number of
CI tests in the OPPC and in the PC algorithm (#CIOPPC / #CIPC). These quotients are
presented in an order such that the number of CI tests needed in the execution of the PC
algorithm increases. If a quotient is below one the OPPC algorithm needs fewer CI tests,
if it is exactly one both algorithm need the same number of tests and if it is above one the
PC algorithm needs fewer tests. At first, we take a look at the lower figure which shows
the results in the Erdős–Rényi model. The first thing to notice is that the quotient is always
below one. This means that the OPPC algorithm is better than the PC algorithm for
every test case. However, exactly the cases with the most number of CI tests are the ones
where the quotient is closest to one. This is exactly the reason why the mean captures the
performance of the OPPC algorithm poorly. It skews the result towards the test cases with
a large number of CI tests. But these do not represent the results very well. We see this
when comparing the quotient of the means with the quotient of the medians. The former
value is ≈ 0.8, while the latter is ≈ 0.4 and, thus, lies much more in the centre of the
quotients shown in Figure 13. For the random regular graphs which are presented in the
upper figure the same observation holds. The quotient is the largest for the costliest test
cases. However, the phenomenon is less extreme. It follows that mean and median differ
less extremely as well, but overall the mean is still better suited to capture the relative
performances of the two algorithms. Moreover, we see that the quotient is always below
0.5. This confirms our observation that the improvement through the use of the OPPC
algorithm is larger for regular graphs.

From the investigations above we can conclude that the performance gains of the OPPC
algorithm are larger for the easier test cases when considering fixed parameters 𝑛 and
𝑑 (or 𝑝 respectively). In other words, precisely for the hardest test cases it is difficult to
significantly improve on the PC algorithm. A possible reason for this observation is the
following. If the test case is harder, this could mean that there are certain substructures for
which most independences are only found for higher orders and learning this substructure
constitutes a large portion of the needed number of CI tests. In this case the earlier
deletion of edges between incompatible nodes in the rest of the graph and the unnecessary
CI tests which are thereby omitted will be less significant compared to the total number of
CI tests. On the other hand, there is not much room for improvement when dealing with
these hard substructures, because independence statements are found relatively late. In
the extreme case this becomes very clear. Consider the skeleton of the underlying DAG to
be a complete graph. In this case no CI will be found and there seems to be no possible
shortcut to the exhaustive brute-force search through all possible CIs. This means, in turn,
that ideas like the notion of incompatible nodes cannot improve the performance at all.
However, it is reasonable to assume that especially such extreme test cases will not be the
ones encountered in practice.

We will end the section by investigating how early edges are removed from the skeleton
in the PC and OPPC algorithm. It was our goal in the OPPC algorithm to mainly use
low-order CIs. We will check if this is indeed the case. Both algorithms work in an iterative
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Table 4: Number of edges deleted for a given order 𝑙. Precisely, we mean the number of
newly nonadjacent nodes. In the random regular graph model we consider the parameters
𝑛 = 76 and 𝑑 = 5, in the Erdős–Rényi model 𝑛 = 75 and 𝑝 = 5/(𝑛 − 1). The values are
the mean of 250 random trials.

Regular graph model Erdős–Rényi model

Order 𝑙 Del. edges PC Del. edges OPPC Del. edges PC Del. edges OPPC

0 992 1, 672 964 1, 436
1 641 527 597 540
2 434 199 416 240
3 299 117 271 144
4 192 80 168 97
5 102 65 85 57
6 0 0 50 39
7 0 0 21 19
8 0 0 10 10
9 0 0 3 3

10 0 0 1 1
11 0 0 1 1

fashion, first considering marginal independences (𝑙 = 0), then CIs with order 𝑙 = 1 and
so on. In Table 4 we show how many pairs of nodes 𝑎 and 𝑏 become nonadjacent during
the search for CIs of order 𝑙. This number is interesting because it directly influences
the search space for possible separating sets 𝑍. For the PC algorithm it is clear that
this is equivalent to the number of newly found conditional independences (𝑎 ⟂⟂ 𝑏 | 𝑍)
for some 𝑍 with |𝑍| = 𝑙. In the OPPC algorithm there is the additional case of 𝑎 and 𝑏
being incompatible nodes. The shown values are the mean of 250 random trials for the
parameters 𝑛 = 76 and 𝑑 = 5 in the regular graph model and 𝑛 = 75 and 𝑝 = 5/(𝑛 − 1) in
the Erdős–Rényi model.

We see that the OPPC algorithm is able to remove much more edges just by con-
sidering marginal independences. For example in the regular graph model 992 pairs of
nodes are nonadjacent in the PC algorithm after searching through the marginal indepen-
dences while there are 1, 672 pairs of such nodes in the OPPC algorithm. Similarly, in the
Erdős–Rényi model there are 964 pairs of nodes which become nonadjacent when consider-
ing the marginal independences in the PC algorithm compared to 1, 436 pairs in the OPPC
algorithm. Thus, the search space for higher orders is significantly reduced which, on the
one hand, speeds up the algorithms and, on the other hand, means that we have to test
fewer high order CIs. This was exactly the motivation for the OPPC algorithm because
especially high-order CIs are difficult to test. On the other hand, we also see that even in
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the OPPC algorithm there are certain independences which we only find when testing for
high orders. In the Erdős–Rényi model it is necessary for both algorithms to check for CIs
with order eleven on certain instances. This confirms our conjecture above that the OPPC
algorithm is not able to significantly improve the learning of certain hard substructures. It
needs to be further investigated if there is a different approach which is able to speed up
the learning of these substructures as well.
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9 Discussion
The main goal of this thesis was to exploit low-order CIs in order to improve constraint-
based causal structure learning. We started with the problem of recovering causal struc-
tures from sets of order-bounded CIs and solved this problem for all sets of conditional
independences up to a fixed order 𝑘. Moreover, we were able to show that this approach
can be immediately applied to causal structure learning in general by proposing the OPPC
algorithm which outperforms the popular PC algorithm for various graph classes. How-
ever, the research done in this thesis also gives rise to new questions.

While we proposed an algorithm to obtain the graph 𝐺 which represents the set ℱ(ℐ𝑘
𝑉)

of faithful DAGs and which enables us to find all faithful DAGs, we lack an algorithm
which enumerates all faithful DAGs. The trivial algorithm we proposed at the end of
Section 6 outputs some DAGs multiple times. In order to tackle this problem the study
of edge minimal faithful DAGs would be interesting. Textor et al. [18] used the edge
minimal faithful DAGs to solve the enumeration problem for the special case of marginal
independences. The question arises if their approach can be generalized. In this thesis we
mainly focused on edge maximal faithful DAGs and their connection to the representation
𝐺. The edge minimal faithful DAGs could also give us a deeper understanding of the
structure of ℱ(ℐ𝑘

𝑉).
We have argued that the notion of a representation of a set ℐ𝑘

𝑉 of CIs up to order 𝑘
can be viewed as a generalization of the concept of a CPDAG. It would be interesting to
apply this connection, for example, to the important open problem of counting Markov
equivalence classes [15]. The basis of the research could be the problem of counting the
number of representations for sets of marginal independences ℐ0

𝑉 which was solved by
Textor et al. [18].

The OPPC algorithm learns causal structures more efficiently than the PC algorithm.
But for very sparse graphs the standard implementation needs more CI tests compared to
the PC algorithm due to the relatively large number of redundant tests (at most 𝒪(𝑛3)).
We showed that when only considering unique CI tests the algorithm is better than the
PC algorithm. However, an implementation which, for example, stores the already tested
CIs in order to avoid redundant tests is clearly not in the spirit of the algorithm and would
lead to a much increased memory demand. Thus, the question remains how to implement
this algorithm efficiently in a way which avoids these redundant tests.

Apart from this an analysis of the statistical properties of the OPPC algorithm would
be of interest. This lies outside the scope of this thesis as we solely focus on learning from
sets of CIs and not directly from data. In combination with this, experimental tests on
generated or even real world data are needed to analyze how well the OPPC algorithm
works in practice.
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