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Abstract

A string-based negative selection algorithm is an immune-inspired classifier that infers a bipartitioning of a string
space Σ` from a training set S containing samples from only one of the partitions. The algorithm generates a set of
patterns, called “detectors”, to cover regions of the string space containing none of the training samples. These patterns
are then used for classification. A major problem with all existing implementations of this approach is that the detector
generation step suffers from exponential worst-case time complexity. Hence, researchers have found negative selection
to be of limited use for real-world problems such as network intrusion detection. Here we show that for the two most
widely used kinds of detectors, the r-chunk and r-contiguous detectors based on partial matching to substrings of
length r, negative selection can be implemented efficiently by avoiding generating detectors altogether: For each
detector type, training set S ⊆ Σ` and parameter r ≤ ` one can construct an automaton with an acceptance behaviour
that is equivalent to the algorithm’s classification outcome. The resulting runtime is O(|S |`r|Σ|) for constructing the
automaton in the training phase and O(`) for classifying a string.

Key words: negative selection, r-chunk detectors, r-contiguous detectors, artificial immune systems, anomaly
detection

1. Introduction

The adaptive immune system successfully protects vertebrate species, including us human beings, from becoming
extinguished by pathogens. According to current textbook immunology, the immune system accomplishes this without
actually knowing what a pathogen is. Instead, it is trained during infancy to tolerate the tissues, cells and molecules
that are normal components of its host organism – the self – and to attack everything else – the nonself. While nonself
includes potentially dangerous things such as viruses, bacteria and fungi, this implies that benign intruders such as
a donated kidney or liver are also attacked by the immune system. The paradigm of self-nonself-discrimination is a
natural source of inspiration for computer security: Computer systems and networks are also continuously attacked
by worms and other malware, and a computer program that discriminates with perfect accuracy between benign and
malign software cannot exist. Thus, can we benefit from transferring the immune system’s “nice hack” [17] to the
computer security domain?

A popular approach to designing such computer immune systems is to mimic how the immune system’s T cells
are generated and trained to detect nonself entities. This process is known as negative selection [14, 15]: T cell
receptors are generated by random assembly of gene fragments. In an organ called the thymus, newborn T cells are
exposed to proteins from self. Every cell whose receptor matches a self protein is destroyed. Only the cells that
survive negative selection leave from the thymus and start to continuously circulate through the organism, screening
for nonself entities. A negative selection algorithm is essentially an abstraction of this process.

The negative selection algorithms that we consider in this paper are binary classifiers operating on a string space
Σ`. The classification problem is posed as follows (Figure 1): Σ` is assumed to be pre-partitioned in two pairwise
disjoint subsets S (self) and N (nonself). The strings can represent, for example, data packets in a computer network
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Figure 1: The classification problem solved by a negative selection algorithm. The string universe Σ` is prepartitioned in two regions S (self) and
N (nonself). The classifier is given a training set S ⊆ S (large dots) and generates a detector set D (small dots) to cover regions of the universe
containing none of the training examples (circles). This detector set induces a classification boundary that approximates the partitions S and N .

[3] or sequences of system calls from UNIX processes [13], where the self and nonself partitions would correspond
to “normal” and “anomalous” behaviour, respectively. The algorithm is given a sample S ⊆ S of self strings, called
self-set, and a set M ⊆ Σ` of strings to classify, called monitor set. It then generates a set D of patterns called
detectors. In analogy to the T cells in the immune system, this is typically done by generating the detectors randomly
and discarding those that match any string in the self-set. Consequently, each string m ∈ M is classified by labelling
m as non-self if it is matched by any detector, and self otherwise. In particular, m is never labeled non-self if it also
occurs in the self-set.

From a broader machine learning perspective, negative selection is usually described as an anomaly detection
technique [16, 6]. The following two important properties distinguish negative selection from many well-known
classifiers: (1) The training data consists of examples from only one class. Other techniques with this property
include classifiers based on kernel density estimation [4, 20] and the one-class support vector machine [22]. (2)
Classification is based on a negative representation of training data, typically on short substrings (r-grams) that do
not occur in the self-set. While positive representations such as the r-gram frequency distribution used e.g. for
identification of language [11] and text categorization [5] are more common in the machine learning domain, similar
negative representations have been studied in string theory. For example, certain sets of non-occurring substrings
(forbidden words) can be used to describe the complexity of a language [8].

1.1. Contribution of this paper

This paper presents two algorithms that implement negative selection with r-chunk and r-contiguous detectors by
generating compressed representations of the respective detector sets, from which automata are constructed that sim-
ulate the classification outcome through their acceptance behaviour. Both algorithms use time O(|S |`r|Σ|) to construct
an automaton for a given self-set S and parameter r, which is equivalent to the training phase of the simulated neg-
ative selection algorithm. Upon construction, the automaton classifies each string in linear time O(`). This improves
upon the exponential worst-case complexity of existing algorithms, and thus removes one major obstacle for applying
negative selection to real-world problems [28, 23, 27]. In comparison to our preliminary conference version [12],
the algorithms presented in this paper are based on prefix trees instead of patterns. This reduces the overall runtime
significantly (Table 1), generalizes to higher alphabets, and allows for a simpler and more concise presentation. In
addition to the classification itself, the automata can also be used to efficiently count the detectors and, if necessary,
enumerate them explicitly.

The r-chunk and r-contiguous detectors considered here are among the most common ones in the artificial immune
systems literature [16]: (1) An r-contiguous detector is a string of length ` and matches all strings to which it is
identical in at least r contiguous positions. (2) An r-chunk detector is a string of length r (or r-gram) with a position
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index and matches all strings in which the r-gram occurs at that position. Figure 2 shows an example self-set S ⊆
{a, b}5 along with the complete sets of 3-chunk and 3-contiguous detectors that do not match any string in S , as well as
the partitioning of {a, b}5 induced by these detector sets. The r-contiguous detectors are directly based on a model of
antigen recognition by T cell receptors [21, 14], and r-chunk detectors were later introduced to achieve better results
on data where different regions of the input strings have highly different meanings, such as network data packets [3].
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Figure 2: An example self-set S ⊆ {a, b}5 along with all 3-chunk detectors and 3-contiguous detectors that do not match any string in S is
shown. For both detector types, the bipartitionings of the shape space {a, b}5 are illustrated with strings that are classified as nonself having a gray
background and strings that are classified as self having a white background. Bold strings are members of the self-set. The generalization region
of the negative selection classifier consists of the strings that are classified as self although they do not occur in the self-set. These strings are also
called “holes” in the negative selection literature [16, 25].

1.2. Related Work on String-Based Negative Selection
The question whether negative selection with r-contiguous and r-chunk detectors can be implemented in poly-

nomial worst-case time was open for several years. The complexity issues caused by the verbatim abstraction of
negative selection as performed by the immune system are two-fold: On one hand, if the self partition is only a small
fraction of Σ`, then there is an exponential number of potential detectors, and it is unclear how many of these have
to be generated to achieve an acceptable detection rate. The early work of D’haeseleer and others [10, 9] addressed
these problems by proving lower bounds on the number of required detectors, and presenting algorithms that generate
detectors by a structured exhaustive search. However, these algorithms still have a runtime exponential in r. Similar
algorithms and heuristics were later proposed by Wierzchoń [30], Ayara et al. [2], and Stibor et al. [26]. In an effort
to clarify the computational complexity of negative selection, Stibor and coworkers studied the associated decision
problem [24, 25]: Given a self-set S , can an r-contiguous detector be generated that does not match any string in S ?
It was recently suggested that this decision problem might be NP-complete [28], although a completeness proof was
not shown. The ongoing difficulties led some in the field to conclude that negative selection is computationally too
expensive for real-world datasets [23, 1]. This issue was settled by the preliminary version of the present paper [12].
Most recently, Liśkiewicz and Textor discussed the idea of negative selection without explicit detector generation
from a learning theoretical perspective [19].

1.3. Organization of This Paper
We start out by defining the formal underpinnings of our algorithms in the upcoming section. Afterwards, in

Section 3, we sketch the construction of an automaton consisting of prefix trees and failure links that can be used to
simulate negative selection with r-chunk detectors. This rather straightforward construction is used as a basis for the
more involved one in Section 4, where we transform the automaton into one that allows linear-time classification with
respect to r-contiguous detectors.

2. Preliminaries

In this section, we define the formal background of our work. First we review some basic terms related to strings
and pattern matching techniques like automata. Then we define r-chunk detectors, r-contiguous detectors, and the
corresponding classification approaches.
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r-chunk detector- asymptotic runtime
based algorithms training phase classification phase
Stibor et al. [26] (2r + |S |)(` − r + 1) |D|`
Elberfeld, Textor [12] |S |(` − r + 1)r2 |S |`2r
Present paper |S |`r `

r-contiguous detector- asymptotic runtime
based algorithms training phase classification phase
D’haeseleer et al. [10] (linear) (2r + |S |)(` − r) |D|`
D’haeseleer et al. [10] (greedy) 2r |S |(` − r) |D|`
Wierzchón [30] 2r(|D|(` − r) + |S |) |D|`
Elberfeld, Textor [12] |S |3`3r3 |S |2`3r3

Present paper |S |`r `

Table 1: Comparison of our results with the runtimes of previously published algorithms. All runtimes are given for a binary alphabet (|Σ| = 2)
since not all algorithms are applicable to arbitrary alphabets. The parameter |D|, the desired number of detectors, is only applicable to algorithms
that generate detectors explicitly – our algorithms produce the results that would be obtained with the maximal number of generated detectors.

2.1. Strings, Substrings and Languages
An alphabet Σ is a nonempty and finite set of symbols. A string s ∈ Σ∗ is a sequence of symbols from Σ, and its

length is denoted by |s|. Given an index i ∈ {1, . . . , |s|}, then s[i] is the symbol at position i in s. Given two indices i
and j, whenever j ≥ i, then s[i . . . j] is the substring of s with length j − i + 1 that starts at position i and whenever
j < i, then s[i . . . j] is the empty string. If i = 1, then s[i . . . j] is a prefix of s and, if j = |s|, then s[i . . . j] is a suffix
of s. Given a string s ∈ Σ` and another string d ∈ Σ j with 1 ≤ j ≤ ` and an index i ∈ {1, . . . , ` − j + 1}, we say that d
occurs in s at position i if s[i . . . i + j − 1] = d.

A set of strings S ⊆ Σ∗ is called a language. For two indices i and j, we define S [i . . . j] = {s[i . . . j] | s ∈ S }. We
say that S avoids a string d at position i if d occurs in no s ∈ S at position i. Alternatively, we say that S avoids the
tuple (d, i).

2.2. Prefix Trees, Prefix DAGs, and Automata

A prefix tree T such as
a

a

b
is a rooted directed tree with edge labels from Σ where for all σ ∈ Σ, every node

has at most one outgoing edge labeled with σ. For a string s, we write s ∈ T if there is a path (which may contain
cycles) from the root of T to a leaf such that s is the concatenation of the labels on this path. The language L(T )
described by T is defined as the set of all strings with a prefix s ∈ T . For example, for T above we have ab ∈ L(T )
since a ∈ T and bb < L(T ) since no prefix of bb lies in T .

A prefix dag D such as a b

a a
b

is a directed acyclic graph with edge labels from Σ, where again for all σ ∈ Σ,
every node has at most one outgoing edge labeled with σ. In analogy to prefix trees, we will use the terms root and
leaf to refer to a node without incoming and outgoing edges, respectively. We write s ∈ D if there is a root node nr

and a leaf node nl in D with a path from nr to nl that is labeled by s. Given n ∈ D, the language L(D, n) contains all
strings that have a prefix that labels a path from n to some leaf. For instance, if D is the dag above and n is its upper
left node, then L(D, n) consists of all strings starting with aa. Moreover, we define L(D) =

⋃
n is a root of D L(D, n).

We will construct finite automata to decide the membership of strings in languages. Formally, a finite automaton
is a tuple M = (Q, qi,Qa,Σ,∆), where Q is a set of states with a distinguished initial state qi ∈ Q, Qa ⊆ Q the set of
accepting states, Σ the alphabet of M, and ∆ ⊆ Q × Σ × Q the transition relation. Furthermore, we assume that the
transition relation is unambiguous: for every q ∈ Q and every σ ∈ Σ there is at most one q′ ∈ Q with (q, σ, q′) ∈ ∆.
It is common to represent the transition relation as a graph with nodes Q (with the initial state and the accepting
states highlighted properly) and labeled edges (with a σ-labeled edge from q to q′ if (q, σ, q′) ∈ ∆.) An automaton
M is said to accept a string s if its graph contains a path from qi to some q ∈ Qa whose concatenated edge labels
equal s. The language L(M) contains all strings accepted by M. Note that every prefix dag D can be turned into a
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finite automaton M with L(D) = L(M). For a more detailed discussion of automata-based string processing, we refer
to the textbook of Crochemore, Hancart and Lecroq [7].

2.3. Detectors and Self-Nonself-Discrimination

We fix an alphabet Σ, a string length `, a self-set S ⊆ Σ`, and a matching parameter r ∈ {1, . . . , `}.

Definition 2.1 (r-chunk detector). An r-chunk detector (d, i) is a tuple of a string d ∈ Σr and an index i ∈ {1, . . . , ` −
r + 1}. It matches a string s if d occurs in s at position i.

The set of r-chunk detectors for S , denoted by chunk(S , r), contains exactly the r-chunk detectors (d, i) that do
not match any string in S . Let m ∈ Σ`. The string m is nonself with respect to S and r-chunk detectors if m matches
an r-chunk detector from chunk(S , r) and self, otherwise. The set chunk-nonself(S , r) contains exactly the strings of
length ` over Σ that are nonself with respect to S and r-chunk detectors.

Definition 2.2 (r-contiguous detector). An r-contiguous detector is a string d ∈ Σ`. It matches a string s ∈ Σ` if
there is an index i ∈ {1, . . . , ` − r + 1} where d[i . . . i + r − 1] occurs in s.

Similarly to the chunk detector case, we define the set of r-contiguous detectors for S and r, cont(S , r), as the
set of all r-contiguous detectors that do not match any string in S . Let m ∈ Σ`. The string m is nonself with respect
to S and r-contiguous detectors if m matches an r-contiguous detector from cont(S , r) and self, otherwise. The set
cont-nonself(S , r) contains exactly the strings that are nonself with respect to S and r-contiguous detectors.

Figure 2 from the introduction shows an example of a self-set S , the corresponding detector sets chunk(S , 3) and
cont(S , 3), and the corresponding partitions of the shape space into self and nonself.

3. Negative Selection with Chunk Detectors

In this section, we discuss how to construct automata for chunk-nonself(S , r). The construction is a rather straight-
forward combination of two standard string processing tools: prefix trees and failure links. We present the construction
here for sake of completeness and because we use it as a building block for the more intricate one in the next section.

Theorem 3.1. There exists an algorithm that, given any S ⊆ Σ` and r ∈ {1, . . . , `}, constructs a finite automaton M
with L(M) ∩ Σ` = chunk-nonself(S , r) in time O(|S |`r|Σ|).

Proof. By definition, a string m ∈ Σ` lies in the set chunk-nonself(S , r) exactly if S avoids (m[i . . . i + r − 1], i) for
some index i ∈ {1, . . . , ` − r + 1}. Therefore, to classify m in time O(`r), it suffices to construct, for every position
i ∈ {1, . . . , ` − r + 1} independently, a prefix tree Ti with L(Ti) ∩ Σr = Σr \ S [i, . . . , i + r − 1]. The prefix tree Ti can be
constructed as follows: Start with an empty prefix tree and insert every s ∈ S [i, . . . , i + r − 1] into it. Next, for every
non-leaf node n and every σ ∈ Σ where no edge with label σ starts at n, create a new leaf n′ and an edge (n, n′) labeled
with σ. Finally, delete every node from which none of the newly created leaves is reachable. For the resulting prefix
tree we have L(Ti) ∩ Σr = Σr \ S [i, . . . , i + r − 1]. It is readily seen that for every s ∈ Ti, all of its prefixes s′ with
|s′| < |s| occur in S at position i.

To enable a classification in time O(`), we construct an automaton by inserting failure links between the prefix
trees of adjacent levels, similar to the well-known algorithm of Knuth, Morris and Pratt [18]. Briefly, the idea of our
failure link method is as follows: If a mismatch occurs in a prefix tree Ti at a position k, then we need not restart from
the root of tree Ti+1, but can go directly to the node in Ti+1 that corresponds to the last k−1 symbols read. By inserting
the failure links from right to left, turning the prefix trees into a prefix dag, we can inductively ensure that either such
a node exists or there is no match at all.

We start by letting D be the disjoint union of T1, . . . ,T`−r+1. Then we process the levels from i = ` − r down to
1 iteratively as follows: Consider every node n from Ti and every symbol σ ∈ Σ where Ti has no outgoing edge with
label σ. Let s be the string on the path from the root of Ti to n. Let s′ = sσ and let n′ be the end node of the path
from the root of Ti+1 that is labeled by s′[2 . . . |s′|]. If this n′ exists, we insert an edge from n to n′ with label σ. By
induction one can show that after every iteration i we have L(Ti) ∩ Σl−i+1 = chunk-nonself(S [i, . . . , `], r). Finally, we
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Figure 3: The constructed automaton M with L(M) ∩ {a, b}5 = chunk-nonself(S , 3) where S is the self-set from Figure 2. The solid lines are from
the prefix trees Ti, the dashed lines are failure links.

turn D into a finite automaton with the claimed property by making all leaves accepting states with self-loops for all
σ ∈ Σ and setting the initial state to the root of T1. An example of this construction is shown in Figure 3.

Each prefix tree Ti can be constructed in time O(|S |r|Σ|). The failure links between each pair of adjacent levels i
and i+1 can be inserted in time |S |r|Σ| by a simultaneous recursive traversal of Ti and Ti+1. Since the number of levels
is ` − r + 1, we obtain the claimed runtime. �

4. Negative Selection with Contiguous Detectors

In this section, we show how to efficiently construct automata for the languages cont(S , r) and cont-nonself(S , r),
respectively. We first discuss the construction of an automaton for cont(S , r), which will prove the following theorem:

Theorem 4.1. There exists an algorithm that, given any S ∈ Σ` and r ∈ {1, . . . , `}, constructs a finite automaton M
with L(M) ∩ Σ` = cont(S , r) in time O(|S |`r|Σ|).

The construction in this section is more complex than the one in the previous section since, in order to accept
cont(S , r), it does not suffice to determine non-occuring length-r substrings for the levels independently. Instead, we
need to determine non-occuring substrings that can be extended by non-occuring substrings from other levels to form
strings of length ` – the r-contiguous detectors.

Let S ⊆ Σ`, d ∈ Σ`, r ∈ {1, . . . , `}, and (d′, i) ∈ Σ≤r × {1, . . . , ` − r + 1}. The string d is an (S , r)-avoiding right-
completion of (d′, i) if (1) d′ occurs in d at position i and S avoids (d′, i), and (2) for all j ∈ {i + 1, . . . , ` − r + 1}, there
is a string d′′ ∈ Σ≤r such that d′′ occurs in d at position j and S avoids (d′′, j). If property (2) is phrased with j ranging
from 1 to i − 1, then d is an (S , r)-avoiding left-completion of (d′, i). With this definition we have d ∈ cont(S , r) iff
there exists (d′, i) ∈ Σ≤r ×{1, . . . , `− r + 1} such that d is both an (S , r)-avoiding left-completion and an (S , r)-avoiding
right-completion of (d′, i).

To prove Theorem 4.1, we first prove the following Lemma:

Lemma 4.2. There exists an algorithm that, given any S ⊆ Σ` and r ∈ {1, . . . , `}, constructs a prefix dag D with roots
ρ1, . . . , ρ`−r+1 such that L(D, ρi) ∩ Σ`−i+1 = cont(S , r)[i . . . `] for every i ∈ {1, . . . , ` − r + 1} in time O(|S |`r|Σ|).

Proof. The construction of D is done in four phases, presented and discussed in the next four paragraphs. While the
following proof text explains the basic ideas and their correctness, the detailed computational steps are shown by the
pseudocode in Figure 4, which also provides an implementation blueprint.

For all i ∈ {1, . . . , ` − r + 1}, let Ti be prefix trees with L(Ti) ∩ Σr = Σr \ S [i . . . i + r − 1] from the proof of
Theorem 3.1; by definition we know that every r-contiguous detector contains a string at position i that occurs in Ti.
However, there are still strings in Ti that do not occur in any r-contiguous detector at position i. Those are precisely
the strings that have no (S , r)-avoiding left-completion or no (S , r)-avoiding right-completion.

We trim the trees T1,. . . ,T`−r+1 to obtain new trees T R
1 ,. . . ,T R

`−r+1 where every T R
i contains exactly the strings

from Ti that have (S , r)-avoiding right-completions. This holds directly for all strings from the rightmost level, so
T R
`−r+1 = T`−r+1. We trim the other trees in a right-to-left pass from i = ` − r down to 1. Each time we initialize T R

i to
6



Procedure construct-detector-dag(S , r)
1 for i = 1 to ` − r + 1 do | construct prefix trees
2 Ti ← prefix tree with L(Ti) ∩ Σr = Σr \ S [i . . . i + r − 1]
3 T R

`−r+1 ← T`−r+1 | trim the trees in a right-to-left pass
4 for i = ` − r down to 1 do
5 T R

i ← empty prefix tree
6 for each string s ∈ Ti do
7 if there exists s′ ∈ T R

i+1 such that s[2 . . . |s|] is a prefix of s′ then insert s into T R
i

8 T L
1 ← T R

1 | trim the trees in a left-to-right pass
9 for i = 2 to ` − r + 1 do
10 T L

i ← empty prefix tree
11 for each string s ∈ T R

i do
12 if there exists s′ ∈ T L

i−1 such that s′[2 . . . |s′|] is a prefix of s then insert s into T L
i

13 D`−r+1 ← T L
`−r+1 | weave the trees together into a prefix dag

14 for i = ` − r down to 1 do
15 Di ← disjoint union of Di+1 and T L

i ; ρi ← root of T L
i

16 for each string s ∈ T L
i do

17 (n, n′, σ)← last edge on the s-path from ρi in T L
i , and its label

18 n′′ ← end node of the s[2 . . . |s|]-path from ρi+1 in Di+1
19 delete edge (n, n′, σ) from Di and insert edge (n, n′′, σ)
20 output D← D1 | final prefix dag with roots ρ1,. . . ,ρ`−r+1

Figure 4: For a given self-set S ⊆ Σ` and number r ∈ {1, . . . , `}, this procedure constructs a prefix dag D with roots ρ1, . . . , ρl−r+1 such that
L(D, ρi) ∩ Σ`−i+1 = cont(S , r)[i . . . `] for every i ∈ {1, . . . , ` − r + 1} in time O(|S |`r|Σ|). Thus, in particular we have L(D, ρ1) ∩ Σ` = cont(S , r).

be the empty tree. Then we consider every s ∈ Ti and insert it into T R
i if s[2 . . . |s|] is a prefix of some s′ ∈ T R

i+1. There
are two potential reasons for a string s ∈ Ti not to be contained in T R

i : (1) It may be the case that already no string
from Ti+1 starts with s[2 . . . |s|], which, in turn, implies that a proper prefix of s[2 . . . |s|] lies in Ti+1. Since s ∈ Ti, all
of its proper prefixes occur in S at position i and, thus, all proper prefixes of s[2 . . . |s|] occur in S at position i + 1.
This is a contradiction and, thus, this case can never occur. (2) The second possibility is that there is a string that starts
with s[2 . . . |s|] in Ti+1, but not in T R

i+1. By induction, one can prove that this is due to the fact that (s[2 . . . |s|], i + 1)
has no (S , r)-avoiding right-completion and, therefore, also (s, i) has none.

Next, we construct a set of trees T L
1 . . . T

L
`−r+1 containing only the strings that have both left- and right-completions

by an analogous left-to-right pass. Thus, L(T L
i ) ∩ Σr = cont(S , r)[i, . . . , i + r − 1] holds.

Finally, we weave the trees together into a prefix dag as follows: For the rightmost level i = ` − r + 1, we set
D`−r+1 = T L

`−r+1, since by construction L(T L
`−r+1) ∩ Σr = cont(S , r)[` − r + 1 . . . `]. Now we prove the lemma by

decreasing induction on i going from i = ` − r down to 1. For the induction step, suppose we have a prefix dag Di+1
with L(Di+1) ∩ Σ`−i = cont(S , r)[i + 1 . . . `]. For all s ∈ T L

i , let n denote the corresponding leaf in T L
i . Let n′ denote

the end node on the path from the root of T L
i+1 with label s, which exists by induction assumption because s[2 . . . |s|]

is a prefix of some d ∈ cont(S , r)[i + 1 . . . `]. Create a new edge from the parent of n to n′ and delete the leaf n along
with all nodes and edges from which only n can be reached. After all leaves have been iterated through, let Di be the
resulting graph. Let d ∈ cont(S , r)[i . . . `]. Then d starts with a prefix from T L

i and, thus, d[2 . . . |d|] ∈ L(Di+1). Hence,
d ∈ L (Di) by construction. Conversely, let d ∈ L (Di) with |d| = `− i+1. Then d starts with a nonempty prefix that has
both an (S , r)-avoiding right-completion and an (S , r)-avoiding left-completion. Furthermore, d[2 . . . |d|] ∈ L (Di+1).
Hence d ∈ cont(S , r)[i . . . `]. Now by setting D = D1 we obtain a dag with the properties claimed by the Lemma.

The runtime of the construction can be easily determined from the pseudocode given in Figure 4. As stated in
Theorem 3.1, constructing the prefix trees in lines 1 and 2 takes time O(|S |`r|Σ|). The inner loops in the right-to-left
passes in lines 3–7 and 13–19 as well as in the left-to-right pass in lines 8–12 can be implemented by a simultaneous
recursion through the trees on adjacent levels. This yields a worst-case runtime of O(|S |`r|Σ|) for each of the passes
and, hence, of the overall algorithm. �
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Proof (Theorem 4.1). Let D with roots ρ1,. . . ,ρ`−r+1 be the prefix dag from Lemma 4.2. We transform D into an
automaton M = (Q, qi,Qa,Σ,∆) with L(M) ∩ Σ` = cont(S , r): For every leaf n of D and σ ∈ Σ we append a self-loop
with label σ to n. Then Q and ∆ are the set of nodes and set of labeled edges, respectively, Qa contains all former
leafs, and qa = ρ1. Figure 5 shows an example of such an automaton. �

b
b

a

ab

ab
a

a

ab

b

ab
a

ab
b

qi
a,b

a

a

a

Figure 5: The constructed automaton M with L(M) ∩ {a, b}5 = cont(S , 3) where S is the self-set from Figure 2.

In addition to describing the language cont(S , r), the prefix dag D can already be used to classify a string m ∈ Σ`

in time O(`r): Consider every position i ∈ {1, . . . , `− r + 1} and test whether m[i . . . i + r−1] ∈ L (D, ρi). If there exists
a position where this is true, then m is “non-self” and “self”, otherwise. At the end of this section we will speed up
the classification to time O(`). But first let us show how to use the prefix dag D for counting the number of detectors.

Corollary 4.3. There exists an algorithm that, given S ⊆ Σ` and r ∈ {1, . . . , `}, outputs |cont(S , r)| in time O(|S |`r|Σ|).

Proof. Our task is simply to count the number of strings of length ` in L(D, ρ1), where D is the prefix dag constructed
in Lemma 4.2. First, for each node n ∈ D, compute the number of different paths leading from ρ1 to n. Denote
this quantity by P[n], and let δ(ρ1, n) denote the distance between ρ1 and n in D (note that by construction, all paths
leading from ρ1 to n in D have the same length). Then |cont(S , r)| =

∑
n is a leaf of D P[n] · |Σ|`−δ(ρ1,n). Since D is acyclic,

computing P[n] can be done by a dynamic program that traverses D in breadth-first order from ρ1. For the desired
time bound note that the number of nodes and edges in D is bounded by O(|S |`r|Σ|). �

Finally, let us discuss how to classify a single string in time O(`). Again the solution is akin to failure links,
however this time it is less simple than in Section 3 since the set of potential partial matches is no longer described as
a set of prefix trees.

Our approach is to augment the automaton constructed by Theorem 4.1 with edge outputs. The outputs will be
numbers and their partial sums will equal the lengths of maximal partial matches to r-contiguous detectors. Formally,
we use Mealy automata that output numbers and define a proper language based on these outputs.

Definition 4.4. A Mealy automaton is a tuple M = (Q, qi,Qa,Σ,∆,Ω, ω) where (Q, qi,Qa,Σ,∆) is a finite automaton,
Ω is the output alphabet, and ω : ∆ → Ω is the output function. Let m ∈ Σ∗ and t1, . . . , t|m| ∈ ∆ be the sequence of
transitions made by M for input m, then the output of M on input m is the string ω(M,m) = ω(t1) . . . ω(t|m|) ∈ Ω∗. If
Ω is a set of numbers, we define the r-threshold language L(M, r) to be the set of strings m ∈ Σ∗ where there exists an
i ≤ |m| with

∑i
j=1 ω(m)[ j] ≥ r.

Similar to finite automaton, a Mealy automaton can be represented by a graph where every edge label represents
both the symbol that triggers the corresponding transition and the output of the transition. For example, for the Mealy
automaton M = a p1

a p-1

b p2 we have ba ∈ L(M, 2) and a ∈ L(M, 1), but a < L(M, 2).

Theorem 4.5. There exists an algorithm that, given any S ∈ Σ` and r ∈ {1, . . . , `}, constructs a Mealy automaton M
with output alphabet Ω = {−r, . . . , r} such that L(M, r) ∩ Σ` = cont-nonself(S , r) in time O(|S |`r|Σ|).

Proof. Let M be the finite automaton constructed in the proof of Theorem 4.1 and let ρ1, . . . , ρ`−r+1 be the roots of its
underlying graph. We turn M into a Mealy automaton with output alphabet Ω = {−r, . . . , r} such that L(M, r) ∩ Σ` =
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Procedure construct-nonself-mealy-automaton(S , r)
1 M ← Finite automaton from Theorem 4.1 with output 1 for all transitions
2 ρ1, . . . , ρ`−r+1 ← root nodes of M’s graph
3 for i = ` − r down to 1 do | insert failure links with outputs in right-to-left pass
4 for each node n reachable from ρi but not from ρi+1 do
5 for each σ ∈ Σ where n has no outgoing σ-edge do
6 p← path from ρi to n ; s← string on p ; s′ ← sσ
7 if there exists a path p′ for s′[2 . . . |s′|] from ρi+1 then
8 w← sum of outputs on p ; w′ ← sum of outputs on p′ ; n′ ← end node of p′

9 create a transition (n, n′, σ) with output w′ − w
10 output M

Figure 6: The procedure sketched in the proof of Theorem 4.5, which transforms the finite automaton M constructed by Theorem 4.1 into a Mealy
automaton with L(M, r)∩Σ` = cont-nonself(S , r). Note that the language L(M, r), formalized in Definition 4.4, depends solely on the output of M,
regardless its accepting states.

b p1b p1

a p1

a p1b p1

a
b p1

a p1

a

a
b p1

b p1

a
b p1

a p1

ab p1
b p1

qi
a,b p1

a p1

a p1

a p1
a p0

a p-1

a p-1

Figure 7: The Mealy automaton M with L(M, 3) = cont(S , 3) where S is the self-set from Figure 2. The solid straight edges are the ones that
remain from the initial prefix trees. The dashed lines are failure links, inserted to admit a linear time classification of a given string. Every edge is
labeled with both the symbol that triggers the corresponding transition, and the number output of the transition.

cont-nonself(S , r) holds. We describe the main ideas of the construction and discuss its correctness. For a presentation
of the detailed computation steps, we refer to the pseudocode in Figure 6. An example of the constructed automaton
is shown in Figure 7.

We start by assigning to all existing transitions of M the output 1. Our aim is to transform M in a right-to-left pass
that inductively ensures the following property: Let m ∈ Σ` and let 1 ≤ i ≤ j ≤ `. Let k ≥ 0 denote the length of the
longest suffix of m[i . . . j] that is also a suffix of some d′ ∈ cont(S , r)[i . . . j]. If k ≥ r − ` + j, then there exists a path
from ρi for m[i . . . j], and the sum of outputs on this path is equal to k. Otherwise there is no such path. Hence, if such
a path exists and we have k ≥ r, then m ∈ cont-nonself(S , r); otherwise, k is the length of the longest partial match
between m[i . . . j] and some d ∈ cont(S , r)[i . . . j] that can still be extended to length ≥ r.

The property already holds for i = ` − r + 1. For i decreasing from ` − r to 1, we iteratively transform the graph
of M as follows: For every node n in M that is reachable from ρi, but not from ρi+1, consider all σ ∈ Σ where n has no
outgoing edge labeled with σ. Let s be the string on the path p from ρi to n, w be the total weight on p, and s′ = sσ.
If there exists a path p′ labeled with s′[2 . . . |s′|] from ρi+1, let w′ denote the sum of weights on this path. Create an
edge from n to the last node of p′ and label it with w′ − w. Now there is a path from ρi labeled with s′ with weight
w′, fulfilling the required property. Again, the correctness of this procedure is easily proved by induction, and we
obtain a Mealy automaton with the desired property. Similarly as in Lemma 4.2, the described transformation can be
implemented in time O(|S |`r|Σ|) by simultaneous recursion from ρi and ρi+1. �

Assuming that we can compute the sum of integers in unit time, we can compute the membership test for the
r-threshold language L(M, r) in time O(`) and thus obtain a negative selection algorithm with time O(|S |`r|Σ|) for the
training phase and time O(`) for classifying one string. However, it is possible to get rid of the unit cost assumption
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by using a finite automaton whose states store the value of the partial sums. For this construction, we would need to
invest an additional runtime factor r in the training phase.

Corollary 4.6. There exists an algorithm that, given any S ∈ Σ` and r ∈ {1, . . . , `}, constructs a finite automaton M
with L(M) ∩ Σ` = cont-nonself(S , r) in time O(|S |`r2|Σ|).

5. Conclusions

We have shown how to construct automata that simulate the classification results of negative selection algorithms
with r-contiguous and r-chunk detectors. The constructions take time O(|S |`r|Σ|) and enable subsequent classification
of each string in linear time O(`). Table 1 in the introduction compares the runtimes of previously published algorithms
with those from the present paper. As a corollary, our result establishes that the question if any r-contiguous detectors
can be generated for a given self-set [28] can be answered in polynomial time. We leave it as an open problem whether
the asymptotic time and space complexities of our constructions are optimal. It is conceivable, for example, that by
applying techniques similar to those used in on-line construction of suffix trees [29] the runtime of the construction
could be further improved.
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[30] Slawomir T. Wierzchoń. Generating optimal repertoire of antibody strings in an artificial immune system. In Intelligent Information Systems,

Advances in Soft Computing, pages 119–133. Physica-Verlag, 2000.

11


	Introduction
	Contribution of this paper
	Related Work on String-Based Negative Selection
	Organization of This Paper

	Preliminaries
	Strings, Substrings and Languages
	Prefix Trees, Prefix DAGs, and Automata
	Detectors and Self-Nonself-Discrimination

	Negative Selection with Chunk Detectors
	Negative Selection with Contiguous Detectors
	Conclusions

